JP2715783B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2715783B2
JP2715783B2 JP4040193A JP4019392A JP2715783B2 JP 2715783 B2 JP2715783 B2 JP 2715783B2 JP 4040193 A JP4040193 A JP 4040193A JP 4019392 A JP4019392 A JP 4019392A JP 2715783 B2 JP2715783 B2 JP 2715783B2
Authority
JP
Japan
Prior art keywords
magnetic
film
transition region
thickness
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4040193A
Other languages
Japanese (ja)
Other versions
JPH05210834A (en
Inventor
勉 八代
和男 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP4040193A priority Critical patent/JP2715783B2/en
Publication of JPH05210834A publication Critical patent/JPH05210834A/en
Application granted granted Critical
Publication of JP2715783B2 publication Critical patent/JP2715783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ビデオテープ、フロッ
ピーディスク及びコンピュータ用磁気テープ等の高分子
フィルムを基体とする磁気記録媒体に係り、特に記録特
性を改善することができる磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium based on a polymer film such as a video tape, a floppy disk and a magnetic tape for a computer, and more particularly to a magnetic recording medium capable of improving recording characteristics.

【0002】[0002]

【従来の技術】近年において、磁気記録媒体の記録特性
の向上は著しいものがあり、塗布形媒体に代わって、金
属薄膜媒体が実用化され、更には垂直磁気記録方式が有
望視されて活発な研究開発が進められている。その理由
は、面内記録方式に比べて垂直磁気記録方式では記録密
度が高くなるほど自己減磁作用が小さくなり、いわゆる
回転磁化モードの形成が抑えられ、より短波長記録にお
いても大きな再生出力を得ることができる点にある。こ
の種の垂直磁気記録方式にあっては、媒体面に垂直に磁
化しやすい材料が必要となり、CoCr膜、CoOx
膜、六方晶Baフェライト膜等、一軸異方性が大きく且
つその磁化容易軸が膜面に垂直に配向しやすい材料が使
用される。また、磁気記録特性の改善を図るために、垂
直磁化膜と非磁性基体との間にパーマロイやCo系アモ
ルファス軟磁性膜を下地膜として形成した多層膜構造の
記録媒体も提案されている。
2. Description of the Related Art In recent years, there has been a remarkable improvement in recording characteristics of a magnetic recording medium, and a metal thin film medium has been put to practical use in place of a coating type medium, and furthermore, a perpendicular magnetic recording system is expected to be promising and active. R & D is underway. The reason is that the self-demagnetization effect decreases as the recording density increases in the perpendicular magnetic recording method as compared with the in-plane recording method, so that the formation of a so-called rotational magnetization mode is suppressed, and a large reproduction output is obtained even in shorter wavelength recording. In that they can do it. In this type of perpendicular magnetic recording system, a material that is easy to be magnetized perpendicular to the medium surface is required, and a CoCr film, CoOx
Materials such as a film and a hexagonal Ba ferrite film having a large uniaxial anisotropy and an axis of easy magnetization easily oriented perpendicular to the film surface are used. Further, in order to improve magnetic recording characteristics, a recording medium having a multilayer film structure in which a permalloy or Co-based amorphous soft magnetic film is formed as a base film between a perpendicular magnetization film and a nonmagnetic substrate has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ように下地層としてパーマロイ等の軟磁性膜を形成した
上に、金属或いは合金磁性膜を形成して多層膜構造にす
ることは、記録特性の改善を図ることはできるが、設備
的、材料的なコストアップとなるばかりでなく、生産性
も低下するという問題点があった。本発明は、以上のよ
うな問題点に着目し、これを有効に解決すべく創案され
たものである。本発明の目的は、高分子フィルム等の非
磁性基体上に、軟磁性遷移領域を有する金属或いは合金
磁性膜を形成することによって、下地層を形成すること
なく同様な記録特性の改善を図ることができる磁気記録
媒体を提供することにある。
However, as described above, forming a soft magnetic film of permalloy or the like as a base layer and then forming a magnetic film of metal or alloy to form a multi-layer structure has a problem in recording characteristics. Although improvement can be achieved, there is a problem that not only cost for equipment and material is increased, but also productivity is reduced. The present invention has been devised in view of the above problems and effectively solving them. An object of the present invention is to improve the same recording characteristics without forming an underlayer by forming a metal or alloy magnetic film having a soft magnetic transition region on a nonmagnetic substrate such as a polymer film. It is to provide a magnetic recording medium which can be used.

【0004】[0004]

【課題を解決するための手段】一般に、垂直磁化膜を形
成してなる磁気記録媒体においては、例えばCoCr垂
直磁化膜を、ポリイミドフィルム上に形成する場合、C
oとCrの組成比を一定にしても、膜形成条件によっ
て、記録特性は大きく異なる。この原因は、垂直磁化膜
の膜構造の違いによる。本発明者は、この膜構造の違い
の中で、その静磁気測定によって、面内方向のヒステリ
シスループにいわゆるヘビ形ループを観測し、これが上
記した下地膜の役割を演じていると考え、種々の成膜条
件によって磁化膜を成膜し、ヘビ形ループが高分子基体
上の磁性膜の遷移領域の存在によるものである、という
知見を得ることにより、本発明を完成させるに至った。
すなわち、本発明は、前記問題点を解決するために、非
磁性基体上に、膜面に対して垂直な磁気異方性を有する
磁性膜を形成してなる磁気記録媒体において、前記磁性
膜の一部であって前記非磁性基体側に軟磁性遷移領域が
存在するようにしたものである。
Generally, in a magnetic recording medium having a perpendicular magnetic film formed thereon, for example, when a CoCr perpendicular magnetic film is formed on a polyimide film, C
Even if the composition ratio of o and Cr is constant, the recording characteristics vary greatly depending on the film forming conditions. This is due to the difference in the film structure of the perpendicular magnetization film. The present inventor observed a so-called snake-shaped loop in the in-plane direction hysteresis loop by the magnetostatic measurement in the difference of the film structure, and thought that this plays the role of the underlayer described above. The present invention was completed by finding that a magnetized film was formed under the film formation conditions described above and that the snake-shaped loop was caused by the transition region of the magnetic film on the polymer substrate.
That is, the present invention provides a magnetic recording medium in which a magnetic film having a magnetic anisotropy perpendicular to the film surface is formed on a non-magnetic substrate in order to solve the above-mentioned problems. A part thereof is such that a soft magnetic transition region exists on the non-magnetic substrate side.

【0005】具体的には、図1に示すように本発明に係
る磁気記録媒体2は、例えば高分子フィルムからなる非
磁性基体4上に例えば金属或いは合金により膜面に対し
て垂直な磁気異方性を有する磁性膜6を形成して構成さ
れている。そして、この磁性膜6の上記非磁性基体側の
一部は、面内方向の初期磁化曲線において外部磁場(磁
界)の小さいところで磁化の跳びの生ずる軟磁性遷移領
域8として構成されている。この磁化の跳びの大きさと
上記遷移領域8の厚さは比例して、この遷移領域の厚さ
と磁気記録特性との間には強い相関関係があり、そし
て、再生出力を改善するためには上記磁性膜6の全体の
厚みL1に対する上記遷移領域8の厚みL2を15%以
下に、好ましくは5〜10%の範囲に設定する。
More specifically, as shown in FIG. 1, a magnetic recording medium 2 according to the present invention is formed on a non-magnetic substrate 4 made of a polymer film, for example, by a magnetic material perpendicular to the film surface by a metal or alloy. It is formed by forming a magnetic film 6 having anisotropy. A part of the magnetic film 6 on the non-magnetic substrate side is formed as a soft magnetic transition region 8 where a jump of magnetization occurs where the external magnetic field (magnetic field) is small in the initial magnetization curve in the in-plane direction. The magnitude of the jump of the magnetization is proportional to the thickness of the transition region 8, and there is a strong correlation between the thickness of the transition region and the magnetic recording characteristics. The thickness L2 of the transition region 8 with respect to the entire thickness L1 of the magnetic film 6 is set to 15% or less, preferably in the range of 5 to 10%.

【0006】上記磁性膜6を形成するためには、例えば
高分子フィルムよりなる非磁性基体4上に、例えばCo
Cr合金をスパッタ法或いは蒸着法等によりアルゴンガ
ス雰囲気中で積層することにより形成する。このように
高分子フィルム上に活性化されたスパッタ粒子、或いは
金属の蒸気が積層される場合、高分子フィルムがそれら
の粒子によってダメージを受けることによって、本来の
金属或いは合金の磁性膜に高分子フィルムのカーボン等
が混入した遷移領域が形成され、この遷移領域がアモル
ファス的になり、軟磁性を示すものと思慮される。従っ
て、本発明は、CoCr合金を使用して形成した磁性膜
のみならず、他の金属或いは合金からなる垂直磁性膜に
対しても適用することが可能である。
In order to form the magnetic film 6, for example, a Co film is formed on a non-magnetic substrate 4 made of a polymer film.
It is formed by laminating a Cr alloy in an argon gas atmosphere by sputtering or vapor deposition. When activated sputtered particles or metal vapor are deposited on the polymer film in this manner, the polymer film is damaged by the particles, and the polymer film is damaged by the particles. It is considered that a transition region in which carbon or the like of the film is mixed is formed, and this transition region becomes amorphous and exhibits soft magnetism. Therefore, the present invention can be applied not only to a magnetic film formed using a CoCr alloy, but also to a perpendicular magnetic film made of another metal or alloy.

【0007】[0007]

【作用】前述したように、例えばCoCr垂直磁化膜を
高分子フィルム上に形成する場合、CoとCrの組成比
を一定にしても膜成形条件によって垂直磁化膜の膜構造
が相異し、このために、磁気記録特性は大きく異なる。
この膜構造の相異を検討するために、静磁気測定を行っ
たところ、面内方向のヒステリシスループにいわゆる図
2に示すようなヘビ形ループAを観測した。この時の条
件は、CoCrの磁性膜の厚みは2000Å、基体温度
Tsは210℃、アルゴンガスの圧力PArが0.5m
Torr、ターゲット電流Itが5.8A(電圧一定)
である。このヘビ形ループAは、磁場乃至磁界がゼロの
付近で磁化の跳び10を示し、この磁化特性が下地層の
役割を演じているものと考えられる。そして、種々の成
膜条件によって磁化膜を形成し、特性を検討したところ
上記ヘビ形ループAが高分子の非磁性基体上の磁性膜の
遷移領域の存在によることを突き止めた。
As described above, for example, when a CoCr perpendicular magnetization film is formed on a polymer film, the film structure of the perpendicular magnetization film differs depending on the film forming conditions even if the composition ratio of Co and Cr is kept constant. Therefore, magnetic recording characteristics are greatly different.
When a magnetostatic measurement was performed to examine the difference in the film structure, a snake-shaped loop A as shown in FIG. 2 was observed in the in-plane direction hysteresis loop. The conditions at this time were as follows: the thickness of the CoCr magnetic film was 2000 ° C., the substrate temperature Ts was 210 ° C., and the argon gas pressure PAr was 0.5 m.
Torr, target current It is 5.8 A (constant voltage)
It is. The snake-shaped loop A exhibits a magnetic field or a jump 10 in the vicinity of zero magnetic field, and it is considered that this magnetization characteristic plays a role of the underlayer. Then, a magnetized film was formed under various film forming conditions, and the characteristics were examined. As a result, it was found that the snake-shaped loop A was caused by the transition region of the magnetic film on the polymer nonmagnetic substrate.

【0008】この遷移領域は、軟磁性体と考えられ、面
内方向の初期磁化曲線において外部磁場の小さいところ
で上述のように磁化の跳び10が生ずる。この磁化の跳
びの大きさと遷移領域の厚さは比例しており、それを基
にして種々の磁性膜を作成し、遷移領域の厚さと磁気記
録特性の関係を調べたところ、両者には強い相関関係が
あり、磁性膜の全厚に対して遷移領域の厚みが15%以
下であれば、再生出力の改善が可能であることが判明し
た。すなわちこの性質を利用すれば、従来用いられてい
た下地膜を形成することなく、同等の効果を得ることが
可能となる。これによって、多層構造とすることなく磁
性膜を一層にした場合でも記録特性の向上を図ることが
でき、生産性の大幅な向上を図ることができる。
[0008] This transition region is considered to be a soft magnetic material, and the jump of magnetization 10 occurs as described above where the external magnetic field is small in the initial magnetization curve in the in-plane direction. The magnitude of the jump in magnetization is proportional to the thickness of the transition region. Based on this, various magnetic films were formed, and the relationship between the thickness of the transition region and the magnetic recording characteristics was examined. There is a correlation, and it has been found that when the thickness of the transition region is 15% or less with respect to the total thickness of the magnetic film, the reproduction output can be improved. That is, if this property is used, the same effect can be obtained without forming a conventionally used base film. As a result, the recording characteristics can be improved even when a single magnetic film is used without forming a multilayer structure, and the productivity can be greatly improved.

【0009】[0009]

【実施例】以下に、本発明に係る磁気記録媒体の一実施
例について詳述する。 実施例1 CoCr(Cr:18at%)合金ターゲットを用い、
非磁性基体としてポリイミドフィルム基板を用い、この
上にスパッタ法によってCoCr垂直磁性膜を形成し
た。スパッタ条件として基板温度、アルゴンガス圧のみ
を変えた。予備実験として、まずアルゴンガス圧を一定
にしCoCr垂直磁性膜の膜厚を250Åから1500
Åまで変えたサンプルを作り、VSM(Vibrati
ng Sample Magnetometry)を用
いてそれらの面内方向の初期磁化曲線を測定し、図3に
示すような方法で磁化の跳びを測定して磁性膜の全厚と
磁化の跳びの関係を求めた。この結果を図4に示す。M
j/Msと1/tの関係は基板温度Tsに関係なくよい
直線関係になっており、遷移領域の厚みtinはこの直線
関係の傾きから下記式に示すように求めることができ
る。 tin=t×Mj/Ms
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the magnetic recording medium according to the present invention will be described in detail. Example 1 Using a CoCr (Cr: 18 at%) alloy target,
A polyimide film substrate was used as a nonmagnetic substrate, and a CoCr perpendicular magnetic film was formed thereon by sputtering. Only the substrate temperature and the argon gas pressure were changed as the sputtering conditions. As a preliminary experiment, first, the argon gas pressure was kept constant and the thickness of the CoCr perpendicular magnetic film was increased from 250 ° to 1500 °.
サ ン プ ル Make a sample that has been changed to VSM (Vibrati
The initial magnetization curves in the in-plane direction were measured using ng Sample Magnetometry, and the jump of magnetization was measured by the method shown in FIG. 3 to determine the relationship between the total thickness of the magnetic film and the jump of magnetization. The result is shown in FIG. M
relationship j / Ms and 1 / t has become a good linear relationship regardless substrate temperature Ts, the thickness t in the transition region can be determined as shown in the following formula from the slope of the linear relationship. t in = t × Mj / Ms

【0010】ここで、tは磁性膜の全厚、Mjは磁化の
変曲点の値、Msは飽和磁化を示す。また、この上記式
及び図4からも明らかなように遷移領域の厚みは、基板
温度を変えることにより制御できる。次に、種々のスパ
ッタ条件により全厚tが2000ÅのCoCr垂直磁性
膜を形成し、その軟磁性遷移領域の厚みtinを、予備実
験の結果を基にして求めると同時に、それらの記録再生
特性を測定した。測定にはドラムテスタを用い、記録波
長λは0.5μmに固定した。最適記録電流によって記
録された矩形波を再生し規格化して再生出力とした。
尚、磁気ヘッドはリング型のセンダストヘッドを用い、
ヘッドと媒体の相対速度は2m/s、ヘッドギャップは
0.19μm、巻線数は20ターンである。遷移領域の
厚みtinと再生出力Vpbの関係を図5に示す。図中I
tはターゲット電流を示す。図5より、全厚2000Å
に対して、遷移領域の厚みtinが300Å以下であれ
ば、つまり、磁性膜の全厚のうち遷移領域が15%以下
であれば、再生出力Vpbは200以上となり、再生出
力が大きくなって記録特性が改善されることが判明し
た。この遷移領域の厚さtinは約160Åすなわち約8
%を頂点として5〜10%の範囲に制御されればより好
ましい。そして、この遷移領域の厚さtinが15%を超
えて大きくなると、再生出力はかなり小さくなり、記録
特性は十分に改善されないことが判明した。
Here, t is the total thickness of the magnetic film, Mj is the value of the inflection point of the magnetization, and Ms is the saturation magnetization. Further, as is clear from the above equation and FIG. 4, the thickness of the transition region can be controlled by changing the substrate temperature. Next, a CoCr perpendicular magnetic film having a total thickness t of 2000 ° was formed under various sputtering conditions, and the thickness t in of the soft magnetic transition region was determined based on the results of the preliminary experiment. Was measured. A drum tester was used for the measurement, and the recording wavelength λ was fixed at 0.5 μm. The rectangular wave recorded by the optimum recording current was reproduced and standardized to obtain a reproduction output.
The magnetic head uses a ring-type sendust head,
The relative speed between the head and the medium is 2 m / s, the head gap is 0.19 μm, and the number of turns is 20 turns. FIG. 5 shows the relationship between the thickness t in of the transition region and the reproduction output Vpb. I in the figure
t indicates a target current. According to FIG.
On the other hand, if the thickness t in of the transition region is 300 ° or less, that is, if the transition region is 15% or less of the total thickness of the magnetic film, the reproduction output Vpb becomes 200 or more, and the reproduction output increases. It was found that the recording characteristics were improved. The thickness t in of this transition region is about 160 ° or about 8
% Is more preferably controlled in the range of 5 to 10% with the peak as the top. Then, it was found that when the thickness t in of the transition region exceeded 15%, the reproduction output was considerably reduced, and the recording characteristics were not sufficiently improved.

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば次
のような優れた作用効果を発揮することができる。非磁
性基体側の磁性膜の一部に軟磁性遷移領域を形成するよ
うにしたので、多層構造とすることなく記録特性を向上
させることができる。従って、生産性を向上させること
ができるのみならず、設備的、材料的なコストアップを
抑制することができる。
As described above, according to the present invention, the following excellent functions and effects can be exhibited. Since the soft magnetic transition region is formed in a part of the magnetic film on the non-magnetic substrate side, recording characteristics can be improved without having a multilayer structure. Therefore, not only can the productivity be improved, but also an increase in equipment and material costs can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気記録媒体を示す断面図であ
る。
FIG. 1 is a sectional view showing a magnetic recording medium according to the present invention.

【図2】ヘビ形ループを示すグラフである。FIG. 2 is a graph showing a snake-shaped loop.

【図3】磁化の跳びを説明するための磁化曲線を示すグ
ラフである。
FIG. 3 is a graph showing a magnetization curve for explaining a jump of magnetization.

【図4】遷移領域の厚さとMj、Msの関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between the thickness of a transition region and Mj and Ms.

【図5】遷移領域の厚さと再生出力との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a transition region thickness and a reproduction output.

【符号の説明】[Explanation of symbols]

2…磁気記録媒体、4…非磁性基体、6…磁性膜、8…
軟磁性遷移領域、10…磁化の跳び、L1,L2…厚
み。
2 ... magnetic recording medium, 4 ... non-magnetic substrate, 6 ... magnetic film, 8 ...
Soft magnetic transition region, 10 ... jump of magnetization, L1, L2 ... thickness.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性基体上に、膜面に対して垂直な磁気
異方性を有する磁性膜を形成してなる磁気記録媒体にお
いて、前記磁性膜は前記非磁性基体側に軟磁性遷移領域
を有し、前記軟磁性遷移領域の厚みが前記磁性膜の全体
の厚みの15%以下であることを特徴とする磁気記録媒
体。
1. A magnetic recording medium comprising a magnetic film having a magnetic anisotropy perpendicular to a film surface formed on a nonmagnetic substrate , wherein the magnetic film has a soft magnetic transition region on the nonmagnetic substrate side.
Wherein the thickness of the soft magnetic transition region is the entirety of the magnetic film.
A magnetic recording medium having a thickness of 15% or less of the thickness of the magnetic recording medium.
JP4040193A 1992-01-30 1992-01-30 Magnetic recording media Expired - Fee Related JP2715783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040193A JP2715783B2 (en) 1992-01-30 1992-01-30 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040193A JP2715783B2 (en) 1992-01-30 1992-01-30 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH05210834A JPH05210834A (en) 1993-08-20
JP2715783B2 true JP2715783B2 (en) 1998-02-18

Family

ID=12573947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040193A Expired - Fee Related JP2715783B2 (en) 1992-01-30 1992-01-30 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2715783B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640361B2 (en) * 1985-03-07 1994-05-25 日本ビクター株式会社 Perpendicular magnetic recording / reproducing method
JPS63237208A (en) * 1987-03-24 1988-10-03 Ube Ind Ltd Perpendicular magnetic recording medium
JPS644918A (en) * 1987-06-26 1989-01-10 Nec Corp Magnetic recording medium and its production

Also Published As

Publication number Publication date
JPH05210834A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US6599646B2 (en) Magnetic recording medium
JP2524514B2 (en) Magnetic recording media
JPH11149628A (en) Perpendicular magnetic recording medium
EP1324317B1 (en) Perpendicular magnetic recording medium and information storing device
JP2715783B2 (en) Magnetic recording media
WO2004019322A1 (en) Lining magnetic film
JPH0785401A (en) Magnetic recording method
JPH0630136B2 (en) Perpendicular magnetic recording medium
JP2521532B2 (en) Perpendicular magnetic recording medium, manufacturing method of the medium, and recording / reproducing method
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0532809B2 (en)
JPS58180008A (en) Magnetic recording medium
JPH04337519A (en) Magnetic recording medium
JPH05217143A (en) Magnetic recording medium
JPH01175707A (en) Laminated soft thin magnetic film
JPH04206018A (en) Perpendicular magnetic recording medium
US20010050829A1 (en) Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JPH0570205B2 (en)
JPH01143312A (en) Amorphous soft magnetic laminated film
JPS61294635A (en) Magnetic recording medium
JPH05159264A (en) Magnetic recording medium
JPH05334644A (en) Magnetic recording medium
JPH0532808B2 (en)
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head
JPH0527169B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees