JPH02267722A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH02267722A
JPH02267722A JP8922489A JP8922489A JPH02267722A JP H02267722 A JPH02267722 A JP H02267722A JP 8922489 A JP8922489 A JP 8922489A JP 8922489 A JP8922489 A JP 8922489A JP H02267722 A JPH02267722 A JP H02267722A
Authority
JP
Japan
Prior art keywords
film
recording medium
underlayer
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8922489A
Other languages
Japanese (ja)
Other versions
JP2607288B2 (en
Inventor
Takashi Miyamoto
隆志 宮本
Kazuo Yoshikawa
一男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8922489A priority Critical patent/JP2607288B2/en
Publication of JPH02267722A publication Critical patent/JPH02267722A/en
Application granted granted Critical
Publication of JP2607288B2 publication Critical patent/JP2607288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a recording medium which can be used for high density recording by forming a first base layer on a substrate, and successively a second and third base layers thereon and further forming a magnetic film comprising a Co-alloy and a carbon protective film thereon. CONSTITUTION:The first base layer 2 of a Cr film, the second base layer 3 of a C film, the third base layer 4 of a Cr film, the magnetic film 5 of a Co- alloy film and the carbon protective film 6 are successively formed on a glass substrate 1 at room temp. to produce the magnetic recording medium. By this method, the base Cr film 4 of the magnetic film 5 gives a highly oriented state of crystals and roughness, so that the magnetic film 5 has excellent epitaxial assist effect and magnetic peening effect. Thus, the obtd. medium has excellent magnetic characteristics such as coercive force and squareness ratio, namely, it can be used for high density recording.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気記録媒体およびその製造法に関し、詳細
には、コンピュータ用の外部記録媒体として使用される
スパンタハードディスク等の磁気記録媒体およびその製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a magnetic recording medium and a method for manufacturing the same, and more particularly to a magnetic recording medium such as a spanned hard disk used as an external recording medium for a computer, and a method for manufacturing the same. Regarding its manufacturing method.

(従来の技術) 前記磁気記録媒体としては前記ハードディスクが代表的
である。かかる従来の磁気記録媒体は、酸化鉄塗布型の
ものやGoメツキ型のものであったが、近年ではこれら
に代わり、より高密度の記録が可能な磁気記録媒体が開
発され、実用化され始めている。
(Prior Art) The hard disk is a typical example of the magnetic recording medium. Such conventional magnetic recording media were iron oxide coated type or Go plating type, but in recent years magnetic recording media capable of higher density recording have been developed to replace these and have begun to be put into practical use. There is.

上記高密度の磁気記録媒体に関し、その構造は通常第2
図に示す如く、基板(1)上に三層がfri層されてな
るものである。基板(1)は、N1−Pメンキが施され
たAI合金又はガラスサブストレートである。
Regarding the above-mentioned high-density magnetic recording medium, its structure is usually
As shown in the figure, three layers are formed on a substrate (1). The substrate (1) is an AI alloy or glass substrate with N1-P coating.

基板(1)上の三層は、C「膜からなる下地層(4)(
以降、下地Cr膜という)と、Co合金膜からなる磁性
膜(5)と、C製保護膜(6)とからなり、通常膜厚は
この順に、1000〜3000人、500〜700人、
300〜400人である。
The three layers on the substrate (1) are a base layer (4) consisting of a C film (
It consists of a magnetic film (5) made of a Co alloy film (hereinafter referred to as a base Cr film), and a protective film (6) made of C, and the film thickness is usually 1000 to 3000, 500 to 700, and 500 to 700, respectively.
There are 300 to 400 people.

製造法としてはスパッタリング法が採用され、基板(1
)上に上記各膜を順次形成させて行われる。
A sputtering method is adopted as the manufacturing method, and the substrate (1
), each of the above films is sequentially formed on top of the film.

この成膜には大量生産用のインラインスパッタ装置が1
吏用される。
This film formation requires one in-line sputtering device for mass production.
be used.

磁気特性として保磁力=600〜7000e、角型比S
: 0.75〜0.85のものが得られている。
Magnetic properties include coercive force = 600-7000e, squareness ratio S
: 0.75 to 0.85 was obtained.

(発明が解決しようとするa!題) 最近はさらに高密度記録可能な磁気記録媒体の出現が強
く要望されている0例えば1000〜15000eの保
磁力を有し、且つ、狭トランク化に伴う再生出力低下を
補うために0.9以上の角型比Sを有する磁気記録媒体
の開発が切望されている。
(A! Problem to be solved by the invention) Recently, there has been a strong demand for a magnetic recording medium that can record at higher density. For example, it has a coercive force of 1,000 to 15,000 e, and is suitable for playback as the trunk becomes narrower. In order to compensate for the decrease in output, there is a strong desire to develop a magnetic recording medium having a squareness ratio S of 0.9 or more.

