JPH1164217A - Component quantity detecting device for spectral analyzer - Google Patents

Component quantity detecting device for spectral analyzer

Info

Publication number
JPH1164217A
JPH1164217A JP24350997A JP24350997A JPH1164217A JP H1164217 A JPH1164217 A JP H1164217A JP 24350997 A JP24350997 A JP 24350997A JP 24350997 A JP24350997 A JP 24350997A JP H1164217 A JPH1164217 A JP H1164217A
Authority
JP
Japan
Prior art keywords
spectrum
sample
component
component quantity
weighted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24350997A
Other languages
Japanese (ja)
Inventor
Satoshi Murata
敏 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP24350997A priority Critical patent/JPH1164217A/en
Publication of JPH1164217A publication Critical patent/JPH1164217A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a component quantity of a to-be-measured sample based on a weighted factor by generating a linear regression model wherein a near- infrared spectrum of an actual target food is weighted with the component quantity, and applying the model to the actually-measured near-infrared spectrum. SOLUTION: The detecting device comprises a linear regression model A wherein a spectral function of a sample is a linear sum with its component spectral function weighted with a component quantity, a spectrum measuring means B wherein a spectrum of a sample is measured with a near-infrared ray spectral analyzer for obtaining an actual-measured data, and a component quantity calculation means C wherein a component quantity weighted by a method of least square by applying the actual-measured data to the linear regression model A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸光スペクトルを
利用してサンプルの成分組成を分析する分光分析機に関
し、特にその成分量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrometer for analyzing the composition of a sample using an absorption spectrum, and more particularly to a device for detecting the amount of the component.

【0002】[0002]

【発明が解決しようとする課題】近赤外部のスペクトル
は、分子振動の非線形性に基づく倍音の重ね合わせであ
って、きわめて複雑であり、分析には不向きとされてい
た。しかし、統計方法の導入によって、いくつかの物質
の定量が可能になり、透過性の大きなことから食品の非
破壊試験に適用されるようになり、にわかに注目される
ようになった。
The near-infrared spectrum is a superposition of harmonics based on the non-linearity of molecular vibration, and is extremely complicated and unsuitable for analysis. However, the introduction of statistical methods has made it possible to quantify some substances, and because of their high permeability, they have been applied to nondestructive testing of foods, and they have come to the forefront.

【0003】しかし、透過または反射量と物質含量との
関係の正確な解析はなされておらず、従って、統計的方
法とはいいながら内容は、対象とする成分値が従来法に
よって精度よく分析された検量線作成用試料を用い、重
回帰分析によりスペクトルと成分量との関係を測定誤差
が最小になるように定量化する試行錯誤的な線量の検出
にとどまっている。現在、多くの重要な食品成分につい
て、検出の精度が利用不能なほど低いのは、この統計的
方法のみに頼る方法の原理的な限界に基づくものと考え
られる。検出スペクトルのみの統計的解析では、原理的
に、これ以上の精度の向上は不可能と見られる。
However, an accurate analysis of the relationship between the amount of transmission or reflection and the content of a substance has not been made. Therefore, the content of the target component is accurately analyzed by a conventional method, though it is a statistical method. Using a sample for the preparation of a calibration curve, a multiple regression analysis is only used to detect the dose by trial and error, which quantifies the relationship between the spectrum and the component amount so that the measurement error is minimized. At present, the unacceptably low accuracy of detection for many important food components is believed to be due to the fundamental limitations of methods that rely solely on this statistical method. In statistical analysis of only the detected spectrum, it is in principle impossible to further improve the accuracy.

【0004】普通の食品では、その成分の大部分は僅か
な数種の物質より成り立っており、従って、図1に示す
ように、その対象物質のスペクトルもこれら数種の成分
A、B、Cのスペクトルの関数と考えてよい。成分の純
粋物質の近赤外スペクトルは内部における粒子間反射や
拡散を経るので極めて複雑な様相を呈するが、そのある
がままの形状を振動数または波長の関数としてコンピュ
ータのメモリに収容することができる。
[0004] In ordinary foods, most of the components are composed of only a few types of substances, and therefore, as shown in FIG. 1, the spectrum of the target substance also includes these types of components A, B, and C. Can be considered as a function of the spectrum of The near-infrared spectrum of the pure substance of the component has a very complicated appearance due to interparticle reflection and diffusion inside, but it is possible to store the shape as it is in the computer memory as a function of frequency or wavelength. it can.

【0005】実際の複合物質である対象食品の近赤外ス
ペクトルはこれらの関数(形状といってもよい)の成分
量で重み付けした線形和(相互作用も含める)と考えら
れる。このモデルを実測の近赤外スペクトルに最小2乗
法で当てはめれば、重み付けした係数が計算されるの
で、この係数から成分量が検出される。
[0005] The near-infrared spectrum of a target food, which is an actual composite substance, is considered to be a linear sum (including interaction) weighted by the component amounts of these functions (which may be called shapes). When this model is applied to the measured near-infrared spectrum by the least square method, a weighted coefficient is calculated, and the component amount is detected from this coefficient.

【0006】そこで本発明は、実際の対象食品の近赤外
スペクトルを成分量で重み付けした線形回帰モデルを作
成し、このモデルを実測の近赤外スペクトルに当ては
め、重み付けした係数から測定対象資料の成分量を検出
することを目的になされたものである。
Therefore, the present invention creates a linear regression model in which the near-infrared spectrum of the actual target food is weighted by the component amount, applies this model to the actually measured near-infrared spectrum, and obtains the data of the object to be measured from the weighted coefficients. The purpose is to detect the component amount.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention is configured as follows.

【0008】すなわち、近赤外スペクトルを利用して試
料の成分組成を分析する分光分析機において、試料のス
ペクトルを成分の純粋物質のスペクトルを成分量で重み
付けした線形和とする線形回帰モデルと、試料のスペク
トルを測定して実測データを取得するスペクトル測定手
段と、前記線形回帰モデルに前記実測データを当てはめ
て最小2乗法により重み付けした成分量を算出する成分
量算出手段と、を備えることを特徴とするの成分量検出
装置である。
That is, in a spectroscopic analyzer for analyzing the component composition of a sample using a near-infrared spectrum, a linear regression model in which the spectrum of the sample is a linear sum obtained by weighting the spectrum of the pure substance of the component by the component amount, A spectrum measuring means for measuring a spectrum of the sample to obtain measured data; and a component amount calculating means for calculating a component amount weighted by a least square method by applying the measured data to the linear regression model. Is a component amount detecting device.

【0009】[0009]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図2に、本発明を実施した成分量検出装置
の構成図を示す。成分量検出装置は、試料のスペクトル
関数をその成分スペクトル関数を成分量で重み付けした
線形和とする線形回帰モデルAと、近赤外線分光分析機
により試料のスペクトルを測定して実測データを取得す
るスペクトル測定手段Bと、線形回帰モデルAに実測デ
ータを当てはめて最小2乗法により重み付けした成分量
を算出する成分量算出手段Cで構成する。
FIG. 2 shows a configuration diagram of a component amount detection device embodying the present invention. The component amount detection device includes a linear regression model A in which the spectrum function of the sample is a linear sum in which the component spectrum function is weighted by the component amount, and a spectrum in which the spectrum of the sample is measured by a near-infrared spectrometer to obtain measured data. It comprises a measuring means B and a component amount calculating means C for applying the measured data to the linear regression model A and calculating the component amount weighted by the least squares method.

【0011】線形回帰モデルAは、成分の複合物質であ
る分析対象試料のスペクトル関数をf(λ)、成分iの
スペクトル関数をfi (λ)、波長をλ(nm)、検
出スペクトルの数をn(通常1,050個)とすると、
分析対象試料のスペクトル関数f(λ)は、数式1に示
す成分iのスペクトル関数fi (λ)を成分量αiで
重み付けした線形和とする直線関係が成り立つと仮定す
る。
The linear regression model A has a spectrum function f (λ), a spectrum function f (λ), a wavelength λ (nm), and the number of detection spectra of a sample to be analyzed, which is a composite substance of components. n (usually 1,050)
It is assumed that the spectral function f (λ) of the sample to be analyzed has a linear relationship as a linear sum obtained by weighting the spectral function fi (λ) of the component i shown in Expression 1 with the component amount αi.

【数1】 次に、この直線と標本値とのずれをei で表し、数式
2に示す線形回帰モデルを設定する。
(Equation 1) Next, a deviation between the straight line and the sample value is represented by ei, and a linear regression model represented by Expression 2 is set.

【数2】 (Equation 2)

【0012】図3に、本発明を実施したスペクトル測定
手段Bとしての近赤外線分光分析機の構成図を示す。近
赤外線分光分析機1は測定光線を生成する分光器2と、
試料を収納する試料部3と、測定光線を試料に投光する
投光部4と、その反射光を集光する集光部5と、集光し
た反射光を分析する分析器6から構成される。
FIG. 3 shows a configuration diagram of a near-infrared spectrometer as spectrum measuring means B embodying the present invention. The near-infrared spectrometer 1 includes a spectroscope 2 that generates a measurement light beam,
It comprises a sample section 3 for storing a sample, a light projecting section 4 for projecting a measurement light beam onto the sample, a light collecting section 5 for condensing the reflected light, and an analyzer 6 for analyzing the collected reflected light. You.

【0013】分光器2は光源7と、レンズ8と、チョッ
パホイール9と、スリット10から構成され、これらを
光源7の光軸a線上に一列に配列する。また、チョッパ
ホイール9はチョッパホイール9の円周端部が光軸aを
遮断する位置に配置する。
The spectroscope 2 includes a light source 7, a lens 8, a chopper wheel 9, and a slit 10, and these are arranged in a line on the optical axis a of the light source 7. The chopper wheel 9 is arranged at a position where the circumferential end of the chopper wheel 9 blocks the optical axis a.

【0014】投光部4は反射鏡11と、投光レンズ12
から構成され、反射鏡11は光軸a線上に光軸aに対し
斜め45°の角度で設置し、投光レンズ12は光軸aの
反射光軸b線上に配列する。
The light projecting section 4 includes a reflecting mirror 11 and a light projecting lens 12
The reflecting mirror 11 is installed on the optical axis a at an angle of 45 ° with respect to the optical axis a, and the light projecting lens 12 is arranged on the reflected optical axis b of the optical axis a.

【0015】集光部5は集光凸面鏡13と、光電センサ
14と、集光凹面鏡15から構成され、これらを反射光
軸b線上に一列に配列する。また、光電センサ14は集
光凹面鏡15の焦点位置に配置する。
The condensing unit 5 is composed of a converging convex mirror 13, a photoelectric sensor 14, and a condensing concave mirror 15, and these are arranged in a line on the reflection optical axis b. The photoelectric sensor 14 is arranged at the focal position of the concave concave mirror 15.

【0016】分析器6は増幅器16と、A/D変換器1
7と、CPU18から構成され、それぞれを電気的に接
続する。
The analyzer 6 includes an amplifier 16 and an A / D converter 1
7 and a CPU 18, and each of them is electrically connected.

【0017】本発明を実施した分光分析機は以上のよう
な構成で、試料を試料部3の試料容器に投入して以下の
ようにして試料を測定する。まず、分光器2において光
源7から発せられた光をレンズ8により平行光線にし、
この平行光線をチョッパホイール9の回転により周期的
に分断した後、スリット10を通して純度の高い単色光
にする。
The spectroscopic analyzer embodying the present invention has a configuration as described above, and a sample is put into the sample container of the sample section 3 and the sample is measured as follows. First, the light emitted from the light source 7 in the spectroscope 2 is converted into a parallel light by the lens 8.
After the parallel rays are periodically divided by the rotation of the chopper wheel 9, the parallel rays are converted into high-purity monochromatic light through the slit 10.

【0018】この単色光を試料部3の投光面に照射し、
各々の波長における試料からの拡散反射光を集光凹面鏡
15で集光し、集光した拡散反射光をさらに集光凸面鏡
13で集光して光電センサ14に投光する。
The monochromatic light is applied to the light projecting surface of the sample section 3,
Diffuse reflected light from the sample at each wavelength is condensed by the condensing concave mirror 15, and the condensed diffuse reflected light is further condensed by the condensing convex mirror 13 and projected to the photoelectric sensor 14.

【0019】光電センサ14が受光した拡散反射光は、
増幅器16により増幅し、A/D変換器17によりデジ
タル信号に変換し、CPU18により吸光度を算出して
波長の順に並べ、近赤外スペクトルの実測データを取得
する。
The diffuse reflection light received by the photoelectric sensor 14 is:
The signal is amplified by the amplifier 16, converted into a digital signal by the A / D converter 17, the absorbance is calculated by the CPU 18, arranged in order of wavelength, and the measured data of the near-infrared spectrum is obtained.

【0020】成分量算出手段Cは、数式2に示す線形回
帰モデルの誤差を最小にするため、成分iの数をm(ア
ミロース、アミロペクチン、タンパク質、脂肪、水なら
5とする)として数式3に示す、誤差の2乗の和を最小
にする未知の係数αi を決定する。
In order to minimize the error of the linear regression model shown in Expression 2, the component amount calculation means C sets the number of components i to m (5 for amylose, amylopectin, protein, fat, and water). The unknown coefficient αi that minimizes the sum of the squares of the error shown is determined.

【数3】 すなわち、スペクトル測定手段Bが測定した近赤外スペ
クトルの実測データを数式3に当てはめ、最小2乗法に
よりFが最小となる係数αi を求め、この係数から成
分量を検出する。厳密にはこの係数αi と成分量は比
例するので、特定の種類の成分についての化学分析の結
果から比例定数を決めておく必要がある。なお、この方
法は諸種の加工を施したスペクトルにも適用できる。
(Equation 3) That is, the measured data of the near-infrared spectrum measured by the spectrum measuring means B is applied to Expression 3, a coefficient αi that minimizes F is obtained by the least square method, and the component amount is detected from this coefficient. Strictly, since the coefficient αi is proportional to the component amount, it is necessary to determine a proportional constant from the result of chemical analysis of a specific type of component. Note that this method can be applied to spectra processed in various ways.

【0021】[0021]

【発明の効果】本発明の成分量検出装置は以上のような
構成で、実際の対象食品の近赤外スペクトルを成分量で
重み付けした線形回帰モデルを作成し、このモデルを実
測の近赤外スペクトルに最小2乗法を当てはめ、重み付
けした係数を計算し、この係数から成分量を検出するこ
とにより、測定対象資料の成分量を検出する。従って、
本発明によれば、対象物質のスペクトルと成分のスペク
トルとを関係つける合理的モデルが存在し、解析に当た
って試行錯誤的要素がないので、客観的で精度の高い検
出ができる。また、解析のデータとして対象物質のスペ
クトルに成分の全スペクトルが加わるため解析に関する
情報量が格段に大きくなり、結果の信頼性が高い。一
方、解析のプログラムは簡単で計算時間も少ないという
特長を持つ。さらに、加工スペクトルにも適用できるの
で、従来の方法の改良にも資するという効果を奏する。
According to the component amount detecting apparatus of the present invention, a linear regression model in which the near-infrared spectrum of an actual target food is weighted by the component amount is created with the above-described configuration, and this model is used to measure the measured near-infrared light. The least squares method is applied to the spectrum, a weighted coefficient is calculated, and the component amount is detected from the coefficient, thereby detecting the component amount of the data to be measured. Therefore,
According to the present invention, there is a rational model for associating the spectrum of the target substance with the spectrum of the component, and there is no trial and error element in the analysis, so that objective and highly accurate detection can be performed. Further, since the entire spectrum of the component is added to the spectrum of the target substance as the data of the analysis, the amount of information regarding the analysis is significantly increased, and the reliability of the result is high. On the other hand, the analysis program has features that it is simple and requires little calculation time. Further, since the present invention can be applied to a processing spectrum, it has an effect of contributing to improvement of a conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料スペクトルは成分スペクトルの重ね合わせ
であることを示す図である。
FIG. 1 is a diagram showing that a sample spectrum is a superposition of component spectra.

【図2】本発明を実施した成分量検出装置の構成図であ
る。
FIG. 2 is a configuration diagram of a component amount detection device embodying the present invention.

【図3】本発明を実施したスペクトル測定手段としての
分光分析機の構成図である。
FIG. 3 is a configuration diagram of a spectroscopic analyzer as a spectrum measuring unit embodying the present invention.

【符号の説明】[Explanation of symbols]

1 近赤外線分光分析機 2 分光器 3 試料部 4 投光部 5 集光部 6 分析器 7 光源 8 レンズ 9 チョッパホイール 10 スリット 11 反射鏡 12 投光レンズ 13 集光凸面鏡 14 光電センサ 15 集光凹面鏡 16 増幅器 17 A/D変換器 18 CPU A 成分量算出モデル B 試料スペクトル測定手段 C 成分量算出手段 DESCRIPTION OF SYMBOLS 1 Near-infrared spectrometer 2 Spectroscope 3 Sample part 4 Projection part 5 Condensing part 6 Analyzer 7 Light source 8 Lens 9 Chopper wheel 10 Slit 11 Reflection mirror 12 Projection lens 13 Condensing convex mirror 14 Photoelectric sensor 15 Condensing concave mirror Reference Signs List 16 amplifier 17 A / D converter 18 CPU A component amount calculation model B sample spectrum measurement means C component amount calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 近赤外スペクトルを利用して試料の成分
組成を分析する分光分析機において、 試料のスペクトルを成分の純粋物質のスペクトルを成分
量で重み付けした線形和とする線形回帰モデルと、 試料のスペクトルを測定して実測データを取得するスペ
クトル測定手段と、 前記線形回帰モデルに前記実測データを当てはめて最小
2乗法により重み付けした成分量を算出する成分量算出
手段と、を備えることを特徴とするの成分量検出装置。
1. A spectroscopic analyzer for analyzing a component composition of a sample using a near-infrared spectrum, comprising: a linear regression model in which a spectrum of the sample is a linear sum obtained by weighting a spectrum of a pure substance of the component by a component amount; A spectrum measuring means for measuring a spectrum of the sample to obtain measured data; and a component amount calculating means for applying the measured data to the linear regression model to calculate a component weight weighted by a least squares method. And a component amount detection device.
JP24350997A 1997-08-26 1997-08-26 Component quantity detecting device for spectral analyzer Withdrawn JPH1164217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24350997A JPH1164217A (en) 1997-08-26 1997-08-26 Component quantity detecting device for spectral analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24350997A JPH1164217A (en) 1997-08-26 1997-08-26 Component quantity detecting device for spectral analyzer

Publications (1)

Publication Number Publication Date
JPH1164217A true JPH1164217A (en) 1999-03-05

Family

ID=17104969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24350997A Withdrawn JPH1164217A (en) 1997-08-26 1997-08-26 Component quantity detecting device for spectral analyzer

Country Status (1)

Country Link
JP (1) JPH1164217A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502631A (en) * 1999-06-11 2003-01-21 エフ.ホフマン−ラ ロシュ アーゲー Method and apparatus for testing biologically derived fluids
JP2007068857A (en) * 2005-08-09 2007-03-22 Kao Corp Infrared absorption spectrum measuring equipment
CN102636451A (en) * 2012-04-24 2012-08-15 上海海洋大学 Method for fast determination of phosphate content in hairtail surimi and fish paste
CN104122225A (en) * 2014-05-15 2014-10-29 安徽农业大学 Illegal tea additive identification method based on near-infrared spectrum technique
CN104568813A (en) * 2014-12-19 2015-04-29 浙江大学 Multi-index fast detection method of dogwood medicinal materials
CN104697956A (en) * 2015-03-31 2015-06-10 山东大学 Method for quickly determining moisture content in human coagulation factor VIII finished products
CN104990895A (en) * 2015-07-27 2015-10-21 浙江中烟工业有限责任公司 Near infrared spectral signal standard normal correction method based on local area
CN105181633A (en) * 2015-08-24 2015-12-23 河南省农业科学院 Nondestructive detection method for identifying F1 seed true/false between species of peanut with high oleic acid content and peanut with normal oleic acid content
WO2020008654A1 (en) * 2018-07-03 2020-01-09 フェムトディプロイメンツ株式会社 Sample analysis device and program for sample analysis

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502631A (en) * 1999-06-11 2003-01-21 エフ.ホフマン−ラ ロシュ アーゲー Method and apparatus for testing biologically derived fluids
JP2007068857A (en) * 2005-08-09 2007-03-22 Kao Corp Infrared absorption spectrum measuring equipment
CN102636451A (en) * 2012-04-24 2012-08-15 上海海洋大学 Method for fast determination of phosphate content in hairtail surimi and fish paste
CN104122225A (en) * 2014-05-15 2014-10-29 安徽农业大学 Illegal tea additive identification method based on near-infrared spectrum technique
CN104568813A (en) * 2014-12-19 2015-04-29 浙江大学 Multi-index fast detection method of dogwood medicinal materials
CN104697956A (en) * 2015-03-31 2015-06-10 山东大学 Method for quickly determining moisture content in human coagulation factor VIII finished products
CN104990895A (en) * 2015-07-27 2015-10-21 浙江中烟工业有限责任公司 Near infrared spectral signal standard normal correction method based on local area
CN105181633A (en) * 2015-08-24 2015-12-23 河南省农业科学院 Nondestructive detection method for identifying F1 seed true/false between species of peanut with high oleic acid content and peanut with normal oleic acid content
WO2020008654A1 (en) * 2018-07-03 2020-01-09 フェムトディプロイメンツ株式会社 Sample analysis device and program for sample analysis
JP2020008299A (en) * 2018-07-03 2020-01-16 フェムトディプロイメンツ株式会社 Sample analyzer and sample analysis program

Similar Documents

Publication Publication Date Title
US7868296B2 (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
JP3574851B2 (en) Method and apparatus for diagnosing mastitis using visible light and / or near infrared light
JP3526652B2 (en) Optical measuring method and optical measuring device
Eustaquio et al. Determination of paracetamol in intact tablets by use of near infrared transmittance spectroscopy
CN101201319B (en) Near-infrared spectrometer
Mantanus et al. Building the quality into pellet manufacturing environment–feasibility study and validation of an in-line quantitative near infrared (NIR) method
WO2001075420A1 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
CN109085136A (en) The method of near-infrared diffusing reflection spectrum measurement cement slurry oxide components content
CN110632021A (en) Spectrum detection method and system based on portable near-infrared spectrometer
CN107064044A (en) The quick determination method and device of polyphenol content in a kind of tea extract
JPH1164217A (en) Component quantity detecting device for spectral analyzer
CN109991181B (en) Adaptive surface absorption spectrum analysis method, system, storage medium and device
Dai et al. On-line UV-NIR spectroscopy as a process analytical technology (PAT) tool for on-line and real-time monitoring of the extraction process of Coptis Rhizome
RU2395073C2 (en) Method and equipment for quantitative analysis of solutions and dispersions using near-infrared spectroscopy
CN104596976A (en) Method for determining protein of paper-making reconstituted tobacco through ear infrared reflectance spectroscopy technique
Liyanage et al. Ultraviolet absorption spectroscopy of peptides
JP2007285922A (en) Clinical blood examination method using near infrared ray
JPH07151677A (en) Densitometer
JP2001516016A (en) NDIR photometer for measuring multiple components
JPH0781840B2 (en) Optical film thickness measuring device
JPH11173982A (en) Method and apparatus for measuring concentration of protein in serum
JPH07198600A (en) Fourier transform multi-component continuous absorption analyzer
JPH07318564A (en) Blood analyzer
JPH0414298B2 (en)
CN110907392A (en) Melamine detection system based on infrared spectroscopic analysis and application and method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102