JPH0251205A - Multilayer ferromagnetic substance - Google Patents

Multilayer ferromagnetic substance

Info

Publication number
JPH0251205A
JPH0251205A JP20150888A JP20150888A JPH0251205A JP H0251205 A JPH0251205 A JP H0251205A JP 20150888 A JP20150888 A JP 20150888A JP 20150888 A JP20150888 A JP 20150888A JP H0251205 A JPH0251205 A JP H0251205A
Authority
JP
Japan
Prior art keywords
magnetic
layer
intermediate layer
silicon
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20150888A
Other languages
Japanese (ja)
Inventor
Hiroshi Okayama
岡山 博
Masatatsu Sugaya
菅屋 正達
Yoshikazu Narumiya
成宮 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP20150888A priority Critical patent/JPH0251205A/en
Publication of JPH0251205A publication Critical patent/JPH0251205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To ensure highly saturated magnetic flux density, high magnetic permeability and low magnetostriction constant while contriving the improvement of a soft magnetic characteristic and heat-resistant stability by using a nitride (containing nonequilibrium phase) of silicon of a specific composition range as an intermediate layer together with iron magnetic layer and laminating these on a board alternately. CONSTITUTION:In a multilayer ferromagnetic body, an iron magnetic material used as a magnetic layer has highly saturated magnetic flux density and high permeability and small magnetostriction constant is used. Further, in an intermediate layer, a nitride of silicon expressed by usual SixNy (containing nonequilibrium phase) is used. It is necessary that x and y of the nitride of the silicon satisfies 0.4<=x/y<=1.1. The magnetic layer and the intermediate layer are laminated alternately and the thickness of a single layer is decreased to preferably increase the number of laminating layers. Further, the value of x/y at SixNy of the intermediate layer can be controlled by selecting the composition of a deposition material, the content of nitrogen in an environmental gas, a degree of deposition vacuum, deposition rate and the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な多層状強磁性体に関するものである。さ
らに詳しくいえば、本発明は、高飽和磁束密度、高透磁
率及び低磁歪定数を有する上、軟磁気特性及び耐熱安定
性が良好であるなど、浸れた特徴を有し、磁気ヘッドの
磁性膜などとして好適な多層状強磁性体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel multilayer ferromagnetic material. More specifically, the present invention has excellent characteristics such as high saturation magnetic flux density, high magnetic permeability, and low magnetostriction constant, as well as good soft magnetic properties and heat resistance stability. The present invention relates to a multilayered ferromagnetic material suitable for use as a multilayer ferromagnetic material.

従来の技術 近年、VTRなどの磁気記録再生装置においては、記録
信号の高密度化や高周波数化などが進められており、こ
れに伴い、磁気記録媒体として磁性粉に、鉄、コバルト
、ニッケルなどの強磁性金属の粉末を用いた、いわゆる
メタルテープや、強磁性金属材料を蒸着などの手段によ
りベースフィルム上に被着した、いわゆる蒸着テープな
どが実用化されつつある。
2. Description of the Related Art In recent years, in magnetic recording and reproducing devices such as VTRs, the recording signal density and frequency have been increased. So-called metal tapes using ferromagnetic metal powder, and so-called vapor-deposited tapes in which ferromagnetic metal materials are deposited on a base film by means such as vapor deposition, are being put into practical use.

このような磁気記録媒体は高い抗磁力を有するので、記
録再生に用いる磁気ヘッドのヘッド材料としては、高飽
和磁束密度を有するものが要求される。また、該磁気ヘ
ッドでは、分解能を向上させるI;めに、ヘッドの磁極
厚さを薄くする必要があり、これに伴って生じる磁極先
端の磁気飽和を防ぐために高飽和磁束密度を有する磁性
材料が必須となり、さらに、垂直磁気記録方式において
も、例えば垂直磁気記録用単磁極型磁気ヘッドの主磁極
は0.2μm程度と極めて薄いため、記録・再生の際に
磁気的に飽和しやすく、それを避けるためには高飽和磁
束密度を有する磁気ヘッド材料が必要となる。
Since such a magnetic recording medium has a high coercive force, the head material of the magnetic head used for recording and reproduction is required to have a high saturation magnetic flux density. In addition, in order to improve the resolution of the magnetic head, it is necessary to reduce the thickness of the magnetic pole of the head, and in order to prevent magnetic saturation at the tip of the magnetic pole that occurs due to this, a magnetic material with a high saturation magnetic flux density is used. Furthermore, in the perpendicular magnetic recording system, for example, the main pole of a single-pole magnetic head for perpendicular magnetic recording is extremely thin, about 0.2 μm, so it easily becomes magnetically saturated during recording and reproduction. To avoid this, a magnetic head material with a high saturation magnetic flux density is required.

