JPH07104279B2 - Evaluation method of rice taste - Google Patents

Evaluation method of rice taste

Info

Publication number
JPH07104279B2
JPH07104279B2 JP7282687A JP7282687A JPH07104279B2 JP H07104279 B2 JPH07104279 B2 JP H07104279B2 JP 7282687 A JP7282687 A JP 7282687A JP 7282687 A JP7282687 A JP 7282687A JP H07104279 B2 JPH07104279 B2 JP H07104279B2
Authority
JP
Japan
Prior art keywords
rice
taste
sample
absorbance
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7282687A
Other languages
Japanese (ja)
Other versions
JPS63235849A (en
Inventor
利彦 佐竹
Original Assignee
株式会社佐竹製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社佐竹製作所 filed Critical 株式会社佐竹製作所
Priority to JP7282687A priority Critical patent/JPH07104279B2/en
Publication of JPS63235849A publication Critical patent/JPS63235849A/en
Publication of JPH07104279B2 publication Critical patent/JPH07104279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は米の食味の総合評価を科学的に行う食味評価方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a taste evaluation method for scientifically performing comprehensive evaluation of rice taste.

〔従来の技術とその問題点〕 米の食味は、品種,生産地,栽培方法,収穫方法等の生
産段階で決まるもの、乾燥,貯蔵,精米加工等の収穫後
の加工処理段階で決まるもの、また、炊飯によって決ま
るものと多岐に亘るものであるが、米の食味が最も大き
な影響を受けるのは生産段階であり、次に加工処理段階
である。
[Conventional technology and its problems] The taste of rice is determined by the production stage such as variety, place of production, cultivation method and harvesting method, and the processing stage after harvesting such as drying, storage and rice polishing processing. Moreover, although there are various types of rice depending on the rice cooked, the taste of rice is most affected at the production stage, and then at the processing stage.

従来、米の食味に関する総合評価は、炊飯した米につい
て複数の専門審査官が食味の総合評価に関連する外観,
香り,味,粘り,硬さ等の各比較項目を、評価の基準と
なる基準米のそれらと比較してどれだけ優れているか或
いは劣っているかを繰り返し試験しその平均値をとって
それらを総合的にまとめることによって、即ち所謂官能
試験により行われていた。しかしながら、この官能試験
は、人により個人差がある味覚に基づき行われるもので
あるため、たとえ複数の審査官による複数の評価結果の
平均をとったとしても、その評価値が時と場所を変えて
も不変な客観的且つ絶対的な値となるとは言えない。ま
た、米の組成、理化学的性質を科学的に測定・分析し、
前述官能試験で得られた食味の総合評価値との間の相関
関係を調べ、最終的には科学的に得られた測定値から米
の食味の総合評価を行おうとする研究が進められてき
た。その結果、米を構成する成分のうち米の食味を総合
評価する上で特に重要なものが、米の澱粉質を構成する
アミロースとアミロペクチンの含有比率、蛋白質の含有
率及び水分の含有率等であることが判明している。
Conventionally, the comprehensive evaluation of the taste of rice is performed by a plurality of specialized examiners regarding the appearance of the cooked rice, which is related to the comprehensive evaluation of the taste.
Each comparison item such as aroma, taste, stickiness, and hardness is repeatedly compared with those of the reference rice used as the evaluation standard to see how superior or inferior it is, and the average value is taken to calculate them. It was carried out by the so-called sensory test. However, since this sensory test is performed based on the taste that varies from person to person, even if an average of multiple evaluation results by multiple examiners is taken, the evaluation value changes at different times and different places. However, it cannot be said that the value is constant and objective. In addition, the composition and physicochemical properties of rice are scientifically measured and analyzed,
Studies have been conducted to investigate the correlation with the comprehensive evaluation value of the taste obtained by the sensory test and finally to carry out the comprehensive evaluation of the taste of rice from the scientifically obtained measurement values. . As a result, among the components that make up rice, the ones that are particularly important for comprehensively evaluating the taste of rice include the content ratios of amylose and amylopectin that make up the starch quality of rice, the content ratio of protein, and the content ratio of water. It turns out to be.

また、白米の含水率も、炊飯時の米の粘度,硬度に関連
して食味の総合評価に大きな影響を及ぼす。白米の含水
率が15%程度の場合、炊飯時、釜の水中に浸漬しても白
米に亀裂が生じず完全な飯粒に炊き上がるが、含水率が
14%を割った白米の場合には、浸漬時の吸水速度が速す
ぎて瞬間的に米粒に亀裂を生じ、間もなく米粒内質に貫
通亀裂を生じるため、その割れ目に吸水し割れ目から糊
を涌出し、また砕米も同様に一気に吸水するのでべたつ
いた米飯に炊き上がり、しかも米飯が崩れているため噛
みごたえも粘りもない低食味の米飯となる。白米の含水
率が14%を割ることの主な原因は、米の収穫後の加工処
理段階、特に乾燥作業での過剰乾燥と、これに続く精米
作業での砕米の発生と摩擦発熱に伴う乾燥の進行と言え
る。したがって、含水率が14%を割り食味が低下した白
米としないためには、乾燥作業においては、過剰乾燥と
ならないように乾燥機の機械操作が必要であるし、また
精米作業においては、部品の摩耗等による砕米の発生あ
るいは摩擦発熱による過剰乾燥を誘起しないように精米
機の管理及び調整が必要である。
In addition, the water content of white rice also has a great influence on the overall taste evaluation in relation to the viscosity and hardness of rice during cooking. If the water content of the white rice is about 15%, the rice will be cooked into perfect grains without cracking even if it is immersed in water in the pot during rice cooking, but the water content will be high.
In the case of white rice with a breaking ratio of 14%, the water absorption rate during immersion is too fast and instantly cracks in the rice grain, and soon a through crack occurs in the inside of the rice grain. Also, crushed rice absorbs water all at once as well, so it is cooked into sticky cooked rice, and because it collapses, it becomes a low-tasting cooked rice that is neither chewy nor sticky. The main reason why the water content of white rice falls below 14% is the post-harvest processing stage of rice, especially overdrying during the drying operation, and the subsequent crushing of rice during the rice polishing operation and drying due to friction heat generation. It can be said that the progress of. Therefore, in order to prevent white rice from having a water content of less than 14% and having a reduced eating quality, it is necessary to operate the dryer to prevent over-drying in the drying operation, and in the rice polishing operation, the It is necessary to control and adjust the rice milling machine so that the generation of broken rice due to wear or the like or the excessive drying due to frictional heat generation is not induced.

なお、米の食味に大きな影響を及ぼす米の上記成分、即
ち蛋白質、澱粉質、水分の各含有率の他、脂肪と脂肪酸
の含有率の大小も、その含有率が低いほど米の食味が良
いとされるように、米の食味の総合評価に影響を及ぼす
が、影響の度合いは前記3成分の含有率の大小による程
大きなものではないと言える。
It should be noted that, in addition to the contents of the above-mentioned components of rice, which have a great influence on the taste of rice, that is, the contents of protein, starch, and water, the content of fats and fatty acids is small, and the lower the content, the better the taste of rice. As described above, it affects the overall evaluation of the eating quality of rice, but it can be said that the degree of the influence is not so great as the content ratio of the three components.

通常、精米工場では、食味の良い単一銘柄米のみを大量
に確保することが困難なため、食味において差のある数
種類或いは数銘柄の米、例えば食味の総合評価の上位ラ
ンク米と低位ランク米とを混合して精米し、その混合比
を適度に調節することにより食味の安定した精白米の流
通を図ろうとしているが、混合する米の数種銘柄の選定
と混合比の決定は、過去に調査した品質データを基に勘
に頼って処理がなされているのが実情で、科学的な裏付
けが全くないために、目標通りの食味の安定した精白米
とはならない場合も多く、消費者から苦情が提起される
ことが度々あった。
Normally, it is difficult for rice mills to secure a large amount of only single-brand rice that has a good taste, so there are several types or brands of rice with different tastes, for example, high-ranked rice and low-ranked rice in the overall taste evaluation. We are trying to distribute milled rice with a stable taste by mixing and to polish rice and adjusting the mixing ratio appropriately, but the selection of several brands of rice to be mixed and the determination of the mixing ratio have been done in the past. The fact is that the processing is done based on intuition based on the quality data investigated in the above, and because there is no scientific support at all, it is often the case that the polished rice does not have a stable taste as intended, Often complaints were filed by me.

以上述べたことにより、米を構成する化学成分を科学的
に測定・分析することにより、米の食味の総合評価を客
観的に行うこと、また一般的に食味の良いとされる特定
の有名銘柄にとらわれず、一般銘柄米の中から良食味の
米を見出すこと、さらには、銘柄の異なる又は成分含有
率の異なる複数種類の米を混合して米の食味を向上させ
ることのテーマが生まれる。
From the above, it is possible to objectively perform a comprehensive evaluation of the taste of rice by scientifically measuring and analyzing the chemical constituents that make up the rice, and to identify specific famous brands that are generally said to have a good taste. The theme is to find good-tasting rice from general-brand rice, and to improve the taste of rice by mixing multiple kinds of rice with different brands or different ingredient contents.

本発明は上記に鑑み、米の食味に差を生じる要因である
米を構成する成分の多少が近赤外光の吸光度の差として
顕著に現れる波長の近赤外光を用いて吸光度を測定し、
その測定値と、食味評価のために予め官能試験により求
めた多数の米の食味の総合評価値と吸光度との関係を多
重回帰分析法により演算し求めた食味評価係数とに基づ
き、従来、米の外観,香り,味,粘り,硬さ等の各比較
項目に基づき官能試験により求められていた米の食味の
総合評価値を演算・表示すると共に、該米の水分含有率
と精米歩留率のうち少なくとも何れか一方を希望する所
定の値に補正した場合の食味の総合評価値を演算し、表
示することにより、人為的処理により調節可能な水分含
有率もしくは精米歩留率を所定の値にして、該米の本来
の食味の総合評価値に相応する客観的な総合評価値を表
示することのできる米の食味評価方法を提供することを
技術的課題とする。
In view of the above, the present invention measures the absorbance using near-infrared light having a wavelength at which some of the components that make up rice, which are the factors that cause differences in the taste of rice, appear significantly as a difference in absorbance of near-infrared light. ,
Based on the measured value and the taste evaluation coefficient calculated by the multiple regression analysis method of the relation between the comprehensive evaluation value of the taste of many rice and the absorbance, which were previously obtained by a sensory test for the evaluation of taste, based on the conventional rice, Comprehensive evaluation value of rice taste calculated by sensory test based on each comparison items such as appearance, fragrance, taste, stickiness, hardness, etc. is calculated and displayed, and the moisture content and polished rice yield of the rice are calculated. By calculating and displaying the overall evaluation value of the taste when at least one of them is corrected to the desired predetermined value, the moisture content or the rice yield rate that can be adjusted by artificial processing is set to the predetermined value. Then, it is a technical object to provide a taste evaluation method of rice capable of displaying an objective comprehensive evaluation value corresponding to the original evaluation value of the original taste of the rice.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、官能により求めた米の食味の総合評価
値とその米に近赤外光を照射した際の該評価値に影響を
及ぼす複数の所定波長に関する吸光度との関係から食味
評価係数を定め、試料米に近赤外光を照射して前記複数
の所定波長に関する吸光度を測定し、この吸光度と前記
食味評価係数から前記試料米の食味の総合評価値を直接
的に得ることを特徴とした米の食味評価方法において、 前記試料米の食味の総合評価値を、前記試料米の水分含
有率及び精米歩留率のうち少なくとも何れか一方につい
て、その率を所定の率に補正した時の評価値に換算する
ことを特徴とする米の食味評価方法が提供される。
According to the present invention, a taste evaluation coefficient is obtained from the relationship between the comprehensive evaluation value of the taste of rice obtained by sensory and the absorbance at a plurality of predetermined wavelengths that affect the evaluation value when the rice is irradiated with near-infrared light. The sample rice is irradiated with near-infrared light to measure the absorbance with respect to the plurality of predetermined wavelengths, and a comprehensive evaluation value of the taste of the sample rice is directly obtained from the absorbance and the taste evaluation coefficient. In the method for evaluating the taste of rice, the comprehensive evaluation value of the taste of the sample rice is obtained by correcting the rate to a predetermined rate for at least one of the water content rate and the rice polishing yield rate of the sample rice. There is provided a method for evaluating the taste of rice, which comprises converting the evaluation value into

本発明によれば、さらに、米の食味を左右する複数の所
定成分の含有率と米に近赤外光を照射した際のその吸光
度との関係から成分換算係数を定め、また、米に占める
前記成分の含有率と官能により求めた米の食味の総合評
価値との関係から食味評価係数を定め、試料米を加熱処
理もしくは化学処理することなく、これに近赤外光を照
射してその吸光度を測定し、この吸光度と前記成分換算
係数とから試料米における前記複数の所定成分の含有率
を求め、ついでこの含有率と前記食味評価係数とから試
料米の食味の総合評価値を得る米の食味評価方法におい
て、 前記食味評価値を、前記試料米の水分含有率及び精米歩
留率のうち少なくとも何れか一方について、その率を所
定の率に補正した時の食味評価値に換算することを特徴
とする米の食味評価方法が提供される。
According to the present invention, further, a component conversion coefficient is determined from the relationship between the content ratio of a plurality of predetermined components that influence the taste of rice and the absorbance when the rice is irradiated with near infrared light, and the component conversion coefficient is occupy in the rice. The taste evaluation coefficient is determined from the relationship between the content rate of the above components and the comprehensive evaluation value of the taste of rice obtained by sensory evaluation, and the sample rice is irradiated with near infrared light without heat treatment or chemical treatment. The absorbance is measured, the content of the plurality of predetermined components in the sample rice is obtained from the absorbance and the component conversion coefficient, and then the comprehensive evaluation value of the taste of the sample rice is obtained from the content and the taste evaluation coefficient. In the taste evaluation method, the taste evaluation value is converted into a taste evaluation value when the rate is corrected to a predetermined rate for at least one of the water content rate and the rice polishing yield rate of the sample rice. Rice food characterized by A taste evaluation method is provided.

〔作用〕[Action]

異なる試料米に対してそれぞれ近赤外光を照射したと
き、それらの試料米の食味差が吸光度差として顕著に現
われる波長が見られる。
When the different sample rices are irradiated with near infrared light, the wavelengths at which the difference in the taste of the sample rices appears remarkably as the difference in absorbance can be seen.

本発明はこの吸光度特性を利用し、試料米の吸光度を検
出する検出器からの検出信号と、官能により求めた米の
食味の総合評価値とその米に近赤外光を照射した際の該
評価値に影響を及ぼす複数の所定波長に関する吸光度と
の関係を多重回帰分析法により演算し定めた食味評価係
数とに基づき、試料米の食味の総合評価値を演算して表
示すると共に、該試料米の水分含有率と精米歩留率のう
ち少なくとも何れか一方に基づき、前記試料米のその値
を所望の値に補正した時の食味の総合評価値を演算して
表示するものである。
The present invention utilizes this absorbance characteristic, the detection signal from the detector for detecting the absorbance of the sample rice, the comprehensive evaluation value of the taste of rice obtained by sensory and the near infrared ray irradiation of the rice. Based on the taste evaluation coefficient determined by calculating the relationship with the absorbance for a plurality of predetermined wavelengths that affect the evaluation value by the multiple regression analysis method, the total evaluation value of the taste of the sample rice is calculated and displayed, and the sample is also displayed. Based on at least one of the moisture content rate and the rice polishing yield rate of rice, the comprehensive evaluation value of the taste when the value of the sample rice is corrected to a desired value is calculated and displayed.

〔発明の実施例〕Example of Invention

以下、第1図〜第4図に例示するところに従って、本発
明の食味評価方法を説明する。
Hereinafter, the taste evaluation method of the present invention will be described in accordance with the examples illustrated in FIGS.

第1図は本発明による米の食味評価方法を実施する装置
1を正面から見たときの概略図である。キャビネット2
の内部には、その要部の詳細な構成は次の第2図を参照
して説明する近赤外分光分析装置3及び制御装置4が配
設される。キャビネット2の前面パネルには、被測定試
料米を入れる試料容器17を装備するための試料容器装着
箱5、装置の操作手順や演算結果等を可視表示する発光
ダイオード又はCRT形式の表示装置6、操作用プッシュ
ボタン7及び演算結果のハードコピーを可能とするプリ
ンター8が配設される。制御装置4は、近赤外分光分析
装置3、表示装置6、操作用プッシュボタン7、プリン
ター8等に接続され各種信号を処理するための入出力信
号処理装置4aと、食味評価値を計算するために設定され
た食味評価係数、各成分含有率を計算するための成分換
算係数、入力装置(キーボード)9を介して入力される
各銘柄別或いは等級別の米価額、各種補正値及び各種制
御手順等を記憶するための記憶装置4bと、近赤外分光分
析装置3により得られる吸光度測定値と前記食味評価係
数とに基づき米の食味の総合評価値等を演算するための
演算装置4cとから成る。なお、食味評価係数,米の主要
成分ごとに個別に設定される成分換算係数,必要な補正
値が、記憶装置4b内の読み出し専用のメモリ(以下、RO
Mと言う)に予め記憶されていて、食味評価装置1に要
求される機能が単に米の食味の総合評価値を求めるもの
であり、各種設定条件に基づく各成分含有率や最適混合
比率及び所定水分含有率と精米歩留率とに補正した換算
値を求める機能が要求されないような場合には、入力装
置としてのキーボード9は必ずしも必要ではない。ま
た、プリンター8は内蔵型に限られず、外部接続型であ
っても構わない。
FIG. 1 is a schematic view of an apparatus 1 for carrying out the rice texture evaluation method according to the present invention when viewed from the front. Cabinet 2
A near-infrared spectroscopic analysis device 3 and a control device 4 whose detailed structure is described below with reference to FIG. On the front panel of the cabinet 2, a sample container mounting box 5 for mounting a sample container 17 for containing the sample rice to be measured, a light emitting diode or a CRT type display device 6 for visually displaying the operation procedure of the device and the calculation result, An operation push button 7 and a printer 8 capable of making a hard copy of a calculation result are arranged. The control device 4 is connected to the near infrared spectroscopic analysis device 3, the display device 6, the operation push button 7, the printer 8 and the like, and the input / output signal processing device 4a for processing various signals, and calculates the taste evaluation value. The taste evaluation coefficient set for this purpose, the ingredient conversion coefficient for calculating the content rate of each ingredient, the rice price for each brand or grade entered via the input device (keyboard) 9, various correction values, and various controls A storage device 4b for storing procedures and the like, and a computing device 4c for computing a comprehensive evaluation value of rice taste based on the absorbance measurement value obtained by the near-infrared spectroscopic analysis device 3 and the taste evaluation coefficient. Consists of. The taste evaluation coefficient, the component conversion coefficient set individually for each major rice component, and the necessary correction value are stored in a read-only memory (hereinafter referred to as RO
(Hereinafter referred to as “M”), the function required for the taste evaluation apparatus 1 is simply to obtain a comprehensive evaluation value of the taste of rice, and the content ratio of each component, the optimum mixing ratio, and the predetermined value based on various setting conditions. The keyboard 9 as an input device is not always necessary when the function of obtaining the converted value corrected to the water content rate and the rice polishing yield rate is not required. Further, the printer 8 is not limited to the built-in type, and may be the external connection type.

第2図は、キャビネット2の内部に配設される近赤外分
光分析装置3の一実施例の要部断面図である。図示され
る近赤外分光分析装置3は反射式のものであり、主なる
構成部品として、光源10、反射鏡11、狭帯域透過フィル
ター12、積分球13及び検出器14a,14bを有する。光源10
から発せられ、適当な光学系(図示せず)を通って平行
光線となった近赤外光は、狭帯域透過フィルター12を透
過することにより特定波長の近赤外単色光となった後、
傾斜角度を自由に変えられるように構成された反射鏡11
により、積分球13の上部を開口して設けられた採光窓15
に向けて方向変換させられる。こうして、積分球13の内
部に入った近赤外単色光は、積分球13の底部を開口して
設けられた測定部16から穀温検出器23を備えた試料容器
17内の試料米18に真上から照射される。試料米18からの
拡散反射光は、積分球13の内壁に反射しながら、最終的
には、測定部16を中心に対称な位置に配設される一対の
検出器14a,14bに到達し、これにより反射光の強度が測
定される。なお、本実施例における検出器は2個設けら
れているが、その数は2個に限られず、1個であっても
又は3個以上であっても構わない。
FIG. 2 is a cross-sectional view of a main part of one embodiment of the near-infrared spectroscopic analyzer 3 arranged inside the cabinet 2. The illustrated near-infrared spectroscopic analyzer 3 is of a reflection type, and has a light source 10, a reflecting mirror 11, a narrow band transmission filter 12, an integrating sphere 13, and detectors 14a and 14b as main components. Light source 10
The near-infrared light emitted from, and converted into parallel rays through an appropriate optical system (not shown) becomes near-infrared monochromatic light of a specific wavelength by passing through the narrow band transmission filter 12,
Reflector 11 configured to change the tilt angle freely
Allows the daylighting window 15 provided by opening the upper part of the integrating sphere 13.
Redirected towards. Thus, the near-infrared monochromatic light that has entered the inside of the integrating sphere 13 is a sample container equipped with the grain temperature detector 23 from the measuring unit 16 provided by opening the bottom of the integrating sphere 13.
The sample rice 18 in 17 is irradiated from directly above. Diffuse reflected light from the sample rice 18, while reflecting on the inner wall of the integrating sphere 13, finally arrives at the pair of detectors 14a, 14b arranged symmetrically with respect to the measuring unit 16, Thereby, the intensity of the reflected light is measured. Although two detectors are provided in this embodiment, the number of detectors is not limited to two, and may be one or three or more.

ここで、光源10と反射鏡11との間に設けられ、光源10か
ら出た光がこれを透過することにより特定波長の近赤外
単色光となる狭帯域透過フィルター12の構成及びこれに
要求される物理的特性等を説明する。狭帯域透過フィル
ター12は、それぞれが異なる主波長透過特性を有する任
意複数個のフィルター、例えば6個のフィルター12a〜1
2fからなり、これらを回転円盤に取り付け、これを適当
角度づつ回動させることにより、光源10と反射鏡11とを
結ぶ線上に所望のフィルター12a〜12fが位置するように
順次選択・交換できる構成とする。なお、フィルターの
透過特性で主波長とは、フィルターの面に対して入射光
軸が直角のときに透過する近赤外光のうちの最大透過波
長のことである。狭帯域透過フィルター12の他の具体的
構成例としては、光源10及び反射鏡22を内部に位置さ
せ、複数個のフィルター12a〜12fを角柱状に構成し、こ
れを電動機19等によって中心点Pを軸として回転可能と
する構成もある(第3図参照)。なお、狭帯域透過フィ
ルター12の入射光軸に対するその回転面の傾斜角度を、
電動機19等により微細に且つ連続的に調整できるように
しておけば、各フィルターが持つ透過特性の主波長から
シフトした異なる波長の近赤外単色光を連続的に作り出
すことができる。
Here, the configuration of the narrow-band transmission filter 12 provided between the light source 10 and the reflecting mirror 11, which becomes a near-infrared monochromatic light of a specific wavelength by transmitting the light emitted from the light source 10 and a request for this The physical characteristics and the like that are performed will be described. The narrow band transmission filter 12 is an arbitrary plurality of filters each having different main wavelength transmission characteristics, for example, six filters 12a to 1
2f, which are attached to a rotating disk and rotated by an appropriate angle so that desired filters 12a to 12f can be sequentially selected and exchanged so that the desired filters 12a to 12f are positioned on the line connecting the light source 10 and the reflecting mirror 11. And The dominant wavelength in the transmission characteristics of the filter is the maximum transmission wavelength of the near-infrared light that is transmitted when the incident optical axis is perpendicular to the surface of the filter. As another specific configuration example of the narrow band transmission filter 12, the light source 10 and the reflecting mirror 22 are located inside, and a plurality of filters 12a to 12f are configured in a prismatic shape, and the filter 12a to 12f is configured with a central point P by an electric motor 19 or the like. There is also a configuration in which it can be rotated about the axis (see FIG. 3). In addition, the inclination angle of the rotation surface with respect to the incident optical axis of the narrow band transmission filter 12,
If it is possible to finely and continuously adjust by the electric motor 19 or the like, near-infrared monochromatic light of different wavelengths shifted from the main wavelength of the transmission characteristics of each filter can be continuously produced.

次に、狭帯域透過フィルター12に要求される物理的特性
を第4図に基づき説明する。第4図は、異なる試料米に
対して波長が連続的に変化する近赤外光を照射したとき
の、照射波長と吸光度との関係を示すグラフ(吸光度曲
線)である。吸光度log I0/Iは、基準照射光量(全照射
光量)I0に対する試料米からの反射光量Iの比の逆数の
常用対数である。実線で示す曲線Aは前掲第1表におけ
る日本晴、一点鎖線で示す曲線Bはコシヒカリ、点線で
示す曲線Cはイシカリの場合の吸光度曲線をそれぞれ示
す。同図から、近赤外光の1900nm以下の短波長域は低吸
光度域であって、アミロースを始め蛋白質,水分など米
を構成する各成分の含有量の多少に対する吸光度差が微
差であるが、波長1900nmを境として高吸光度域となり、
前記各成分の含有量の多少が吸光度差として顕著に現れ
ていることが容易に理解できる。本発明はこの現象を解
明し、それを利用して異なる品質の米の食味差を測定す
るものであるため、測定のために米に照射される近赤外
単色光の波長としては、波長領域1900〜2500nmのうち、
各成分に対して吸光度曲線上特異的なピークが見られ
る、例えば1940m,2100nm,2180nm,2230nm,2280nm,2310nm
等の波長が適する。したがって、狭帯域透過フィルター
12が具える各フィルター12a〜12fは、食味差すなわち、
米を構成する各成分の測定に適した前記各波長の近赤外
単色光を作るべく、前記各波長を主波長として持つこと
が要求される。
Next, the physical characteristics required for the narrow band transmission filter 12 will be described with reference to FIG. FIG. 4 is a graph (absorbance curve) showing the relationship between the irradiation wavelength and the absorbance when different sample rices are irradiated with near-infrared light whose wavelength continuously changes. The absorbance log I 0 / I is the common logarithm of the reciprocal of the ratio of the reflected light amount I from the sample rice to the reference irradiation light amount (total irradiation light amount) I 0 . The curve A shown by the solid line shows the absorbance in the case of Nipponbare in Table 1 above, the curve B shown by the dashed line shows the Koshihikari curve, and the curve C shown by the dotted line shows the absorbance curve in the case of Ishikari. From the figure, the short-wavelength region of near-infrared light of 1900 nm or less is a low absorbance region, and there is a slight difference in the absorbance difference with respect to the content of each component constituting rice such as amylose, protein, and water. , With a wavelength of 1900 nm as the boundary, it becomes a high absorbance range,
It can be easily understood that the difference in the content of each of the above components remarkably appears as a difference in absorbance. Since the present invention elucidates this phenomenon and uses it to measure the taste difference of rice of different qualities, the wavelength of the near-infrared monochromatic light with which the rice is irradiated for the measurement is in the wavelength range. Of 1900-2500 nm,
A specific peak is seen on the absorbance curve for each component, for example 1940m, 2100nm, 2180nm, 2230nm, 2280nm, 2310nm
Are suitable. Therefore, a narrow band transmission filter
Each of the filters 12a to 12f included in 12 has a difference in taste, that is,
In order to produce near-infrared monochromatic light of each wavelength suitable for measuring each component of rice, it is required to have each wavelength as a main wavelength.

次に、上記実施例における具体的動作を説明する。ま
ず、操作用プッシュボタン7の操作により光源10を点灯
させ、光源10から発せられた光に基づき測定部16に到達
する特定波長の近赤外単色光が安定するまで、近赤外分
光分析装置3の全体を予熱した後、試料米が収容された
試料容器17を、近赤外分光分析装置3の測定部16の直下
所定位置に配置し、測定準備を完了する。
Next, a specific operation in the above embodiment will be described. First, the near-infrared spectroscopic analyzer is operated until the light source 10 is turned on by operating the operation push button 7 and the near-infrared monochromatic light of the specific wavelength reaching the measuring unit 16 based on the light emitted from the light source 10 is stabilized. After preheating the whole of No. 3, the sample container 17 containing the sample rice is placed at a predetermined position directly below the measuring unit 16 of the near-infrared spectroscopic analyzer 3, and the measurement preparation is completed.

前記測定準備作業が完了したら、次に、最初に1940nmを
主波長として持つフィルター12aが光源10と反射鏡11と
を結ぶ線上に来るように選択され(第2図参照)、波長
1940nmの近赤外単色光を試料米18に対して照射したとき
の反射吸光度の測定作業に入る。反射吸光度の測定作業
は、試料米18に対して照射される全照射光量、すなわち
基準照射光量の測定と、試料米18に対して前記基準照射
光量を照射した時に試料米18で実際に反射される反射光
量の測定との2つの測定からなる。1つのフィルターに
ついてこれら2つの測定のどちらを先に実施しても構わ
ないが、以下の説明では、基準照射光量の測定の方が先
に実施されるものとして説明する。基準照射光量の測定
は、傾斜角度が可変に構成された反射鏡11の傾斜角度
を、これらの反射光が積分球13の内壁に直接当たるよう
な角度に、電動機等を用いた回動手段(図示せず)によ
り変えた状態で実施される。こうすることにより、積分
球13の内壁に直接当てられた反射鏡11からの光は、内壁
を多方向に拡散反射しながら最終的には検出器14a,14b
に到達し、基準照射光量として検出される。一方、試料
米18からの反射光量の測定は、反射鏡11の傾斜角度が第
2図に示す元の位置に戻された後、前述した原理により
行われる。なお、測定準備完了後の最初のフィルターの
選択、基準照射光量の測定及び反射光量の測定までの各
実行は、制御装置4の記憶装置4b内のROMに手順プログ
ラムを記憶させ、そのプログラムに従って自動的に行え
るようにできることは言うまでもない。また、1つのフ
ィルターについての前述基準照射光量及び反射光量の各
測定をそれぞれ複数回実施し、測定値としてそれらの平
均を採れるようにすることも測定精度を上げるのに役立
つ。検出器14a,14bによって検出された基準照射光量及
び試料米18からの反射光量に基づく各測定値は、実測デ
ータとして制御装置4に連絡され、記憶装置4b内の書き
込み可能なメモリ(以下、RAMと言う)にいったん記憶
される。
After the measurement preparation work is completed, first, the filter 12a having the main wavelength of 1940 nm is selected so as to be on the line connecting the light source 10 and the reflecting mirror 11 (see FIG. 2), and the wavelength is set.
Measurement work of reflection absorbance when the sample rice 18 was irradiated with 1940 nm near-infrared monochromatic light. The measurement work of the reflection absorbance is performed by measuring the total irradiation light amount irradiated to the sample rice 18, that is, the reference irradiation light amount, and actually reflecting it on the sample rice 18 when the reference irradiation light amount is irradiated to the sample rice 18. Measurement of the amount of reflected light. Either of these two measurements may be performed first for one filter, but in the following description, the measurement of the reference irradiation light amount will be performed first. To measure the reference irradiation light amount, the tilting angle of the reflecting mirror 11 having a variable tilting angle is set to such an angle that these reflected lights directly hit the inner wall of the integrating sphere 13 by using a rotating means (such as an electric motor). (Not shown) is performed in a changed state. By doing so, the light from the reflecting mirror 11 directly applied to the inner wall of the integrating sphere 13 is diffused and reflected on the inner wall in multiple directions, and finally the detectors 14a, 14b.
And is detected as the reference irradiation light amount. On the other hand, the amount of reflected light from the sample rice 18 is measured by the above-described principle after the tilt angle of the reflecting mirror 11 is returned to the original position shown in FIG. After the preparation for measurement, the first filter selection, the measurement of the reference irradiation light amount, and the measurement of the reflected light amount are performed by storing the procedure program in the ROM in the storage device 4b of the control device 4 and automatically executing the procedure program according to the program. It goes without saying that you can make it happen. In addition, it is also useful to improve the measurement accuracy that the reference irradiation light amount and the reflected light amount of one filter are measured a plurality of times so that the average thereof can be taken as the measurement value. Each measured value based on the reference irradiation light amount detected by the detectors 14a and 14b and the reflection light amount from the sample rice 18 is communicated to the control device 4 as actual measurement data, and a writable memory (hereinafter referred to as RAM) in the storage device 4b. Once said).

照射波長1940nmにおける吸光度の測定が終了したら、次
の照射波長、即ち本実施例の場合2100nmでの吸光度の測
定に移行する。ここでも、基準照射光量の測定が、前述
1940nmでのときと同じ方法及び手順で実施される。各測
定値は、前回と同様に、各成分の含有率計算のための実
測データとして制御装置4に連絡され、記憶装置4b内の
RAMに一時記憶される。以下同様に、残りの各照射波長
での各吸光度測定、即ち、波長2180nm,2230nm,2280nm,2
310nmでの吸光度測定が順次行われ、各測定値は、実測
データとして制御装置4に連絡され、RAMに記憶され
る。
When the measurement of the absorbance at the irradiation wavelength of 1940 nm is completed, the process proceeds to the measurement of the absorbance at the next irradiation wavelength, that is, 2100 nm in the case of this example. Here, too, the measurement of the reference irradiation light quantity is as described above.
The same method and procedure is performed as at 1940 nm. As in the previous time, each measured value is communicated to the control device 4 as actual measurement data for calculating the content rate of each component, and stored in the storage device 4b.
Temporarily stored in RAM. Similarly in the following, each absorbance measurement at the remaining irradiation wavelength, that is, the wavelength 2180nm, 2230nm, 2280nm, 2
The absorbance measurement at 310 nm is sequentially performed, and each measurement value is communicated to the control device 4 as actual measurement data and stored in the RAM.

なお、ある特定波長での吸光度測定が終わり、次の特定
波長での吸光度測定への移行に伴う狭帯域透過フィルタ
ー12の各フィルター12a〜12fの交換・選択動作は、通
常、制御装置4の記憶装置4b内のROMに予め書き込まれ
ている手順プログラムに従い自動的に行われるが、本実
施例の場合でも、必ずしも上記6波長全てについ吸光度
測定を行わなければならない訳ではなく、測定の対象と
なる波長は、求める食味評価値に要求される精度或いは
測定に係る所要時間等を考慮して任意に選択することが
でき、その選択は、操作用プッシュボタン7内の測定波
長選択ボタンにより行うことができる。
In addition, the replacement / selection operation of each filter 12a to 12f of the narrow band transmission filter 12 accompanying the transition to the absorbance measurement at the next specific wavelength after the measurement of the absorbance at a certain specific wavelength is normally performed by the memory of the control device 4. Although it is automatically performed according to the procedure program written in advance in the ROM in the device 4b, even in the case of the present embodiment, it is not always necessary to perform the absorbance measurement for all the above 6 wavelengths, and it is the object of measurement. The wavelength can be arbitrarily selected in consideration of the accuracy required for the taste evaluation value to be obtained or the time required for the measurement, and the selection can be made by the measurement wavelength selection button in the operation push button 7. it can.

これまで説明した吸光度の測定は、単に狭帯域透過フィ
ルター12に設定された6個のフィルター12a〜12fを順次
交換することにより、各フィルター12a〜12fが持つ各主
波長でのスポット的吸光度の測定方法であったが、フィ
ルターの面に対する入射光の入射角度を基準となる90°
から変化させると、最大透過波長が主波長から数十nmの
範囲でシフトするという現象を利用して、米の食味差が
吸光度差に顕著に現れる波長領域1900〜2500nmでの連続
的な吸光度測定も可能である。第1実施例の場合(第2
図参照)、円盤状に構成された狭帯域透過フィルター12
への入射光軸の角度を、制御装置4からの指令信号に基
づき電動機等の適当な調節手段(図示せず)により徐々
に且つ連続的に変化させることによりこれが可能であ
る。
The above-described measurement of absorbance is performed by simply replacing the six filters 12a to 12f set in the narrow band transmission filter 12 in order to measure the spot-like absorbance at each main wavelength of each filter 12a to 12f. Although it was a method, 90 ° which is the standard of the incident angle of the incident light on the surface of the filter
, The maximum transmission wavelength shifts in the range of several tens of nm from the main wavelength, making continuous absorption measurement in the wavelength region 1900 to 2500 nm in which the difference in eating quality of rice significantly appears in the absorbance difference. Is also possible. In the case of the first embodiment (second
(Refer to the figure), Narrow band pass filter 12 configured in the shape of a disk
This can be done by gradually and continuously changing the angle of the incident optical axis on the optical axis by an appropriate adjusting means (not shown) such as an electric motor based on a command signal from the control device 4.

次に、制御装置4の演算装置4cは、記憶装置4のRAMに
記憶されている吸光度測定で得られる多数の実測デー
タ、即ち各測定波長における基準照射光量及び反射光量
の測定値と、記憶装置4のROMに予め記憶されている食
味評価値計算のための食味評価係数とに基づき、米の食
味の総合評価値を計算する。
Next, the arithmetic unit 4c of the control device 4 uses a large amount of actual measurement data obtained by the absorbance measurement stored in the RAM of the storage device 4, that is, the measured values of the reference irradiation light amount and the reflected light amount at each measurement wavelength, and the storage device. The total evaluation value of the taste of rice is calculated based on the taste evaluation coefficient for calculating the taste evaluation value stored in the ROM of 4 in advance.

なお、記憶装置4のROMに予め書き込まれているこの食
味評価係数は、多数の試料米に対して官能試験法により
得られた食味の総合評価値を基準に、検出器からの吸光
度測定値を信号処理し、多重回帰分析法により演算し求
められた定数である。
The taste evaluation coefficient pre-written in the ROM of the storage device 4 is the absorbance measurement value from the detector based on the comprehensive evaluation value of the taste obtained by the sensory test method for many sample rices. It is a constant obtained by signal processing and calculation by the multiple regression analysis method.

ここで多重回帰分析の一例を示す。例えば波長の異なる
6個のフィルターλ1=1940nm,λ2=2100nm,λ3=2180n
m,λ4=2230nm,λ5=2280nm,λ6=2310nmを使用した時
に次の線型関係が成立するものとする。
Here, an example of multiple regression analysis is shown. For example, 6 filters with different wavelengths λ 1 = 1940nm, λ 2 = 2100nm, λ 3 = 2180n
When m, λ 4 = 2230 nm, λ 5 = 2280 nm, λ 6 = 2310 nm are used, the following linear relationship is established.

Ta=F0+F1・X1a+F2・X2a+F3・X3a+F4・X4a+F5
・X5a+F6・X6a+C Taは試料aを官能試験法により測定した食味の総合評価
値。
Ta = F 0 + F 1 · X 1 a + F 2 · X 2 a + F 3 · X 3 a + F 4 · X 4 a + F 5
・ X 5 a + F 6・ X 6 a + C Ta is the overall evaluation value of taste measured by sensory test method for sample a.

F0〜F6はこの多重回帰分析で求める係数値。F 0 to F 6 are coefficient values obtained by this multiple regression analysis.

X1a〜X6aはλ〜λのフィルターの番号にそれぞれ
対応し、試料aを近赤外線分光分析装置で測定した吸光
度(log I0/I)。
X 1 a to X 6 a correspond to the filter numbers of λ 1 to λ 6 , respectively, and are the absorbances (log I 0 / I) of sample a measured with a near-infrared spectroscopic analyzer.

Cは誤差項であり、ここではC=0とする。C is an error term, and here C = 0.

試料aの場合(第4図実線と仮定すれば)はX1a=0.6
1,X2a=0.60,X3a=0.56,X4a=0.53,X5a=0.65,X6
=0.67であり、前記多重回帰式は Ta=F0+0.61F1+0.60F2+0.56F3+0.53F4+0.65F5+0.
67F6 となる。同様にしてn個の試料までの多重回帰式に吸光
度を代入して次に示す食味評価係数を得ることができ
る。
For sample a (assuming solid line in Fig. 4), X 1 a = 0.6
1, X 2 a = 0.60, X 3 a = 0.56, X 4 a = 0.53, X 5 a = 0.65, X 6 a
= 0.67, and the multiple regression equation is Ta = F 0 + 0.61F 1 + 0.60F 2 + 0.56F 3 + 0.53F 4 + 0.65F 5 +0.
It becomes 67F 6 . Similarly, the absorbance can be substituted into the multiple regression equation for up to n samples to obtain the following taste evaluation coefficient.

T=144.7+234.6X1+6371X2−1122X3+303.7X4−536.4
X5−4969X6 …(1) 食味評価係数と同じ手法で、米を構成する主要成分であ
るアミロース,蛋白質,水分,脂肪等の含有率も必要に
応じ求めることができる。例えば、アミロースの成分換
算係数は多数の試料を化学定量分析法、たとえばヨウ素
呈色比色法やヨウ素電流滴定法を用いて測定された含有
量を基準とし、受光素子からの任意の検出値を信号処理
した値とを多重回帰分析法を利用して求める。
T = 144.7 + 234.6X 1 + 6371X 2 -1122X 3 + 303.7X 4 -536.4
X in 5 -4969X 6 ... (1) The same procedure as taste evaluation coefficient, amylose is a major component constituting the rice, protein, water, can be determined as necessary the content of fat and the like. For example, the component conversion coefficient of amylose is based on the content measured using a large number of samples by a chemical quantitative analysis method, for example, an iodine colorimetric colorimetric method or an iodine amperometric titration method, and an arbitrary detected value from the light receiving element is used. The signal processed value and the value are obtained using the multiple regression analysis method.

ここでその一例を示す。例えば波長の異なる5個のフィ
ルターλ=2100nm,λ=2180nm,λ=2230nm,λ
=2280nm,λ=2310nmを使用した時に次の線型関係が
成立するものとする。
Here is an example. For example, five filters with different wavelengths λ 1 = 2100nm, λ 2 = 2180nm, λ 3 = 2230nm, λ 4
= 2280 nm, λ 5 = 2310 nm is used, the following linear relationship is established.

なお、アミロース測定にあたっては水分の含有率の変化
が吸光度差として顕著に表われる1940nmの波長は除外し
てある。
In the amylose measurement, the wavelength of 1940 nm in which the change in the water content is markedly shown as the difference in absorbance is excluded.

Aa=F0+F1・X1a+F2・X2a+F3・X3a+F4・X4a+F5
・X5a+C Aaは試料aを化学定量分析法により測定したアミロース
の含有量パーセント。
Aa = F 0 + F 1 · X 1 a + F 2 · X 2 a + F 3 · X 3 a + F 4 · X 4 a + F 5
・ X 5 a + C Aa is the amylose content percentage measured by the chemical quantitative analysis method for sample a.

F0〜F5はこの多重回帰分析で求める係数値。F 0 to F 5 are coefficient values obtained by this multiple regression analysis.

X1a〜X5aはλ〜λのフィルターの番号にそれぞれ
対応し、試料aを近赤外線分光分析装置で測定した吸光
度(log I0/I)。
X 1 a to X 5 a correspond to the filter numbers of λ 1 to λ 5 , respectively, and the absorbance (log I 0 / I) of sample a measured by a near-infrared spectroscopic analyzer.

Cは誤差項であり、ここではC=0とする。C is an error term, and here C = 0.

試料aの場合(第4図実線と仮定すれば)は、X1a=0.
60,X2a=0.56,X3a=0.53,X4a=0.65,X5a=0.67であ
り、前記多重回帰式は Aa=F0+0.60F1+0.56F2+0.53F3+0.65F4+0.67F5 となる。同様にしてn個の試料までの多重回帰式に吸光
度を代入して次に示すアミロースの含有率を得るための
成分換算係数を得ることができる。
In the case of sample a (assuming the solid line in FIG. 4), X 1 a = 0.
60, X 2 a = 0.56, X 3 a = 0.53, X 4 a = 0.65, X 5 a = 0.67, and the multiple regression equation is Aa = F 0 + 0.60F 1 + 0.56F 2 + 0.53F 3 +0 It becomes .65F 4 + 0.67F 5 . Similarly, the component conversion coefficient for obtaining the amylose content shown below can be obtained by substituting the absorbance into the multiple regression equation for up to n samples.

A=33.3+2380X1−2300X2−640X3+1405X4−880X5
(2) 上記計算式(1)において、F0〜F6(F0=144.7,F1=23
4.6,F2=6371,F3=−1122,F4=303.7,F5=−536.4,F6
−4969)は、記憶装置4bのROMに予め記憶されている
か、又は、試料の測定に際し、入力装置9を介して制御
装置4に入力される食味評価値計算のための食味評価係
数である、日本産の米を平均的日本人が食味評価するに
当たっては、前記(1)式が適するが、この食味評価係
数は、その米を食する地域や国の違い等により標準的な
嗜好も相違する場合があるので、異なる数値の法が適す
る場合もある。
A = 33.3 + 2380X 1 -2300X 2 -640X 3 + 1405X 4 -880X 5 ...
(2) In the above calculation formula (1), F 0 to F 6 (F 0 = 144.7, F 1 = 23
4.6, F 2 = 6371, F 3 = -1122, F 4 = 303.7, F 5 = -536.4, F 6 =
-4969) is a taste evaluation coefficient which is stored in advance in the ROM of the storage device 4b or is input to the control device 4 via the input device 9 when calculating the taste evaluation value for measuring the sample, The formula (1) is suitable for the average Japanese to evaluate the taste of Japanese rice, but this taste evaluation coefficient has different standard tastes depending on the region or country in which the rice is eaten. In some cases, different numbers may be appropriate.

上記計算式(2)において、F0〜F5(F0=33.3,F1=238
0,F2=2300,F3=−640,F4=1405,F5=−880)は、記憶
装置4bのROMに予め記憶されているか、又は、試料の測
定に際し、入力装置9を介して制御装置4に入力される
成分含有率計算のための成分換算係数である。
In the above calculation formula (2), F 0 to F 5 (F 0 = 33.3, F 1 = 238
0, F 2 = 2300, F 3 = −640, F 4 = 1405, F 5 = −880) is stored in advance in the ROM of the storage device 4b, or via the input device 9 when measuring the sample. This is a component conversion coefficient for calculating the component content rate that is input to the control device 4.

上記第(1)式及び第(2)式に従って計算された食味
評価値T、及び米の主要成分であるアミロース,蛋白
質,水分等の各成分の各含有率は、演算装置4cでの計算
終了と同時に、表示装置6に可視表示されると共に、自
動的に又は操作用プッシュボタン7への指令に基づきプ
リンター8から各計算値のハードコピーが繰り出され
る。そして、既知の測定手段により測定された試料米の
水分含有率と精米歩留率並びに希望とする所定の水分含
有率と精米歩留率とを入力装置9に入力しておけば、所
定の水分含有率と精米歩留率とに補正した食味評価値を
表示装置6に可視表示すると共に、プリンター8からハ
ードコピーが繰り出される。水分含有率に対する補正は
15.5%を中心に水分含有率が1%上下すると元の食味評
価値に対し0.05減少し、また精米歩留率は90%歩留率を
中心に歩留率が1%上下すると元の食味評価値に対し0.
05減少し、そして、その変化率は略比例することを実験
により得た。なお、アミロースの含有率については、ア
ミロースの含有率自体よりも、澱粉質を共に構成するア
ミロペクチンとの含有比率の方が重要であるので含有率
ではなく含有比率で表示される方が好ましい。また、米
を構成する主要成分の含有率を測定した後に、各含有率
と既知の米の官能試験による食味の総合評価値と各含有
率とにより演算された食味評価係数とで食味の総合評価
値を求める方法も本発明の方法とほぼ同じ数値を得るこ
とができる。その一例を示すと、 Tx=5×106/(A×P0.3×7.8K)2 K=6×10-3M2−0.18M+2.43である。
The tasting evaluation value T calculated according to the above formulas (1) and (2) and the respective content rates of the respective components such as amylose, protein and water which are the main components of rice are calculated by the arithmetic unit 4c. At the same time, while being visually displayed on the display device 6, a hard copy of each calculated value is sent out from the printer 8 automatically or based on a command to the operation push button 7. Then, if the moisture content and the rice polishing yield of the sample rice measured by the known measuring means and the desired predetermined moisture content and the rice polishing retention are input to the input device 9, the predetermined moisture is obtained. The taste evaluation value corrected to the content rate and the rice polishing yield rate is visually displayed on the display device 6, and a hard copy is fed from the printer 8. Correction for water content
If the water content rises or falls by 1% around 15.5%, the original taste evaluation value will decrease by 0.05, and the rice polishing yield will increase by 90%. 0 for the value.
It was experimentally found that the rate of change decreased and the rate of change was approximately proportional. Regarding the content of amylose, the content ratio with amylopectin, which constitutes starch together, is more important than the content ratio of amylose itself. Therefore, it is preferable to display the content ratio instead of the content ratio. Further, after measuring the content rate of the main components that make up the rice, the overall evaluation of the taste is performed by the respective content rates and the overall evaluation value of the taste by the sensory test of the known rice and the taste evaluation coefficient calculated by each content rate. The method of obtaining the value can obtain almost the same numerical value as the method of the present invention. As an example, Tx = 5 × 10 6 / (A × P 0.3 × 7.8 K) 2 K = 6 × 10 −3 M 2 −0.18M + 2.43.

ここで、Aはアミロースの含有比率パーセント,Pは蛋白
質の含有率パーセント,Mは水分含有率パーセント値であ
る。
Here, A is the amylose content percentage, P is the protein content percentage, and M is the water content percentage value.

上述の食味評価装置では、試料米に特定波長の近赤外単
色光を照射したときの吸光度の測定を、試料米からの反
射光の強度を測定することにより行う反射式の近赤外分
光分析装置を用いたが、第3図に示すように、試料容器
13の底面を透明ガラス板13aで形成するとともに、測定
部23の下方に検出器21cを配設して試料米を透過してき
た透過光の強度を測定することにより行う透過式の近赤
外分光分析装置を用いることもできる。さらには、反射
光及び透過光の両方に基づき吸光度の測定を行う、より
精密な近赤外分光分析装置を用いることもできる。
In the above-mentioned taste evaluation device, the reflection-type near-infrared spectroscopic analysis is carried out by measuring the intensity of light when the sample rice is irradiated with near-infrared monochromatic light of a specific wavelength, by measuring the intensity of the reflected light from the sample rice. Although the device was used, as shown in FIG.
The bottom of 13 is formed of a transparent glass plate 13a, and a detector 21c is arranged below the measurement unit 23 to measure the intensity of transmitted light that has passed through the sample rice, and the transmission type near infrared spectroscopy is performed. An analyzer can also be used. Furthermore, a more precise near-infrared spectroscopic analyzer that measures absorbance based on both reflected light and transmitted light can be used.

上記説明では、澱粉質を構成するアミロースとアミロペ
クチンのうち、アミロースの分析に基づき述べたが、ア
ミロースに代えてアミロペクチンの含有比率を測定し、
アミロペクチンの成分換算係数を第(2)式に設定する
こともできる。
In the above description, of the amylose and amylopectin that compose the starch, the description was based on the analysis of amylose, but instead of amylose, the content ratio of amylopectin was measured,
The component conversion coefficient of amylopectin can be set in the equation (2).

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明による米の食味評価装置に
よれば、個人差のある味覚に基づく官能試験、あるいは
時間がかかり、熟練を要する化学定量分析等の方法によ
ることなく、誰でもが容易に且つ短時間で正確な米の食
味の総合評価値を得ることができると共に、米の水分含
有率と精米歩留率のうち少なくとも何れか一方を希望す
る所定の値に補正した場合の食味評価値を演算し、表示
することにより、種々の米の食味の総合評価を比較する
に際し、人為的処理により調節可能な水分含有率と精米
歩留率を所定の値にして、該米の本来の食味の総合評価
値の正確度を高く確保することができる。
As described in detail above, according to the taste evaluation device for rice according to the present invention, anyone can perform sensory tests based on taste with individual differences, or time-consuming, skill-based chemical quantitative analysis and other methods. It is possible to easily and accurately obtain a comprehensive evaluation value of rice taste, and taste when the moisture content of rice and / or rice polishing yield is corrected to a desired value. By calculating and displaying the evaluation value, when comparing the comprehensive evaluation of the taste of various rice, the moisture content and the rice polishing yield rate that can be adjusted by artificial processing are set to predetermined values, and the original rice It is possible to secure high accuracy of the comprehensive evaluation value of the taste of.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す正面図、第2図は第1
図の近赤外分光分析装置の要部概略断面図、第3図は同
別実施例の要部概略断面図、第4図は銘柄の異なる米に
対する近赤外光照射波長と吸光度との関係を示すグラフ
(吸光度曲線)である。 図中、1……米の食味評価装置、2……キャビネット、
3……近赤外分光分析装置、4……制御装置、4a……入
出力信号処理装置、4b……記憶装置(ROM,RAM)、4c…
…演算装置、5……試料容器装着箱、6……表示装置、
7……操作用プッシュボタン、8……プリンター、9…
…入力装置、10……光源、11……反射鏡、12……狭帯域
透過フィルター、12a〜12f……狭帯域透過フィルター、
13……積分球、14a,14b,14c……検出器、15……採光
窓、16……測定部、17……試料容器、18……試料米、19
……電動機、20……透明ガラス、21……検出器、22……
反射鏡、23……穀温検出器。
FIG. 1 is a front view showing an embodiment of the present invention, and FIG.
Fig. 3 is a schematic cross-sectional view of a main part of the near-infrared spectroscopic analyzer, Fig. 3 is a schematic cross-sectional view of a main part of the other embodiment, and Fig. 4 is a relationship between near-infrared light irradiation wavelength and absorbance for rice of different brands. Is a graph (absorbance curve) showing In the figure, 1 ... rice taste evaluation device, 2 ... cabinet,
3 ... near infrared spectroscopy analyzer, 4 ... control device, 4a ... input / output signal processing device, 4b ... storage device (ROM, RAM), 4c ...
… Computing device, 5 …… Sample container mounting box, 6 …… Display device,
7 ... Operation push buttons, 8 ... Printer, 9 ...
… Input device, 10 …… Light source, 11 …… Reflector, 12 …… Narrow band transmission filter, 12a-12f …… Narrow band transmission filter,
13 ... integrating sphere, 14a, 14b, 14c ... detector, 15 ... daylighting window, 16 ... measuring part, 17 ... sample container, 18 ... sample rice, 19
...... Motor, 20 …… Transparent glass, 21 …… Detector, 22 ……
Reflector, 23 ... Grain temperature detector.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】官能により求めた米の食味の総合評価値と
その米に近赤外光を照射した際の該評価値に影響を及ぼ
す複数の所定波長に関する吸光度との関係から食味評価
係数を定め、試料米に近赤外光を照射して前記複数の所
定波長に関する吸光度を測定し、この吸光度と前記食味
評価係数から前記試料米の食味の総合評価値を直接的に
得ることを特徴とした米の食味評価方法において、 前記試料米の食味の総合評価値を、前記試料米の水分含
有率及び精米歩留率のうち少なくとも何れか一方につい
て、その率を所定の率に補正した時の評価値に換算する
ことを特徴とする米の食味評価方法。
1. A taste evaluation coefficient is calculated from the relationship between the comprehensive evaluation value of the taste of rice obtained by sensory evaluation and the absorbance at a plurality of predetermined wavelengths that affect the evaluation value when the rice is irradiated with near infrared light. Specified, the sample rice is irradiated with near infrared light to measure the absorbance with respect to the plurality of predetermined wavelengths, and a comprehensive evaluation value of the taste of the sample rice is directly obtained from the absorbance and the taste evaluation coefficient. In the method for evaluating the taste of rice, the comprehensive evaluation value of the taste of the sample rice is obtained by correcting the rate to a predetermined rate for at least one of the water content rate and the rice polishing yield rate of the sample rice. A method for evaluating the taste of rice, which comprises converting the evaluation value.
【請求項2】米の食味を左右する所定成分の含有率とそ
の米に近赤外光を照射した際のその吸光度との関係から
成分換算係数を定め、前記試料米に近赤外光を照射して
測定した吸光度と該成分換算係数とから前記試料米にお
ける前記所定成分の含有率を演算し表示する特許請求の
範囲第(1)項記載の米の食味評価方法。
2. A component conversion coefficient is determined from the relationship between the content of a predetermined component that influences the taste of rice and the absorbance when the rice is irradiated with near infrared light, and the sample rice is exposed to near infrared light. The method for evaluating the taste of rice according to claim (1), wherein the content of the predetermined component in the sample rice is calculated and displayed from the absorbance measured by irradiation and the component conversion coefficient.
【請求項3】米の水分含有率とその米に近赤外光を照射
した際のその吸光度との関連から水分含有率換算係数を
定め、前記試料米に近赤外光を照射して測定した吸光度
と該水分含有率換算係数とから前記試料米の水分含有率
を求め、この水分含有率に基づいて、前記試料米の食味
の総合評価値を、前記試料米の水分含有率を所定の率に
補正した時の評価値に換算する特許請求の範囲第(1)
項または第(2)項記載の米の食味評価方法。
3. A moisture content conversion coefficient is determined from the relationship between the moisture content of rice and its absorbance when the rice is irradiated with near infrared light, and the sample rice is irradiated with near infrared light for measurement. The moisture content of the sample rice was calculated from the absorbance and the moisture content conversion coefficient, and based on this moisture content, a comprehensive evaluation value of the taste of the sample rice was calculated based on a predetermined moisture content of the sample rice. Claim (1) to be converted into an evaluation value when corrected to a rate
Item or the method for evaluating the taste of rice according to item (2).
【請求項4】試料米から反射した光を受光して試料米に
よる近赤外光の吸光度を測定する特許請求の範囲第
(1)項〜第(3)項のいずれかに記載の米の食味評価
方法。
4. The rice according to any one of claims (1) to (3), wherein the light reflected from the sample rice is received to measure the absorbance of near infrared light by the sample rice. Taste evaluation method.
【請求項5】試料米を透過した光を受光して試料米によ
る近赤外光の吸光度を測定する特許請求の範囲第(1)
項〜第(3)項のいずれかに記載の米の食味評価方法。
5. The method according to claim 1, wherein the absorbance of near infrared light by the sample rice is measured by receiving the light transmitted through the sample rice.
Item 6. The method for evaluating the taste of rice according to any one of Items (3) to (3).
【請求項6】試料米から反射した光と試料米を透過した
光とを受光して試料米による近赤外光の吸光度を測定す
る特許請求の範囲第(1)項〜第(3)項のいずれかに
記載の米の食味評価方法。
6. The light absorption of near infrared light by the sample rice is measured by receiving the light reflected from the sample rice and the light transmitted through the sample rice. The method for evaluating the taste of rice according to any one of 1.
【請求項7】前記試料米が無粉砕の玄米粒もしくは白米
粒である特許請求の範囲第(1)項〜第(6)項のいず
れかに記載の米の食味評価方法。
7. The method for evaluating the taste of rice according to any one of claims (1) to (6), wherein the sample rice is unmilled brown rice grain or white rice grain.
【請求項8】試料米が粉末状に粉砕したものである特許
請求の範囲第(1)項〜第(6)項のいずれかに記載の
米の食味評価方法。
8. The method of evaluating the taste of rice according to any one of claims (1) to (6), wherein the sample rice is pulverized into powder.
【請求項9】米の食味を左右する複数の所定成分の含有
率と米に近赤外光を照射した際のその吸光度との関係か
ら成分換算係数を定め、また、米に占める前記成分の含
有率と官能により求めた米の食味の総合評価値との関係
から食味評価係数を定め、試料米を加熱処理もしくは化
学処理することなく、これに近赤外光を照射してその吸
光度を測定し、この吸光度と前記成分換算係数とから試
料米における前記複数の所定成分の含有率を求め、つい
でこの含有率と前記食味評価係数とから試料米の食味の
総合評価値を得る米の食味評価方法において、 前記食味評価値を、前記試料米の水分含有率及び精米歩
留率のうち少なくとも何れか一方について、その率を所
定の率に補正した時の食味評価値に換算することを特徴
とする米の食味評価方法。
9. A component conversion coefficient is determined from the relationship between the content of a plurality of predetermined components that affect the taste of rice and the absorbance of the rice when it is irradiated with near-infrared light. The taste evaluation coefficient is determined from the relationship between the content rate and the comprehensive evaluation value of rice taste obtained by sensory evaluation, and the absorbance is measured by irradiating near-infrared light on the sample rice without heat treatment or chemical treatment. Then, the content rate of the plurality of predetermined components in the sample rice is obtained from the absorbance and the component conversion coefficient, and then the taste evaluation of rice is obtained from the content rate and the taste evaluation coefficient to obtain a comprehensive evaluation value of the taste of the sample rice. In the method, the taste evaluation value is converted into a taste evaluation value when the rate is corrected to a predetermined rate for at least one of the water content rate and the rice polishing yield rate of the sample rice. How to evaluate the taste of rice.
【請求項10】前記所定成分の含有率を表示する特許請
求の範囲第(9)項記載の米の食味評価方法。
10. The method for evaluating the taste of rice according to claim 9, wherein the content of the predetermined component is displayed.
【請求項11】試料米から反射した光を受光して試料米
による近赤外光の吸光度を測定する特許請求の範囲第
(9)項記載の米の食味評価方法。
11. The taste evaluation method for rice according to claim 9, wherein the light reflected from the sample rice is received to measure the absorbance of near infrared light by the sample rice.
【請求項12】試料米を透過した光を受光して試料米に
よる近赤外光の吸光度を測定する特許請求の範囲第
(9)項記載の米の食味評価方法。
12. The taste evaluation method of rice according to claim 9, wherein the absorbance of near infrared light by the sample rice is measured by receiving the light transmitted through the sample rice.
【請求項13】試料米から反射した光と試料米を透過し
た光とを受光して試料米による近赤外光の吸光度を測定
する特許請求の範囲第(9)項記載の米の食味評価方
法。
13. The taste evaluation of rice according to claim 9, wherein the absorbance of near infrared light by the sample rice is measured by receiving the light reflected from the sample rice and the light transmitted through the sample rice. Method.
【請求項14】前記試料米が無粉砕の玄米粒もしくは白
米粒である特許請求の範囲第(9)項〜第(13)項のい
ずれかに記載の米の食味評価方法。
14. The method for evaluating the taste of rice according to any one of claims (9) to (13), wherein the sample rice is unmilled brown rice grain or white rice grain.
【請求項15】試料米が粉末状に粉砕したものである特
許請求の範囲第(9)項〜第(13)項のいずれかに記載
の米の食味評価方法。
15. The method for evaluating the taste of rice according to any one of claims (9) to (13), wherein the sample rice is pulverized into powder.
JP7282687A 1987-03-24 1987-03-24 Evaluation method of rice taste Expired - Fee Related JPH07104279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7282687A JPH07104279B2 (en) 1987-03-24 1987-03-24 Evaluation method of rice taste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7282687A JPH07104279B2 (en) 1987-03-24 1987-03-24 Evaluation method of rice taste

Publications (2)

Publication Number Publication Date
JPS63235849A JPS63235849A (en) 1988-09-30
JPH07104279B2 true JPH07104279B2 (en) 1995-11-13

Family

ID=13500608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7282687A Expired - Fee Related JPH07104279B2 (en) 1987-03-24 1987-03-24 Evaluation method of rice taste

Country Status (1)

Country Link
JP (1) JPH07104279B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745025B2 (en) * 1988-12-27 1998-04-28 株式会社佐竹製作所 Rice quality evaluation method
KR20030019863A (en) * 2001-08-30 2003-03-07 민태기 Method for discriminating the viability of seeds using near infrared spectroscopy
JP6602147B2 (en) * 2014-11-21 2019-11-06 大阪瓦斯株式会社 Method for determining moisture content of rice to be cooked, immersion time determination device, and rice cooking equipment
SG10201911636PA (en) * 2019-12-04 2020-03-30 Teapasar Pte Ltd System and method for non-destructive rapid food profiling using artificial intelligence

Also Published As

Publication number Publication date
JPS63235849A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
KR910004140B1 (en) Rise quality valuation device
JP4104075B2 (en) Object calorie measuring method and object calorie measuring device
US4734584A (en) Quantitative near-infrared measurement instrument for multiple measurements in both reflectance and transmission modes
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
JPH07104279B2 (en) Evaluation method of rice taste
JP4747371B2 (en) Food calorie measuring method and food calorie measuring device
JP2828287B2 (en) Quality evaluation method of cooked rice
Kent-Jones et al. A photo-electric method of determining the colour of flour as affected by grade, by measurements of reflecting power
JP2745025B2 (en) Rice quality evaluation method
JPS63221234A (en) Method for evaluating quality of rice
JPH06288907A (en) Evaluation of quality of unhulled rice
JPS63175747A (en) Instrument for measuring content of amylose or amylopectin of rice
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
JP2757021B2 (en) Near infrared spectroscopy
JP2878377B2 (en) Quality evaluation method of cooked rice
JPH05232017A (en) Rice taste evaluating device
JP2892084B2 (en) Rice quality evaluation method and rice quality evaluation device
JPH06229913A (en) Measuring method for content of component of grain and the like
JP2000201528A (en) Determination of reaping time
JP2878378B2 (en) Rice quality evaluation method
JPH07104280B2 (en) Evaluation method of rice taste
JPS63188743A (en) Taste measuring instrument for rice
JPH09250983A (en) Method and apparatus for measuring taste value of rice
JPS6367547A (en) Taste measuring instrument for rice
JPH02163048A (en) Method and device for mixing plural kinds of rice on basis of taste control

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees