JP2644244B2 - Method for producing oxide-based superconducting wire - Google Patents

Method for producing oxide-based superconducting wire

Info

Publication number
JP2644244B2
JP2644244B2 JP62320436A JP32043687A JP2644244B2 JP 2644244 B2 JP2644244 B2 JP 2644244B2 JP 62320436 A JP62320436 A JP 62320436A JP 32043687 A JP32043687 A JP 32043687A JP 2644244 B2 JP2644244 B2 JP 2644244B2
Authority
JP
Japan
Prior art keywords
oxide
wire
sheath
raw material
compound superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62320436A
Other languages
Japanese (ja)
Other versions
JPH01161623A (en
Inventor
操 小泉
穣 山田
茂雄 中山
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320436A priority Critical patent/JP2644244B2/en
Publication of JPH01161623A publication Critical patent/JPH01161623A/en
Application granted granted Critical
Publication of JP2644244B2 publication Critical patent/JP2644244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は,酸化物系超電導線の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for manufacturing an oxide-based superconducting wire.

(従来の技術) 最近,組成がY−Ba−Cu−Oなどで表わされる酸化物
系化合物超電導体が注目されている。これら,酸化物系
化合物超電導体の多くは,臨界温度が液体窒素温度以上
である。このため,冷媒として高価で扱い難い液体ヘリ
ウムを使用する必要がないので,超電導技術を飛躍的に
発展させるものと期待されている。
(Prior Art) Recently, an oxide-based compound superconductor having a composition represented by Y—Ba—Cu—O has been attracting attention. Many of these oxide-based compound superconductors have a critical temperature higher than the temperature of liquid nitrogen. For this reason, it is not necessary to use expensive and difficult-to-handle liquid helium as a refrigerant, and it is expected that the superconducting technology will be drastically developed.

ところで,酸化物系化合物超電導体の応用性を拡大す
るには,通常のリード線のような線材を得る必要があ
る。酸化物系化合物超電導体は,いわゆる焼き物であ
り,非常に脆い。したがって,酸化物系化合物超電導体
を単位で線材化することは非常に困難である。このよう
なことから,従来,線材化するための種々の提案がなさ
れている。
Incidentally, in order to expand the applicability of the oxide-based compound superconductor, it is necessary to obtain a wire material such as a normal lead wire. Oxide-based compound superconductors are so-called pottery and are very brittle. Therefore, it is very difficult to convert the oxide-based compound superconductor into a wire. For this reason, various proposals for making a wire rod have been conventionally made.

これらの提案の中に,シースとなる銀製のパイプ内に
酸化物系の化合物超電導体を合成し得る粉末原料を充填
し,これに減面加工を施した後,酸素雰囲気中で熱処理
して上記化合物超電導体を合成する方法がある。この方
法では,減面加工によって形成された細線で必要な回路
要素を形作った後,酸素雰囲気中で熱処理して前記粉末
原料で化合物超電導体を合成するようにしている。この
場合,銀製のパイプ,つまり銀製のシースは,熱処理時
に内部へ酸素が浸透するのを容易化し,化合物超電導体
層の生成を容易化している。この方法であると,熱処理
後に線材に外力を加える必要がないので,生成された化
合物超電導体層を傷つける虞れがない。したがって,実
質的に長い線材の製造を可能とする。
In these proposals, a silver pipe serving as a sheath was filled with a powder raw material capable of synthesizing an oxide-based compound superconductor, subjected to surface reduction processing, and then heat-treated in an oxygen atmosphere. There is a method of synthesizing a compound superconductor. In this method, necessary circuit elements are formed by thin wires formed by surface reduction processing, and then heat-treated in an oxygen atmosphere to synthesize a compound superconductor from the powder raw material. In this case, the silver pipe, that is, the silver sheath, facilitates the penetration of oxygen into the interior during the heat treatment, and facilitates the formation of the compound superconductor layer. According to this method, there is no need to apply an external force to the wire after the heat treatment, so that there is no risk of damaging the formed compound superconductor layer. Therefore, it is possible to manufacture a substantially long wire.

しかしながら,上述した従来の製造方法にあっても次
のような問題があった。すなわち,今までの研究による
と,合成された酸化物系化合物超電導体を超電導特性
は、熱処理時における酸素の供給量によって大きく左右
される。すなわち,酸素の供給量が多い程,勝れた超電
導特性を示すものを合成できる。従来の製造方法では,
酸素は銀製のシース内を拡散して内部に供給される。銀
は他の金属に比べて酸素を透過させ易い。しかし,シー
スとしての機能を発揮させるにはある程度の厚みを必要
とする。厚みが増せば,酸素の透過量は少なくなる。こ
のため,従来の製造方法では,超電導特性を向上させる
上で限界に近かった。
However, the conventional manufacturing method described above has the following problems. That is, according to the research so far, the superconductivity of the synthesized oxide-based compound superconductor largely depends on the supply amount of oxygen during the heat treatment. That is, as the supply amount of oxygen increases, a material exhibiting superior superconductivity can be synthesized. In the conventional manufacturing method,
Oxygen diffuses inside the silver sheath and is supplied to the inside. Silver is more permeable to oxygen than other metals. However, a certain thickness is required to exert the function as a sheath. As the thickness increases, the amount of permeated oxygen decreases. For this reason, the conventional manufacturing method has reached the limit in improving the superconductivity.

(発明が解決しようとする問題点) 上述の如く,従来の銀シース法にあっては,超電導特
性を向上させようとしても本質的に困難であった。
(Problems to be Solved by the Invention) As described above, in the conventional silver sheath method, it was essentially difficult to improve the superconducting characteristics.

そこで本発明は,銀シース法を採用しながら,高い超
電導特性を示す酸化物系超電導線を容易に製造できる製
造方法を提供することを目的としている。
Accordingly, an object of the present invention is to provide a manufacturing method that can easily manufacture an oxide-based superconducting wire having high superconducting characteristics while employing a silver sheath method.

[発明の構成] (問題点を解決するための手段) 本発明に係る製造方法では,シースとなる銀製のパイ
プ内に酸化物系の化合物超電導体を合成し得る原料を充
填し,これに減面加工を施して細線化する工程と,この
工程によって得られた細線を平角線に成型する工程と,
得られた平角線の銀シースに長手方向に沿って局部的な
薄肉部を点在形成する工程と,しかる後に酸素雰囲気中
で熱処理して上記化合物超電導体を合成する工程とで上
記目的を達成している。
[Structure of the Invention] (Means for Solving the Problems) In the manufacturing method according to the present invention, a silver pipe serving as a sheath is filled with a raw material capable of synthesizing an oxide-based compound superconductor, and reduced. A step of forming a thin line by performing surface processing, and a step of forming a thin line obtained by this step into a rectangular wire;
The above-mentioned object is achieved by a step of forming localized thin-walled portions along the longitudinal direction in the obtained rectangular silver sheath and a step of subsequently heat-treating the compound superconductor in an oxygen atmosphere. doing.

(作 用) 酸素雰囲気中で熱処理を行なうと,銀シースに点在形
成された局部的な薄肉部を介して多量の酸素が内部に浸
透する。したがって,シースの機能を損わせることな
く,従来の製造方法に比べ,原料に対して多量の酸素を
供給することが可能となり,この結果,超電導特性を向
上させることが可能となる。
(Operation) When heat treatment is performed in an oxygen atmosphere, a large amount of oxygen penetrates into the inside through local thin portions scattered and formed in the silver sheath. Therefore, it is possible to supply a larger amount of oxygen to the raw material than the conventional manufacturing method without impairing the function of the sheath, and as a result, it is possible to improve the superconductivity.

(実施例) 以下,図面を参照しながら実施例を説明する。(Example) Hereinafter, an example is described with reference to drawings.

第1図は本発明製造方法の中間工程を説明するための
図である。すなわち,図中1はシースとなる銀製のパイ
プ内に原料を充填し,これに減面加工を施して形成され
た細線を示している。なお,この例では原料として,酸
化イットリウム粉末と,炭酸バリウム粉末と,酸化銅粉
末とをモル比で0.5:1.0:3.0の割合に混合した混合物が
用いられている。
FIG. 1 is a view for explaining an intermediate step of the manufacturing method of the present invention. That is, in the figure, reference numeral 1 denotes a thin line formed by filling a silver pipe serving as a sheath with a raw material and subjecting the raw material to surface reduction processing. In this example, a mixture of yttrium oxide powder, barium carbonate powder, and copper oxide powder mixed at a molar ratio of 0.5: 1.0: 3.0 is used as a raw material.

細線1は回転する一対の加圧ローラ2a,2bによって構
成された成型機3に導かれ平角線4に成型される。平角
線4は,第1図にその断面を示すように,原料5が薄い
銀シース6で被覆されたものとなっている。成型機3の
下粒側には平角線5を挟んで両側に加圧機7a,7bが配置
されている。これら加圧機7a,7bは,軸心線を平角線4
の移動方向に対して直交させるとともに平角線4の厚み
方向の両面に対向して設けられ,図示しない駆動源によ
って図中実施例矢印の方向に回転駆動される軸8a,8b
と,これら軸8a,8bの外周面に突設されて先端部が平角
線4の厚み方向に位置する銀シース6を先端で押圧する
押圧ピン9a,9bとで構成されている。したがって,平角
線4が加圧機7a,7bの設けられている位置を通過する
と,第2図にも示すように,厚み方向に位置している銀
シース6に薄肉部11が1列状態に点在形成されることに
なる。
The thin wire 1 is guided to a forming machine 3 composed of a pair of rotating pressure rollers 2a and 2b, and is formed into a rectangular wire 4. The rectangular wire 4 is formed by coating a raw material 5 with a thin silver sheath 6 as shown in the cross section in FIG. Pressing machines 7a and 7b are arranged on both sides of the flat wire 5 on the lower grain side of the molding machine 3. These pressurizing machines 7a and 7b use a flat wire 4
The shafts 8a and 8b are provided so as to be perpendicular to the moving direction of the rectangular wire 4 and opposed to both sides in the thickness direction of the flat wire 4, and are driven to rotate in the direction of the arrow in the embodiment by a driving source (not shown).
And pressing pins 9a and 9b projecting from the outer peripheral surfaces of the shafts 8a and 8b and pressing the silver sheath 6 at the distal end with the distal end positioned in the thickness direction of the flat wire 4 at the distal end. Therefore, when the flat wire 4 passes through the position where the pressurizers 7a and 7b are provided, as shown in FIG. 2, the thin portions 11 are arranged in a line in the silver sheath 6 located in the thickness direction. Will be formed.

この実施例では,上記のように銀シース6に薄肉部11
が点在形成された平角線4でコイルを形作った後,酸素
雰囲気中で,920℃,5時間に亙って熱処理し,この熱処理
によって原料5内に化合物超電導体を合成した。
In this embodiment, as described above, the thin portion 11
After forming a coil with the rectangular wire 4 in which scattered dots were formed, heat treatment was performed in an oxygen atmosphere at 920 ° C. for 5 hours, and a compound superconductor was synthesized in the raw material 5 by this heat treatment.

このようにして製造された酸化物系超電導線の特性を
調べたところ,薄肉部11を設けないものに比べて,臨界
電流密度は50%向上していることが確認された。これ
は,熱処理時に酸素が銀シース6に設けられた薄肉部11
を介して内部に多量に浸透した結果であると思われる。
When the characteristics of the oxide-based superconducting wire thus manufactured were examined, it was confirmed that the critical current density was improved by 50% as compared with the case where the thin portion 11 was not provided. This is because the thin portion 11 provided with oxygen in the silver sheath 6 during the heat treatment.
It is thought to be the result of a large amount of permeation into the interior through.

なお,本発明は上記実施例に限定されるものではな
い。すなわち,酸化物系の化合物超電導体を合成するた
めの原料はイットリウム系に限定されるものではない。
The present invention is not limited to the above embodiment. That is, the raw material for synthesizing the oxide-based compound superconductor is not limited to the yttrium-based one.

[発明の効果] 以上述べたように,本発明の製造方法によれば,原料
をシース外に漏出させることなく、熱処理時に酸素を多
量に供給することができるので高い超電導特性を示す酸
化物系超電導線を製造できる。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, a large amount of oxygen can be supplied at the time of heat treatment without leaking the raw material out of the sheath. Superconducting wire can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明製造方法の中間工程における一実施形態
を説明するための図,第2図は中間工程を経た後の平角
線の局部的断面図である。 1……減面加工後の細線,3……成型機,4……平角線,5…
…原料,6……銀シース,7a,7b……加圧機,11……薄肉
部。
FIG. 1 is a view for explaining an embodiment in an intermediate step of the manufacturing method of the present invention, and FIG. 2 is a local sectional view of a flat wire after the intermediate step. 1 ... fine wire after surface reduction, 3 ... molding machine, 4 ... rectangular wire, 5 ...
… Raw material, 6… silver sheath, 7a, 7b …… pressing machine, 11… thin section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村瀬 暁 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 昭63−298918(JP,A) 特開 平1−163910(JP,A) 特開 昭64−71006(JP,A) 特開 平1−112609(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akira Murase 1 Toshiba-cho, Komukai, Koyuki-ku, Kawasaki City, Kanagawa Prefecture (56) References JP-A-63-298918 (JP, A) JP-A-63-298918 JP-A-1-163910 (JP, A) JP-A-64-71006 (JP, A) JP-A-1-112609 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シースとなる銀製のパイプ内に酸化物系の
化合物超電導体を合成し得る原料を充填し,これに減面
加工を施して細線化する工程と,この工程によって得ら
れた細線を平角線に成型する工程と,得られた平角線の
銀シースに長手方向に沿って局部的な薄肉部を点在形成
する工程と,しかる後に酸素雰囲気中で熱処理して上記
化合物超電導体を合成する工程とを具備してなることを
特徴とする酸化物系超電導線の製造方法。
1. A step of filling a silver pipe serving as a sheath with a material capable of synthesizing an oxide-based compound superconductor, performing a surface reduction process on the raw material, and thinning the thin line. Into a rectangular wire, a step of forming localized thin portions along the longitudinal direction in the obtained silver sheath of the rectangular wire, and then a heat treatment in an oxygen atmosphere to form the compound superconductor. A method for producing an oxide-based superconducting wire, comprising the steps of:
【請求項2】前記原料は,Y−Ba−Cu−Oで表される化合
物超電導体を合成し得るものであることを特徴とする特
許請求の範囲第1項記載の酸化物系超電導線の製造方
法。
2. The oxide-based superconducting wire according to claim 1, wherein said raw material is capable of synthesizing a compound superconductor represented by Y—Ba—Cu—O. Production method.
JP62320436A 1987-12-18 1987-12-18 Method for producing oxide-based superconducting wire Expired - Lifetime JP2644244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320436A JP2644244B2 (en) 1987-12-18 1987-12-18 Method for producing oxide-based superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320436A JP2644244B2 (en) 1987-12-18 1987-12-18 Method for producing oxide-based superconducting wire

Publications (2)

Publication Number Publication Date
JPH01161623A JPH01161623A (en) 1989-06-26
JP2644244B2 true JP2644244B2 (en) 1997-08-25

Family

ID=18121425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320436A Expired - Lifetime JP2644244B2 (en) 1987-12-18 1987-12-18 Method for producing oxide-based superconducting wire

Country Status (1)

Country Link
JP (1) JP2644244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184957A (en) 1999-12-28 2001-07-06 Sumitomo Electric Ind Ltd Superconducting wire rod and method of fabricating it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1338396C (en) * 1987-02-05 1996-06-18 Kazuo Sawada Process for manufacturing a superconducting wire of compound oxide-type ceramics
US5122507A (en) * 1987-05-01 1992-06-16 Sumitomo Electric Industries, Ltd. Process for manufacturing a superconducting composite
JPS6471005A (en) * 1987-05-02 1989-03-16 Sumitomo Electric Industries Superconductive composite and its manufacture

Also Published As

Publication number Publication date
JPH01161623A (en) 1989-06-26

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
US5246917A (en) Method of preparing oxide superconducting wire
JPS63225409A (en) Compound superconductive wire and its manufacture
JP2644244B2 (en) Method for producing oxide-based superconducting wire
US5434130A (en) Method of preparing oxide superconducting wire
JPH07508849A (en) High critical temperature superconductor and its manufacturing method
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JP3051867B2 (en) Manufacturing method of oxide superconducting wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP2554660B2 (en) Method for producing compound superconducting wire
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JPH03173017A (en) Oxide superconducting wire-rod manufacture and coil manufacture
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JPS63276820A (en) Manufacture of oxide superconductor
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JPH02183918A (en) Manufacture of oxide superconductor
JPH04342911A (en) Manufacture of tape-like ceramic superconductive conductor
JPH01161624A (en) Manufacture of oxide superconducting wire
JP3143903B2 (en) Manufacturing method of oxide superconducting wire
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH01115805A (en) Production of oxide superconductor
JPH06302423A (en) Manufacture of oxide superconductor coil
JPH05144330A (en) Tape-like oxide superconductive wire rod
JPS6471010A (en) Manufacture of oxide system superconductive wire material