一方、該磁気ヘッド材料は、ベツドの記録再生効率の面
から、高透磁率を有することが必要であり、また磁歪定
数がゼロに近いことが望ましい。
On the other hand, the magnetic head material needs to have high magnetic permeability from the viewpoint of recording and reproducing efficiency of the bed, and desirably has a magnetostriction constant close to zero.

このような高飽和磁束密度、高透磁率及び低磁歪定数を
有する磁性材料としては、これまで種々のものが開発さ
れており、例えば鉄−ニッケル系合金(パーマロイ)、
鉄−アルミニウム−ケイ素系合金(センダスト)、鉄−
ケイ素系合金(特開昭57−172703号公報)、ク
ロム0.3〜3.8重量%を含有する鉄−クロム系合金
(特開昭63−60256号公報)などが知られている
Various kinds of magnetic materials having such high saturation magnetic flux density, high magnetic permeability, and low magnetostriction constant have been developed so far, such as iron-nickel alloy (permalloy),
Iron-aluminum-silicon alloy (sendust), iron-
Silicon-based alloys (JP-A-57-172703), iron-chromium-based alloys containing 0.3 to 3.8% by weight of chromium (JP-A-63-60256), and the like are known.

しかしながら、これらの鉄系磁性材料は結晶磁気異方性
定数が大きいことから、単層膜として使用する場合、結
晶粒の体積が大きく、それによる磁化の異方性分散の影
響を大きく受けて軟磁気特性が著しく低下するという欠
点がある。そして、このような欠点を改良するためには
、該結晶粒を微細化して、結晶粒による磁化の異方性分
散を低く抑えることが望ましいので、多層化することに
よって、磁性層1層の厚さを薄くして結晶粒を微細化し
、軟磁気特性を向上させることが試みられている。
However, since these iron-based magnetic materials have a large magnetocrystalline anisotropy constant, when used as a single layer film, the volume of crystal grains is large and the resulting softness is greatly affected by the anisotropic dispersion of magnetization. The disadvantage is that the magnetic properties are significantly degraded. In order to improve this drawback, it is desirable to make the crystal grains finer and suppress the anisotropic dispersion of magnetization due to the crystal grains. Attempts have been made to improve the soft magnetic properties by thinning the crystal grains and making the crystal grains finer.

磁性層にフェライトを用いた多層状磁性体としては、例
えば鉄系磁性層と二酸化ケイ素から成る中間層とを交互
に積層したもの(特開昭63−58806号公報)、鉄
−クロム系合金から成る磁性層と二酸化ケイ素やパーマ
ロイから成る中間層を交互に積層したもの(特開昭63
−60256号公報)など、中間層に非磁性材料の二酸
化ケイ素を用いたものがこれまで知られている。
Examples of multilayer magnetic materials using ferrite in the magnetic layer include those made of iron-based magnetic layers and intermediate layers made of silicon dioxide (Japanese Patent Application Laid-open No. 1983-58806), iron-chromium alloys, etc. (Japanese Unexamined Patent Application Publication No. 1983-1989
60256), which use silicon dioxide, a non-magnetic material, in the intermediate layer have been known so far.

しかしながら、このような中間層に二酸化ケイ素を用い
た多層状磁性体は軟磁気特性を向上させるのにある程度
優れた効果を宵するものの、耐熱安定性については必ず
しも十分ではない。これは、200〜600℃程度の温
度において、該二酸化ケイ素が磁性層中の鉄と拡散結合
もしくは、磁性層の結晶粒の拡大により特性が低下する
ためである。
However, although such a multilayer magnetic material using silicon dioxide as an intermediate layer has a certain degree of excellent effect in improving soft magnetic properties, it is not necessarily sufficient in terms of heat resistance stability. This is because, at temperatures of about 200 to 600° C., the characteristics deteriorate due to diffusion bonding of the silicon dioxide with iron in the magnetic layer or expansion of crystal grains in the magnetic layer.

発明が解決しようとする課題 本発明は、このような事情のもとで、高飽和磁束密度、
高透磁率及び低磁歪定数を有する上に、軟磁気特性及び
耐熱安定性が良好な多層状強磁性体を提供することを目
的としてなされたものである。
Problems to be Solved by the Invention Under these circumstances, the present invention solves the problem of high saturation magnetic flux density,
The purpose of this invention is to provide a multilayer ferromagnetic material having high magnetic permeability and low magnetostriction constant, as well as good soft magnetic properties and heat resistance stability.

課題を解決するための手段 本発明者らは、前記の優れた特徴を有する多層状強磁性
体を開発するために鋭意研究を重ねた結果、鉄系磁性層
とともに、中間層として特定組成範囲のケイ素の窒化物
(非平衡相も含む)を用い、これらを基板上に交互に積
層したものにより、その目的を達成しうろことを見い出
し、この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive research to develop a multilayered ferromagnetic material having the above-mentioned excellent characteristics, the present inventors have found that, together with the iron-based magnetic layer, the intermediate layer has a specific composition range. It was discovered that the object could be achieved by using silicon nitride (including non-equilibrium phase) and alternately layering these on a substrate, and based on this knowledge, the present invention was completed.

すなわち、本発明は、基板上に、(A)鉄系強磁性層と
(B)一般式 SixNy  (非平衡相も含む)  ・・・(I)(
式中のX及びyは、式0.4≦x/y≦1.1の関係を
満たす数である) で表されるケイ素の窒化物から成る中間層とを交互に積
層したことを特徴とする多層状強磁性体を提供するもの
である。
That is, in the present invention, (A) an iron-based ferromagnetic layer and (B) a general formula SixNy (including a non-equilibrium phase) ... (I) (
(X and y in the formula are numbers satisfying the relationship of formula 0.4≦x/y≦1.1) The object of the present invention is to provide a multilayered ferromagnetic material.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の多層状強磁性体において、磁性層として用いら
れる鉄系磁性材料は、高飽和磁束密度、高透磁率を有し
、かつ磁歪定数が小さいものであればよくて、特に制限
はなく、従来磁気ヘッド用などの磁性薄膜に慣用されて
いる鉄系磁性材料を用いることができる。このような鉄
系磁性材料としては、例えばパーマロイ、Fa−5i−
AI2系合金、Fe−5L−Ru合金、Fe−5L合金
、Fe−Ni−Mo系合金、Fe−Ga−5L系合金、
Fe−Cr系合金などが挙げられ、これらはそれぞれ単
独で用いてもよいし、2種以上を組み合わせて用いても
よい。
In the multilayer ferromagnetic material of the present invention, the iron-based magnetic material used as the magnetic layer is not particularly limited as long as it has a high saturation magnetic flux density, high magnetic permeability, and a small magnetostriction constant. Iron-based magnetic materials commonly used in magnetic thin films for conventional magnetic heads can be used. Examples of such iron-based magnetic materials include permalloy, Fa-5i-
AI2 alloy, Fe-5L-Ru alloy, Fe-5L alloy, Fe-Ni-Mo alloy, Fe-Ga-5L alloy,
Examples include Fe-Cr alloys, and these may be used alone or in combination of two or more.

本発明の多層状強磁性体における中間層には、一般式 SixNy (非平衡相も含む) ・・・(I)で表さ
れるケイ素の窒化物が用いられる。このケイ素の窒化物
のX及びyは、0.4≦x/y≦1.1を満たす関係に
あることが必要である。x/y値が前記範囲を逸脱する
と軟磁気特性と向上させる効果が十分に発揮されない。
For the intermediate layer in the multilayered ferromagnetic material of the present invention, a silicon nitride represented by the general formula SixNy (including non-equilibrium phase) (I) is used. It is necessary that X and y of this silicon nitride have a relationship that satisfies 0.4≦x/y≦1.1. If the x/y value deviates from the above range, the effect of improving the soft magnetic properties will not be sufficiently exhibited.

このようなケイ素の窒化物は、300〜600°C程度
の温度においても安定で、酸化ケイ素のように磁気層中
の鉄と拡散したものと思われ、特性の低下が小さい。
Such silicon nitride is stable even at temperatures of about 300 to 600°C, and like silicon oxide, it is thought to have diffused with iron in the magnetic layer, resulting in little deterioration in properties.

本発明の多層状強磁性体に用いられる基板については特
に制限はなく、従来磁気ヘッド用などの磁性薄膜に慣用
されているもの、例えばガラスやプラスチック上に紫外
線などで硬化するポリマー層を設けたもの、アクリル系
樹脂、スチレン系樹脂、ポリカーボネート樹脂、酢酸ビ
ニル樹脂、塩化ビニル樹脂、ポリオレフィン系樹脂など
の透明材料から成る基板、あるいはアルミニウムやフェ
ライトなどの不透明材料から成る基板を用いることがで
きる。
There are no particular restrictions on the substrate used for the multilayered ferromagnetic material of the present invention, and substrates that are conventionally used for magnetic thin films for magnetic heads, such as glass or plastic, with a polymer layer that is cured by ultraviolet rays, etc. may be used. A substrate made of a transparent material such as acrylic resin, styrene resin, polycarbonate resin, vinyl acetate resin, vinyl chloride resin, or polyolefin resin, or a substrate made of an opaque material such as aluminum or ferrite can be used.

本発明の多層状強磁性体は、これらの基板上に、前記の
磁性層と中間層とを交互に積層したものであり、単層の
厚さを薄くして積層数を増やす方が好ましいが、経済性
や作業性などの点から、通常磁気層の厚さは200〜1
000人の範囲で、中間層の厚さは10〜100人の範
囲で選ばれ、また、積層数は4〜140層の範囲に、全
体の厚さは0.4〜3μmの範囲にあることが好ましい
The multilayered ferromagnetic material of the present invention is obtained by laminating the above-mentioned magnetic layers and intermediate layers alternately on these substrates, and it is preferable to increase the number of laminated layers by decreasing the thickness of the single layer. , from the point of view of economy and workability, the thickness of the magnetic layer is usually 200 to 1
000 people, the thickness of the middle layer is selected in the range of 10 to 100 people, the number of laminated layers is in the range of 4 to 140 layers, and the total thickness is in the range of 0.4 to 3 μm. is preferred.

本発明において、磁性層及び中間層を設ける方法につい
ては特に制限はなく、通常薄膜の形成に用いられている
方法、例えば真空蒸着法、スパッタリング法、イオンブ
レーティング法、CVD法などの中から任意の方法を選
択して用いることができる。また、中間層の5ixNy
におけるx/y値は、蒸着原料の組成、雰囲気ガス中の
窒素の含有量、蒸着真空度、蒸着速度などを選択するこ
とにより制御することができる。
In the present invention, there are no particular limitations on the method for forming the magnetic layer and the intermediate layer, and any method may be used from among the methods normally used for forming thin films, such as vacuum evaporation, sputtering, ion blating, and CVD. The following methods can be selected and used. Also, the middle layer 5ixNy
The x/y value in can be controlled by selecting the composition of the vapor deposition raw material, the nitrogen content in the atmospheric gas, the vapor deposition vacuum degree, the vapor deposition rate, etc.

発明の効果 本発明の多層状強磁性体は、鉄系材料から成る強磁性層
と特定組成のケイ素の窒化物から成る中間層とを、基板
上に交互に積層したものであって、高飽和磁束密度、高
透磁率及び低磁歪定数を有する上、軟磁気特性及び耐熱
安定性が良好であるなど、優れた特徴を有し、磁気ヘッ
ドの磁性膜なととして好適に用いられる。
Effects of the Invention The multilayer ferromagnetic material of the present invention is a highly saturated material in which ferromagnetic layers made of iron-based materials and intermediate layers made of silicon nitride of a specific composition are alternately laminated on a substrate. It has excellent characteristics such as magnetic flux density, high magnetic permeability, and low magnetostriction constant, as well as good soft magnetic properties and heat resistance stability, and is suitably used as a magnetic film of a magnetic head.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

なお、得られた多層状強磁性体の透磁率、保磁力及び単
層膜の組成は次のようにして求めI;。
The magnetic permeability, coercive force, and composition of the single layer film of the obtained multilayered ferromagnetic material were determined as follows.

(1)  透磁率μiac 磁化困難軸方向に測定磁場が印加されるように、フエラ
イトコープを膜面に当て、インピーダンスアナライザを
用いて3 mOeの磁場及び測定周波数5Ml1zでイ
ンダクタンスを測定することにより求め を二。
(1) Magnetic permeability μiac Determine by applying a ferrite scope to the film surface so that the measurement magnetic field is applied in the direction of the difficult axis of magnetization, and measuring the inductance using an impedance analyzer with a magnetic field of 3 mOe and a measurement frequency of 5Ml1z. two.

(2)保磁力t(c(Oe) 薄膜ヒストロスコープを用いて測定した。(2) Coercive force t(c(Oe) Measurements were made using a thin film histroscope.

(3)単層膜組成 E P M A (Electron Probe M
icro−Analysis)法により求めた。
(3) Single layer film composition E PMA (Electron Probe M
It was determined by the micro-analysis method.

実施例 ケイ素1.7重1%含有鉄−ケイ素合金ターゲットとS
i、N、ターゲットを用い、RFマグネトロンスパッタ
装置にて、3000e(エルステッド)の磁場中で交互
にスパッタリングを行い、基板上に、厚さ500人の鉄
−ケイ素磁性合金から成る磁性層と厚さ25人のSix
Nyから成る中間層が交互に15層積層された総膜厚約
0.8μmの多層膜を形成した。この際基板として板厚
1.1mmの結晶化ガラス(商品名7オトセラム)を用
いた。
Example: Iron-silicon alloy target containing 1.7 wt. 1% silicon and S
Sputtering was performed alternately in a magnetic field of 3000e (Oersted) using an RF magnetron sputtering device using i, N, and N targets to form a magnetic layer made of an iron-silicon magnetic alloy with a thickness of 500 mm on the substrate. 25 Six
A multilayer film having a total thickness of about 0.8 μm was formed by alternately stacking 15 intermediate layers made of Ny. At this time, a crystallized glass (trade name 7 Otoceram) with a plate thickness of 1.1 mm was used as the substrate.

また、スパッタリングの条件は、鉄−ケイ素合金層の形
成には、アルゴン圧15mTorr、 投入パワー3.
2 W/cm”、基板温度300°Cとし、SixNy
層の形成には種々の割合のアルゴンと窒素との混合ガス
を用い、圧15mTorr、投入パワー1.9 W7c
m”、基板温度300°Cとした。
The sputtering conditions were as follows: argon pressure 15 mTorr, input power 3.
2 W/cm”, substrate temperature 300°C, SixNy
A mixed gas of argon and nitrogen in various proportions was used to form the layer, the pressure was 15 mTorr, and the input power was 1.9 W7c.
m'' and the substrate temperature was 300°C.

なお、鉄−ケイ素磁性合金膜はアルゴンガス雰囲気下で
、SixNy膜はアルゴンと窒素との混合ガス雰囲気中
でそれぞれ作成した。
Note that the iron-silicon magnetic alloy film was formed in an argon gas atmosphere, and the SixNy film was formed in a mixed gas atmosphere of argon and nitrogen.

また、このようにして得られた多膜層におけるSixN
y層の組成を求めるために、別に、板厚1.]mmのバ
リウムホウケイ酸ガラス(商品名7059)上に、基板
温度を150°Cとした以外は前記と同じ条件で、厚さ
約1μmのSixNy膜を形成し、この膜の組成を求め
た。
Moreover, SixN in the multilayer layer obtained in this way
In order to determine the composition of the y layer, separately, the plate thickness 1. ] mm barium borosilicate glass (trade name 7059) under the same conditions as above except that the substrate temperature was 150° C., and the composition of this film was determined.

第1図に、混合ガス中の窒素の含有量(容量%)とSi
xNy層におけるx/y値との関係をグラフで示す。ま
た第2図にSixNy層におけるx/y値と多層膜の保
磁力[t(c(Oe)]との関係を、第3図にSixN
y層におけるx/y値と透磁率(μ1ac)との関係を
示す。
Figure 1 shows the nitrogen content (volume %) in the mixed gas and the Si
The relationship with the x/y value in the xNy layer is shown in a graph. Furthermore, Fig. 2 shows the relationship between the x/y value in the SixNy layer and the coercive force [t(c(Oe)] of the multilayer film, and Fig. 3 shows the relationship between the x/y value in the SixNy layer and the coercive force [t(c(Oe)]).
The relationship between the x/y value and magnetic permeability (μ1ac) in the y layer is shown.

これらの図から、SixNy層におけるx/y値が0.
4〜1.1の範囲において良好な軟磁気特性(低保磁力
、高透磁率)を有することが分かる。
From these figures, it can be seen that the x/y value in the SixNy layer is 0.
It can be seen that it has good soft magnetic properties (low coercive force, high magnetic permeability) in the range of 4 to 1.1.

また、第4図、第5図は中間層S ioz及びSi3N
In addition, FIGS. 4 and 5 show the intermediate layer Sioz and Si3N.
.

を用いたときの耐熱性を調べたグラフで、従来の5iO
zに対してSi3N、層を用いた多層膜は熱的に安定で
あることが分かる。
This is a graph examining the heat resistance when using conventional 5iO
It can be seen that the multilayer film using the Si3N layer for z is thermally stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は、それぞれ本発明の実施例
で作成された多層状強磁性体についての混合ガス中の窒
素含有量と、SixNy層におけるx/y値との関係を
示すグラフ、SixNy層におけるx/y値と保磁力と
の関係を示すグラフ及び同じく透磁率との関係を示すグ
ラフである。 第4図、第5図は、中間層に5ioz及びSiJ+を用
いたときの耐熱安定性を調べたグラフである。
Figures 1, 2, and 3 respectively show the relationship between the nitrogen content in the mixed gas and the x/y value in the SixNy layer for the multilayer ferromagnetic material created in the example of the present invention. A graph showing the relationship between the x/y value and the coercive force in the SixNy layer, and a graph showing the relationship with the magnetic permeability. FIGS. 4 and 5 are graphs examining the heat resistance stability when 5ioz and SiJ+ were used for the intermediate layer.

Claims (1)

【特許請求の範囲】 1 基板上に、(A)鉄系強磁性層と(B)一般式Si
_xN_y(非平衡相も含む) (式中のx及びyは、式0.4≦x/y≦1.1の関係
を満たす数である) で表されるケイ素の窒化物から成る中間層とを交互に積
層したことを特徴とする多層状強磁性体。
[Claims] 1. On a substrate, (A) an iron-based ferromagnetic layer and (B) a general formula Si
_xN_y (including non-equilibrium phase) (x and y in the formula are numbers that satisfy the relationship of 0.4≦x/y≦1.1) A multilayered ferromagnetic material characterized by alternating layers of ferromagnetic materials.
JP20150888A 1988-08-12 1988-08-12 Multilayer ferromagnetic substance Pending JPH0251205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20150888A JPH0251205A (en) 1988-08-12 1988-08-12 Multilayer ferromagnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20150888A JPH0251205A (en) 1988-08-12 1988-08-12 Multilayer ferromagnetic substance

Publications (1)

Publication Number Publication Date
JPH0251205A true JPH0251205A (en) 1990-02-21

Family

ID=16442212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20150888A Pending JPH0251205A (en) 1988-08-12 1988-08-12 Multilayer ferromagnetic substance

Country Status (1)

Country Link
JP (1) JPH0251205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620836A (en) * 1991-10-18 1994-01-28 Limes:Kk Method of forming soft magnetic multilayer film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620836A (en) * 1991-10-18 1994-01-28 Limes:Kk Method of forming soft magnetic multilayer film

Similar Documents

Publication Publication Date Title
JPH061729B2 (en) Magnetic film and magnetic head using the same
Kohmoto Recent development of thin film materials for magnetic heads
JP2550893B2 (en) Magnetic multilayer film
JPH0251205A (en) Multilayer ferromagnetic substance
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP2570337B2 (en) Soft magnetic laminated film
JPS63211141A (en) Magneto-optical recording medium
JPH0334406A (en) Multilayer type ferromagnetic substance
JPH02268408A (en) Multilayer ferromagnetic material
JPWO2003096359A1 (en) High saturation magnetic flux density soft magnetic material
JPH02268407A (en) Multilayer ferromagnetic material
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JP3194578B2 (en) Multilayer ferromagnetic material
JP2979557B2 (en) Soft magnetic film
JPH04362160A (en) Ferromagnetic material
JPH0389502A (en) Magnetic multilayer film
JPH04359501A (en) Multilayer ferromagnetic substance
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPH0334405A (en) Multilayer type ferromagnetic substance
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPH01217723A (en) Magnetic recording medium
JPH0256724B2 (en)
KR950001603B1 (en) Magnetic head for multi-layer
JP2715783B2 (en) Magnetic recording media
JPH0485716A (en) Thin magnetic film for magnetic head