JPH01157566A - Manufacture of cmos - Google Patents

Manufacture of cmos

Info

Publication number
JPH01157566A
JPH01157566A JP62315106A JP31510687A JPH01157566A JP H01157566 A JPH01157566 A JP H01157566A JP 62315106 A JP62315106 A JP 62315106A JP 31510687 A JP31510687 A JP 31510687A JP H01157566 A JPH01157566 A JP H01157566A
Authority
JP
Japan
Prior art keywords
region
oxide film
concentration layer
drain
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62315106A
Other languages
Japanese (ja)
Other versions
JPH0793362B2 (en
Inventor
Nobuo Inami
稲見 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP62315106A priority Critical patent/JPH0793362B2/en
Publication of JPH01157566A publication Critical patent/JPH01157566A/en
Publication of JPH0793362B2 publication Critical patent/JPH0793362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:$/To provide high breakdown strength by carrying out formation of a low density layer region of a source drain of a channel transistor and impurity implantation to a channel stopper region of the other channel transistor at the same time and by forming a selective oxide film in the region to oppose a gate electrode to the low density layer region with a thick oxide film between. CONSTITUTION:After a P well 12 is formed on an N substrate 11, an oxide film 13 is eliminat ed and a thin oxide film 14 is formed on the surface thereof and a nitride film 15, on the oxide film 14. Then the nitride film excepting a high density layer of each gate region and each source drain is eliminated by etching. Areas excepting regions 16a1, 17a1, 16a2, 17a2 and a region 18b within a P well 12 are covered with resist and N-type impurity is implanted. Similarly, areas excepting regions 16b1, 17b1, 16b2, 17b2, and a region 18a of a P channel transistor are covered with resist and P-type impurity is implanted. Successively, an oxide film 19 is formed using the nitride film 15 as a mask and the nitride film 15 and the oxide film 14 are eliminated to form an oxide film 20. N-type impurity is introduced into a polysilicon layer 21 formed on the surface, and a gate electrode pattern is formed to form high density layer regions 17a1, 17a2, 17b1, 17'2 through ion implantation. An insulation film 22 is formed and then holed. Al 23 is evaporated and an electrode wiring is formed thereafter. In this way, CMOS which operates at a very fast speed at high breakdown strength can be manufactured at a low costs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ソース領域とドレイン領域が高濃度層と該
高濃度層を取り囲む低濃度層とからなる高耐圧のCMO
Sの製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a high breakdown voltage CMO in which a source region and a drain region are composed of a high concentration layer and a low concentration layer surrounding the high concentration layer.
The present invention relates to a method for producing S.

〔従来の技術〕[Conventional technology]

MOS )ランジスタでは、高耐圧化のために、ソース
領域とドレイン領域を高濃度層と該高濃度層を取り囲む
低濃度層とからなる二層構造とすることがある。
In a MOS transistor, the source region and the drain region may have a two-layer structure consisting of a high concentration layer and a low concentration layer surrounding the high concentration layer in order to increase the breakdown voltage.

第2図は従来のこの種MO8)ランジスタの一例の構造
を示す。
FIG. 2 shows the structure of an example of a conventional MO8) transistor of this type.

図において1は基板、2はドレインの低濃度層領域、3
はドレインの高濃度層領域、4はチャネルストッパ領域
、5はゲート酸化膜、6はゲート電極である。
In the figure, 1 is the substrate, 2 is the drain low concentration layer region, and 3 is the substrate.
4 is a high concentration layer region of the drain, 4 is a channel stopper region, 5 is a gate oxide film, and 6 is a gate electrode.

ドレイン側が二層構造であれば、高耐圧化の目的が達せ
られるが、通常、ソース側も二層構造につくられる。
If the drain side has a two-layer structure, the purpose of increasing the withstand voltage can be achieved, but the source side is usually also made to have a two-layer structure.

従来のこの種構造のMOS )ランジスタの製造では、
ソース・ドレインの低濃度層領域2は、専用マスクを用
いて高濃度層領域3を囲う形状に形成される。また、ゲ
ート電極6は低濃度層領域20表面が電荷の蓄積によっ
て反転しないように、低濃度層領域2を覆う形状につく
られる。
In the conventional manufacturing of MOS transistors with this type of structure,
The low concentration layer region 2 of the source/drain is formed in a shape surrounding the high concentration layer region 3 using a special mask. Furthermore, the gate electrode 6 is formed in a shape that covers the low concentration layer region 2 so that the surface of the low concentration layer region 20 is not reversed due to accumulation of charges.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のこの種構造の高耐圧のCMOSの製造では、通常
の構造のCMOSの場合に比べ、Nチャネルトランジス
タ側とPチャネルトランジスタ側のソース・ドレインの
低濃度層領域を形成するだめのそれぞれが専用マスクに
よるフォトリソグラフィ工程が増え、コストアップに直
接連なるという問題があった。
In the conventional manufacturing of high-voltage CMOS with this type of structure, compared to the case of CMOS with a normal structure, each of the reservoirs forming the low concentration layer regions of the source and drain on the N-channel transistor side and the P-channel transistor side is dedicated. There is a problem in that the number of photolithography steps using masks increases, which directly leads to an increase in costs.

また、ゲート電極6が薄い酸化膜5を挾んで低濃度層領
域2と対向するので、ゲート容量、ゲート・ドレイン容
量の大幅増大によって、動作スピードの低減を招くとい
う問題があった。
Furthermore, since the gate electrode 6 faces the low concentration layer region 2 with the thin oxide film 5 interposed therebetween, there is a problem in that the gate capacitance and the gate-drain capacitance increase significantly, resulting in a reduction in operation speed.

この発明は上記の問題を解消するためになされたもので
、通常の構造のCMOSと同じ製造工程で製造でき、ゲ
ート容量、ゲート・ドレイン容量が増大しない高耐圧の
CMOSの製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a high-voltage CMOS that can be manufactured in the same manufacturing process as a CMOS of a normal structure and that does not increase gate capacitance or gate-drain capacitance. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、従来の上記の問題を解消するために、ゲー
ト電極にポリシリコンを用いる方法によることとし、そ
れぞれのチャネルトランジスタのソース・ドレインの低
濃度層領域の形成を、他のチャネルトランジスタのチャ
ネルストッパ領域への不純物打ち込みと同時に行なうと
ともに、該領域に選択酸化膜を形成し、ゲート電極を厚
い酸化膜を挾んで低濃度層領域と対向させる方法である
In order to solve the above-mentioned conventional problems, this invention uses a method of using polysilicon for the gate electrode, and forms low concentration layer regions of the source and drain of each channel transistor. In this method, impurities are implanted into the stopper region simultaneously, a selective oxide film is formed in the region, and the gate electrode is placed opposite the low concentration layer region with the thick oxide film in between.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図によってこの発明の製造方法を説明する。 The manufacturing method of this invention will be explained below with reference to FIG.

N基板11にPウェル12を形成する〔図(a)〕。A P well 12 is formed on an N substrate 11 [Figure (a)].

ウェル形成の際の酸化膜(Si02)13を除去し、表
面に薄い酸化膜(Si02)14 (100〜400X
)と、この酸化膜14の上に窒化膜(Si3N4)15
(60()”1200X)を形成する〔図(b)〕。各
ゲート領域及び各ソース・ドレインの高濃度層以外の窒
化膜をエツチングで除去する〔図(C)〕。
The oxide film (Si02) 13 used during well formation is removed, and a thin oxide film (Si02) 14 (100 to 400X
) and a nitride film (Si3N4) 15 on this oxide film 14.
(60()"1200X) [Figure (B)]. The nitride film other than the high concentration layer of each gate region and each source/drain is removed by etching [Figure (C)].

次に、Pウェル12内のソース・ドレインの高・低濃度
領域16al 、17al 、16a2.17a2とP
チャネルトランジスタのチャネルストッパ領域18b以
外を7オトレジストで覆いN型の不純物を打ち込む。こ
の場合、不純物はSi3N415と5i0214が重な
る領域には絶縁膜を通って打ち込まれ、フォトレジスト
では阻止されるように、フォトレジストの厚さと打ち込
みエネルギーを設定する〔図(d)〕。同様に、Pチャ
ネルトランジスタのソース・ドレインの高・低濃度領域
16b、。
Next, the source/drain high/low concentration regions 16al, 17al, 16a2, 17a2 and P
The area other than the channel stopper region 18b of the channel transistor is covered with a 7-hole resist, and N-type impurities are implanted. In this case, the thickness of the photoresist and the implantation energy are set so that the impurity is implanted through the insulating film into the region where Si3N415 and 5i0214 overlap and is blocked by the photoresist [Figure (d)]. Similarly, the high and low concentration regions 16b of the source and drain of the P-channel transistor.

17b1,16b2.17b2とPウェル12内のチャ
ネルストラミ4領域18a以外を7オトレジストで覆い
P型の不純物を打ち込む〔図(e)〕。
17b1, 16b2, 17b2 and the channel strami 4 region 18a in the P well 12 are covered with a 7 photoresist and P type impurities are implanted [Figure (e)].

続いて、窒化膜15をマスクに選択醒化を行い、窒化膜
15で覆われてない部分に厚い酸化膜19(0,8〜1
.611m )を形成する〔図(f)〕。窒化膜15と
その下の薄い酸化膜14を除去しゲート酸化膜20を形
成する〔図(2))〕。ゲート酸化膜20は50Vの耐
圧のときは700〜2000Xが適正である。
Subsequently, selective ablation is performed using the nitride film 15 as a mask, and a thick oxide film 19 (0.8 to 1
.. 611m) [Figure (f)]. The nitride film 15 and the thin oxide film 14 thereunder are removed to form a gate oxide film 20 [FIG. (2)]. When the gate oxide film 20 has a breakdown voltage of 50V, an appropriate thickness is 700 to 2000X.

表面にポリシリコン層21を形成し、このポリシリコン
層21にN型の不純物を導入しくポリシリコン層21形
成時に導入してもよい)、不要なポリシリコンをエツチ
ングで除去してソース・ドレインの低濃度層領域]、6
a1,16a2.16b1゜16b2上の選択酸化膜1
9部分を覆うゲート電極パターンを形成する〔図(h)
〕。このゲート電極・やターン21をマスクにイオン打
込みなどによりソース・ドレインの高濃度層領域17a
1+ ’7a2+17b1,17b2を形成する〔図(
1)〕。
A polysilicon layer 21 is formed on the surface, and N-type impurities are introduced into this polysilicon layer 21 (this may be introduced at the time of forming the polysilicon layer 21), and unnecessary polysilicon is removed by etching to form the source and drain regions. Low concentration layer area], 6
Selective oxide film 1 on a1, 16a2.16b1°16b2
Form a gate electrode pattern covering 9 parts [Figure (h)
]. Using this gate electrode/turn 21 as a mask, ion implantation is performed to form the source/drain high concentration layer region 17a.
1+ '7a2+17b1, 17b2 [Figure (
1)].

中間絶縁膜22を形成しく中間絶縁膜22には例えばP
SG 、 BPSG 、 Si3N4などが適している
)、所定の部分にコンタクト孔を開孔し、Alを全面に
蒸着して不要部分をエツチングで除去することにより電
極配線を形成する〔図(j) 〕、上記各部の形成が終
ると全面に/? ノシベーション膜を形成し、ポンディ
ングパッド部分のパッシベーション膜ヲ除去する。
The intermediate insulating film 22 is formed using, for example, P.
SG, BPSG, Si3N4, etc. are suitable), contact holes are opened in predetermined areas, Al is deposited on the entire surface, and unnecessary areas are removed by etching to form electrode wiring [Figure (j)] , When the formation of each part above is completed, the entire surface /? A passivation film is formed, and the passivation film on the bonding pad portion is removed.

上記はN基板11に0MO8を形成する場合について説
明したが、P基板に形成する場合もP型とN型が入れ代
るのみで手順は同じである。
The above description has been made regarding the case of forming 0MO8 on the N substrate 11, but the procedure is the same when forming on the P substrate, only the P type and N type are replaced.

上記の方法によれば、通常の構造のポリシリコン型のC
MO3の製造工程と同じ工程で製造することができ、ソ
ース・ドレイン領域を2層構造にするだめのコストアッ
プは小さく、ゲート容量、ゲート−ドレイン容量が増大
せず、高速動作の妨げとなることがない。
According to the above method, a polysilicon type C with a normal structure
It can be manufactured in the same process as MO3, the cost increase of making the source/drain region into a two-layer structure is small, and the gate capacitance and gate-drain capacitance do not increase, which will hinder high-speed operation. There is no.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ソース・ドレイン領域が二層構造の
高耐圧の0MO8を通常の構造の0MO8の製造工程と
同じ工程で製造できるので、二層構造とするためのコス
トアップが小さく、また、ケ8−ト容量を小さくできる
ので、高耐圧で高速動作の0MO8を安く得ることがで
きる。
According to this invention, a high voltage 0MO8 having a two-layer structure in the source/drain region can be manufactured in the same process as the manufacturing process for an 0MO8 having a normal structure, so the cost increase due to the two-layer structure is small, and Since the gate capacitance can be reduced, an OMO8 with high breakdown voltage and high speed operation can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の↓遣方法を説明するための模式断面
図、第2図は従来のこの種のMOSトランジスタの一例
の構造を示す模式断面図である。 11・・N基板、12・・Pウェル、13 ・5i02
.14−5i02.15− Si3N4.16al 、
 16a2 。 ]、6b、  、 16b2−低濃度層、17a1.1
7a2.17b1 。 17b2 高濃度層、18a、18b・チャネルストッ
パ領域、19・・選択酸化膜、20・・ゲート酸化膜、
21 ・ポリシリコン型、22・中間絶縁膜、23・・
Al、lよ 小−一目′的14vよluJ   41万
Vよ1町一部刀ゝτ丁丁。 特許出願人  新日本無線株式会社
FIG. 1 is a schematic sectional view for explaining the method of the present invention, and FIG. 2 is a schematic sectional view showing the structure of an example of a conventional MOS transistor of this type. 11...N substrate, 12...P well, 13 ・5i02
.. 14-5i02.15-Si3N4.16al,
16a2. ], 6b, , 16b2-low concentration layer, 17a1.1
7a2.17b1. 17b2 High concentration layer, 18a, 18b・Channel stopper region, 19...Selective oxide film, 20...Gate oxide film,
21 ・Polysilicon type, 22 ・Intermediate insulating film, 23...
Al, l, 14v, 14v, 410,000V, 1 town, 1 sword, τ ding ding. Patent applicant: New Japan Radio Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  ソース領域とドレイン領域が高濃度層と該高濃度層を
取り囲む低濃度層とからなる高耐圧のCMOSの製造方
法において、N型基板(あるいはP型基板)にPウェル
(Nウェル)を形成する工程、ウェル形成の際の酸化膜
を除去し表面に薄い酸化膜と該酸化膜の上に窒化膜を形
成する工程、ゲート領域及びソース・ドレインの高濃度
層領域以外の窒化膜をエッチングで除去する工程、Pウ
ェル(あるいはNウェル)内のソース・ドレインの高・
低濃度層領域及びPチャネルトランジスタ(Nチャネル
トランジスタ)のチャネルストッパ領域以外をフォトレ
ジストで覆い上記領域にN型(P型)の不純物を打ち込
む工程、Pチャネルトランジスタ(あるいはNチャネル
トランジスタ)のソース・ドレインの高・低濃度層領域
及びPウェル(Nウェル)のチャネルストッパ領域以外
をフォトレジストで覆い上記領域にP型(N型)の不純
物を打ち込む工程、窒化膜をマスクに選択酸化膜を形成
する工程、窒化膜と該窒化膜の下の薄い酸化膜を除去し
ゲート酸化膜を形成する工程、表面にポリシリコン層を
形成し該ポリシリコン層にN型の不純物を導入し不要な
ポリシリコン層を除去してソース・ドレインの低濃度層
領域上の選択酸化膜部分を覆うゲート電極パターンを形
成する工程、上記ゲート電極パターンをマスクにイオン
打ち込みなどにより各ソース・ドレインの高濃度層領域
を形成する工程、中間絶縁膜を形成しコンタクト孔を開
孔しAlを蒸着して電極配線を形成する工程、表面をパ
ッシベーション膜で覆う工程を備えたことを特徴とする
CMOSの製造方法。
In a method for manufacturing a high-voltage CMOS in which the source region and the drain region are composed of a high concentration layer and a low concentration layer surrounding the high concentration layer, a P-well (N-well) is formed on an N-type substrate (or a P-type substrate). Step, removing the oxide film during well formation and forming a thin oxide film on the surface and a nitride film on the oxide film, removing the nitride film in areas other than the gate region and the high concentration layer region of the source/drain by etching The source/drain height in the P-well (or N-well) is
A step of covering the region other than the low concentration layer region and the channel stopper region of the P channel transistor (N channel transistor) with a photoresist, and implanting N type (P type) impurities into the above region. Covering areas other than the high and low concentration layer regions of the drain and the channel stopper region of the P well (N well) with photoresist, implanting P type (N type) impurities into the above regions, and forming a selective oxide film using the nitride film as a mask. A process of removing the nitride film and a thin oxide film under the nitride film to form a gate oxide film, forming a polysilicon layer on the surface, and introducing N-type impurities into the polysilicon layer to remove unnecessary polysilicon. Step of removing the layer to form a gate electrode pattern that covers the selective oxide film portion on the low concentration layer region of the source and drain, and removing the high concentration layer region of each source and drain by ion implantation using the gate electrode pattern as a mask. A method for manufacturing a CMOS, comprising the steps of forming an intermediate insulating film, forming a contact hole and depositing Al to form an electrode wiring, and covering the surface with a passivation film.
JP62315106A 1987-12-15 1987-12-15 Method of manufacturing CMOS Expired - Fee Related JPH0793362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315106A JPH0793362B2 (en) 1987-12-15 1987-12-15 Method of manufacturing CMOS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315106A JPH0793362B2 (en) 1987-12-15 1987-12-15 Method of manufacturing CMOS

Publications (2)

Publication Number Publication Date
JPH01157566A true JPH01157566A (en) 1989-06-20
JPH0793362B2 JPH0793362B2 (en) 1995-10-09

Family

ID=18061490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315106A Expired - Fee Related JPH0793362B2 (en) 1987-12-15 1987-12-15 Method of manufacturing CMOS

Country Status (1)

Country Link
JP (1) JPH0793362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440802B1 (en) 2000-08-28 2002-08-27 Sharp Kabushiki Kaisha Process for fabricating semiconductor device and photolithography mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440802B1 (en) 2000-08-28 2002-08-27 Sharp Kabushiki Kaisha Process for fabricating semiconductor device and photolithography mask

Also Published As

Publication number Publication date
JPH0793362B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US6268633B1 (en) Electronic structure comprising high and low voltage transistors, and a corresponding fabrication method
US6437395B2 (en) Process for the manufacturing of an electrically programmable non-volatile memory device
JPH02162738A (en) Manufacture of mos fet
JPH01157566A (en) Manufacture of cmos
US6278163B1 (en) HV transistor structure and corresponding manufacturing method
JPH10229178A (en) Manufacture of semiconductor device
JPH07321212A (en) Forming method for channel stop diffusion layer
JPS63196070A (en) Production of cmos
JPH01220858A (en) Manufacture of semiconductor device
JPH02201968A (en) Manufacture of semiconductor device
JPH03227024A (en) Manufacture of semiconductor device
JP2870131B2 (en) Method for manufacturing semiconductor device
JPH0272671A (en) Manufacture of nonvolatile memory device
JP2554929B2 (en) High voltage N-channel transistor manufacturing method
JPS5968964A (en) Manufacture of semiconductor device
JP2000100933A (en) Semiconductor and manufacture thereof
JPS6050964A (en) Semiconductor device
US6376306B1 (en) Method for forming non volatile memory structures on a semiconductor substrate
JPS62140472A (en) Semiconductor storage
JPS6410103B2 (en)
JPH01138745A (en) Semiconductor device
JPH0372677A (en) Manufacture of read only memory device
JPS61140164A (en) Manufacture of semiconductor ic
JPH01257373A (en) Manufacture of semiconductor device
JPS63116470A (en) Manufacture of semiconductor device provided with memory transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees