JPH01102721A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH01102721A
JPH01102721A JP25820787A JP25820787A JPH01102721A JP H01102721 A JPH01102721 A JP H01102721A JP 25820787 A JP25820787 A JP 25820787A JP 25820787 A JP25820787 A JP 25820787A JP H01102721 A JPH01102721 A JP H01102721A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic recording
alloy
tensile stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25820787A
Other languages
Japanese (ja)
Inventor
Makoto Fujimoto
良 藤本
Katsumi Arisaka
克已 有坂
Takao Sasakura
笹倉 孝男
Hirotsugu Takagi
高木 博嗣
Kenji Suzuki
謙二 鈴木
Akira Niimi
新見 晄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25820787A priority Critical patent/JPH01102721A/en
Publication of JPH01102721A publication Critical patent/JPH01102721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain good head touch by forming a thin film layer having a tensile stress on the 2nd face of a magnetic recording medium formed with an alloy film essentially consisting of Co-Cr on the 1st face of a nonmagnetic base body when the coefft. of thermal expansion of the nonmagnetic base body is smaller than the coefft. of thermal expansion of the alloy film essentially consisting of the Co-Cr. CONSTITUTION:The curling generated in the magnetic recording medium is offset by forming the film 3 having the absolute value of the tensile stress about equal to or larger than the tensile stress of the Co-Cr alloy 2, for example, by forming an inexpensive metal, etc., as a thin film on the opposite side. The recording medium is, therefore, formed thinner as a whole as compared to the dummy formed with the Co-Cr alloys on both faces. The perpendicular magnetic recording medium which is decreased in the rigidity of the medium and has the good head touch is thereby obtd. at the low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、垂直磁気記録媒体において、特にGo−Cr
合金を主体とした円板状磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to perpendicular magnetic recording media, particularly Go-Cr.
This invention relates to a disc-shaped magnetic recording medium mainly made of alloy.

[開示の概要] 本明細書及び図面は、垂直磁気記録媒体において、非磁
性基体の第1の面にGo−Crを主成分とした合金膜を
形成し、第2面に引っばり応力をもつ膜層を形成するこ
とにより、カールを相殺し、全体として薄く剛性の低い
、ヘッドタッチの良好な垂直磁気記録媒体を実現する技
術を開示するものである。
[Summary of the Disclosure] The present specification and drawings describe a perpendicular magnetic recording medium in which an alloy film mainly composed of Go-Cr is formed on the first surface of a non-magnetic substrate, and the second surface has tensile stress. The present invention discloses a technique for realizing a perpendicular magnetic recording medium that is thin and has low rigidity as a whole and has good head touch by forming a film layer to offset curl.

[従来の技術] 垂直磁気記録方式は現行の面内磁気記録方式に比べ、記
録密度を飛躍的に向上させることが可能であり、近年C
o−Cr合金を中心とした垂直磁気記録媒体の研究が活
発に行なわれている。現在の一般的な垂直磁気記録媒体
の製法は、ベースフィルム(例えばポリエステル、ポリ
イミド、ポリアミド、ポリスルホン等)にスパッタリン
グ、真空蒸着等で、例えば組成比co8′0%、Cr2
O%のGo−Car合金膜を生成させるものである。
[Prior art] Perpendicular magnetic recording can dramatically improve recording density compared to the current longitudinal magnetic recording, and in recent years C
Research on perpendicular magnetic recording media centered on o-Cr alloys is being actively conducted. The current general manufacturing method for perpendicular magnetic recording media is sputtering, vacuum deposition, etc. on a base film (e.g., polyester, polyimide, polyamide, polysulfone, etc.).
0% Go-Car alloy film is produced.

しかし、このスパッタリング等による膜形成時、ベース
フィルムには多大な熱が与えられ、ベースフィルムが熱
膨張をおこす。また、Go−Cr合金膜の磁気特性向上
のためフィルムを加熱処理することもあり、この結果、
同様にベースフィルムが熱膨張をおこす。
However, when forming a film by sputtering or the like, a large amount of heat is applied to the base film, causing thermal expansion of the base film. In addition, in order to improve the magnetic properties of the Go-Cr alloy film, the film is sometimes heat-treated, and as a result,
Similarly, the base film undergoes thermal expansion.

第3図に示すように、ベースフィルム1の片面のみにC
o−Cr合金膜2を生成した場合、それぞれの熱膨張係
数をαfilIl+αCo−Crとすると、この関係が
αfi1m<αCo−Crのときは、加熱しながらスパ
ッタリング等を行いGo−Cr合金膜を生成し、その後
冷却すると、Co−Cr合金層の縮みが大きく、第4図
のように図中上側に湾曲する、いわゆるカール状態とな
る。このようなカールが生じると、磁気テープのような
磁気記録媒体では走行性悪化、巻き乱れ、ヘッドタッチ
不良等の問題が生じ、また磁気シートのような記録媒体
では全く使用できなくなるという欠点がある。そこで従
来は、第5図に示すように、高分子フィルム基体のもう
一方の面にも同材質、同厚の全屈薄膜層5を形成し、こ
のカールを防止している。
As shown in FIG. 3, C
When the o-Cr alloy film 2 is produced, if the respective thermal expansion coefficients are αfilIl+αCo-Cr, and this relationship is αfi1m<αCo-Cr, sputtering etc. are performed while heating to produce the Go-Cr alloy film. When it is then cooled, the Co--Cr alloy layer shrinks significantly and curves upward in the figure as shown in FIG. 4, resulting in a so-called curled state. When this kind of curl occurs, magnetic recording media such as magnetic tapes suffer from problems such as poor running performance, irregular winding, and poor head touch, and recording media such as magnetic sheets have the drawback of being completely unusable. . Conventionally, as shown in FIG. 5, a fully flexural thin film layer 5 of the same material and thickness is formed on the other side of the polymer film base to prevent this curling.

[発明が解決しようとする問題点] しかしながら、このように表裏両面にCo−Cr合金膜
を形成すると、全厚が厚くなり剛性が高くなるため、結
果として良好なヘッドタッチがかえってとれなくなると
いう問題点を生ずる。特にベースフィルムが比較的厚い
ときにはこの傾向がWJ著となる。
[Problems to be Solved by the Invention] However, when a Co-Cr alloy film is formed on both the front and back surfaces, the total thickness increases and the rigidity increases, resulting in a problem that it becomes difficult to obtain a good head touch. produce a point. This tendency is especially true when the base film is relatively thick.

また、 Go−Crターゲットは高価であるので、裏面
にダミーとしてその薄膜層を形成するのはコスト的に不
利である。従ってより薄く、かつ安価な材料で裏面に薄
膜を形成することにより同様な効果が得られれば、Co
−Cr垂直磁気記録媒体の全体のコスト引き下げに大き
く寄与するといえる。
Further, since the Go-Cr target is expensive, it is disadvantageous in terms of cost to form a dummy thin film layer thereof on the back surface. Therefore, if a similar effect could be obtained by forming a thin film on the back surface using a thinner and cheaper material, it would be possible to
It can be said that this greatly contributes to lowering the overall cost of -Cr perpendicular magnetic recording media.

本発明は、上記観点に鑑みなされたもので、良好なヘッ
ドタッチが得られるCo−Cr垂直磁気記録媒体を低コ
ストで提供することを目的としている。
The present invention has been made in view of the above-mentioned viewpoint, and an object of the present invention is to provide a Co--Cr perpendicular magnetic recording medium that provides good head touch at a low cost.

[問題点を解決するための手段] 本発明は、非磁性基体の第1の面にCo−Crを主成分
とした合金膜を形成した磁気記録媒体に、非磁性基体の
熱膨張係数がCo−Crを主成分とする合金膜の熱膨張
係数より小さい場合において、第2の面に引っばり応力
をもつ薄膜層を形成するようにしたものである。
[Means for Solving the Problems] The present invention provides a magnetic recording medium in which an alloy film mainly composed of Co--Cr is formed on the first surface of a non-magnetic base, in which the coefficient of thermal expansion of the non-magnetic base is Co. A thin film layer having tensile stress is formed on the second surface when the coefficient of thermal expansion is smaller than that of the alloy film whose main component is -Cr.

[作 用] 本発明を、その模式図である第1図を用いてさらに詳細
に説明する。第1図において、lはベースフィルム、2
はGo−Cr合金膜であり、3はGo−Cr合金膜と同
程度以上の絶対値の引っばり応力をもつ薄膜層である。
[Function] The present invention will be explained in more detail using FIG. 1, which is a schematic diagram thereof. In Figure 1, l is the base film, 2
3 is a Go-Cr alloy film, and 3 is a thin film layer having a tensile stress of an absolute value equal to or higher than that of the Go-Cr alloy film.

ベースフィルムlは100 gra以下、2のGo−C
r合金膜の厚さは0.1 gm以上2ILm以下が本発
明において好ましい値である。
Base film l is less than 100 gra, 2 Go-C
In the present invention, the preferred thickness of the r-alloy film is 0.1 gm or more and 2 ILm or less.

ここで、Co−Cr合金膜の熱膨張係数は1.1×1O
−5ca+2/’Cであるので、ベースフィルムの熱膨
張係数がa fil、< 1.I X 10−5cm2
/’Oのとき、先に述べたカール状態を起こす。従って
、Go−Cr合金膜と反対側にGo−Cr合金膜と同程
度ないしはそれ以上の絶対値の引っばり応力を持つ薄膜
層を生成することによりカールを相殺する。この引っば
り応力を持つ薄膜層は、例えばAρ、 Sn、 Cu、
 Zn等の全屈、及びそれらを主成分とする合金のほか
、Se。
Here, the thermal expansion coefficient of the Co-Cr alloy film is 1.1×1O
-5ca+2/'C, so the thermal expansion coefficient of the base film is a fil,<1. I x 10-5cm2
/'O causes the curl state described above. Therefore, by forming a thin film layer on the opposite side of the Go-Cr alloy film having a tensile stress of the same magnitude or greater in absolute value than the Go-Cr alloy film, the curl is offset. This thin film layer with tensile stress is made of, for example, Aρ, Sn, Cu,
In addition to total bending materials such as Zn and alloys containing them as main components, Se.

Te等の半金属が使用できる。これらの薄膜層は、真空
蒸着等の方法により形成される。
Metalloids such as Te can be used. These thin film layers are formed by a method such as vacuum deposition.

この引っばり応力を持つ薄膜層3の厚さを適宜選択し、
Go−Cr合金膜2の裏面に形成することにより、Go
−Cr合金膜2とベースフィルム1との熱膨張係数の相
違に基づく磁気記録媒体のカールを相殺することができ
る。一般に熱膨張係数αが大である膜を用いるほど“薄
い膜でカールを相殺できるとともに剛性低減の効果が期
待でき、経済的なメリットも大である。
The thickness of the thin film layer 3 having this tensile stress is appropriately selected,
By forming on the back surface of the Go-Cr alloy film 2, Go
The curl of the magnetic recording medium due to the difference in thermal expansion coefficient between the -Cr alloy film 2 and the base film 1 can be offset. In general, the use of a film with a larger coefficient of thermal expansion α means that curl can be offset with a thinner film and the effect of reducing rigidity can be expected, and the economic benefits are also large.

また第2図に示すように、Go−Cr合金膜とベースフ
ィルムの間にパーマロイ等の高透磁率の金属薄膜層を設
けた場合においても同様に、片面に引っばり応力を持つ
膜3を形成することにより、カールを相殺できる。
Furthermore, as shown in Fig. 2, even when a high permeability metal thin film layer such as permalloy is provided between the Go-Cr alloy film and the base film, a film 3 with tensile stress is formed on one side. By doing this, you can offset the curl.

[実施例] 以下実施例に基づいて、本発明をさらに詳しく説明する
[Examples] The present invention will be described in more detail based on Examples below.

実施例1 熱膨張係数0.8 X 1(15cm2/℃の厚さ50
gmのポリイミドフィルム上に、膜厚0.5 p−ta
のGo−Cr合金膜をスパッタリングにより形成した。
Example 1 Thermal expansion coefficient 0.8 x 1 (15 cm2/℃ thickness 50
Film thickness 0.5 p-ta on polyimide film of gm
A Go-Cr alloy film was formed by sputtering.

Cr組成は20%で、スパッタ方式はRFマグネトロン
式である。磁気特性はHt= 900エルステツド、4
 πMs= 4.5KGであった。片面にCo−Cr合
金膜を形成した状態ではCo−Cr合金膜を内側にした
極めて大きなカールが認められた。表面に、Ai)の金
属膜をスパッタリングしたところ膜厚0.35ILmで
平坦な媒体が得られた。Aβ金属膜がこれより薄いとカ
ールを十分除去するに至らず、またこれより厚いと過剰
補正となる。
The Cr composition is 20%, and the sputtering method is an RF magnetron method. The magnetic properties are Ht = 900 oersted, 4
πMs=4.5KG. In the state where the Co--Cr alloy film was formed on one side, extremely large curls were observed with the Co--Cr alloy film on the inside. When a metal film of Ai) was sputtered on the surface, a flat medium with a film thickness of 0.35 ILm was obtained. If the Aβ metal film is thinner than this, the curl will not be removed sufficiently, and if it is thicker than this, excessive correction will occur.

実施例2 実施例1と同様に、片面にCo−Cr合金膜を形成した
ベースフィルムの裏面に、AP金金膜膜今度は真空蒸着
法により形成した。APP属膜が0.22gmのときカ
ールが相殺された。同材質でもスパッタリングと真空蒸
着法により形成された膜では、それぞれの膜応力が異な
り、一般に真空蒸着による方が膜応力が引っばり側に傾
く。従って、本発明の引っばり応力をもつ薄膜層の形成
には、真空蒸□若法による方が有利と言える。
Example 2 Similarly to Example 1, an AP gold film was formed on the back side of a base film having a Co--Cr alloy film formed on one side by vacuum evaporation. Curl was offset when the APP metal film was 0.22 gm. Even though they are made of the same material, films formed by sputtering and vacuum evaporation have different film stresses, and in general, the film stress tends to be more tensile in the case of vacuum evaporation. Therefore, it can be said that the vacuum evaporation method is more advantageous for forming the thin film layer having tensile stress according to the present invention.

実施例3 熱膨張係数2.OX 10−5cm2/”0で厚み30
JLmのポリアミドフィルム上に、Go−Cr合金膜0
.3 pmをスパッタリングにより形成した。その結果
、Co−Cr合金膜を内側とした極めて大きなカールが
発生した。裏面に、Seの金属膜を真空蒸着法により形
成したところ、厚み0.18gmでカールが相殺された
Example 3 Coefficient of thermal expansion 2. OX 10-5cm2/”0 and thickness 30
Go-Cr alloy film 0 on JLm polyamide film
.. 3 pm was formed by sputtering. As a result, extremely large curls were generated with the Co--Cr alloy film inside. When a Se metal film was formed on the back surface by vacuum evaporation, the curl was canceled out with a thickness of 0.18 gm.

引っばり応力をもつ膜3は、Go−Cr合金膜2と同程
度ないしはそれ以上の引っばり応力の絶対値を有する膜
であれば上記実施例に限定されるものではない。
The film 3 having tensile stress is not limited to the above embodiment as long as it has an absolute value of tensile stress equal to or greater than that of the Go-Cr alloy film 2.

[発明の効果] 以上説明したように本発明は、磁気記録媒体に生ずるカ
ールを、Co−Cr合金と同程度ないしはそれ以上の引
っばり応力の絶対値を有する膜、例えば安価な金属等を
反対側の面に薄膜として形成することにより相殺する。
[Effects of the Invention] As explained above, the present invention prevents curling that occurs in a magnetic recording medium by using a film having an absolute value of tensile stress equal to or greater than that of a Co-Cr alloy, such as an inexpensive metal. This is offset by forming a thin film on the side surface.

従って、ダミーでCo−Cr合金膜を両面に形成したも
のに比べ、全体として薄くなり、その結果媒体の剛性を
低く押えたヘッドタッチの良好な垂直磁気記録媒体を、
安価に供給できるという優れた効果を奏する。
Therefore, compared to a dummy Co-Cr alloy film formed on both sides, the perpendicular magnetic recording medium is thinner as a whole, and as a result, the rigidity of the medium is kept low and the head touch is good.
It has the excellent effect of being able to be supplied at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の基本的構成の説明図、
第3図は片面にのみCo−Cr合金膜を形成した直後の
説明図、第4図はCo−Cr合金膜形成後、室温まで放
冷したときカールの状態の説明図、第5図は、両面にC
o−Cr合金膜を形成した従来例を示した図である。 l・・・非磁性基体、2・・・Go−Cr合金層、3・
・・引っばり応力をもつ薄膜層、 4・・・高透磁率金属薄膜層、 5・・・全屈薄膜層。
1 and 2 are explanatory diagrams of the basic configuration of the present invention,
Fig. 3 is an explanatory diagram immediately after forming a Co-Cr alloy film on one side only, Fig. 4 is an explanatory diagram of the curled state after the Co-Cr alloy film is formed and left to cool to room temperature, and Fig. 5 is an explanatory diagram of the curled state after the Co-Cr alloy film is formed. C on both sides
FIG. 3 is a diagram showing a conventional example in which an o-Cr alloy film is formed. l...Nonmagnetic substrate, 2...Go-Cr alloy layer, 3...
...Thin film layer with tensile stress, 4...High magnetic permeability metal thin film layer, 5...Total refraction thin film layer.

Claims (4)

【特許請求の範囲】[Claims] (1)非磁性基体の第1の面にCo−Crを主成分とし
た合金膜を形成した磁気記録媒体に、非磁性基体の熱膨
張係数が、Co−Crを主成分とする合金の熱膨張係数
より小さい場合において、第2の面に引っぱり応力をも
つ薄膜層を形成したことを特徴とする垂直磁気記録媒体
(1) In a magnetic recording medium in which an alloy film mainly composed of Co-Cr is formed on the first surface of a non-magnetic base, the coefficient of thermal expansion of the non-magnetic base is the same as that of the alloy mainly composed of Co-Cr. A perpendicular magnetic recording medium characterized in that a thin film layer having a tensile stress is formed on the second surface when the coefficient of expansion is smaller than the coefficient of expansion.
(2)第2の面に形成する薄膜が、金属の真空蒸着膜で
あることを特徴とする特許請求の範囲第1項記載の垂直
磁気記録媒体。
(2) The perpendicular magnetic recording medium according to claim 1, wherein the thin film formed on the second surface is a vacuum-deposited metal film.
(3)CoとCrを主成分とする第1の面上の合金膜と
非磁性体基体との間に下地層として、高透磁率の磁性膜
を付加することを特徴とする特許請求の範囲第1項記載
の垂直磁気記録媒体。
(3) Claims characterized in that a magnetic film with high magnetic permeability is added as an underlayer between the alloy film on the first surface containing Co and Cr as main components and the non-magnetic substrate. 2. The perpendicular magnetic recording medium according to item 1.
(4)第2の面に形成する薄膜が、金属の真空蒸着膜で
あることを特徴とする特許請求の範囲第3項記載の垂直
磁気記録媒体。
(4) The perpendicular magnetic recording medium according to claim 3, wherein the thin film formed on the second surface is a vacuum-deposited metal film.
JP25820787A 1987-10-15 1987-10-15 Perpendicular magnetic recording medium Pending JPH01102721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25820787A JPH01102721A (en) 1987-10-15 1987-10-15 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25820787A JPH01102721A (en) 1987-10-15 1987-10-15 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01102721A true JPH01102721A (en) 1989-04-20

Family

ID=17317000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25820787A Pending JPH01102721A (en) 1987-10-15 1987-10-15 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01102721A (en)

Similar Documents

Publication Publication Date Title
JPH0556565B2 (en)
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH01102721A (en) Perpendicular magnetic recording medium
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPS6313118A (en) Magnetic recording medium
JPH08329442A (en) Magnetic recording medium
JP3500656B2 (en) Perpendicular magnetic recording media
JPH01102719A (en) Perpendicular magnetic recording medium
JPS62128019A (en) Magnetic recording medium
JPH01217723A (en) Magnetic recording medium
JP2725502B2 (en) Magnetic recording media
JPS62164205A (en) Magnetic recording medium
JPS60231911A (en) Magnetic recording medium
JPH031726B2 (en)
JPH01102717A (en) Perpendicular magnetic recording medium
JPH01143311A (en) Soft magnetic laminated film
JPS6124011A (en) Vertical magentic recording medium
JPH04155618A (en) Perpendicular magnetic recording medium
JPH01143312A (en) Amorphous soft magnetic laminated film
JPH0447521A (en) Magnetic recording medium
JPH03250706A (en) Magnetic alloy
JPH04123310A (en) Magnetic recording medium and production thereof
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPS63293710A (en) Magnetic head
JPH02267722A (en) Magnetic recording medium and its production