しかしながら従来の磁気記録媒体は、その構造上から磁
気特性の改善には自ずと限界があり、上記要望を充たし
得ないという問題点がある。
However, conventional magnetic recording media have the problem that, due to their structure, there is a limit to the improvement of magnetic properties, and the above requirements cannot be met.

即ち、磁気記録媒体の保磁力には多くの要因が関与して
いるが、それらの中で下地Cr膜の影舌が最も大きく、
下地Cr膜により磁性膜の結晶配向性を良くするエビク
キシャルアシスト効果と、下地Cr欣裏表面ラフネスに
起因して磁性膜中での磁壁をトラップするピニング効果
とが大きな要因である。前者を高めると保持力が大きく
なる。後者を強めると保磁力が大きくなる。
In other words, many factors are involved in the coercive force of a magnetic recording medium, but among them, the influence of the underlying Cr film is the largest.
The major factors are the evixaxial assist effect, which improves the crystal orientation of the magnetic film by the underlying Cr film, and the pinning effect, which traps domain walls in the magnetic film due to the roughness of the back surface of the underlying Cr film. Increasing the former increases the holding power. Increasing the latter increases the coercive force.

上記効果はいづれも下地Cr膜の結晶配向性や表面の状
態に依存するものである。故に、高結晶配向性とラフネ
スとを兼ね備えた下地Cr膜を形成する事ができれば、
保磁力を高められる。
All of the above effects depend on the crystal orientation and surface condition of the underlying Cr film. Therefore, if it is possible to form a base Cr film that has both high crystal orientation and roughness,
Coercive force can be increased.

上記高結晶配向性およびラフネスは、成膜条件によって
いくらかは制御し得るが、両者を兼ね備えさせる事は極
めて困難である。例えば、成膜条件の中、Arのガス圧
を下げて下地Cr膜の結晶配向性を高めようとすると、
下地Cr膜の表面が平滑になり、そのため磁壁が動き易
い(n性膜となる。この逆にArガス圧を高くすると、
下地Cr膜中のコラム構造が顕著になり、ラフネスを増
大し得るが、下地Cr膜の結晶配向性が低下し、配向性
不充分となり、そのため角型比Sが悪くなり、その結果
として保磁力を高め得ない。
Although the above-mentioned high crystal orientation and roughness can be controlled to some extent by film forming conditions, it is extremely difficult to achieve both. For example, if you try to improve the crystal orientation of the underlying Cr film by lowering the Ar gas pressure under the film forming conditions,
The surface of the underlying Cr film becomes smooth, so the domain walls move easily (it becomes an n-type film. Conversely, if the Ar gas pressure is increased,
The column structure in the underlying Cr film becomes noticeable and can increase roughness, but the crystal orientation of the underlying Cr film decreases, resulting in insufficient orientation, which worsens the squareness ratio S, and as a result, the coercive force decreases. cannot be increased.

又、磁性膜の厚みを薄クシて保磁力を高める事も可能で
あるが、この場合は再生出力が低下する、その対策とし
て磁気記録媒体とヘッドとの間の距離を極端に小さくす
る必要があり、磁気記録媒体表面の品質管理が掴めて困
・雑になる。
It is also possible to increase the coercive force by reducing the thickness of the magnetic film, but in this case the reproduction output will decrease, and as a countermeasure, it is necessary to extremely shorten the distance between the magnetic recording medium and the head. This makes quality control of the surface of the magnetic recording medium difficult and complicated.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来のものがもつ以上のような問題点を解
消し、磁性膜の下)lj!cr膜が高結晶配向性とラフ
ネスとを兼ね備え、磁性膜のエピタキシャルアシスト効
果および磁壁ピニング効果が優れ、保磁力および角型比
S等の磁気特性がイrれた磁気記録媒体、即ち、高密度
記録可能な磁気記録媒体およびその製造法を提供しよう
とするものである。
The present invention has been made in view of these circumstances, and its purpose is to solve the above-mentioned problems of the conventional ones, and to solve the problems of the conventional ones. A magnetic recording medium in which the CR film has both high crystal orientation and roughness, the epitaxial assist effect and domain wall pinning effect of the magnetic film are excellent, and the magnetic properties such as coercive force and squareness ratio S are poor, that is, high density. The present invention aims to provide a recordable magnetic recording medium and a method for manufacturing the same.

(課題を解決するための手段) 上記の目的を達成するために、本発明に係る磁気記録媒
体およびその製造法は次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, a magnetic recording medium and a method for manufacturing the same according to the present invention have the following configuration.

即ち、第1請求項に記載の磁気記録媒体の製造法は、基
板上に、スパッタリング法により粗表面を有する第1下
地層を形成させ、その上層にアモルファス膜からなる第
2下地層を形成さし、さらにその上層にスパッタリング
法により、高結晶配向性膜からなる第3下地層、Co合
金からなる磁性膜およびC製の保護膜をこの順に形成さ
ゼることを特徴とするtel気記録媒体の製造法である
That is, the method for manufacturing a magnetic recording medium according to the first aspect includes forming a first base layer having a rough surface on a substrate by sputtering, and forming a second base layer made of an amorphous film on top of the first base layer. Further, a third underlayer made of a highly crystal oriented film, a magnetic film made of a Co alloy, and a protective film made of C are formed in this order on the top layer by a sputtering method. This is the manufacturing method.

第2請求項に記載の磁気記録媒体の製造法は、前記第1
下地層の形成を、高融点金属または高融点合金のスパッ
タリングにより行う第1請求項に記載のCイl気記録媒
体の製造法である。
The method for manufacturing a magnetic recording medium according to claim 2 is characterized in that the first
The method for producing a Cl gas recording medium according to claim 1, wherein the underlayer is formed by sputtering a high melting point metal or a high melting point alloy.

第3請求項に記載の磁気記録媒体の製造法は、前記高融
点金属または高融点合金がCr、 Mo、 WTa、 
Zr、 Nbの1種又は2種以上からなる第2請求項に
記載の磁気記録媒体の製造法である。
In the method for manufacturing a magnetic recording medium according to the third aspect, the refractory metal or refractory alloy is Cr, Mo, WTa,
2. A method for manufacturing a magnetic recording medium according to claim 2, comprising one or more of Zr and Nb.

第4請求項に記載の磁気記録媒体は、基板と、粗表面を
有する第1下地層と、アモルファス膜からなる第2下地
層と、高結晶配向性膜からなる第3下地層と、Co合金
からなる磁性膜と、C製の保護膜とが、この順に積層さ
れてなる磁気記録媒体である。
A magnetic recording medium according to a fourth aspect includes a substrate, a first underlayer having a rough surface, a second underlayer made of an amorphous film, a third underlayer made of a highly crystalline oriented film, and a Co alloy. This is a magnetic recording medium in which a magnetic film made of C and a protective film made of C are laminated in this order.

第5請求項に記載の磁気記録媒体は、前記第2下地層が
C膜又はSiO□膜である第4請求項に記載の磁気記録
媒体である。
The magnetic recording medium according to the fifth aspect is the magnetic recording medium according to the fourth aspect, wherein the second underlayer is a C film or a SiO□ film.

(作 用) 本発明に係る磁気記録媒体は、前記の如く、基板上に、
スパッタリング法により粗表面を有する第1下jlj!
層を形成させるようにしている。かかる粗表面は表面が
凸凹した状態のものであり、前記従来法で公知の如く、
スパッタリング法でのArのガス圧を高くする事により
得られる。このガス圧などのスパッタリング条件により
、上記凸凹状態の程度、即ち、ラフネスを大きくし得る
。しかし、同時に上記第1下地層は結晶配向性が低いも
のになる。
(Function) As described above, the magnetic recording medium according to the present invention has
The first lower jlj which has a rough surface by sputtering method!
I try to form layers. Such a rough surface has an uneven surface, and as is known in the conventional method,
This can be obtained by increasing the Ar gas pressure in the sputtering method. Depending on the sputtering conditions such as gas pressure, the degree of the unevenness, that is, the roughness, can be increased. However, at the same time, the first underlayer has low crystal orientation.

上記第1下地層形成後、第1下地層の上にアモルファス
膜からなる第2下地層を形成させるようにしている。こ
の第2下地層は膜であって薄いので、第1下地層の表面
形状(tJ1表面)になじみ、その影響により第2下地
層の表面を第1下地層の表面形状と同様にし得る。第1
下地層は前記の如く凸凹なt■裏表面有している。故に
、第2下地層の表面を、第1下地層の表面形状と同様の
粗表面にし得る。
After forming the first base layer, a second base layer made of an amorphous film is formed on the first base layer. Since this second underlayer is a thin film, it conforms to the surface shape of the first underlayer (tJ1 surface), and due to its influence, the surface of the second underlayer can be made similar to the surface shape of the first underlayer. 1st
As mentioned above, the underlayer has an uneven back surface. Therefore, the surface of the second base layer can be made to have a rough surface similar to the surface shape of the first base layer.

上記第2下地層の上にスパッタリング法により高結晶配
向性膜からなる第3下地層を形成させるようにしている
。かかる高結晶配向性膜は、前記従来法で公知の如く、
スパックリング法でのArのガス圧を低くする事により
得られる。この第3下地層は膜であって薄いので、前記
第2下地層表面を粗表面にし得る場合と同様の理由によ
り、第3下地層の表面を第1下地層表面形状と同様の粗
表面にし得る。
A third base layer made of a film with high crystal orientation is formed on the second base layer by sputtering. Such a highly crystalline oriented film can be produced by, as is known in the conventional method,
This can be obtained by lowering the Ar gas pressure in the spackling method. Since this third base layer is a thin film, the surface of the third base layer is made to have a rough surface similar to the surface shape of the first base layer for the same reason as when the surface of the second base layer can be made rough. obtain.

