JPH09250983A - Method and apparatus for measuring taste value of rice - Google Patents

Method and apparatus for measuring taste value of rice

Info

Publication number
JPH09250983A
JPH09250983A JP5712596A JP5712596A JPH09250983A JP H09250983 A JPH09250983 A JP H09250983A JP 5712596 A JP5712596 A JP 5712596A JP 5712596 A JP5712596 A JP 5712596A JP H09250983 A JPH09250983 A JP H09250983A
Authority
JP
Japan
Prior art keywords
taste
rice
wavelength
taste value
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5712596A
Other languages
Japanese (ja)
Inventor
Kenichi Tatsubayashi
顕一 達林
Hajime Mitome
肇 三留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP5712596A priority Critical patent/JPH09250983A/en
Publication of JPH09250983A publication Critical patent/JPH09250983A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure the taste value by using a near infrared analyzing method. SOLUTION: A near infrared light is emitted to sample powder 1 obtained by grinding the surface layer of polished rice, and the spectrum of the reflected or transmitted light is measured by a near infrared measuring instrument 2. A spectrum calculator 3 calculates the absorbance of the designated wavelength of the spectrum, and a calibration type calculator 4 substitutes the absorbance for a calibration formula to calculate the taste value. A display unit 5 displays the calculated result of the value. A control recorder 6 stores the wavelength which can explain the physically functional taste value of the powder obtained by grinding the surface layer of the polished rice and the formula for representing the relationship between the absorbance of the wavelength and the taste value, designates the wavelength which can explain the function taste value for the calculator 3, and designates the formula for the calculator 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、近赤外線分析法を
用いた米の食味値測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the taste value of rice using near infrared analysis.

【0002】[0002]

【従来の技術】米の食味値は、所定の方法によって炊飯
された飯を複数のパネラーによって試食し、それらの結
果を統計的手段を使って、できるだけ標準的評価に近づ
けて米の評価を行っている。評価項目は一般に「外観」
「味」「硬さ」「粘り」「香り」「総合食味」について
行われている。また近赤外線分析法を用い米粒を試料と
して近赤外光を照射して直接食味値を測定する食味値測
定装置も市販されている。また、近赤外線分析法を用い
た他の例として米粒中の含有成分即ちタンパク質、アミ
ロース、水分、脂肪酸度等を近赤外線分析法で測定し、
それらの構成度合いから食味値を測定する方法も行われ
ている。
2. Description of the Related Art Regarding the taste value of rice, the rice cooked by a predetermined method is sampled by a plurality of panelists, and the results are evaluated as close to the standard evaluation as possible by using statistical means. ing. Evaluation items are generally “appearance”
"Taste", "hardness", "stickiness", "aroma", and "general taste" are conducted. In addition, a taste value measuring device that directly measures the taste value by irradiating near infrared light with rice grains as a sample using the near infrared analysis method is also commercially available. In addition, as another example using the near-infrared analysis method, the components contained in rice grains, that is, protein, amylose, water, fatty acid degree, etc. are measured by the near-infrared analysis method,
There is also a method of measuring the taste value from the degree of their composition.

【0003】[0003]

【発明が解決しようとする課題】パネラーの試食による
官能試験は、通常12〜24人のパネラーを必要とし、
試料米を試食するため1日の測定では数点しか行えず、
測定値の再現性にも問題がある。また、試料米に近赤外
線を照射して直接食味値を測定する方法は、試料米の全
粒粉または全粒米に対する近赤外線照射の反射光または
透過光のスペクトルを解析するものであるが、食味値の
違いによる近赤外領域での吸光度の変化は非常に小さ
く、米の食味の違いを表すとされる呈味物質以外の水分
やデンプン、タンパク質などの基本成分変動や、試料の
粒度変化等の物理的要因によるスペクトルの散乱による
双方の干渉を受け、精度の高い食味測定が難しいという
問題がある。また、近赤外線分析法により米粒中の成分
の構成度合いから食味を推定する方法は、通常の炊飯に
供せられるジャポニカ米のタンパク質、アミロース等の
含有成分の範囲は狭く、官能で求められた評価値との相
関はあまり高くない。
The sensory test by tasting panelists usually requires 12 to 24 panelists,
Only a few points can be measured in one day to sample the rice,
There is also a problem with the reproducibility of measured values. Further, the method of directly measuring the taste value by irradiating the sample rice with near infrared rays is to analyze the spectrum of the reflected light or the transmitted light of the near infrared irradiation for the whole grain flour or the whole grain rice of the sample rice. The change in absorbance in the near-infrared region due to the difference in water content is very small, and changes in basic components such as water, starch, and proteins other than taste substances that are said to represent differences in the taste of rice, and changes in sample particle size, etc. There is a problem that it is difficult to measure the taste with high accuracy due to interference of both due to spectrum scattering due to physical factors. In addition, the method of estimating the taste from the compositional degree of the components in the rice grain by the near-infrared analysis method, the range of the contained components such as protein and amylose of Japonica rice used for ordinary rice cooking is narrow, and the evaluation obtained by sensory evaluation The correlation with the value is not very high.

【0004】本発明は、上述の問題点に鑑みてなされた
もので、近赤外線分析法を用いて米の食味値を精度よく
測定できる米の食味値測定方法および装置を提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method and apparatus for measuring the taste value of rice which can accurately measure the taste value of rice using a near infrared analysis method. To do.

【0005】上記目的を達成するため請求項1の発明で
は、精白米の表層を研削し得られた試料粉に近赤外光を
照射してその反射光または透過光のスペクトルを測定
し、事前に決定されている官能の食味値を説明できる波
長の吸光度と食味値との関係を表す校正式を用い、測定
したスペクトルから前記波長の吸光度を選択し上記校正
式に代入して米の食味値を測定する。
In order to achieve the above object, in the invention of claim 1, the sample powder obtained by grinding the surface layer of polished rice is irradiated with near-infrared light, and the spectrum of the reflected light or the transmitted light is measured. Using a calibration formula that expresses the relationship between the absorbance of the wavelength and the taste value that can explain the taste value of the sensory determined in, select the absorbance of the wavelength from the measured spectrum and substitute it in the calibration formula To measure.

【0006】米の食味値を左右する呈味物質は精白米表
層に存在するので、この呈味物質を研削し、その表層粉
と残りの胚乳とを分け、近赤外線分析器で呈味物質が集
積している表層粉のスペクトルを測光すると、試料米の
全粒粉あるいは全粒米の測光では食味の違いが判定でき
ない様な微妙な差異迄スペクトルから判定できる。校正
式は官能検査で食味値を測定したと同じロットの精白米
の表層を研削して得た試料粉について、近赤外線分析器
でスペクトルを求め、このスペクトルより食味値との相
関の大きな波長における吸光度を求め、この吸光度と官
能検査の食味値とを重回帰分析法により求めた重回帰式
である。単波長のときは直線への回帰式でよい。
Since the taste substances that influence the taste value of rice are present in the surface layer of polished rice, the taste substances are ground, and the surface powder and the remaining endosperm are separated, and the taste substances are analyzed by a near infrared analyzer. By measuring the spectrum of the accumulated surface layer flour, it is possible to determine from the spectrum even the subtle differences in which the difference in taste cannot be determined by measuring the whole grain flour of the sample rice or the whole grain rice. The calibration formula is a sample powder obtained by grinding the surface layer of polished rice of the same lot that the taste value was measured by the sensory test, and a spectrum was obtained with a near-infrared analyzer. It is a multiple regression equation in which the absorbance and the taste value of the sensory test are obtained by the multiple regression analysis method. For a single wavelength, a regression equation to a straight line may be used.

【0007】請求項2の発明では、精白米の表層を研削
し得られた試料粉に近赤外光を照射してその反射光また
は透過光のスペクトルを得る近赤外光測定手段と、前記
スペクトルから指定された波長の吸光度を算出するスペ
クトル演算手段と、前記スペクトル演算手段で算出した
吸光度を指定された校正式に代入して食味値を算出する
校正式演算手段と、前記校正式演算手段の算出した食味
値を表示する表示手段と、精白米の表層を研削して得た
試料粉について官能の食味値を説明できる波長と、この
波長の吸光度と食味値との関係を表す校正式を記憶し、
前記スペクトル演算手段に官能の食味値を説明できる波
長を指定し、前記校正式演算手段に前記校正式を指定す
る制御手段とを備える。
According to the invention of claim 2, near-infrared light measuring means for irradiating the sample powder obtained by grinding the surface layer of polished rice with near-infrared light to obtain a spectrum of reflected light or transmitted light, A spectrum calculation means for calculating the absorbance at a designated wavelength from a spectrum, a calibration formula calculation means for substituting the absorbance calculated by the spectrum calculation means into a designated calibration formula to calculate a taste value, and the calibration formula calculation means. Display means for displaying the calculated taste value, a wavelength that can explain the sensory taste value of the sample powder obtained by grinding the surface layer of polished rice, and a calibration formula that represents the relationship between the absorbance at this wavelength and the taste value. Remember
And a control unit for designating a wavelength capable of explaining a sensory taste value to the spectrum computing unit and designating the calibration formula to the calibration formula computing unit.

【0008】精白米の表層を研削して得た試料粉を近赤
外光を照射してその反射光または透過光のスペクトルを
近赤外光測定手段で得る。このスペクトルよりスペクト
ル演算手段で指定された波長の吸光度を求め、この吸光
度を校正式演算手段で指定された校正式に代入して食味
値を得る。この食味値は表示手段に表示される。制御手
段は精白米の表層を研削して得た試料粉について官能の
食味値を説明できる波長と、この波長の吸光度と食味値
との関係を表す校正式を記憶しており、スペクトル演算
手段には食味値を説明できる波長を指定し、校正式演算
手段には校正式を指定する。この校正式は請求項1の説
明の重回帰式である。単波長のときは直線への回帰式で
ある。
The sample powder obtained by grinding the surface layer of polished rice is irradiated with near infrared light, and the spectrum of the reflected light or transmitted light thereof is obtained by the near infrared light measuring means. The absorbance at the wavelength designated by the spectrum computing means is obtained from this spectrum, and this absorbance is substituted into the calibration formula designated by the calibration formula computing means to obtain the taste value. This taste value is displayed on the display means. The control means stores a wavelength that can explain the sensory taste value of the sample powder obtained by grinding the surface layer of polished rice, and a calibration formula that represents the relationship between the absorbance and the taste value of this wavelength, and the spectrum calculation means Specifies a wavelength that can explain the taste value, and a calibration formula is specified in the calibration formula calculation means. This calibration formula is the multiple regression formula described in claim 1. For a single wavelength, it is a regression equation to a straight line.

【0009】請求項3の発明では、前記試料粉として精
白米の表層を1〜6重量%研削して得られた米粉を用い
る。精白米の表層0〜6重量%の範囲には食味の違いを
表す呈味物質が含まれている。1重量%以下では測定精
度が低下するのでこれ以上としている。また6重量%を
越えると呈味物質は低減し食味の測定精度が低下する。
In the invention of claim 3, rice flour obtained by grinding 1 to 6% by weight of the surface layer of polished rice is used as the sample flour. The surface layer of the polished rice contains a taste substance showing a difference in taste in the range of 0 to 6% by weight. If it is less than 1% by weight, the measurement accuracy is lowered, so the amount is set to more than this value. On the other hand, if it exceeds 6% by weight, the amount of taste substances is reduced and the accuracy of taste measurement is deteriorated.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本実施の形態の構成
を示すブロック図である。試料1は研削型の精米機にて
精白米の表層を1〜6重量%研削した表層粉である。精
白米とは玄米を100重量%とすると通常米粒表層の1
0重量%前後に相当する糠層を精米機によって研削除去
したものである。近赤外光測定器2は試料1に近赤外線
を照射し、その反射光または透過光のスペクトルを測定
する。スペクトル演算部3は近赤外光測定器2で測定さ
れたスペクトルについて指定された波長の吸光度を演算
する。校正式演算部4はスペクトル演算部3で演算した
波長の吸光度を指定された校正式に代入し、食味値を算
出し、表示部5はこの算出した食味値を表示する。制御
記録装置6は精白米の表層を研削して得た試料粉につい
て官能の食味値を説明できる波長と、この波長の吸光度
と食味値との関係を表す校正式を作成し記憶しており、
スペクトル演算部3にこの食味値を説明できる波長を指
定し、校正式演算部4に校正式を指定する。また表示部
5に表示した結果等の記録も行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the present embodiment. Sample 1 is a surface layer powder obtained by grinding 1 to 6% by weight of the surface layer of polished rice with a grinding type rice polishing machine. Polished rice is usually one of the rice grain surface when 100% by weight of brown rice is used.
The bran layer corresponding to about 0% by weight was ground and removed by a rice polishing machine. The near-infrared light measuring device 2 irradiates the sample 1 with near-infrared light and measures the spectrum of its reflected light or transmitted light. The spectrum calculation unit 3 calculates the absorbance at the designated wavelength for the spectrum measured by the near infrared light measuring device 2. The calibration formula calculation unit 4 substitutes the absorbance of the wavelength calculated by the spectrum calculation unit 3 into the designated calibration formula to calculate the taste value, and the display unit 5 displays the calculated taste value. The control recording device 6 creates and stores a wavelength that can explain the sensory taste value of the sample powder obtained by grinding the surface layer of polished rice, and a calibration formula that represents the relationship between the absorbance and the taste value of this wavelength,
A wavelength that can explain this taste value is specified in the spectrum calculation unit 3, and a calibration formula is specified in the calibration formula calculation unit 4. In addition, the results displayed on the display unit 5 are also recorded.

【0011】図2は近赤外光測定器の構成を示す図であ
る。光源21より近赤外光を照射し、スリットを通過し
た照射光をミラー22で反射して回折格子23に入射す
る。回折格子23は傾斜振動することにより近赤外領域
700〜2500nmの波長範囲を2nm毎に走査す
る。反射測定部24はこのようにして走査された光が試
料1から反射してきた反射光を測定する。透過測定部2
5は試料1を透過してきた透過光を測定する。
FIG. 2 is a diagram showing the structure of a near infrared light measuring device. Near-infrared light is emitted from the light source 21, and the emitted light that has passed through the slit is reflected by the mirror 22 and enters the diffraction grating 23. The diffraction grating 23 tilts and oscillates to scan the wavelength range of 700 to 2500 nm in the near infrared region every 2 nm. The reflection measuring unit 24 measures the reflected light reflected from the sample 1 by the light thus scanned. Transmission measuring unit 2
5 measures the transmitted light transmitted through the sample 1.

【0012】上記装置による食味値測定について説明す
る。精白米の表層には食味を表す微量呈味物質が含ま
れ、魚沼産のコシヒカリなどのいわゆる良食味米にはこ
の呈味物質が多く、一般に非良食味米には少ないことが
明らかになってきた。呈味物質としては網目状デンプ
ン、オリゴ糖、アミノ酸、リン酸マグネシウム、その他
などである。精白米の表層0〜6重量%までにはこの呈
味物質が多く含まれている。このため試料粉としては1
〜6重量%の表層を研削する。望ましくは4〜5重量%
がよい。1重量%未満でも測定可能であるが精度が低下
する。精白米の表層から6〜10重量%あるいはそれ以
上の部分は胚乳中心に近づいてゆくので、この部分の組
成分は主としてデンプンが多くなり、表層に存在してい
た呈味物質、タンパク質は減少している。このため、良
食味米と非良食味米とを分けることになる米の組成分の
違いは、この胚乳中心に近い部分には微量しか存在しな
い。なお、上記0〜6重量%内に含まれる呈味物質の含
有量は精白米の0.1〜0.2重量%程度で微量であ
る。
The measurement of the taste value by the above device will be described. It has become clear that the surface layer of milled rice contains a small amount of a tastant that expresses the taste. It was Taste substances include reticulated starch, oligosaccharides, amino acids, magnesium phosphate, and the like. The surface layer of polished rice contains a large amount of this taste substance in an amount of 0 to 6% by weight. Therefore, the sample powder is 1
Grind ~ 6 wt% surface layer. Desirably 4-5% by weight
Is good. It is possible to measure even if it is less than 1% by weight, but the accuracy is lowered. From 6% to 10% by weight or more of the surface layer of the polished rice approaches the endosperm center, the composition of this part mainly contains a large amount of starch, and the taste substances and proteins present in the surface layer decrease. ing. For this reason, the difference in the composition of rice that separates good-tasting rice and non-tasty-tasting rice exists only in a small amount in the portion close to the endosperm center. The content of the taste substance contained in the above 0 to 6% by weight is about 0.1 to 0.2% by weight of the polished rice, which is a very small amount.

【0013】このようにして得られた試料粉1について
図2に示した近赤外光測定器2により近赤外光を照射
し、回折格子23を傾斜振動させることにより、近赤外
領域700〜2500nmの波長範囲を2nm毎に走査
して反射光または透過光のスペクトルが得られる。ここ
で得られたスペクトルは、測定精度を高めかつ、校正式
(検量線)の長期安定化を保つ為にスペクトルの演算
(微分)処理を行う。一方、事前に官能食味値のうち、
食味総合値、味、ねばりについて後述する多重直線回帰
分析法を使って校正式をつくっておく。単波長を用いる
時には直線への回帰式でよい。
The sample powder 1 thus obtained is irradiated with near-infrared light by the near-infrared light measuring device 2 shown in FIG. The spectrum of reflected light or transmitted light is obtained by scanning the wavelength range of ˜2500 nm every 2 nm. The spectrum obtained here is subjected to spectrum calculation (differentiation) processing in order to improve the measurement accuracy and keep the calibration formula (calibration curve) stable for a long period of time. On the other hand, of the sensory taste values in advance,
Prepare a calibration formula for the overall taste value, taste, and stickiness using the multiple linear regression analysis method described later. When using a single wavelength, a regression equation to a straight line may be used.

【0014】この校正式には、官能の食味値を説明でき
る使用波長(λi)、校正定数(Ki)、演算方式(1
〜2次微分等)が、各項目(食味総合、味、ねばり)毎
に決定され制御記録装置6の記憶装置に記録されてい
る。未知試料を近赤外光測定器2にセットし、制御記録
装置6から測定開始を指示すれば、近赤外光測定器2が
稼働し上述の様に試料1のスペクトルが得られ、それぞ
れの項目(食味総合、味、ねばり)に合った波長が選ば
れ、それらの波長の吸光度と校正定数から各項目の推定
値が得られる。
In this calibration formula, the usable wavelength (λi), the calibration constant (Ki), and the calculation method (1
To second-order derivative) are determined for each item (total taste, taste, stickiness) and recorded in the storage device of the control recording device 6. When the unknown sample is set in the near infrared light measuring device 2 and the control recording device 6 instructs the start of measurement, the near infrared light measuring device 2 operates and the spectrum of the sample 1 is obtained as described above. Wavelengths that match the items (total taste, taste, stickiness) are selected, and the estimated value for each item is obtained from the absorbance at those wavelengths and the calibration constant.

【0015】校正式の作成は、官能食味値(総合、味、
ねばり)があらかじめ求められている20個以上の校正
試料群の精白米の表層を上述の如く1〜6重量%研削
し、この試料粉1のスペクトルを記録する。1試料当た
りの波長データ点数は、波長範囲が700〜2500n
mであるから2500−700=1800、2nmごと
のデータをとるので1800÷2(nm)=900吸光
度データである。校正試料群の吸光度データ(独立変
数、1試料当たり900データ)と同試料群の官能食味
値(従属変数)の間で最少2乗法等を使って、各食味値
を最も良く説明できる校正式(キャリブレーション)を
開発(即ち、最も相関の高い波長群の選定)する。
The calibration formula is created by sensory taste values (total, taste,
The surface of the polished rice of 20 or more calibration sample groups whose stickiness is required in advance is ground by 1 to 6% by weight as described above, and the spectrum of this sample powder 1 is recorded. The number of wavelength data points per sample is 700 to 2500n in the wavelength range.
Since m is 2500-700 = 1800, data for every 2 nm is taken, so 1800/2 (nm) = 900 absorbance data. Using the least squares method between the absorbance data (independent variable, 900 data per sample) of the calibration sample group and the sensory taste value (dependent variable) of the same sample group, a calibration formula that can best explain each taste value ( Calibration) is developed (that is, the wavelength group with the highest correlation is selected).

【0016】この様にして選定されたものが下式であ
る。 総合食味推定値=Ko+KiD2 ODλi ……(1) ここでD2 ODλi はlog1/Rλi の2次微分値 Rλi は波長λiにおける反射率、i=1〜n 国産のうるち米に限定した場合にはこのiはi=1で良
い。この場合の波長λは2270〜2320nmの範囲
で、N−H分子結合の2次倍音である。従って、同じN
−Hの3次倍音1710〜1730nmの範囲を使用し
ても同様の結果が得られる。
The formula thus selected is the following formula. Total taste estimation value = Ko + KiD 2 ODλ i (1) where D 2 ODλ i is the second derivative of log1 / Rλ ii is the reflectance at wavelength λ i , i = 1 to n In this case, i may be i = 1. The wavelength λ in this case is in the range of 2270 to 2320 nm and is the second overtone of the N—H molecular bond. Therefore, the same N
Similar results are obtained using the -H third harmonic 1710 to 1730 nm range.

【0017】精白米(うるち米)の場合の呈味物質の含
有量について説明する。うるち米の構成成分の平均的な
値はデンプン(アミロペクチン、アミロース)75.8
重量%、タンパク質6.8重量%、脂質1.3重量%、
無機質0.26重量%、その他、但し水分15.5重量
%となっている。このとき呈味物質の含有率は0.1〜
0.2重量%程度であるので、一般の分離分析による化
学分析とは違って近赤外のスペクトル分析法では、デン
プン、タンパク質、水分のスペクトルが混在した中でこ
の微量な呈味物質のスペクトル分析は難しいが、本発明
の様に精白米の表層に含まれる呈味物質を分離して測定
すれば極めて高い精度で食味測定が行える。
The content of taste substances in the case of polished rice (glutinous rice) will be described. The average value of the constituents of non-glutinous rice is starch (amylopectin, amylose) 75.8.
Wt%, protein 6.8 wt%, lipid 1.3 wt%,
The inorganic content is 0.26% by weight, and the water content is 15.5% by weight. At this time, the content ratio of the taste substance is 0.1
Since it is about 0.2% by weight, unlike the general chemical analysis by separation analysis, in the near-infrared spectrum analysis method, the spectrum of this trace amount of the taste substance in the mixture of starch, protein, and water is mixed. Although it is difficult to analyze, if the taste substances contained in the surface layer of the polished rice are separated and measured as in the present invention, the taste can be measured with extremely high accuracy.

【0018】図3は総合食味の推定結果の一例を示す図
である。横軸は官能検査により得られた総合食味値を示
し、縦軸は近赤外線分析法により得られたスペクトルを
用いて校正式から求めた総合食味値を示す。×印はデー
タを示す。すなわち試料米から官能検査により求めた総
合食味値と、この試料米1と同じロットから取り出した
試料米1(精白米)の表層を5重量%研削して試料粉と
し、近赤外光を照射してスペクトルを求め、このスペク
トルの使用波長λi、つまり校正式を作成した時の波長
の吸光度を求め、この2次微分を校正式の(1)式に代
入して算出した食味総合値である。実線は45°線を示
しこの線上に×印がくれば官能検査による食味総合値と
近赤外線分析法により求めた食味総合値が一致している
ことを示す。×印は45°線の近傍に分布し、本発明に
よる近赤外線分析法を用いた測定方法が極めて精度がよ
いことを示している。なお、「ねばり」や「味」の食味
についても同様の結果が得られている。この方法によ
り、精白米の食味の経時変化も測定された。従って、米
の保存方法の良否の評価も可能である。
FIG. 3 is a diagram showing an example of the estimation result of the overall taste. The horizontal axis represents the overall taste value obtained by the sensory test, and the vertical axis represents the overall taste value obtained from the calibration formula using the spectrum obtained by the near infrared analysis method. The crosses indicate data. That is, the total taste value obtained from the sample rice by sensory test and the surface layer of sample rice 1 (polished rice) taken from the same lot as sample rice 1 were ground by 5% by weight to be sample powder and irradiated with near infrared light. Then, the spectrum is obtained, the used wavelength λi of this spectrum, that is, the absorbance at the wavelength when the calibration formula is created, is obtained, and this second derivative is substituted into the formula (1) of the calibration formula to calculate the total taste value. . The solid line indicates a 45 ° line, and if a cross mark appears on this line, it indicates that the comprehensive taste value by sensory test and the comprehensive taste value determined by the near infrared analysis method are in agreement. The x marks are distributed in the vicinity of the 45 ° line, indicating that the measurement method using the near infrared analysis method according to the present invention is extremely accurate. Similar results were obtained for the tastes of "Nebari" and "Taste". By this method, the time-dependent change in the taste of polished rice was also measured. Therefore, it is possible to evaluate the quality of the rice storage method.

【0019】[0019]

【発明の効果】以上の説明より明らかなように、本発明
は、近赤外線を照射する試料を食味の違いを表す呈味物
質が多く含まれる精白米の表層を研削して得た試料粉と
したことにより、近赤外線分析法を用いて食味値を高い
精度で測定することができる。
As is apparent from the above description, the present invention provides a sample powder obtained by grinding the surface layer of milled rice containing a large amount of taste substances showing the difference in taste between samples irradiated with near infrared rays. By doing so, the taste value can be measured with high accuracy using the near infrared analysis method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】近赤外光測定器の構成を示す図である。FIG. 2 is a diagram showing a configuration of a near infrared light measuring device.

【図3】本実施の形態の食味総合値の測定データを示す
図である。
FIG. 3 is a diagram showing measurement data of a comprehensive taste value according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 試料 2 近赤外光測定器 3 スペクトル演算部 4 校正式演算部 5 表示部 6 制御・記録装置 1 sample 2 near-infrared light measuring device 3 spectrum calculation unit 4 calibration type calculation unit 5 display unit 6 control / recording device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 精白米の表層を研削し得られた試料粉に
近赤外光を照射してその反射光または透過光のスペクト
ルを測定し、事前に決定されている官能の食味値を説明
できる波長の吸光度と食味値との関係を表す校正式を用
い、測定したスペクトルから前記波長の吸光度を選択し
上記校正式に代入して米の食味値を測定することを特徴
とする米の食味値測定方法。
1. A sample powder obtained by grinding the surface layer of polished rice is irradiated with near-infrared light and the spectrum of its reflected light or transmitted light is measured to explain the sensory taste value of a sensor that is determined in advance. Using a calibration formula representing the relationship between the absorbance and the taste value of the wavelength that can be selected, the absorbance of the wavelength is selected from the measured spectrum and substituted into the calibration formula to measure the taste value of rice, which is characterized by the taste of rice. Value measurement method.
【請求項2】 精白米の表層を研削し得られた試料粉に
近赤外光を照射してその反射光または透過光のスペクト
ルを得る近赤外光測定手段と、前記スペクトルから指定
された波長の吸光度を算出するスペクトル演算手段と、
前記スペクトル演算手段で算出した吸光度を指定された
校正式に代入して食味値を算出する校正式演算手段と、
前記校正式演算手段の算出した食味値を表示する表示手
段と、精白米の表層を研削して得た試料粉について官能
の食味値を説明できる波長と、この波長の吸光度と食味
値との関係を表す校正式を記憶し、前記スペクトル演算
手段に官能の食味値を説明できる波長を指定し、前記校
正式演算手段に前記校正式を指定する制御手段とを備え
たことを特徴とする米の食味値測定装置。
2. Near-infrared light measuring means for irradiating a sample powder obtained by grinding a surface layer of polished rice with near-infrared light to obtain a spectrum of its reflected light or transmitted light, and a near-infrared light measuring means A spectrum calculation means for calculating the absorbance of the wavelength,
Calibration formula calculation means for calculating the taste value by substituting the absorbance calculated by the spectrum calculation means into a designated calibration formula,
Display means for displaying the taste value calculated by the calibration type computing means, a wavelength that can explain the sensory taste value of the sample powder obtained by grinding the surface layer of polished rice, and the relationship between the absorbance at this wavelength and the taste value Of the rice characterized by storing a calibration formula that represents, a wavelength that can explain a sensory taste value to the spectrum calculation means, and a control means that specifies the calibration formula to the calibration formula calculation means. Taste value measuring device.
【請求項3】 前記試料粉として精白米の表層を1〜6
重量%研削して得られた米粉を用いることを特徴とする
請求項2記載の米の食味値測定装置。
3. The surface layer of polished rice as the sample powder is 1-6.
The rice taste value measuring device according to claim 2, wherein rice flour obtained by grinding by weight% is used.
JP5712596A 1996-03-14 1996-03-14 Method and apparatus for measuring taste value of rice Pending JPH09250983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5712596A JPH09250983A (en) 1996-03-14 1996-03-14 Method and apparatus for measuring taste value of rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5712596A JPH09250983A (en) 1996-03-14 1996-03-14 Method and apparatus for measuring taste value of rice

Publications (1)

Publication Number Publication Date
JPH09250983A true JPH09250983A (en) 1997-09-22

Family

ID=13046850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5712596A Pending JPH09250983A (en) 1996-03-14 1996-03-14 Method and apparatus for measuring taste value of rice

Country Status (1)

Country Link
JP (1) JPH09250983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112887A (en) * 2008-11-07 2010-05-20 Astellas Pharma Inc Principal component analysis method, principal component analyzer, different kind article detection device, principal component analysis program, and recording medium for recording the principal component analysis program
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
JP2010112887A (en) * 2008-11-07 2010-05-20 Astellas Pharma Inc Principal component analysis method, principal component analyzer, different kind article detection device, principal component analysis program, and recording medium for recording the principal component analysis program

Similar Documents

Publication Publication Date Title
US4260262A (en) Grain quality analyzer
Chan et al. Prediction of pork quality characteristics using visible and near–infrared spectroscopy
US5308981A (en) Method and device for infrared analysis, especially with regard to food
Van de Voort Fourier transform infrared spectroscopy applied to food analysis
Isaksson et al. On-line, proximate analysis of ground beef directly at a meat grinder outlet
US4490042A (en) Method for determining the properties of wine
JP2000105194A (en) Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce
Turgut et al. Estimation of the sensory properties of black tea samples using non-destructive near-infrared spectroscopy sensors
Kent-Jones et al. A photo-electric method of determining the colour of flour as affected by grade, by measurements of reflecting power
JP2009139110A (en) Method and apparatus for estimating quality of boiled rice
JP3250113B2 (en) How to make a calibration curve in near infrared analysis
JP3495185B2 (en) Method and apparatus for measuring rice taste value
JPH09250983A (en) Method and apparatus for measuring taste value of rice
JP2828287B2 (en) Quality evaluation method of cooked rice
Sudduth et al. Near-infrared spectrophotometry for soil property sensing
JPH1164217A (en) Component quantity detecting device for spectral analyzer
JP2001141648A (en) Method and apparatus for estimation of measured value by absorbance measurement
JPH08114543A (en) Method for evaluating quality of leaf tea
JP2745025B2 (en) Rice quality evaluation method
WO2001004612A2 (en) A method of determining the content of a component in a fluid sample and an apparatus therefor
JPH08320290A (en) Near infrared spectral analyzing device
JP2950329B1 (en) Food component analyzer
JP2878377B2 (en) Quality evaluation method of cooked rice
JP3511678B2 (en) Near infrared spectrometer
JPH07198601A (en) Near infrared spectral analysis method