JPH01161626A - Oxide superconducting wire and its manufacture - Google Patents

Oxide superconducting wire and its manufacture

Info

Publication number
JPH01161626A
JPH01161626A JP62320738A JP32073887A JPH01161626A JP H01161626 A JPH01161626 A JP H01161626A JP 62320738 A JP62320738 A JP 62320738A JP 32073887 A JP32073887 A JP 32073887A JP H01161626 A JPH01161626 A JP H01161626A
Authority
JP
Japan
Prior art keywords
oxygen
superconducting wire
oxide
oxide superconductor
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320738A
Other languages
Japanese (ja)
Inventor
Akira Murase
村瀬 暁
Shigeo Nakayama
茂雄 中山
Misao Koizumi
小泉 操
Minoru Yamada
穣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320738A priority Critical patent/JPH01161626A/en
Publication of JPH01161626A publication Critical patent/JPH01161626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To shorten the heat treatment time and obtain high critical current density by filling an oxide superconductor in a tape-shaped hollow body formed with an oxygen-permeable metal and applied with irregularity processing. CONSTITUTION:Oxide superconductor powder 2 is filled in a metal tube 1 made of an oxygen-permeable metal such as silver or silver alloy, both ends are sealed by a material with the same quality. It is then applied with warm forging and cold-wire-drawn and shrinkage-processed to be flatly compressed, and irregularity processing is applied to at least one of its faces. The peripheral length of an oxide superconducting wire at an optional cross section is thereby extended, the heat treatment time for oxygen introduction can be shortened, oxygen is uniformly fed to the oxide superconductor 2 in the metal cover 1, thus high critical current density is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導線およびその製造方法に係り、
特に臨界電流密度の高い酸化物超電導線およびその製造
方法に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to an oxide superconducting wire and a method for manufacturing the same,
In particular, the present invention relates to an oxide superconducting wire with a high critical current density and a method for manufacturing the same.

(従来の技術) 近年、Ba−La−Cu−Q系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われテ
ィる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型(LnBa2Cu30アーδ型)
(δは酸素欠陥を表わし通常1以下、Lnは、Y、 L
a、 Sc、、Nd、 Sn+、、Eu、 Gd、0■
、+10SEr、 Tm、 ybおよびLuから選ばれ
た少なくとも1種の元素、Baの一部はSr等で買換可
能)の酸化物超電導体は、臨界温度が90に以上と液体
窒素以上の高い温度を示すため非常に有望な材料として
注目されている(Phys、Rev、Lett、Vol
、58No、 9.908−910 )。
(Prior Art) In recent years, since it was announced that Ba-La-Cu-Q layered perovskite oxides may have a high critical temperature, research on oxide superconductors has been carried out in various places. Tiru (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type (LnBa2Cu30ar δ type) with oxygen defects represented by Y-Ba-Cu-0 system.
(δ represents oxygen defect and is usually 1 or less, Ln is Y, L
a, Sc, , Nd, Sn+, , Eu, Gd, 0■
, +10SEr, Tm, yb, and at least one element selected from Lu, a part of Ba can be replaced with Sr, etc.) The oxide superconductor has a critical temperature of 90 or higher, which is higher than liquid nitrogen. (Phys, Rev, Lett, Vol.
, 58 No. 9.908-910).

一般に、このようなベロアスカイト型の結晶構造を有す
る酸化物超電導体を用いた酸化物超電導線を製造する場
合には、銀や銀合金のような酸素透過性金属管内に酸化
物超電導体の粉末を充填し、これに減面加工を施して所
望の外径にまで成形した優、900〜980℃の温度で
10数時間熱処理し、次いで酸化物超電導体結晶の酸素
空席に酸素を導入するために400〜600℃程度の酸
素雰囲気中で10数時間程度加熱することが行われてい
た。
Generally, when manufacturing an oxide superconducting wire using an oxide superconductor having such a velorskite crystal structure, the oxide superconductor is placed in an oxygen permeable metal tube such as silver or silver alloy. The powder is filled with powder, subjected to area reduction processing, and molded to the desired outer diameter.The product is then heat treated at a temperature of 900 to 980°C for more than 10 hours, and then oxygen is introduced into the oxygen vacancies in the oxide superconductor crystal. For this reason, heating was performed in an oxygen atmosphere at a temperature of about 400 to 600° C. for about 10 hours.

(発明が解決しようとする問題点) しかしながら、このような従来の方法では、酸化物超電
導体の外周に金属被覆した状態で酸素導入のための熱処
理が行われるため、長時間熱処理しても充分に金属被覆
内に酸素を供給することが困難で、このため酸化物超電
導体のペロブスカイト型結晶構造の酸素空席に充分に酸
素を導入することが困難で、臨界電流密度の不十分な酸
化物超電導線しか得られないという問題があった。
(Problem to be solved by the invention) However, in such conventional methods, heat treatment for introducing oxygen is performed with the outer periphery of the oxide superconductor coated with metal, so even long-term heat treatment is not sufficient. It is difficult to supply oxygen into the metal coating in the oxide superconductor, which makes it difficult to introduce enough oxygen into the oxygen vacancies in the perovskite crystal structure of the oxide superconductor, and the critical current density is insufficient. There was a problem that only lines could be obtained.

本発明は、このような従来の難点を解消すべくなされた
もので、上記欠点のない酸化物超電導線およびその製造
方法を提供することを目的とする。
The present invention has been made to solve these conventional problems, and an object of the present invention is to provide an oxide superconducting wire and a method for manufacturing the same that are free from the above-mentioned drawbacks.

[発明の構成] (問題点を解決するための手段) 第1の発明は、酸素透過性金属からなり少なくとも一方
の面に凹凸加工が施されたテープ状中空体の前記中空部
に、酸化物超電導体が充填されてなることを特徴として
おり、また第2の発明は、ほぼ等厚の酸素透過性金属か
らなる中空管内に酸化物超電導体を充填し、これをテー
プ状に加工した後、少くともその一方の面に凹凸加工を
施し、しかる後酸素雰囲気中で熱処理することを特徴と
している。
[Structure of the Invention] (Means for Solving the Problems) The first invention provides an oxide material in the hollow portion of a tape-shaped hollow body made of an oxygen-permeable metal and having a roughened surface on at least one surface. The second invention is characterized in that a hollow tube made of an oxygen-permeable metal of approximately the same thickness is filled with an oxide superconductor, and after processing this into a tape shape, It is characterized in that at least one surface thereof is textured and then heat treated in an oxygen atmosphere.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly large practical effect.

上記の希土類元素を含有しベロアスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できるものであ
ればよく、LnBa2Cu307−δ系!(δは酸素欠
陥を表し通常1以下の数、Lnは、Y、La、 Sc、
 Nd15m1Eu1Gd、 Dy、 tlo、Er、
 Tm1Ybおよび[Uから選ばれた少なくとも1種の
元素、eaの一部はSr等で置換可能)等の酸素欠陥を
有する欠陥ベロアスカイト型、5r−La−Cl−0系
等の層状ベロアスカイト型等の広義にペロブスカイト型
を有する酸化物が例示される。また希土類元素も広義の
定義とし、Sc、  YおよULa系を含むものとする
The above-mentioned oxide superconductor containing a rare earth element and having a velorskite structure may be one that can realize a superconducting state, such as the LnBa2Cu307-δ system! (δ represents an oxygen defect and is usually a number of 1 or less, Ln is Y, La, Sc,
Nd15m1Eu1Gd, Dy, tlo, Er,
Defect velorskite type having oxygen defects such as Tm1Yb and [at least one element selected from U, a part of ea can be replaced with Sr etc.), layered velorskite type such as 5r-La-Cl-0 system Examples include oxides having a perovskite type in a broad sense, such as a perovskite type. Rare earth elements are also broadly defined to include Sc, Y, and ULa.

代表的な系としてY−Ba−Cu−0系のほかに、Yを
Eu。
In addition to the Y-Ba-Cu-0 system, Y is replaced by Eu as a typical system.

Dy、 No、ErlTm、 Yb、[U等の希土類テ
置換した系、5c−Ba−Cu−0系、5r−La−C
u−0系、さらにS「をBa、 Caで置換した系等が
挙げられる。
Dy, No, ErlTm, Yb, rare earth te-substituted system such as [U, 5c-Ba-Cu-0 system, 5r-La-C
Examples include the u-0 system and systems in which S' is replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

まず1.y、 eaScu等のペロブスカイト型酸化物
超電導体の構成元素を充分混合する。混合の際には、Y
2O3、CuO等の酸化物を原料として用いることがで
きる。また、これらの酸化物のほかに、焼成後酸化物に
転化する炭酸塩、硝酸塩、水酸化物等の化合物を用いて
もよい。さらには、共沈法等で得たシュウ酸塩等を用い
てもよい。ベロアスカイト型酸化物超電導体を構成する
元素は、基本的に化学量論比の組成となるように混合す
るが、多少製造条件等との関係でずれていても差支えな
い。たとえば、Y−Ba−Cu−0系ではY 1 mo
lに対しBa 2 ll1ol、Cu 3 molが標
準組成であるが、実用上はY 1 molに対して、B
a 2十0.61101、CO3±0.2 ll1ol
程度のずれは問題ない。
First 1. The constituent elements of the perovskite oxide superconductor such as y, eaScu, etc. are thoroughly mixed. When mixing, Y
Oxides such as 2O3 and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the velorskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there is no problem even if the composition deviates slightly depending on the manufacturing conditions. For example, in the Y-Ba-Cu-0 system, Y 1 mo
The standard composition is Ba 2 ll1 ol and Cu 3 mol for Y 1 mol, but in practice, B
a 20.61101, CO3±0.2 ll1ol
There is no problem with the difference in degree.

前述の原料を混合した模、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。所
望の形状に焼成した後、酸素含有雰囲気中で熱処理して
超電導特性を付与する。上記熱処理は、通常600℃以
下で徐冷しながら行うようにする。
The mixture of the above-mentioned raw materials is calcined and crushed into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to impart superconducting properties. The above heat treatment is usually performed at 600° C. or lower while slowly cooling.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa  
Cu  O(δは通常1以下))とな237−δ る。なお、BaをSr、 Caの少なくとも1種で置換
することもでき、ざらにCuの一部をTi、  VlC
r、 Hn。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa
CuO (δ is usually 1 or less)) is 237-δ. Incidentally, Ba can also be replaced with at least one of Sr and Ca, and roughly a part of Cu can be replaced with Ti, VlC.
r, Hn.

Fe1co、N1、Zn等で置換することもできる。Substitution with Fe1co, N1, Zn, etc. is also possible.

この置換置は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多聞の置換は超電導特
性を低下させてしまうので80molX以下、さらに実
用上は20mo1%以下程度までとする。
This substitution position can be set as appropriate within a range that does not deteriorate the superconducting properties, but too many substitutions will deteriorate the superconducting properties, so it is set at 80 molX or less, and in practical terms, 20 molX or less.

本発明の酸化物超電導体線材を得るには、まず、酸化物
超電導体の焼成し結晶化した焼成物をボールミル等の公
知の手段により粉砕する。このとき、酸化物超電導体粉
末はへき開面から分割されて微粉末となる。粉砕は、平
均粒径(結晶の0面の最大の長さ)が1〜5μm程度、
直径対厚さの比が3〜5となるまで行なうことが望まし
い。なお、必要に応じて、粉砕した粉末を上記の範囲と
なるように分級して用いてもよい。
To obtain the oxide superconductor wire of the present invention, first, a fired and crystallized oxide superconductor is pulverized by a known means such as a ball mill. At this time, the oxide superconductor powder is divided from the cleavage plane and becomes fine powder. For pulverization, the average particle size (maximum length of the zero face of the crystal) is about 1 to 5 μm,
It is desirable to proceed until the diameter to thickness ratio is between 3 and 5. Note that, if necessary, the pulverized powder may be classified and used so as to fall within the above range.

次に、この酸化物超電導体粉末を銀または銀合金のよう
な酸素を透過する性質を有する金属管内に充填し、両端
を同質材により封止する。
Next, this oxide superconductor powder is filled into a metal tube that is permeable to oxygen, such as silver or silver alloy, and both ends are sealed with a homogeneous material.

この侵、この酸化物超電導体粉末を充填した酸素透過性
の金属管を温間でスェージングマシン等により鍛造した
後、冷間で線引きして前記金属管の外径を元の外径の1
710以下、好ましくは1720以下程度となるまで縮
径加工して、ロールを用いて偏平に圧縮するとともに、
少なくともその一方の而に凹凸加工を施す。
After this corrosion, an oxygen-permeable metal tube filled with this oxide superconductor powder is warmly forged using a swaging machine, etc., and then cold drawn to reduce the outer diameter of the metal tube to 1% of the original outer diameter.
The diameter is reduced to 710 or less, preferably about 1720 or less, and compressed into a flat shape using a roll,
At least one of them is textured.

凹凸加工は、偏平に圧縮するロールの表面に所定の凹凸
形状を形成しておき、圧縮と同時に行ってもよく、別工
程で専用の凹凸加工ロールあるいはダイスを用いて行う
ようにしてもよい。このとき、凹凸の谷部に対する山部
の高さは、金属被覆厚の0.3〜3.0倍程度が好まし
い。また、凹凸加工後の酸化物超電導線の任意の横断面
における周囲長は、同断面積の真円の周囲長の20〜1
30倍であることが好ましい。
The uneven processing may be performed simultaneously with the compression by forming a predetermined uneven shape on the surface of a roll to be flattened, or may be performed in a separate process using a dedicated uneven processing roll or die. At this time, the height of the peaks relative to the valleys of the unevenness is preferably about 0.3 to 3.0 times the metal coating thickness. In addition, the circumference of the oxide superconducting wire in any cross section after roughening is 20 to 1 times the circumference of a perfect circle with the same cross section.
Preferably, it is 30 times larger.

第1図ないし第3図はこのようにして成形された本発明
の酸化物超′Fi導線の外形を示すもので、酸素透過性
金属被覆1の外径は、第1図に示すように長さ方向に連
続した断面鋸歯条の凹凸形状であってもよく、第2図に
示すように、長さ方向に連続した断面矩形の凹凸形状で
あってもよく、さらに第3図に示すように、独立した凹
凸形状であってもよい。なお、各図において2は酸化物
超電導体を示している。
1 to 3 show the outer shape of the oxide super-Fi conductor of the present invention formed in this way, and the outer diameter of the oxygen-permeable metal coating 1 is long as shown in FIG. It may have an uneven shape with a sawtooth cross section continuous in the width direction, or it may have an uneven shape with a rectangular cross section continuous in the length direction, as shown in FIG. 3, or as shown in FIG. , may be an independent uneven shape. Note that in each figure, 2 indicates an oxide superconductor.

このようにして所望の断面寸法および外形となったとこ
ろで、酸素含有雰囲気中850〜980℃で8〜80時
間、焼成のための熱処理を行なう。焼成侵、酸素含有雰
囲気中で600℃以下を1℃/分程度の割合いで徐冷し
、酸化物超電導体の結晶構造中の酸素空席に酸素を導入
して超ffi導特性を向上させる。なお、酸素導入は、
このような徐冷を行わずに、焼成のための熱処理からの
冷却工程または別工程において、300〜600℃で1
〜24時間保持することにより行うようにしてもよい。
When the desired cross-sectional dimensions and external shape are obtained in this manner, heat treatment for firing is performed at 850 to 980° C. for 8 to 80 hours in an oxygen-containing atmosphere. After firing, the material is slowly cooled to 600° C. or lower at a rate of about 1° C./min in an oxygen-containing atmosphere, and oxygen is introduced into the oxygen vacancies in the crystal structure of the oxide superconductor to improve the super-FFI conductivity. In addition, oxygen introduction is
Without such slow cooling, in the cooling step from heat treatment for firing or in a separate step, 1 at 300-600℃
This may be carried out by holding for ~24 hours.

(作 用) 本発明の酸化物超電導線は、任愚の断面における周囲長
が長いので、酸素導入のための熱処理時間を短縮するこ
とができ、また金属被覆内の酸化物超電導体に均一に酸
素が供給されるので、高い臨界電流密度が得られる。
(Function) Since the oxide superconducting wire of the present invention has a long circumference in the cross section, it is possible to shorten the heat treatment time for introducing oxygen, and the oxide superconductor in the metal coating can be uniformly coated. Since oxygen is supplied, a high critical current density can be obtained.

また本発明の酸化物足Ti導線の製造方法によれば、榎
られる酸化物超電導線の外形が異形であるにもかかわら
ず、酸素透過性金属被覆の厚さを全体的にほぼ均一にす
ることができ、したがって酸素の供給が均一に行われる
Further, according to the method for manufacturing an oxide-based Ti conductor wire of the present invention, the thickness of the oxygen-permeable metal coating can be made substantially uniform throughout, even though the outer shape of the oxide superconducting wire to be extracted is irregular. Therefore, the oxygen supply is uniform.

またさらに、本発明の酸化物超電導線の表面の凹凸は、
これを直接液化ガス中に浸漬して冷却する場合熱交換を
容易にし、システムの安全性を向上させる効果もある。
Furthermore, the unevenness on the surface of the oxide superconducting wire of the present invention is
When this is directly immersed in liquefied gas to cool it, it facilitates heat exchange and has the effect of improving the safety of the system.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例 まず、BaCO3粉末2molL  Y2O3粉末o、
smo1%、CUO粉末3mo 1%を充分混合し、混
合物を900℃で48時間焼成した後粉砕した。次いで
、この粉末原料を大気中700vで24時間熱処理して
酸素空席に酸素を導入した侵、ボールミルを用いて粉砕
し、分級して平均粒径2μI、直径対厚さの比が3〜5
のペロプスカイト型の酸化物超電導体粉末を得た。
Example First, BaCO3 powder 2 molL Y2O3 powder o,
1% smo and 3mo 1% CUO powder were thoroughly mixed, the mixture was fired at 900° C. for 48 hours, and then pulverized. Next, this powder raw material was heat treated in the atmosphere at 700V for 24 hours to introduce oxygen into the oxygen vacancies, crushed using a ball mill, and classified to have an average particle size of 2 μI and a diameter-to-thickness ratio of 3 to 5.
A perovskite-type oxide superconductor powder was obtained.

次に、得られた酸化物超電導体粉末を、外径20mm、
内径15■1、長さ100nの、一端を銀材により封止
した鎖管中に充填し、他端に銀材の栓をした後、常温で
スェージングマシンにより根管外から酸化物足711導
体粉末をつき固め、この後外径5■にまで冷間で線引き
した後厚さ2nにまで偏平に圧縮した。さらに、この偏
平に圧縮した線材を一方の表面に断面鋸歯条の凹溝を周
方向に形成した圧縮ロールを用いてさらに圧縮し、厚さ
0.3+n、幅811m溝の深さ0.1Nの酸化物超電
導線を製造した。
Next, the obtained oxide superconductor powder was heated to an outer diameter of 20 mm,
After filling a chain canal with an inner diameter of 15cm and a length of 100n, one end of which was sealed with a silver material, and the other end sealed with a silver material, an oxide foot 711 was inserted from outside the root canal using a swaging machine at room temperature. The conductor powder was compacted, then cold drawn to an outer diameter of 5 cm, and then flattened to a thickness of 2 nm. Furthermore, this flattened wire rod was further compressed using a compression roll in which a concave groove with a serrated cross section was formed in the circumferential direction on one surface, and the thickness was 0.3+n, the width was 811m, and the depth of the groove was 0.1N. An oxide superconducting wire was manufactured.

しかる後、酸素中950℃で24時間熱処理して焼成し
た後、600℃からは1℃/分で徐冷して超電II材を
得た。
Thereafter, the material was heat-treated and fired in oxygen at 950°C for 24 hours, and then gradually cooled from 600°C at a rate of 1°C/min to obtain a superelectric II material.

この酸化物超電導体線材の臨界温度は87K、臨界電流
密度は1100A/cjであった。
The critical temperature of this oxide superconductor wire was 87 K, and the critical current density was 1100 A/cj.

一方、偏平に圧縮せずに外径5nの断面円形の状態で実
施例と同一条件で酸素中で熱処理して得た酸化物超電導
体の臨界電流密度は300A/cjであった。
On the other hand, the critical current density of the oxide superconductor obtained by heat-treating in oxygen under the same conditions as in the example in a circular cross-sectional state with an outer diameter of 5n without being flattened was 300 A/cj.

[発明の効果] 以上説明したように、本発明の酸化物超電導線は、任意
の断面積における周囲長が大きいので、酸素導入のため
の熱処理時間を短縮することができ、また金属被覆内の
酸化物超電導体に均一に酸素が供給されるので、高い臨
界電流密度が1qられる。
[Effects of the Invention] As explained above, since the oxide superconducting wire of the present invention has a large circumference in any cross-sectional area, it is possible to shorten the heat treatment time for oxygen introduction, and to reduce the heat treatment time in the metal coating. Since oxygen is uniformly supplied to the oxide superconductor, a high critical current density of 1q is achieved.

さらに、本発明の酸化物超電導線の製造方法によれば、
得られる酸化物超電導線の外径が異形であるにもかかわ
らず、酸素透過性金属被覆の厚さを全体的にほぼ均一に
することができ、したがって酸素の供給を均一に行わせ
ることができる。
Furthermore, according to the method for manufacturing an oxide superconducting wire of the present invention,
Even though the outer diameter of the resulting oxide superconducting wire is irregular, the thickness of the oxygen-permeable metal coating can be made almost uniform throughout, and therefore oxygen can be supplied uniformly. .

また酸化物超電導線の表面の凹凸は、これを直接液化ガ
ス中に浸漬して冷却する場合熱交換を容易にし、システ
ムの安全性を向上させる効果もある。
Furthermore, the unevenness on the surface of the oxide superconducting wire facilitates heat exchange when it is directly immersed in liquefied gas to cool it, which also has the effect of improving the safety of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、それぞれ本発明の酸化物超電導
線の表面の凹凸形状を示す斜視図である。 1・・・・・・・・・酸素透過性金属被覆2・・・・・
・・・・酸化物超′tfi々体出願人     株式会
社 東芝 代理人弁理士  須 山 佐 −
1 to 3 are perspective views showing the uneven shape of the surface of the oxide superconducting wire of the present invention, respectively. 1... Oxygen permeable metal coating 2...
...Oxide super'tfi body Applicant: Toshiba Corporation Patent Attorney Satoshi Suyama -

Claims (12)

【特許請求の範囲】[Claims] (1)酸素透過性金属からなり少なくとも一方の面に凹
凸加工が施されたテープ状中空体の前記中空部に、酸化
物超電導体が充填されてなることを特徴とする酸化物超
電導線。
(1) An oxide superconducting wire characterized in that the hollow portion of a tape-shaped hollow body made of an oxygen-permeable metal and having a roughened surface on at least one surface is filled with an oxide superconductor.
(2)酸素透過性金属が、銀または銀合金からなること
を特徴とする特許請求の範囲第1項記載の酸化物超電導
線。
(2) The oxide superconducting wire according to claim 1, wherein the oxygen permeable metal is made of silver or a silver alloy.
(3)任意の横断面における周囲長は、同断面積の真円
の周囲長の20〜130倍であることを特徴とする特許
請求の範囲第1項または第2項記載の酸化物超電導線。
(3) The oxide superconducting wire according to claim 1 or 2, wherein the circumference in any cross section is 20 to 130 times the circumference of a perfect circle having the same cross section.
(4)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項ないし第3項記載の酸化物超電導線
(4) The oxide superconducting wire according to any one of claims 1 to 3, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(5)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項ないし第4項のいず
れか1項記載の酸化物超電導線。
(5) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The oxide superconducting wire according to any one of claims 1 to 4, characterized in that it contains u in an atomic ratio of substantially 1:2:3.
(6)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(_δは酸素欠陥を表わす)で表わされる酸素
欠陥型ペロブスカイト構造を有することを特徴とする特
許請求の範囲第1項ないし第4項のいずれか1項記載の
酸化物超電導線。
(6) The oxide superconductor is LnBa_2Cu_3O_7
The oxide superconducting wire according to any one of claims 1 to 4, characterized in that it has an oxygen-deficient perovskite structure represented by _-_δ (_δ represents an oxygen defect).
(7)ほぼ等厚の酸素透過性金属からなる中空管内に酸
化物超電導体を充填し、これをテープ状に加工した後、
少くともその一方の面に凹凸加工を施し、しかる後酸素
雰囲気中で熱処理することを特徴とする酸化物超電導線
の製造方法。
(7) After filling an oxide superconductor into a hollow tube made of an oxygen-permeable metal of approximately equal thickness and processing it into a tape shape,
1. A method for producing an oxide superconducting wire, characterized in that at least one surface thereof is textured and then heat treated in an oxygen atmosphere.
(8)酸素透過性金属が、銀または銀合金からなること
を特徴とする特許請求の範囲第7項記載の酸化物超電導
線の製造方法。
(8) The method for producing an oxide superconducting wire according to claim 7, wherein the oxygen-permeable metal is made of silver or a silver alloy.
(9)凹凸加工は、任意の横断面における周囲長が、同
断面積の真円の周囲長の20〜130倍となるよう行わ
れることを特徴とする特許請求の範囲第7項または第8
項記載の酸化物超電導線の製造方法。
(9) The uneven processing is performed so that the circumferential length of any cross section is 20 to 130 times the circumferential length of a perfect circle having the same cross-sectional area.
A method for manufacturing an oxide superconducting wire as described in .
(10)酸化物超電導体は、希土類元素を含有するペロ
ブスカイト型の酸化物超電導体であることを特徴とする
特許請求の範囲第7項ないし第9項のいずれか1項記載
の酸化物超電導線の製造方法。
(10) The oxide superconductor wire according to any one of claims 7 to 9, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. manufacturing method.
(11)酸化物超電導体は、Ln元素(Lnは、希土類
元素から選ばれた少なくとも1種の元素)、Baおよび
Cuを原子比で実質的に1:2:3の割合で含有するこ
とを特徴とする特許請求の範囲第7項ないし第10項の
いずれか1項記載の酸化物超電導線の製造方法。
(11) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and Cu in an atomic ratio of substantially 1:2:3. A method for producing an oxide superconducting wire according to any one of claims 7 to 10.
(12)酸化物超電導体は、LnBa_2Cu_3O_
7_−_δ(δは酸素欠陥を表わす)で表わされる酸素
欠陥型ペロブスカイト構造を有することを特徴とする特
許請求の範囲第7項ないし第11項のいずれか1項記載
の酸化物超電導線の製造方法。
(12) The oxide superconductor is LnBa_2Cu_3O_
Production of an oxide superconducting wire according to any one of claims 7 to 11, which has an oxygen-deficient perovskite structure represented by 7_-_δ (δ represents an oxygen defect). Method.
JP62320738A 1987-12-18 1987-12-18 Oxide superconducting wire and its manufacture Pending JPH01161626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320738A JPH01161626A (en) 1987-12-18 1987-12-18 Oxide superconducting wire and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320738A JPH01161626A (en) 1987-12-18 1987-12-18 Oxide superconducting wire and its manufacture

Publications (1)

Publication Number Publication Date
JPH01161626A true JPH01161626A (en) 1989-06-26

Family

ID=18124749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320738A Pending JPH01161626A (en) 1987-12-18 1987-12-18 Oxide superconducting wire and its manufacture

Country Status (1)

Country Link
JP (1) JPH01161626A (en)

Similar Documents

Publication Publication Date Title
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPH01161626A (en) Oxide superconducting wire and its manufacture
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2644245B2 (en) Oxide superconducting wire
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2590157B2 (en) Manufacturing method of superconductor wire
JPH01241713A (en) Manufacture of oxide superconductor wire
JPH01163915A (en) Manufacture of oxide superconductive wire
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPS63282152A (en) Orientation of superconductor crystal
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01128317A (en) Manufacture of superconductive wire material
JPH01163906A (en) Oxide superconductor wire material
JPH01115015A (en) Manufacture of superconductor wire material
JPH01157451A (en) Production of oxide superconducting sintered body
JPH01304618A (en) Manufacture of oxide superconductive filament
JPH01163907A (en) Oxide superconductive wire
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPS63279530A (en) Manufacture of superconductor molding
JPH01119555A (en) Production of ceramic superconducting material