JPH01161624A - Manufacture of oxide superconducting wire - Google Patents

Manufacture of oxide superconducting wire

Info

Publication number
JPH01161624A
JPH01161624A JP62320438A JP32043887A JPH01161624A JP H01161624 A JPH01161624 A JP H01161624A JP 62320438 A JP62320438 A JP 62320438A JP 32043887 A JP32043887 A JP 32043887A JP H01161624 A JPH01161624 A JP H01161624A
Authority
JP
Japan
Prior art keywords
silver
oxide
pipe
oxygen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320438A
Other languages
Japanese (ja)
Inventor
Misao Koizumi
小泉 操
Minoru Yamada
穣 山田
Shigeo Nakayama
茂雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320438A priority Critical patent/JPH01161624A/en
Publication of JPH01161624A publication Critical patent/JPH01161624A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the superconductive characteristic by burying a raw material and silver oxide in a silver base material and heat-treating it in the oxygen atmosphere to synthesize a compound superconductor. CONSTITUTION:A silver pipe 1 concurrently serving as a base material and a sheath and a silver pipe 2 concentrically arranged in this pipe 1 are provided, silver oxide 3 is filled in the pipe 2, a raw material 4 is filled between the pipe 2 and the pipe 4. Face reduction processing is applied to this element material 5 to form a fine wire, heat treatment is applied to synthesize a compound superconductor in the raw material 4. Since silver oxide 3 is filled, oxygen is dissociated from the silver oxide 3 at the time of heat treatment, a large quantity of oxygen can be fed to the position where the raw material 4 is buried. The superconductivity can be thereby improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物系超電導線の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing an oxide-based superconducting wire.

(従来の技術) 最近1組成がY−Ba−Cu−0などで表わされる酸化
物系化合物超電導体が注目されている。これら。
(Prior Art) Recently, oxide-based compound superconductors whose composition is represented by Y--Ba--Cu-0, etc., have been attracting attention. these.

酸化物系化合物超電導体の多くは、臨界温度が液体窒素
温度以上である。このため、冷媒として高価で扱い難い
液体ヘリウムを使用する必要がないので、超電導技術を
飛躍的に発展させるものと期待されている。
Many of the oxide-based compound superconductors have a critical temperature equal to or higher than the liquid nitrogen temperature. This eliminates the need to use liquid helium, which is expensive and difficult to handle, as a refrigerant, and is expected to dramatically advance superconducting technology.

ところで、酸化物系化合物超電導体の応用性を拡大する
には1通常のリード線のような線材を得る必要がある。
By the way, in order to expand the applicability of oxide-based compound superconductors, it is necessary to obtain wires such as ordinary lead wires.

酸化物系化合物超電導体は、いわゆる焼き物であり、非
常に脆い。したがって、酸化物系化合物超電導体を単体
で線材化することは非常に困難である。このようなこと
から、従来。
Oxide-based compound superconductors are so-called ceramics and are extremely brittle. Therefore, it is very difficult to make a single oxide-based compound superconductor into a wire rod. For this reason, conventional methods.

線材化するための種々の提案がなされている。Various proposals have been made for making wire rods.

これらの提案の中に、銀製のパイプ内に酸化物系の化合
物超電導体を合成し得る粉末原料を充填し、これに減面
加工を施した後、酸素雰囲気中で熱処理して上記化合物
超電導体を合成する方法がある。この方法では、減面加
工によって形成された細線で必要な回路要素を形作った
後、酸素雰囲気中で熱処理して前記粉末原料で化合物超
電導体を合成するようにしている。この場合、銀製のパ
イプ、つまり銀製のシースは、熱処理時に内部へ酸素が
浸透するのを容易化し、化合物超電導体層の生成を容易
化している。この方法であると、熱処理後に線材に外力
を加える必要がないので、生成された化合物超電導体層
を傷つける虞れがない。
Among these proposals, a silver pipe is filled with a powder raw material capable of synthesizing an oxide-based compound superconductor, which is subjected to area reduction processing, and then heat-treated in an oxygen atmosphere to produce the above-mentioned compound superconductor. There is a way to synthesize. In this method, necessary circuit elements are formed using thin wires formed by area reduction processing, and then heat-treated in an oxygen atmosphere to synthesize a compound superconductor using the powder raw material. In this case, the silver pipe, ie, the silver sheath, facilitates the penetration of oxygen into the interior during heat treatment and facilitates the formation of the compound superconductor layer. With this method, there is no need to apply external force to the wire after heat treatment, so there is no risk of damaging the generated compound superconductor layer.

したがって、実質的に長い線材の製造を可能とする。Therefore, it is possible to manufacture substantially long wire rods.

しかしながら、上述した従来の製造方法にあっても次の
ような問題があった。すなわち、今までの研究によると
、酸化物系化合物超電導体の超電導特性は、熱処理時に
おける酸素の供給量によって大きく左右される。すなわ
ち、酸素の供給量が多い程1勝れた超電導特性を示すも
のを合成できる。従来の製造方法では、酸素は銀製のシ
ース内を拡散して内部に供給される。銀は他の金属に比
べて酸素を透過させ易い。しかし、シースとしての機能
を発揮させるにはある程度の厚みを必要とする。厚みが
増せば、酸素の透過量は少なくなる。
However, even the conventional manufacturing method described above has the following problems. That is, according to previous research, the superconducting properties of oxide-based compound superconductors are largely influenced by the amount of oxygen supplied during heat treatment. That is, the larger the amount of oxygen supplied, the more excellent superconducting properties can be synthesized. In conventional manufacturing methods, oxygen is supplied internally by diffusing through a silver sheath. Silver is more permeable to oxygen than other metals. However, a certain degree of thickness is required to function as a sheath. As the thickness increases, the amount of oxygen permeation decreases.

このため、従来の製造方法では、超電導特性を向上させ
る上で限界に近かった。
For this reason, conventional manufacturing methods are close to reaching their limits in improving superconducting properties.

(発明が解決しようとする問題点) 上述の如く、従来の銀シース法にあっては。(Problem that the invention attempts to solve) As mentioned above, in the conventional silver sheath method.

超電導特性を向上させようとしても本質的に困難であっ
た。
Attempts to improve superconducting properties have been essentially difficult.

そこで本発明は、高い超電導特性を示す酸化物系超電導
線を容易に製造できる製造方法を提供することを目的と
している。
Therefore, an object of the present invention is to provide a manufacturing method that can easily manufacture an oxide-based superconducting wire exhibiting high superconducting properties.

[発明の構成] (問題点を解決するための手段) −本発明に係る製造方法では、銀母村内に酸化物系の化
合物超電導体を合成し得る原料と酸化銀とを埋設し、し
かる後に酸素雰囲気中で熱処理して上記化合物超電導体
を合成するようにしている。
[Structure of the invention] (Means for solving the problems) - In the production method according to the present invention, raw materials capable of synthesizing an oxide-based compound superconductor and silver oxide are buried in a silver mother village, and then The compound superconductor is synthesized by heat treatment in an oxygen atmosphere.

(作 用) 酸素雰囲気中で熱処理を行なうと、酸素がいわゆる銀シ
ースを拡散して原料の埋設されている位置まで浸透する
。同時に、酸化銀から酸素が解離し、この解離した酸素
も原料の埋設されている位置まで拡散浸透する。したが
って、従来の製造方法に比べて原料の埋設されている位
置へ多量の酸素を供給することが可能となり、この結果
、超電導特性を向上させることが可能となる。
(Function) When heat treatment is performed in an oxygen atmosphere, oxygen diffuses through the so-called silver sheath and penetrates to the position where the raw material is buried. At the same time, oxygen is dissociated from silver oxide, and this dissociated oxygen also diffuses and permeates to the buried position of the raw material. Therefore, compared to conventional manufacturing methods, it is possible to supply a large amount of oxygen to the location where the raw material is buried, and as a result, it is possible to improve the superconducting properties.

(実施例) 以下1図面を参照しながら実施例を説明する。(Example) An embodiment will be described below with reference to one drawing.

第1図は本発明製造方法を採用し、がっ減面加工前の時
点における素材の断面を示している。すなわち1図中1
は母材兼シースとなる銀製のパイプを示し、2はパイプ
1内に同心的に配置された同じく銀製のパイプを示して
いる。パイプ2内には酸化銀(Ag20 ) 3か充填
されている。また。
FIG. 1 shows a cross-section of the material before surface reduction processing, using the manufacturing method of the present invention. In other words, 1 in 1 figure
2 indicates a silver pipe serving as a base material and a sheath, and 2 indicates a silver pipe arranged concentrically within the pipe 1. The pipe 2 is filled with silver oxide (Ag20) 3. Also.

パイプ2とパイプ1との間には原料4が充填されている
。原料4は、この例では酸化イツトリウム粉末と、炭酸
バリウム粉末と、酸化銅粉末とをモル比で0.5 : 
1.0 : 3.0の割合いに混合した混合物である。
A raw material 4 is filled between the pipe 2 and the pipe 1. In this example, raw material 4 is composed of yttrium oxide powder, barium carbonate powder, and copper oxide powder in a molar ratio of 0.5:
This is a mixture with a ratio of 1.0:3.0.

このように形成された素材5に減面加工を施して直径1
111mに細線化した。次に、得られた細線で所望とす
る電気回路素子、この例ではコイル状に形作った後、酸
素雰囲気中で、 920 ’C,5時間に亙って熱処理
し、この熱処理によって原料4内に化合物超電導体を合
成した。
The material 5 formed in this way is subjected to surface reduction processing to have a diameter of 1
The wire was thinned to 111m. Next, the obtained thin wire is shaped into a desired electric circuit element, in this example a coil shape, and then heat treated in an oxygen atmosphere at 920'C for 5 hours. A compound superconductor was synthesized.

このようにして製造された酸化物系超電導線の特性を調
べたところ、酸化銀3を充填しない場合に比べて、臨界
電流密度は20%向上していることが確認された。これ
は、熱処理時に酸化銀3から酸素が解離し、この解離酸
素も化合物生成に寄与しているからである。
When the characteristics of the oxide-based superconducting wire manufactured in this way were investigated, it was confirmed that the critical current density was improved by 20% compared to the case where silver oxide 3 was not filled. This is because oxygen is dissociated from silver oxide 3 during heat treatment, and this dissociated oxygen also contributes to the formation of compounds.

第2図は本発明製造方法の別の実施形態を示す図である
FIG. 2 is a diagram showing another embodiment of the manufacturing method of the present invention.

この実施例では、銀製の厚肉パイプ11の内部に軸方向
に延びる孔12を周方向に複数等間隔に設け、これら孔
12内に酸化物系の化合物超電導体を合成し得る粉末原
料13を充填するとともに厚肉パイプ11の中心空間に
酸化銀14を充填して素材5aを形成している。そして
、上記のように形成された素材5aに減面加工を施して
細線化し、しかる後に前記実施例と同様に酸素雰囲気中
で熱処理を行なっている。
In this embodiment, a plurality of holes 12 extending in the axial direction are provided inside a thick-walled silver pipe 11 at equal intervals in the circumferential direction, and a powder raw material 13 capable of synthesizing an oxide-based compound superconductor is placed inside these holes 12. At the same time, the central space of the thick-walled pipe 11 is filled with silver oxide 14 to form the material 5a. Then, the material 5a formed as described above is subjected to surface reduction processing to make the wire thinner, and then heat treated in an oxygen atmosphere as in the previous embodiment.

このような製造方法であっても、熱処理時に酸化銀14
から解離した酸素を化合物超電導体の合成に寄与させる
ことができる。したがって、高い超電導特性を示す超電
導線を製造することができる。
Even with this manufacturing method, silver oxide 14 is removed during heat treatment.
Oxygen dissociated from can contribute to the synthesis of compound superconductors. Therefore, a superconducting wire exhibiting high superconducting properties can be manufactured.

なお1本発明は上記各実施例に限定されるものではない
。すなわち、酸化物系の化合物超電導体を合成するため
の原料はイツトリウム系に限定されるものではない。
Note that the present invention is not limited to the above embodiments. That is, the raw material for synthesizing an oxide-based compound superconductor is not limited to yttrium-based materials.

[発明の効果] 以上述べたように1本発明の製造方法によれば。[Effect of the invention] As described above, according to the manufacturing method of the present invention.

熱処理時に内側からも、酸素を供給することができるの
で高い超電導特性を示す酸化物系超電導線を製造できる
Since oxygen can be supplied from the inside during heat treatment, an oxide-based superconducting wire that exhibits high superconducting properties can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造方法の一実施形態を説明するための
図、第2図は本発明製造方法の別の実施形態を説明する
ための図である。 1.2・・・銀製のバイブ、3.14・・・酸化銀。 4.13・・・原料、5.5a・・・素材、11・・・
銀製の厚肉パイプ、12・・・孔。 第1図 鴫1 第2図
FIG. 1 is a diagram for explaining one embodiment of the manufacturing method of the present invention, and FIG. 2 is a diagram for explaining another embodiment of the manufacturing method of the present invention. 1.2...Silver vibe, 3.14...Silver oxide. 4.13...Raw material, 5.5a...Material, 11...
Thick-walled silver pipe, 12 holes. Figure 1 Shizu 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)銀母材内に酸化物系の化合物超電導体を合成し得
る原料と酸化銀とを埋設し、しかる後に酸素雰囲気中で
熱処理して上記化合物超電導体を合成するようにしたこ
とを特徴とする酸化物系超電導線の製造方法。
(1) A material capable of synthesizing an oxide-based compound superconductor and silver oxide are buried in a silver base material, and then heat-treated in an oxygen atmosphere to synthesize the compound superconductor. A method for manufacturing an oxide-based superconducting wire.
(2)前記原料は、組成がY−Ba−Cu−Oで表わさ
れる化合物超電導体を合成し得るものであることを特徴
とする特許請求の範囲第1項記載の酸化物系超電導線の
製造方法。
(2) Production of an oxide-based superconducting wire according to claim 1, wherein the raw material is capable of synthesizing a compound superconductor having a composition represented by Y-Ba-Cu-O. Method.
JP62320438A 1987-12-18 1987-12-18 Manufacture of oxide superconducting wire Pending JPH01161624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320438A JPH01161624A (en) 1987-12-18 1987-12-18 Manufacture of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320438A JPH01161624A (en) 1987-12-18 1987-12-18 Manufacture of oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH01161624A true JPH01161624A (en) 1989-06-26

Family

ID=18121448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320438A Pending JPH01161624A (en) 1987-12-18 1987-12-18 Manufacture of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH01161624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA018409B1 (en) * 2008-03-06 2013-07-30 Юничарм Корпорейшн Female member for hook-and-loop fastener, hook-and-loop fastener employing the female member, and absorbent article employing the hook-and-loop fastener

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA018409B1 (en) * 2008-03-06 2013-07-30 Юничарм Корпорейшн Female member for hook-and-loop fastener, hook-and-loop fastener employing the female member, and absorbent article employing the hook-and-loop fastener

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
JP3149441B2 (en) Method for producing bismuth-based oxide superconducting wire
JP4038813B2 (en) Superconducting wire manufacturing method
JPH01161624A (en) Manufacture of oxide superconducting wire
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JP3574461B2 (en) Manufacturing method of oxide superconducting wire
JPH06275146A (en) Composite superconducting wire
JPS63279523A (en) Manufacture of compound superconductive wire
JPS63291311A (en) Superconducting wire
JP2554660B2 (en) Method for producing compound superconducting wire
JP3091350B2 (en) Method and apparatus for producing superconducting wire
JPH01161625A (en) Manufacture of oxide superconducting wire
JP2644244B2 (en) Method for producing oxide-based superconducting wire
JP2835069B2 (en) Superconducting coil
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP2670362B2 (en) Method for manufacturing conductor for current lead
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JP2727565B2 (en) Superconductor manufacturing method
JPH06162843A (en) Manufacture of bi oxide superconductor
JP2592842B2 (en) Method for manufacturing compound superconducting wire
JPS63281319A (en) Manufacture of compound superconductive wire
JPH06338230A (en) Manufacture of oxide superconducting wire
JPS63310518A (en) Manufacture of compound superconductive wire
JPH01115805A (en) Production of oxide superconductor
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire