JPH01142441A - Apparatus for measuring polishing degree of grain of rice - Google Patents

Apparatus for measuring polishing degree of grain of rice

Info

Publication number
JPH01142441A
JPH01142441A JP30133187A JP30133187A JPH01142441A JP H01142441 A JPH01142441 A JP H01142441A JP 30133187 A JP30133187 A JP 30133187A JP 30133187 A JP30133187 A JP 30133187A JP H01142441 A JPH01142441 A JP H01142441A
Authority
JP
Japan
Prior art keywords
section
light
rice
sample
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30133187A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP30133187A priority Critical patent/JPH01142441A/en
Publication of JPH01142441A publication Critical patent/JPH01142441A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by making the density of the grains of rice in a simple case almost constant at every sample by vibrating the sample case at the time of measurement. CONSTITUTION:A light source part 4 consisting of a halogen lamp 2 and a condensing lens 3 is provided to an outer box 1 on one side thereof and a measuring part 7 is arranged at a place near to the center from the light source part 4. A case holding frame 9 holding a sample case 8 and a vibration apparatus 14 for vibrating the case 8 along with the holding frame 9 are provided to the measuring part 7. At the time of measurement, the sample case 8 is vibrated after insertion and the light from a light emitting fiber 24 is detected by a transmitting photodiode 31 and a reflecting photodiode 30 to calculate reflectivity and transmissivity. The calibration of the diodes 30, 31 is preliminarily performed using the empty case, a monitor photodiode 32 and a fiber 29. By this method, the density of the grains of rice becomes constant and measuring accuracy is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、米粒精白度測定装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a rice grain polishing level measuring device.

〔従来の技術〕[Conventional technology]

精米作用とは、米粒の組織を外周から内部へ向かって順
次除去し、米粒の内部組織を露出させる作用であり、原
料玄米を精米して白米にしたときの白米生産量の割合は
精米歩留り(単に、歩留りとも言う)ということばで表
わされ、−般に次式で示されている。
Rice polishing is an action that sequentially removes the structure of the rice grain from the outer periphery toward the inside, exposing the internal structure of the rice grain. It is expressed simply by the word "yield", and is generally expressed by the following formula.

歩留りみ=(白米総重量/玄米総重量)x100この歩
留りの良否は、原料玄米の性状や精米技術により左右さ
れるが、通常、糠層は玄米全体の6〜7%、胚は2〜3
%程度の割合を占めているので(第4図参照)、原料が
理想的なものであれば歩留りは90%前後になる。歩留
りに影響を及ぼす玄米性状の要因としては■糠層の厚さ
・堅さ■胚の大きさ・離脱性■被害粒(胴割粒等)及び
未熟粒の混入率■米の剛度・含水率等がある。
Yield = (total weight of white rice / total weight of brown rice) x 100 The quality of this yield depends on the properties of the raw brown rice and rice milling technology, but normally the bran layer accounts for 6-7% of the total brown rice, and the embryo accounts for 2-3% of the total brown rice.
% (see Figure 4), so if the raw materials are ideal, the yield will be around 90%. Factors affecting brown rice properties that affect the yield include: - Thickness and hardness of the bran layer - Size and detachment of the embryo - Contamination rate of damaged grains (split grains, etc.) and immature grains - Stiffness and moisture content of rice etc.

つまり、歩留りとは原料玄米に対する製品(白米)の収
量をいうのであり、例えば、むら搗(つ)き等による精
米後の米質の良否(商品的価値)を判定するものではな
い。
In other words, yield refers to the yield of a product (white rice) relative to raw brown rice, and does not determine the quality of rice (commercial value) after milling, for example, by uneven pounding.

これに対し、糠層と胚が精米によってどの程度取り除か
れて白くなったか、つまり、米質(商品的価値)の度合
いを判定するものとして、精白度(搗精率)という表わ
し方が用いられている。
On the other hand, the term milling degree (milling rate) is used to judge the extent to which the bran layer and embryo have been removed during rice polishing, or in other words, the degree of rice quality (commercial value). There is.

精白度について、第4図及び第5図に示す玄米の断面図
を参照しながら説明する。玄米粉は、中核部をなす澱粉
層、すなわち内胚乳部とその外周を包被する糠層とから
なり、糠層は外糠層(42〜48μ)と内糠層(25〜
40μ)とからなる。
The degree of polishing will be explained with reference to cross-sectional views of brown rice shown in FIGS. 4 and 5. Brown rice flour consists of a starch layer that forms the core, that is, the endosperm, and a bran layer that covers the outer periphery of the starch layer.
40μ).

さらに、外糠層は外壁をなす果皮とその内壁面にある種
皮とからなり、内糠層は外胚乳と糊粉層(アリューロン
層)とで構成される。そして、内糠層の糊粉層まで全て
取り除いた状態を精白度100%とし、玄米を0%とす
る。しかしながら、糊粉層の中には食味の成分の一つと
なる蛋白質及び油脂分が含まれているから、糊粉層は素
板用の白米にとって重要成分であり、糊粉層を全て除去
した白米は、いわゆる澱粉白米となり、酒造用には適し
ても素板用には適さない。
Furthermore, the outer bran layer consists of the pericarp forming the outer wall and the seed coat on the inner wall surface, and the inner bran layer consists of the ectosperm and the aleurone layer. The polishing level is defined as 100% when all of the inner bran layer, including the aleurone layer, is removed, and brown rice is defined as 0%. However, the aleurone layer contains proteins and fats and oils, which are one of the components of taste, so the aleurone layer is an important component for white rice for base plates, and the aleurone layer is an important component for polished rice for base plates. This is what is called starch white rice, which is suitable for sake brewing but not for base plate use.

したがって、理想的な精米とは糊粉層を幾分残した白米
に精米することであり、すなわち、精白度85%程度の
白米が素板用に最適の白米ということになる。
Therefore, ideal rice milling is to mill rice with some aleurone layer remaining, that is, milled rice with a polishing degree of about 85% is the most suitable milled rice for base plates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、精米作用が外糠層から内糠層に進むに従い、
次第に米粒の白変が上昇し、この上昇率はほぼ比例的で
あることから、従来、米粒の白さの度合を測定して精白
度としていた。白さの度合を測定する白度計は、積分球
を用い、試料米に照射した光量の反射光量を光電管で受
光し、その反射率を求めるものであり、その測定値は酸
化マグネシウムの極微粉の白さを100、真黒をOとし
たときの割合で示される。
By the way, as the rice polishing action progresses from the outer bran layer to the inner bran layer,
The whiteness of rice grains gradually increases, and since this rate of increase is almost proportional, conventionally, the degree of whiteness of rice grains has been measured and used as the degree of whitening. A whiteness meter that measures the degree of whiteness uses an integrating sphere and receives the amount of reflected light from the amount of light irradiated on the sample rice with a phototube to determine the reflectance, and the measured value is obtained using ultrafine powder of magnesium oxide. It is expressed as a percentage when whiteness is 100 and pure black is O.

ところが、白度計によって求めた白さの度合は、米粒表
面から反射した光量のみであり、米粒を透過する光量が
加味されてなく、精白度とは無関係の値である。例えば
、精米直後、わずかに白糠の付着した白米は、これを十
分除去・琢磨した白米より、はるかに高い値の白変とな
る。これは、米粒面が光沢を帯びて滑面を呈すると、面
反射の傾向によって乱反射光量が減少するからであり、
進行している精白度に対して逆の値であるから、この値
は精白度に無関係の値であることを証明している。すな
わち、白変は乱反射光量であり、この白変をもって精白
度となすことは当を得ない思想と言わざるを得ない。
However, the degree of whiteness determined by a whiteness meter is only the amount of light reflected from the surface of the rice grain, and does not take into account the amount of light that passes through the rice grain, and is a value unrelated to the degree of whiteness. For example, white rice with a slight amount of white bran attached immediately after milling will have a much higher white discoloration value than white rice that has been sufficiently removed and polished. This is because when the rice grain surface becomes glossy and smooth, the amount of diffusely reflected light decreases due to the tendency of surface reflection.
Since this value is opposite to the progressing degree of whitening, it proves that this value is independent of the degree of whitening. In other words, white discoloration is the amount of diffusely reflected light, and it must be said that it is unreasonable to consider this white discoloration as whiteness.

この問題を解決するために提案されたのが特開昭58−
100751号公報に示される米粒精白度測定装置であ
るが、このものは原料の供給部に、ロードセルを備えた
計量タンクを設け、この計量タンクによって容積重を求
めるとともに容積重回路を介して精白度値を補正するも
のであり、計量タンク等を要するため大掛かりな測定装
置となるのが避けられなかった。
In order to solve this problem, a proposal was made in 1983-
This is a rice grain milling degree measuring device disclosed in Publication No. 100751, which has a measuring tank equipped with a load cell in the feed section of the raw material, and uses this measuring tank to determine the volumetric weight, and also measures the milling degree via a volumetric gravity circuit. This method corrects the value and requires a measuring tank, etc., which inevitably results in a large-scale measuring device.

本発明はこの点に鑑み、コンパクトでかつ正確な米粒精
白度測定装置を提供することを技術的課題とする。
In view of this point, the technical object of the present invention is to provide a compact and accurate rice grain polishing level measuring device.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するため本願の第1の発明は、 イ、光源と測定部との間には投光用の光ファイバーを介
装する。
In order to solve the above problems, the first invention of the present application is as follows: (a) An optical fiber for light projection is interposed between the light source and the measuring section.

口、i!I定部には増幅部と電気的に連結した受光素子
を一端に備えた反射光用及び透過光用の各光ファイバー
の他端を臨ませる。
Mouth, i! The other end of each optical fiber for reflected light and transmitted light, each of which has a light-receiving element electrically connected to the amplification part at one end, faces the I constant part.

ハ、前記増幅部に接続して演算部及び表示部を設ける。C. A calculation section and a display section are provided connected to the amplification section.

二、前記測定部にはサンプルケース内の米粒密度をサン
プル毎にほぼ一定にすめの振動装置を設ける。
2. The measuring section is equipped with a vibrating device to keep the density of rice grains in the sample case almost constant for each sample.

という技術的手段を講じ、また、本願の第2の発明は、 イ、光源部と測定部との間には投光用光ファイバーを介
装する。
In addition, the second invention of the present application takes the following technical measures: (a) An optical fiber for light projection is interposed between the light source section and the measurement section.

口、測定部には増幅部と電気的に連結した受光素子を一
端に備えた反射光用及び透過光用の各光ファイバーの他
端を臨ませる。
The other end of each optical fiber for reflected light and transmitted light, each of which has a light-receiving element electrically connected to the amplification part at one end, faces the opening and measurement part.

ハ、前記増幅部に接続して演算部及び表示部を設ける。C. A calculation section and a display section are provided connected to the amplification section.

二、前記光源部には増幅部と電気的に連結した受光素子
の一端を備えたモニター用の光ファイバーの他端を臨ま
せる。
2. The light source section is provided with the other end of a monitoring optical fiber having one end of a light receiving element electrically connected to the amplification section.

という技術的手段を講じた。This technical measure was taken.

〔作 用〕[For production]

サンプルケース内にサンプルとなる米粒(白米)を入れ
1、サンプルケースを測定部に装着すると、測定部に設
けた振動装置によってサンプルケースが振動を付与され
、サンプルケース内の米粒間の空隙が小さくなって米粒
どうしが詰まり、ある程度の高密度状態を呈する。これ
により、粒子の表面状態の差や大きさの違い等による米
粒密度の差を縮めてサンプル毎にほぼ一定の密度とし、
サンプルの密度の違いによる測定誤差を極小とする。
When rice grains (white rice) as a sample are placed in the sample case and the sample case is attached to the measurement unit, the sample case is vibrated by the vibration device installed in the measurement unit, reducing the gaps between the rice grains in the sample case. As a result, the rice grains become stuck together, creating a somewhat dense state. This reduces the difference in rice grain density due to differences in grain surface condition and size, and makes the density almost constant for each sample.
Minimize measurement errors due to differences in sample density.

また、第2の発明のものは、主として測定中の光源付近
の温度の変化によって光源の光量が変化することによる
測定誤差をなくすために、光源部に設けたモニター用光
ファイバーから取り込まれる光量を常に検出し、光量の
変化量に応じて精白度値を補正するものである。
In addition, in the second invention, in order to eliminate measurement errors caused by changes in the light intensity of the light source mainly due to changes in the temperature near the light source during measurement, the amount of light taken in from the monitoring optical fiber provided in the light source is constantly adjusted. The brightness value is corrected according to the amount of change in the amount of light.

(発明の実施例) 以下、図面に基づいて本発明の好適な一実施例につき説
明する。第1図は本実施例の一部を破断断面で示した平
面図、第2図は第1図におけるサンプルケースの斜視図
、第3図は本実施例を概念的に表したブロック図である
(Embodiment of the Invention) Hereinafter, a preferred embodiment of the present invention will be described based on the drawings. Fig. 1 is a plan view showing a part of this embodiment in a cutaway section, Fig. 2 is a perspective view of the sample case in Fig. 1, and Fig. 3 is a block diagram conceptually showing this embodiment. .

入・切スイツチ5等からなる電源部6を備えた外箱1内
の一側には白色光を発する、いわゆるハロゲンランプ2
及び集光レンズ3等からなる光源部4を設け、光源部4
から中央部寄りには測定部7を配設する。測定部7は、
サンプルケース8が挿入可能に凹設され、その内部には
サンプルケース8を保持するケース保持枠9が複数のス
プリング10によって支架される。また、ケース保持枠
9にはサンプルケース8が挿入されたとき作動するリミ
ットスイッチ11を設けるとともに、ケース保持枠9の
一側部を突出して形成した突起13とわずかな間隙を一
部してバイブレータ−12を固着する。これにより、サ
ンプルケース8がケース保持枠9内に挿入されてリミッ
トスイッチ11からONLだとき、バイブレータ−12
が作動し、突起13を介してケース保持枠9ごとサンプ
ルケース8を振動する撮動装置14が形成される。
A so-called halogen lamp 2 that emits white light is located on one side of the outer box 1 which is equipped with a power supply section 6 consisting of an on/off switch 5, etc.
A light source section 4 consisting of a condensing lens 3 and the like is provided, and the light source section 4
A measuring section 7 is disposed near the center. The measuring section 7 is
A sample case 8 is recessed so as to be insertable therein, and a case holding frame 9 for holding the sample case 8 is supported by a plurality of springs 10 inside the recess. In addition, the case holding frame 9 is provided with a limit switch 11 that is activated when the sample case 8 is inserted, and a vibrator is installed in a small gap between a protrusion 13 formed by protruding one side of the case holding frame 9. -12 is fixed. As a result, when the sample case 8 is inserted into the case holding frame 9 and the limit switch 11 is ONL, the vibrator 12
is activated, and an imaging device 14 is formed that vibrates the sample case 8 together with the case holding frame 9 via the protrusion 13.

サンプルケース8について以下に説明する(第2図参照
)。サンプルケース8は一端部に把手部15を形成した
ボディ16、ボディ16の他端部にヒンジ17によって
開閉自在に取付けた蓋18及び試料を入れる受皿19と
からなる。そして、ボディ16の中央部には受皿19を
嵌入する円孔20を穿設するとともに、この円孔20に
相対する蓋18の中央部には無色の石英ガラス等からな
る透明窓21を設ける。−方、受皿19の底面も前記透
明窓21と同様の材質からなる透明底22となし、上端
にはフランジ23を形成する。
Sample case 8 will be explained below (see FIG. 2). The sample case 8 consists of a body 16 having a handle 15 formed at one end, a lid 18 attached to the other end of the body 16 so as to be openable and closable, and a saucer 19 into which a sample is placed. A circular hole 20 into which the saucer 19 is inserted is bored in the center of the body 16, and a transparent window 21 made of colorless quartz glass or the like is provided in the center of the lid 18 facing the circular hole 20. On the other hand, the bottom surface of the saucer 19 also has a transparent bottom 22 made of the same material as the transparent window 21, and a flange 23 is formed at the upper end.

測定部7におけるサンプルケース8の透明窓21上には
、一端を光源部4の集光レンズ3付近に接続した一対の
投光ファイバー24.24の他端を臨ませ、ハロゲンラ
ンプ2からの光量を、透明窓21を介して受皿19内の
米粒(サンプル)に投光するよう形成される。また、測
定部7のサンプルケース8の透明窓21の真上には反射
受光ファイバー27の一端を臨ませるとともに、サンプ
ルケース8の円孔20の直下には透過受光ファイバー2
8の一端を臨ませ、さらに、光源部4の集光レンズ3付
近には一対の投光ファイバー24と共にモニター用ファ
イバー29の一端を臨設する。
On the transparent window 21 of the sample case 8 in the measurement section 7, the other ends of a pair of light emitting fibers 24 and 24, one end of which is connected to the vicinity of the condenser lens 3 of the light source section 4, are exposed, and the amount of light from the halogen lamp 2 is monitored. , is formed so as to project light onto the rice grains (sample) in the saucer 19 through the transparent window 21. Further, one end of the reflective receiving fiber 27 is placed directly above the transparent window 21 of the sample case 8 of the measuring section 7, and the transmitting receiving fiber 27 is placed directly below the circular hole 20 of the sample case 8.
Furthermore, one end of a monitor fiber 29 is provided near the condenser lens 3 of the light source section 4 along with a pair of light projection fibers 24.

外箱1内の測定部7近傍には増幅器(図示せず)等を備
えた増幅部25並びにA/D変換器、CPLI及びメモ
リ(いずれも図示せず)等を備えた演算部26を配設し
、増幅部25には前記反射受光ファイバー27、透過受
光ファイバー28及びモニター用ファイバー29の各他
端にそれぞれ接続する反射用フォトダイオード30、透
過用フォトダイカード31及びモニター用フォトダイオ
ード32を設けるとともに、これら各フォトダイオード
30〜32はそれぞれ増幅部25内の増幅器に電気的に
接続される。なお、前記各フォトダイオード30〜32
は、増幅部25内の増幅器に電気的に接続されていれば
よく、必ずしも本実施例のように増幅部25内に設ける
には及ばない。
An amplification section 25 including an amplifier (not shown), and a calculation section 26 including an A/D converter, a CPLI, a memory (none of which are shown), etc. are arranged near the measurement section 7 in the outer box 1. The amplifier section 25 includes a reflection photodiode 30, a transmission photodiode card 31, and a monitoring photodiode 32 connected to the other ends of the reflection receiving fiber 27, the transmission receiving fiber 28, and the monitoring fiber 29, respectively. At the same time, each of these photodiodes 30 to 32 is electrically connected to an amplifier in the amplifying section 25, respectively. Note that each of the photodiodes 30 to 32
may be electrically connected to the amplifier within the amplifier section 25, and does not necessarily need to be provided within the amplifier section 25 as in this embodiment.

演算部26に接続して表示部33を設ける。A display section 33 is provided connected to the calculation section 26 .

すなわち、表示部33は操作パネル34上に設けた回数
表示用デジタルパネルメーター(以下、単に「デジバネ
」という)35、反射度表示用デジバネ36、透過度表
示用デジバネ37及び精白度表示用デジバネ38からな
る。
That is, the display section 33 includes a digital panel meter (hereinafter simply referred to as "Digispring") 35 for displaying the number of times provided on the operation panel 34, a Digispring 36 for displaying reflectance, a Digispring 37 for displaying transparency, and a Digispring 38 for displaying sharpness. Consisting of

前記操作パネル34には反射度表示用デジバネ36、透
過度表示用デジバネ37及び精白度表示用デジバネ38
に表示される各測定値の平均を求めるときに押す平均ス
イッチボタン39、並びに構成スイッチボタン40を設
けるとともに、測定可能な状態を表示するレディライブ
41、サンプルケース8が装着されたことを表示するサ
ンプルランプ42及び光源部4のハロゲンランプ2が点
灯したことを表示するライトランプ43を配設する。
The operation panel 34 includes a digital spring 36 for displaying reflectivity, a digital spring 37 for displaying transparency, and a digital spring 38 for displaying sharpness.
In addition to providing an average switch button 39 and a configuration switch button 40 that are pressed when calculating the average of each measured value displayed on the screen, a ready live 41 that displays a measurable state and a display that a sample case 8 is attached are provided. A light lamp 43 is provided to indicate that the sample lamp 42 and the halogen lamp 2 of the light source section 4 are turned on.

次に、本実施例における具体的作動について説明する。Next, the specific operation in this embodiment will be explained.

電源部6の入・切スィッチ5をONすると、ハロゲンラ
ンプ2が点灯するとともにライトランプ4が点灯し、約
10秒後にレディランプ41が点灯する。レディランプ
41が点灯したら校正スイッチボタン40を押して校正
を行う。すなわち、校正スイッチボタン40を押してレ
ディランプ41が消灯すると、空のサンプルケース8を
測定部7のケース保持枠9内に挿入する。サンプルケー
ス8が正しく装着されると、リミットスイッチ11がO
NL、てサンプルランプ42が点灯するが、校正スイッ
チボタン40を押しであるのでバイブレータ−12は作
動しない。このとき、光源部4から投光ファイバー24
を経て測定部7のサンプルケース8の透明窓21、さら
に受皿19の透明底22を通過する光線は透過受光ファ
イバー28を介して透過用フォトダイオード31に至り
、この光量をもって透過度100%とするとともに、モ
ニター用フィバ−29から取り込まれる光量の2倍をも
って(内光ファイバーは全て同径とする)反射度100
%とする。これにより校正が終了し、レディランプ41
が点灯するとともに、表示部33の各デジバネ35〜3
8は全て「0」を表示する。
When the on/off switch 5 of the power supply section 6 is turned on, the halogen lamp 2 and the light lamp 4 are turned on, and about 10 seconds later, the ready lamp 41 is turned on. When the ready lamp 41 lights up, press the calibration switch button 40 to perform calibration. That is, when the calibration switch button 40 is pressed and the ready lamp 41 turns off, the empty sample case 8 is inserted into the case holding frame 9 of the measuring section 7. When the sample case 8 is installed correctly, the limit switch 11 is set to O.
NL, the sample lamp 42 lights up, but since the calibration switch button 40 is pressed, the vibrator 12 does not operate. At this time, from the light source section 4 to the light emitting fiber 24
The light beam that passes through the transparent window 21 of the sample case 8 of the measurement unit 7 and then the transparent bottom 22 of the saucer 19 reaches the transmission photodiode 31 via the transmission receiving fiber 28, and this amount of light is considered to be 100% transmittance. At the same time, the reflectance is 100 with twice the amount of light taken in from the monitor fiber 29 (all internal optical fibers have the same diameter).
%. This completes the calibration and the ready lamp 41
lights up, and each digital spring 35 to 3 of the display section 33
8 displays all "0".

校正が終了すると、サンプルケース8を抜き出し、受皿
19内にサンプルとなる白米を摺切り状に充填して蓋1
8を閉じ、測定部7のケース保持枠9内に挿入する。サ
ンプルケース8がケース保持枠9内に装着されてリミッ
トスイッチ11がONすると、図外のタイマーによって
一定時間、例えば5秒間だけバイブレータ−12が作動
し、バイブレータ−12の振動が突起13を介してケー
ス保持枠9に伝わり、スプリング10によって支えられ
たケース保持枠9を共振させることにより、サンプルケ
ース8を共に振動させる。サンプルケース8が振動する
と、受皿19内の白米の粒子も振動し、粒子間の空隙が
小さくなって詰まるとともに白米どうしがなじみ、自重
によりある程度の高密度を呈したサンプルとなって落ち
着く。
When the calibration is completed, take out the sample case 8, fill the saucer 19 with polished rice as a sample, and close the lid 1.
8 and insert it into the case holding frame 9 of the measuring section 7. When the sample case 8 is installed in the case holding frame 9 and the limit switch 11 is turned on, the vibrator 12 is activated by a timer (not shown) for a certain period of time, for example, 5 seconds, and the vibration of the vibrator 12 is transmitted through the protrusion 13. The vibration is transmitted to the case holding frame 9, and by causing the case holding frame 9 supported by the spring 10 to resonate, the sample case 8 is caused to vibrate together. When the sample case 8 vibrates, the particles of white rice in the saucer 19 also vibrate, and the gaps between the particles become smaller and clogged, and the white rice blends into each other, settling into a sample with a certain degree of high density due to its own weight.

バイブレータ−12の作動が停止すると測定が開始され
、反射用フォトダイオード30及び透過用フォトダイオ
ード31は、それぞれ反射受光ファイバー27及び透過
受光ファイバー28によって取り込まれるサンプルから
の反射光量と透過光量とを電気信号に変換して各フォト
ダイオードに接続する増幅器に出力する。そして、演算
部26において、校正時に設定された反射度及び透過変
名100%に対する比率で反射度と透過度とを算出する
Measurement starts when the vibrator 12 stops operating, and the reflection photodiode 30 and the transmission photodiode 31 electrically measure the amount of reflected light and the amount of transmitted light from the sample taken in by the reflection receiving fiber 27 and the transmission receiving fiber 28, respectively. It is converted into a signal and output to an amplifier connected to each photodiode. Then, the calculation unit 26 calculates the reflectance and the transmittance based on the ratio of the reflectance and the transmittance variable set at the time of calibration to 100%.

反射度と透過度とから精白度を演算するのであるが、精
白度を81反射度をR及び透過度を王とすると、精白度
Sは次式で求められることになる。
The degree of brightness is calculated from the degree of reflection and the degree of transmittance.If the degree of brightness is 81, the degree of reflection is R, and the degree of transmittance is the king, the degree of brightness S can be determined by the following equation.

S=A −R0+8− TE”F+C A1B、C,DlE及びFは実験的に求めた係数であり
、これらの係数は一般米用と数種の特殊米用とを設定し
、サンプルに応じて切換レンジ等で変更するようにして
もよく、また、玄米測定用のプログラムを設け、まず、
当該サンプルを玄米の状態で測定し、この玄米の反射度
Rと透過度Tとのデータで、白米の精白度を補正するよ
うに形成する場合もあり、これにより、品種の違い(元
来白っぽいものや黒ずんだ米が存する)によるバラツキ
をなくすことができる。
S=A -R0+8- TE"F+C A1B, C, DlE and F are coefficients determined experimentally. These coefficients are set for general rice and for several types of special rice, and are switched depending on the sample. You may change it in a microwave, etc. Also, you can set up a program for measuring brown rice, and first,
In some cases, the sample is measured as brown rice, and the data on the reflectance R and transmittance T of the brown rice is used to correct the whiteness of white rice. It is possible to eliminate variations caused by grains and darkened rice.

こうして求めた反射度、透過度及び精白度は、測定回数
と共にそれぞれ表示部33の回数表示用デジバネ35、
反射度表示用デジバネ36、透過度表示用デジバネ37
及び精白度表示用デジバネ38に表示され、同時に演算
部26に記憶される。
The reflectivity, transmittance, and polishing degree thus obtained are displayed on the digital spring 35 for displaying the number of times on the display section 33, as well as the number of measurements.
Reflectance display digital spring 36, transparency display digital spring 37
and is displayed on the sharpness display digital spring 38, and simultaneously stored in the arithmetic unit 26.

2回目以降の測定も1回目と同様に、サンプルケース8
の受皿19内に摺切り状にサンプルを充填し、測定部7
に装着する。測定部7ではバイブレータ−12によって
振動作用を受け、サンプルは第1回目とほぼ同程度の高
密度を呈し、密度の相違による測定誤差を生じることな
く反射度及び透過度の測定が行われ、平均スイッチボタ
ン39を押した時点で、それまでの測定値の平均値を各
デジバネに表示するとともに、測定値の記憶がクリアさ
れ、次のサンプルの測定に移る。
For the second and subsequent measurements, use sample case 8 in the same manner as the first.
Fill the sample into the receiving tray 19 of
Attach to. In the measuring section 7, the sample is subjected to vibration by the vibrator 12, and the sample exhibits almost the same high density as the first time, and the reflectance and transmittance are measured without measurement errors due to differences in density, and the average When the switch button 39 is pressed, the average value of the measured values up to that point is displayed on each digital spring, the memory of the measured values is cleared, and the next sample is measured.

このようにして測定が続行されるうち、光源部4のハロ
ゲンランプ2の光量が、周囲の温度あるいは各部の疲労
等によって変化を生じるが、光源部4の光量は、一端を
光源部4に連結したモニター用ファイバー29を介して
モニター用フォトダイオード32及び増幅器によって常
に検出されており、校正時の光量に対して変化が生じた
ときは各測定値を補正し、複数の測定時の間における測
定誤差を生じることがない。
As the measurement continues in this way, the light intensity of the halogen lamp 2 of the light source section 4 changes due to the ambient temperature or fatigue of each part, but the light intensity of the light source section 4 changes due to the connection of one end to the light source section It is constantly detected by a monitor photodiode 32 and an amplifier via a monitor fiber 29, and when a change occurs in the light intensity at the time of calibration, each measured value is corrected to eliminate measurement errors between multiple measurements. It never occurs.

〔発明の効果〕〔Effect of the invention〕

第1の発明はサンプルケース内の米粒密度をサンプル毎
にほぼ一定にするための振動装置を設けたので、サンプ
ルの密度の違いによる測定誤差を防止し、また、第2の
発明は、光源部にモニター用の光ファイバーを設けて光
源の光量を監視し、光量の変化に応じて精白度値を補正
するので、時間経過と共に周囲温度が上昇して明るさが
増したときでも、自動的に補正が行われ、ひん繁に校正
を行う必要がな(、正確な精白度の測定が可能となる。
The first invention is provided with a vibrating device to make the density of rice grains in the sample case almost constant for each sample, thereby preventing measurement errors due to differences in the density of the samples. A monitor optical fiber is installed in the monitor to monitor the light intensity of the light source, and the brightness value is corrected according to changes in the light intensity, so even if the ambient temperature rises over time and the brightness increases, the brightness value can be automatically corrected. This eliminates the need for frequent calibration (allowing accurate whiteness measurements).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の一部を破断断面で示した平面図
、第2図は第1図の一部拡大斜視図第3図は本実施例を
概念的に表したブロック図、第4図は玄米の縦断面図、
第5図は第4図の一部拡大図である。 1・・・外箱、2・・・ハロゲンランプ、3・・・集光
レンズ、4・・・光源部、5・・・入・切スィッチ、6
・・・電源部、7・・・測定部、8・・・サンプルケー
ス、9・・・ケース保持枠、10・・・スプリング、1
1・・・リミットスイッチ、12・・・バイブレータ−
113・・・突起、14・・・振動装置、15・・・把
手部、16・・・ボディ、17・・・ヒンジ、18・・
・蓋、19・・・受皿、20・・・円孔、21・・・透
明窓、22・・・透明壁、23・・・フランジ、24・
・・投光ファイバー、25・・・増幅部、26・・・演
算部、27・・・反射受光ファイバー、28・・・透過
受光ファイバー、29・・・モニター用ファイバー、3
0・・・反射用フォトダイオード、31・・・透過用フ
ォトダイオード、32・・・モニター用フォトダイオー
ド、33・・・表示部、34・・・操作パネル、35・
・・回数表示用デジバネ、36・・・反射度表示用デジ
バネ、37・・・透過度表示用デジバネ、38・・・精
白度表示用デジバネ、39・・・平均スッチボタン、4
0・・・校正スイッチボタン、41・・・レディランプ
、42・・・サンプルランプ、43・・・ライトランプ
FIG. 1 is a plan view showing a part of the embodiment of the present invention in a broken cross section, FIG. 2 is a partially enlarged perspective view of FIG. 1, and FIG. 3 is a block diagram conceptually showing the embodiment. Figure 4 is a longitudinal cross-sectional view of brown rice.
FIG. 5 is a partially enlarged view of FIG. 4. 1...Outer box, 2...Halogen lamp, 3...Condenser lens, 4...Light source section, 5...On/off switch, 6
...Power supply section, 7.Measurement section, 8.Sample case, 9.Case holding frame, 10.Spring, 1
1... Limit switch, 12... Vibrator
113...Protrusion, 14...Vibration device, 15...Handle portion, 16...Body, 17...Hinge, 18...
・Lid, 19... saucer, 20... circular hole, 21... transparent window, 22... transparent wall, 23... flange, 24...
...Light emitting fiber, 25...Amplifying section, 26...Calculating section, 27...Reflecting light receiving fiber, 28...Transmitting light receiving fiber, 29...Monitoring fiber, 3
0...Reflection photodiode, 31...Transmission photodiode, 32...Monitor photodiode, 33...Display unit, 34...Operation panel, 35...
...Digi spring for displaying number of times, 36...Digi spring for displaying reflectance, 37...Digi spring for displaying transparency, 38...Digi spring for displaying precision, 39...Average switch button, 4
0...Calibration switch button, 41...Ready lamp, 42...Sample lamp, 43...Light lamp.

Claims (3)

【特許請求の範囲】[Claims] (1)、光源部と測定部との間には投光用の光ファイバ
ーを介装するとともに、測定部には増幅部と電気的に連
結した受光素子を一端に備えた反射光用及び透過光用の
各光ファイバーの他端を臨ませ、前記増幅部に接続して
演算部及び表示部を設けてなる米粒精白度測定装置にお
いて、前記測定部にはサンプルケース内の米粒密度をサ
ンプル毎にほぼ一定にするための振動装置を設けたこと
を特徴とする米粒精白度測定装置。
(1) An optical fiber for light projection is interposed between the light source section and the measurement section, and the measurement section is equipped with a light receiving element electrically connected to the amplification section at one end for reflected light and transmitted light. In the rice grain whiteness measuring device, the other end of each optical fiber for each sample faces, is connected to the amplification section, and is provided with a calculation section and a display section. A rice grain polishing level measuring device characterized by being equipped with a vibrating device to keep it constant.
(2)、上記振動装置は、サンプルケースを挿入するケ
ース保持枠をスプリングによつて支架するとともに、ケ
ース保持枠から突出した突起をバイブレーターとわずか
な間隙を介して接続してなる特許請求の範囲第(1)項
記載の米粒精白度測定装置。
(2) The above-mentioned vibrating device has a case holding frame into which the sample case is inserted, which is supported by a spring, and a protrusion protruding from the case holding frame is connected to the vibrator through a small gap. The rice grain polishing level measuring device according to item (1).
(3)、光源部と測定部との間には投光用の光フアバー
を介装するとともに、測定部には増幅部と電気的に連結
した受光素子を一端に備えた反射光用及び透過光用の各
光ファイバーの他端を臨ませ、前記増幅部に接続して演
算部及び表示部を設けてなる米粒精白度測定装置におい
て、前記光源部には増幅部と電気的に連結した受光素子
の一端を備えたモニター用の光ファイバーの他端を臨ま
せたことを特徴とする米粒精白度測定装置。
(3) An optical fiber for projecting light is interposed between the light source section and the measuring section, and the measuring section is equipped with a light receiving element electrically connected to the amplifying section at one end for reflected light and transmitted light. In a rice grain whiteness measuring device, the other end of each optical fiber for light is exposed and connected to the amplification section and provided with a calculation section and a display section, the light source section includes a light receiving element electrically connected to the amplification section. A rice grain polishing level measuring device characterized by having one end of a monitoring optical fiber facing the other end.
JP30133187A 1987-11-28 1987-11-28 Apparatus for measuring polishing degree of grain of rice Pending JPH01142441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30133187A JPH01142441A (en) 1987-11-28 1987-11-28 Apparatus for measuring polishing degree of grain of rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30133187A JPH01142441A (en) 1987-11-28 1987-11-28 Apparatus for measuring polishing degree of grain of rice

Publications (1)

Publication Number Publication Date
JPH01142441A true JPH01142441A (en) 1989-06-05

Family

ID=17895572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30133187A Pending JPH01142441A (en) 1987-11-28 1987-11-28 Apparatus for measuring polishing degree of grain of rice

Country Status (1)

Country Link
JP (1) JPH01142441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217241A (en) * 1988-02-25 1989-08-30 Mitsubishi Rayon Co Ltd Reflectance and permeability measuring apparatus
JPH01250739A (en) * 1988-03-31 1989-10-05 Mitsubishi Rayon Co Ltd Measuring apparatus of reflectance and transmittance of granular aggregate
KR100619500B1 (en) * 2006-06-26 2006-09-06 김한중 Rice polishing identify machine
WO2021240852A1 (en) * 2020-05-25 2021-12-02 株式会社サタケ Rice grain quality measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877637A (en) * 1981-11-02 1983-05-11 Satake Eng Co Ltd Continuous measuring apparatus of polishing degree of grain
JPS603953A (en) * 1983-06-22 1985-01-10 Nippon Steel Corp Device for treating cutting slag of billet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877637A (en) * 1981-11-02 1983-05-11 Satake Eng Co Ltd Continuous measuring apparatus of polishing degree of grain
JPS603953A (en) * 1983-06-22 1985-01-10 Nippon Steel Corp Device for treating cutting slag of billet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217241A (en) * 1988-02-25 1989-08-30 Mitsubishi Rayon Co Ltd Reflectance and permeability measuring apparatus
JPH01250739A (en) * 1988-03-31 1989-10-05 Mitsubishi Rayon Co Ltd Measuring apparatus of reflectance and transmittance of granular aggregate
KR100619500B1 (en) * 2006-06-26 2006-09-06 김한중 Rice polishing identify machine
WO2021240852A1 (en) * 2020-05-25 2021-12-02 株式会社サタケ Rice grain quality measurement device
JP2021188909A (en) * 2020-05-25 2021-12-13 株式会社サタケ Device for measuring quality of rice grains

Similar Documents

Publication Publication Date Title
JPH0149890B2 (en)
US5460209A (en) Automatic dispenser for dry ingredients
US8031910B2 (en) Method and apparatus for analyzing quality traits of grain or seed
JP2010276608A (en) Dental color analysis device
JPH04506567A (en) Measuring device and method
JPH01142441A (en) Apparatus for measuring polishing degree of grain of rice
JP3650558B2 (en) Reflectance measuring device
CN200989874Y (en) Vibrating grain volume-weight apparatus
JP2019052972A (en) Optical characteristic measuring device
JPH0815140A (en) Grain evaluation system
JP2002202267A (en) Reference sample bottle for inspection, bottle inspection system, and calibrating method for bottle inspection system
JPH0156376B2 (en)
JPH0510883A (en) Apparatus for continuously measuring whiteness of grain of rice
JPS62133323A (en) Combined scale
JP2000111542A (en) Comprehensive inspection and evaluation method for rice
JPH0725663Y2 (en) Sample dish for measuring machine
KR100402141B1 (en) Rice polishing measure gauge possible calculation and weighing
JPH07104279B2 (en) Evaluation method of rice taste
JPS62291546A (en) Method and apparatus for measuring taste of rice
JPS6332131B2 (en)
GB2227096A (en) Moisture analysis of a variable volume sample
Kandala et al. A diffuse reflectance measuring instrument to determine peanut pod brightness
JPS6322540B2 (en)
JPS6333644A (en) Taste measuring apparatus for rice
JPH01223588A (en) Coin counting device