ここで、上記第3下地層の結晶配向性に関し、第2下地
層が存在しなければ、低結晶配向性の第1下地層の影響
により、第3下地層の結晶配向性が低いものになる。又
、第2下地層が存在していても、これがアモルファスで
なく結晶であれば、やはり第1下地層が影響を及ぼし、
第3下地層の結晶配向性が低いものになる。本発明では
、前述の如く第2下地層をアモルファス膜にしているの
で、上膜の作用により低結晶配向性の第1下地層の影響
が第3下地層に対して及ばないようにし得る。upら、
結晶配向性に関し、第2下地層のアモルファス膜により
、第1下地層と第3下地層とが遮断される。従って、第
3下地居は高結晶配向性とラフネスとを兼ね備えたもの
にし得る。
Regarding the crystal orientation of the third base layer, if the second base layer does not exist, the crystal orientation of the third base layer will be low due to the influence of the first base layer with low crystal orientation. . Also, even if the second underlayer exists, if it is not amorphous but crystalline, the first underlayer will still have an influence,
The crystal orientation of the third underlayer becomes low. In the present invention, since the second underlayer is an amorphous film as described above, the influence of the first underlayer having low crystal orientation can be prevented from reaching the third underlayer by the action of the upper film. up et al.
Regarding crystal orientation, the amorphous film of the second underlayer blocks the first underlayer and the third underlayer. Therefore, the third base layer can have both high crystal orientation and roughness.

上記第3下地層の上に、スパッタリング法により、Co
合金からなる磁性膜、さらにその上にC製保護膜を形成
させ、磁気記録媒体を製造するようにしている。前記の
如く第3下地層は高結晶配向性とラフネスとを兼ね備え
たものにし得、又、この第3下地層が磁性膜の下地層に
なっている。故に、もn性膜のエピタキシャルアシスト
効果および磁壁ピニング効果が優れたものにし得る。従
って、製造される磁気記録媒体は、保磁力および角型比
S等の磁気特性が優れたものになし得る。即ち1■密度
記録可能な磁気記録媒体が得られるようになる。
On top of the third underlayer, Co
A magnetic recording medium is manufactured by forming a magnetic film made of an alloy and a protective film made of C on top of the magnetic film. As described above, the third underlayer can have both high crystal orientation and roughness, and this third underlayer serves as the underlayer of the magnetic film. Therefore, the epitaxial assist effect and domain wall pinning effect of the n-type film can be made excellent. Therefore, the manufactured magnetic recording medium can have excellent magnetic properties such as coercive force and squareness ratio S. In other words, a magnetic recording medium capable of recording at a density of 1.5 cm can be obtained.

前記第1下地層の形成を、高融点金属または高融点合金
のスパッタリングにより行う事が望ましい。スパッタリ
ングで形成される第1下地層の表面を凸凹にし易く、ラ
フネスの大きなt■裏表面得易くなるからである。かか
る前記高融点金属または高融点合金としては、Cr、 
Mo、 W、 Ta、 Zr、 Nbの1種又は2種以
上からなるものが、融点がより高いので、それらの使用
が望ましい。
It is desirable that the first underlayer be formed by sputtering a high melting point metal or a high melting point alloy. This is because the surface of the first underlayer formed by sputtering tends to be uneven, making it easier to obtain a t2 back surface with large roughness. Such high melting point metals or high melting point alloys include Cr,
It is desirable to use one or more of Mo, W, Ta, Zr, and Nb because they have a higher melting point.

上記の如き装造法により、基鈑と、tIi表面を有する
第1下地層と、アモルファス膜からなる第2下地層と、
高結晶配向性膜からなる第3下地層と、Co合金からな
る磁性膜と、C製の保護膜とが、この順に積層されてな
る磁気記録媒体が得られる。かかる磁気記録媒体は、以
上説明した理由により、保(ff力および角型比S等の
磁気特性が優れ、高密度記録可能な磁気記録媒体である
By the above-described mounting method, a base plate, a first base layer having a tIi surface, a second base layer made of an amorphous film,
A magnetic recording medium is obtained in which a third underlayer made of a film with high crystal orientation, a magnetic film made of a Co alloy, and a protective film made of C are laminated in this order. For the reasons explained above, such a magnetic recording medium has excellent magnetic properties such as coercive force and squareness ratio S, and is capable of high-density recording.

尚、前記第2下地層のアモルファス膜に関し、これはス
パッタリング法等により成膜したものの他、自然生成し
たアモルファス膜でもよい。例えば、スパッタリング法
により第1下地層を形成した後、−旦成膜室から出して
大気に曝す場合や、第3下地層を形成させる迄に長時間
成膜室内雰囲気に曝す場合は、第1下地層の表面で酸化
やガス吸着が起き、その結果生成される酸化膜やガス吸
着に基づくアモルファス膜でもよい。しかし、大量仕度
用のインラインスパッタ装置が使用される場合のように
、連続して名付を形成する場合には、第2下地層をスパ
ッタリング法により成膜する必要がある。
The amorphous film of the second underlayer may be formed by sputtering or the like, or may be a naturally formed amorphous film. For example, if the first base layer is formed by sputtering and then taken out of the deposition chamber and exposed to the atmosphere, or if the first base layer is exposed to the atmosphere in the deposition chamber for a long time before forming the third base layer, Oxidation and gas adsorption occur on the surface of the underlayer, and an oxide film produced as a result of this or an amorphous film based on gas adsorption may be used. However, when forming the markings continuously, such as when an in-line sputtering apparatus for mass production is used, it is necessary to form the second underlayer by sputtering.

上記アモルファス膜組成に関し、特にC膜又はSiO□
膜にする事が望ましい。第1下地層と第3下地層との結
晶配向性遮断の効果が大きいからである。
Regarding the above amorphous film composition, especially C film or SiO□
It is desirable to use a membrane. This is because the effect of blocking crystal orientation between the first underlayer and the third underlayer is large.

(実施例) 本発明の実施例を以下に説明する。実施例に係る磁気記
録媒体の構造は、後述の実施例6に係る従来型磁気記録
媒体の場合を除き、第1図に示す通りであり、基Fi(
1)上に第1下地層(2)、第2下地居(3)、第3下
地層即ち下地Cr膜(4)、Co合金からなる磁性膜(
5)及びC製保護膜(6)をこの順に形成させてなるも
のである。
(Example) Examples of the present invention will be described below. The structures of the magnetic recording media according to Examples are as shown in FIG. 1, except for the conventional magnetic recording medium according to Example 6, which will be described later.
1) A first underlayer (2), a second underlayer (3), a third underlayer, that is, an underlayer Cr film (4), and a magnetic film made of a Co alloy (
5) and a C protective film (6) are formed in this order.

月1井上 室温のガラス基板上へ、第1下地層としてCr膜、第2
下地層としてCII先第3下地層としてCr膜付磁性膜
してCo合金膜、保護膜としてC膜を、この順に成膜・
積層して磁気記録媒体を装し、磁気特性に及ぼす第1下
地層のCr膜の厚みの影ツを調べた。
Month 1 Inoue: Cr film as the first underlayer, second layer on the glass substrate at room temperature.
A CII underlayer is formed, a Cr film is attached as a third underlayer, a Co alloy film is formed, and a C film is formed as a protective film in this order.
The Cr film was laminated to form a magnetic recording medium, and the effect of the thickness of the Cr film as the first underlayer on the magnetic properties was investigated.

第1下地Cr膜は計ガス圧:20 mLorrで成膜し
、その他の膜はArガス圧: l mtorrで成膜し
た。
The first base Cr film was formed at a total gas pressure of 20 mL, and the other films were formed at an Ar gas pressure of 1 mtorr.

第2下地層の厚みは50人、第3下地層の厚みは820
人とし、磁性膜はCo−3ONi−7,5Crの組成の
ものを使用し、その厚みは600人とした。保護膜の厚
みは320人とした。
The thickness of the second base layer is 50 people, and the thickness of the third base layer is 820 people.
The magnetic film used had a composition of Co-3ONi-7,5Cr, and its thickness was 600. The thickness of the protective film was 320 people.

保磁力tic、角型比s、s”は第3しIのようになり
、第1下地叶膜を任さない磁気記録媒体ではllc:6
00〜7000eであるが、第1下地Cr膜を有するも
のは、急激にIlcが高くなり、第1下地Cr膜が50
00人で13000eに達しており、又、角型比s、 
 s”は0.9以上である。
The coercive force tic and the squareness ratio s, s'' are as shown in the third I, and in a magnetic recording medium that does not have a first underlayer film, it is llc:6.
00 to 7000e, but those with the first underlying Cr film suddenly have higher Ilc, and when the first underlying Cr film is 50
00 people reached 13000e, and the square ratio s,
s" is 0.9 or more.

尖施M又 膜厚を除き、実施例1と同様の条件で同様の磁気記録媒
体を製した。即ち、第1下地Cr膜の厚みは3300人
、第2下地層の厚みは50人であり、第3下地層の厚み
は1640Å以下で変化させた。かかる磁気記録媒体に
ついて、磁気特性を測定し、第3下地層のCrvとして
必要な膜厚を調べた。その結果を第4図に示す。
A magnetic recording medium similar to that of Example 1 was manufactured under the same conditions as in Example 1 except for the thickness and thickness. That is, the thickness of the first base Cr film was 3,300 Å, the thickness of the second base layer was 50, and the thickness of the third base layer was varied to 1,640 Å or less. The magnetic properties of such magnetic recording media were measured, and the film thickness required as the CRV of the third underlayer was investigated. The results are shown in FIG.

角型比s、s”は第3下地Cr膜厚みに関係な(,0,
92〜0.95という高い値であるが、保磁力11cは
第3下地層がない場合で2500e 、第3下地Cr膜
厚みが400人で12000eに迄上昇し、それ以上の
厚みでは一定値となっている。
The squareness ratio s, s'' is related to the thickness of the third underlying Cr film (,0,
The coercive force 11c is as high as 92 to 0.95, but the coercive force 11c is 2500e without the third underlayer, increases to 12000e when the third underlayer Cr film is 400 people thick, and remains constant at thicknesses beyond that. It has become.

第3下地Cr膜の役割は6n性膜をhap構造にし、し
かも結晶配向性を付与する事にあるが、これは第3下地
Cr膜厚みを400Å以上にする事で達成される事が判
明した。
The role of the third base Cr film is to make the 6n film into a hap structure and give it crystal orientation, and it has been found that this can be achieved by increasing the thickness of the third base Cr film to 400 Å or more. .

尚、従来の構造の磁気記録媒体では、磁性膜の下地層の
下地Cr膜の厚みを増加させると、保磁力11cの上昇
要件の一つである該下地Cr膜の表面粗さが増加するた
め、Ilcは緩やかに上界する。これに対し、本実施例
では上記の如く第3下地Cr1l厚みが増加しても、H
cは一定である。これは、表面粗さの役割を最下層の第
1下地Cr膜が担っているため、非常に薄いCr膜でl
lcが一定となっているものである。
In a magnetic recording medium with a conventional structure, if the thickness of the underlying Cr film of the magnetic film is increased, the surface roughness of the underlying Cr film, which is one of the requirements for increasing the coercive force 11c, increases. , Ilc have a gradual upper bound. In contrast, in this embodiment, even if the thickness of the third base Cr1l increases as described above, H
c is constant. This is because the first underlying Cr film at the bottom plays the role of surface roughness, so even a very thin Cr film can
lc is constant.

尖旌尉主 基板としてN1−Pメツキが施されたAIサブストレー
ト、第1下地層としてMo膜杏用いた。それらの点を除
き、実施例1と同様の条件で同様の磁気記録媒体を製し
、磁気特性に及ぼす第1下地層のMo、膜の厚みの影響
を調べた。
An AI substrate with N1-P plating was used as the main substrate, and a Mo film was used as the first underlayer. Except for these points, a similar magnetic recording medium was manufactured under the same conditions as in Example 1, and the influence of Mo of the first underlayer and the thickness of the film on the magnetic properties was investigated.

Hc、 S、  S”は第5図のようになり、やはり第
1下地Mo膜厚の増大に伴ってllcは2.激に増加し
ている。門0膜厚が4000人でllcは約14000
eに達しており、角型比S、S“は0.95である。
Hc, S, S'' are as shown in Fig. 5, and as expected, llc increases dramatically with increasing thickness of the first base Mo film.When the gate 0 film thickness is 4000, llc is about 14000.
e, and the squareness ratios S and S'' are 0.95.

裏庭斑土 第1下地Cr膜厚を3300人とし、磁性膜(Co−3
ONi7.5Cr)の厚みを100〜1000人に変化
させた。それらの点を除き、実施例1と同様の条件で同
様の磁気記録媒体を製し、磁気特性に及ぼす磁性膜厚の
影響を調べた。
The thickness of the first base layer of backyard mottled Cr film was 3300, and the magnetic film (Co-3
The thickness of ONi7.5Cr) was varied from 100 to 1000. Except for these points, a similar magnetic recording medium was manufactured under the same conditions as in Example 1, and the influence of the magnetic film thickness on the magnetic properties was investigated.

第6図に磁性膜厚とHc、 S、  S“との関係を示
す。肝・δとして400〜700G tt tn とな
る磁性膜厚の400〜800人で、llcが1000〜
15000e、  S 、  S ”が0.95以上の
高い値である。
Figure 6 shows the relationship between the magnetic film thickness and Hc, S, S". For 400 to 800 people with a magnetic film thickness of 400 to 700 G tt tn as liver δ, and llc of 1000 to 700.
15000e, S, S'' is a high value of 0.95 or more.

尖詣■立 第1下地層を4000人のCr、 Mo、 W、 Ta
、 Zr又はNb膜とした。かかる点を除き、実施例1
と同様の条件で同様の磁気記録媒体を製し、llc及び
Sを調べた。その結果を第7図に示す。
4,000 people of Cr, Mo, W, Ta formed the first base layer
, Zr or Nb film. Example 1 except for this point
A similar magnetic recording medium was manufactured under the same conditions as above, and llc and S were examined. The results are shown in FIG.

第1下地層はいづれも高融点金属で構成されているが、
それらの中でも該金属の融点が高いものほどllcが高
いという傾向にある。Sはいづれの場合もほぼ0.93
〜0.96であって高い値である。
The first base layer is composed of high melting point metal,
Among them, there is a tendency that the higher the melting point of the metal, the higher the llc. S is almost 0.93 in both cases.
~0.96, which is a high value.

尖指■旦 従来法に係る磁気記録媒体と、本発明に係る磁気記録媒
体との比較試験を行った。
A comparative test was conducted between a magnetic recording medium according to the conventional method and a magnetic recording medium according to the present invention.

上記試験に供した磁気記録媒体の構成及び製造条件を第
1表に示す。第1表において実験No、 1及び2のも
のが本発明に係るもの、実験No、 3 。
Table 1 shows the configuration and manufacturing conditions of the magnetic recording medium used in the above test. In Table 1, Experiment Nos. 1 and 2 are related to the present invention, and Experiment No. 3 is related to the present invention.

4及び5のものが従来法に係るものである。Items 4 and 5 are related to the conventional method.

本発明に係るものは、基板としてガラスサブストレート
又はN1−Pメツキが施されたAIサブストレートを用
いた。第1下地層はCr膜又はMo膜とし、該膜厚を5
000Å以下の範囲で変化させた。磁性膜厚は500人
とした。かかる点を除き、実施例1と同様の構造を存す
る。製造条件は実施例1と同様である。
In the device according to the present invention, a glass substrate or an AI substrate plated with N1-P was used as the substrate. The first underlayer is a Cr film or a Mo film, and the film thickness is 5.
It was varied within a range of 000 Å or less. The magnetic film thickness was 500. Except for this point, the structure is similar to that of Example 1. The manufacturing conditions are the same as in Example 1.

従来法に係るものは、基板としてガラスサブストレート
を用い、下地Cr膜の厚みを1000〜5000人の範
囲で変化させた。磁性膜厚は500人とした。
In the conventional method, a glass substrate was used as the substrate, and the thickness of the underlying Cr film was varied in the range of 1000 to 5000. The magnetic film thickness was 500.

尚、これらは当然に第1下地層及び第2下地層を有さす
、下地層としては上記下地Cr膜のみを有しているもの
である。
Incidentally, these naturally have a first underlayer and a second underlayer, and the underlayer is only the above-mentioned underlayer Cr film.

比較試験結果を第8図に示す。横軸は下地C「膜厚を指
標しているが、該下地Cr膜厚は本発明に係るものに関
しては前記第3下地層のCr膜厚のこと第1表 注)第1下地層の成膜時のArガス圧: 20 mto
rrである。第9図から判る如く、従来法に係るものは
、下地Cr膜厚を増大してもllc : 10000e
以上、且つS:0.9以上を充たすものは得られなかっ
た。これに対し、本発明に係るものは、第3下地Cr膜
厚を1000人にすると、llcがLOOOOe以上で
、且つSが0.94〜0.96のものが得られている。
The comparative test results are shown in Figure 8. The horizontal axis indicates the thickness of the underlying Cr film, which in the case of the invention relates to the Cr film thickness of the third underlying layer (Table 1 Note) Formation of the first underlying layer. Ar gas pressure during film: 20 mto
It is rr. As can be seen from FIG. 9, in the conventional method, even if the thickness of the underlying Cr film was increased, llc: 10000e
No material satisfying the above conditions and S: 0.9 or more was obtained. On the other hand, in the case of the present invention, when the third base Cr film thickness is set to 1000, llc is LOOOOe or more and S is 0.94 to 0.96.

以上の結果は、本発明によれば高保磁力と高角型比Sと
を兼ね備えた磁気記録媒体を提供し得る事を裏付けてい
る。
The above results confirm that the present invention can provide a magnetic recording medium that has both a high coercive force and a high squareness ratio S.

(発明の効果) 本発明に係る磁気記録媒体およびその製造法によれば、
磁性膜の下地Cr膜が高結晶配向性とラフネスとを兼ね
備え、磁性1漠のエビタキンヤルアシスト効果およびE
n壁ピニング効果が優れ、保持力および角型比S等の磁
気特性が優れた磁気記録媒体、即ち、高密度記録可能な
磁気記録媒体が得られるようになる。
(Effect of the invention) According to the magnetic recording medium and the manufacturing method thereof according to the present invention,
The underlying Cr film of the magnetic film has both high crystal orientation and roughness, and has an excellent Evita kinial assist effect and E
A magnetic recording medium having an excellent n-wall pinning effect and excellent magnetic properties such as coercive force and squareness ratio S, that is, a magnetic recording medium capable of high-density recording can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に係る6d気記録媒体の構造、第2図は
従来の磁気記録媒体の構造、第3図は実施例1に係る第
1下地Cr膜の厚さとllc、 S、  S”との関係
、第4図は実施例2に係る第3下地Cr膜の厚さとHc
、 S、 S”との関係、第5図は実施例3に係る第1
下地Mo膜の厚さとIlc、 S、  S”との関係、
第6図は実施例4に係るiff性膜厚と!Ic、 SS
1との関係、第7図は実施例5に係る第1下地層の金属
の融点とHc、 Sとの関係、第8図は実施例6に係る
下地Cr膜厚とllc、 Sとの関係を示す図である。
FIG. 1 shows the structure of the 6D magnetic recording medium according to the example, FIG. 2 shows the structure of the conventional magnetic recording medium, and FIG. 3 shows the thickness of the first underlying Cr film and the thickness of the first base Cr film according to the example 1. FIG. 4 shows the relationship between the thickness of the third base Cr film and Hc according to Example 2.
, S, S'', FIG. 5 shows the relationship between
The relationship between the thickness of the underlying Mo film and Ilc, S, S'',
FIG. 6 shows the if film thickness according to Example 4! Ic, SS
1, FIG. 7 shows the relationship between the melting point of the metal of the first underlayer and Hc, S according to Example 5, and FIG. 8 shows the relationship between the underlying Cr film thickness and llc, S according to Example 6. FIG.

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に、スパッタリング法により粗表面を有す
る第1下地層を形成させ、その上層にアモルファス膜か
らなる第2下地層を形成させ、さらにその上層にスパッ
タリング法により、高結晶配向性膜からなる第3下地層
、Co合金からなる磁性膜およびc製の保護膜をこの順
に形成させることを特徴とする磁気記録媒体の製造法。
(1) A first base layer having a rough surface is formed on the substrate by a sputtering method, a second base layer made of an amorphous film is formed on top of the first base layer, and a highly crystalline oriented film is further formed on the top layer by a sputtering method. A method for manufacturing a magnetic recording medium, which comprises forming in this order a third underlayer made of .
(2)前記第1下地層の形成を、高融点金属または高融
点合金のスパッタリングにより行う第1請求項に記載の
磁気記録媒体の製造法。
(2) The method for manufacturing a magnetic recording medium according to claim 1, wherein the first underlayer is formed by sputtering a high-melting point metal or a high-melting point alloy.
(3)前記高融点金属または高融点合金がCr、Mo、
W、Ta、Zr、Nbの1種又は2種以上からなる第2
請求項に記載の磁気記録媒体の製造法。
(3) The high melting point metal or high melting point alloy is Cr, Mo,
A second layer consisting of one or more of W, Ta, Zr, and Nb
A method for manufacturing a magnetic recording medium according to the claims.
(4)基板と、粗表面を有する第1下地層と、アモルフ
ァス膜からなる第2下地層と、高結晶配向性膜からなる
第3下地層と、Co合金からなる磁性膜と、C製の保護
膜とが、この順に積層されてなる磁気記録媒体。
(4) a substrate, a first underlayer having a rough surface, a second underlayer made of an amorphous film, a third underlayer made of a highly crystalline oriented film, a magnetic film made of a Co alloy, and a C A magnetic recording medium in which a protective film is laminated in this order.
(5)前記第2下地層がC膜又はSiO_2膜である第
4請求項に記載の磁気記録媒体。
(5) The magnetic recording medium according to claim 4, wherein the second underlayer is a C film or a SiO_2 film.
JP8922489A 1989-04-06 1989-04-06 Magnetic recording medium and method of manufacturing the same Expired - Fee Related JP2607288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8922489A JP2607288B2 (en) 1989-04-06 1989-04-06 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8922489A JP2607288B2 (en) 1989-04-06 1989-04-06 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02267722A true JPH02267722A (en) 1990-11-01
JP2607288B2 JP2607288B2 (en) 1997-05-07

Family

ID=13964763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8922489A Expired - Fee Related JP2607288B2 (en) 1989-04-06 1989-04-06 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2607288B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649049B2 (en) 2015-11-12 2020-02-19 株式会社オーディオテクニカ Condenser microphone unit, condenser microphone, and method of manufacturing condenser microphone

Also Published As

Publication number Publication date
JP2607288B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US4610911A (en) Thin film magnetic recording media
US4950548A (en) Magnetic recording medium and method of producing same
US4631202A (en) Thin film magnetic recording film
JPH07114016B2 (en) Magnetic recording medium and manufacturing method thereof
JPS60191424A (en) Magnetic recording medium
JPH0714142A (en) Thin film magnetic recording medium
US5252367A (en) Method of manufacturing a magnetic recording medium
JPH07118417B2 (en) Magnetic recording medium
US5552217A (en) Magnetic recording medium and a method for producing it
JPH02267722A (en) Magnetic recording medium and its production
US5047297A (en) Magnetic recording medium and manufacturing method thereof
US6826825B2 (en) Method for manufacturing a magnetic recording medium
JP2538124B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH0447521A (en) Magnetic recording medium
JPH0416851B2 (en)
JPH04123310A (en) Magnetic recording medium and production thereof
JPH05120663A (en) Magnetic recording medium, production of the same and its device
JPH05182171A (en) Magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPH06140247A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPS61113121A (en) Vertical magnetic recording medium
JPH01143312A (en) Amorphous soft magnetic laminated film
JPH0432019A (en) Magnetic recording medium
JPH04295615A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees