JP2000105194A - Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce - Google Patents

Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce

Info

Publication number
JP2000105194A
JP2000105194A JP21887799A JP21887799A JP2000105194A JP 2000105194 A JP2000105194 A JP 2000105194A JP 21887799 A JP21887799 A JP 21887799A JP 21887799 A JP21887799 A JP 21887799A JP 2000105194 A JP2000105194 A JP 2000105194A
Authority
JP
Japan
Prior art keywords
taste
evaluation
value
degree
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21887799A
Other languages
Japanese (ja)
Inventor
Sadakazu Fujioka
定和 藤岡
Taiichi Mori
泰一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP21887799A priority Critical patent/JP2000105194A/en
Publication of JP2000105194A publication Critical patent/JP2000105194A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the influence of the degree of deterioration of farm produce that becomes the unstable element of taste and processing characteristic evaluation by determining the conversion coefficient of the taste and processing characteristic evaluation, and by evaluating the test and processing characteristics while limiting to the farm produce where the degree of deterioration is within a specific value. SOLUTION: In a spectral characteristic treatment means 201, the constituent of a sample is measured, and a chemical characteristic value is stored into a storage means 204. A taste evaluation conformity judgment means 202 reads the chemical characteristic value for indicating the degree of deterioration of the sample, and judges whether the sample conforms to taste evaluation or not. A taste evaluation means 203 calculates a taste evaluation value according to the chemical characteristic value and a taste relation expression. In addition to the taste evaluation means, a processing characteristic evaluation value may be calculated by a processing characteristic evaluation means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、穀類、豆類等の農
産物に可視光あるいは近赤外光を照射してその分光特性
により食味評価や加工特性評価を行う装置に関する。例
えば、光学的な農産物の食味評価装置や農産物の加工特
性評価装置としては、あらかじめ官能により求めた農産
物の食味評価値とその農産物に可視光あるいは近赤外光
を照射したときの複数の所定波長における吸光度との相
関から食味評価の換算係数を定め、この換算係数と供試
サンプルに可視光あるいは近赤外光を照射して得られた
所定波長における吸光度から直接食味評価値を求めるも
のと、あらかじめ官能により求めた農産物の食味評価値
とたんぱく質、脂肪酸、アミロースなどの米の食味に影
響する複数の所定成分の含有率との相関から食味評価の
換算係数を定め、この換算係数と供試サンプルに可視光
あるいは近赤外光を照射して所定成分にかかる波長の吸
光度を検出し、この吸光度とあらかじめ設定した検量線
により求めた所定成分の含有率から食味評価値を算出す
るものが知られている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for irradiating visible light or near-infrared light to agricultural products such as cereals and beans to evaluate taste and processing characteristics based on their spectral characteristics. For example, as an optical taste evaluation device for agricultural products or an evaluation device for processing characteristics of agricultural products, a taste evaluation value of agricultural products obtained in advance by a sensory function and a plurality of predetermined wavelengths when the agricultural products are irradiated with visible light or near-infrared light. Determine the conversion factor of the taste evaluation from the correlation with the absorbance in, and directly obtain the taste evaluation value from the absorbance at a predetermined wavelength obtained by irradiating the test sample with visible light or near-infrared light, A conversion factor for taste evaluation is determined from the correlation between the taste evaluation value of agricultural products obtained in advance by sensory function and the content of a plurality of predetermined components that affect the taste of rice such as protein, fatty acids, and amylose, and the conversion factor and the test sample are determined. Is irradiated with visible light or near-infrared light to detect the absorbance at a wavelength corresponding to a predetermined component, and the absorbance is calculated from the absorbance and a predetermined calibration curve. Calculates a taste evaluation value is known from the content of the component.

【0002】[0002]

【発明が解決しようとする課題】古米など新鮮度におい
て劣化度合の大きい農産物は、脂質が加水分解によって
遊離脂肪酸となり、それが糠層下部の澱粉と結合して粘
りや硬さ不良を生じるなどして、遊離脂肪酸の多いもの
ほど食味が不良となる。さらに、遊離脂肪酸は酸化物と
なって古米臭などの異臭を放つようになる。
Agricultural products, such as old rice, which have a high degree of deterioration in freshness, such as fat, are converted into free fatty acids by hydrolysis of the lipids, which combine with starch in the lower part of the bran layer to cause stickiness and poor hardness. Therefore, the more free fatty acids, the worse the taste. Further, the free fatty acids become oxides and emit off-flavors such as old rice odor.

【0003】一方、農産物の食味は官能によって定ま
り、官能検査の際は農産物の新旧に係らず一定の処理を
し、複数の専門審査官によって外観、香り、味、粘り、
硬さなどについて基準農産物と比較して食味を評価する
が、劣化度合の大きい農産物は、精穀時における糠落ち
の不安定さや人による個人差、特に臭いに対する判定の
ばらつきなどにより評価データが不安定になる。このた
め、供試サンプルに可視光あるいは近赤外光を照射して
その分光特性により農産物の食味評価を行う際に、供試
サンプルとは劣化度合が異なる農産物を官能検査して求
めた食味評価の換算係数を用いると精度が低下する。ま
た、上記と同様に農産物の化学成分に係わる加工特性評
価においても、供試サンプルとは劣化度合が異なる農産
物を官能検査して求めた加工特性評価の換算係数を用い
ると精度が低下する。
[0003] On the other hand, the taste of agricultural products is determined by sensory characteristics. At the time of sensory test, a certain treatment is performed regardless of whether the agricultural products are new or old, and the appearance, aroma, taste, stickiness,
The taste is evaluated in comparison with the reference agricultural products for hardness, etc., but for agricultural products with a high degree of deterioration, evaluation data is inadequate due to instability of rice bran removal at the time of milling, individual differences among people, especially variability in judgment on odors, etc. Become stable. Therefore, when the test sample is irradiated with visible light or near-infrared light to evaluate the taste of the agricultural product based on its spectral characteristics, the taste evaluation obtained by sensory inspection of the agricultural product with a different degree of deterioration from the test sample is determined. If the conversion coefficient is used, the accuracy is reduced. In the same manner as described above, in the evaluation of processing characteristics related to the chemical components of agricultural products, the accuracy is deteriorated by using a conversion coefficient for processing characteristics evaluation obtained by sensory inspection of agricultural products having a different degree of deterioration from the test sample.

【0004】そこで本発明は、劣化度合が所定値以下の
農産物に限定して食味評価及び加工特性評価の換算係数
の決定と食味評価及び加工特性評価を行うことにより、
食味評価及び加工特性評価の不安定要素となる農産物の
劣化度合の影響を取り除くことを目的になされたもので
ある。
[0004] Therefore, the present invention is to determine the conversion factor of the taste evaluation and processing characteristic evaluation and to evaluate the taste and processing characteristic only for agricultural products whose degree of deterioration is not more than a predetermined value.
The purpose of the present invention is to remove the influence of the degree of deterioration of agricultural products, which is an unstable factor in taste evaluation and processing characteristic evaluation.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention is configured as follows.

【0006】すなわち、請求項1の発明は、穀類、豆類
等の農産物の官能評価値とその穀類、豆類等の農産物の
分光特性との相関から食味評価の換算係数をあらかじめ
定め、この換算係数と供試サンプルに可視光あるいは近
赤外光を照射して得られる分光特性から食味評価値を算
出して該農産物の食味評価を行うものにおいて、劣化度
合が所定値以下の農産物により前記食味評価の換算係数
を決定する換算係数決定手段を備えることを特徴とする
農産物の食味評価装置である。請求項2の発明は、穀
類、豆類等の農産物の官能評価値とその穀類、豆類等の
農産物の分光特性との相関から食味評価の換算係数をあ
らかじめ定め、この換算係数と供試サンプルに可視光あ
るいは近赤外光を照射して得られる分光特性から食味評
価値を算出して該農産物の食味評価を行うものにおい
て、該農産物の劣化度合を検出する劣化度合検出手段
と、検出した該農産物の劣化度合によりその農産物が食
味評価に適合しているかどうかを判定する食味評価適合
判定手段と、を備えて前記劣化度合が所定値以下の農産
物により食味評価を行うことを特徴とする農産物の食味
評価装置である。請求項3の発明は、穀類、豆類等の農
産物の加工特性評価値とその穀類、豆類等の農産物の分
光特性との相関から加工特性評価の換算係数をあらかじ
め定め、この換算係数と供試サンプルに可視光あるいは
近赤外光を照射して得られる分光特性から加工特性評価
値を算出して該農産物の加工特性評価を行うものにおい
て、劣化度合が所定値以下の農産物により前記加工特性
評価の換算係数を決定する換算係数決定手段を備えるこ
とを特徴とする農産物の加工特性評価装置である。請求
項4の発明は、穀類、豆類等の農産物の加工特性評価値
とその穀類、豆類等の農産物の分光特性との相関から加
工特性評価の換算係数をあらかじめ定め、この換算係数
と供試サンプルに可視光あるいは近赤外光を照射して得
られる分光特性から加工特性評価値を算出して該農産物
の加工特性評価を行うものにおいて、該農産物の劣化度
合を検出する劣化度合検出手段と、検出した該農産物の
劣化度合によりその農産物が加工特性評価に適合してい
るかどうかを判定する加工特性評価適合判定手段と、を
備えて前記劣化度合が所定値以下の農産物により加工特
性評価を行うことを特徴とする農産物の加工特性評価装
置である。
That is, according to the first aspect of the present invention, a conversion factor for taste evaluation is determined in advance from the correlation between the sensory evaluation value of agricultural products such as cereals and beans and the spectral characteristics of the agricultural products such as cereals and beans. In the evaluation of the taste of the agricultural product by calculating the taste evaluation value from the spectral characteristics obtained by irradiating the test sample with visible light or near-infrared light, the degree of deterioration is determined by the agricultural product having a degree of deterioration equal to or less than a predetermined value. An agricultural product taste evaluation device comprising a conversion coefficient determining means for determining a conversion coefficient. According to the invention of claim 2, a conversion factor for taste evaluation is determined in advance from the correlation between the sensory evaluation value of agricultural products such as cereals and beans and the spectral characteristics of the agricultural products such as cereals and beans, and this conversion factor and the conversion factor and the visible A taste evaluation value is calculated from spectral characteristics obtained by irradiating light or near-infrared light to evaluate the taste of the agricultural product, wherein a deterioration degree detecting means for detecting the degree of deterioration of the agricultural product; A taste evaluation conformity determining means for determining whether the agricultural product conforms to the taste evaluation based on the degree of deterioration of the agricultural product, wherein the degree of deterioration is evaluated with respect to the agricultural product having a degree of deterioration equal to or less than a predetermined value. It is an evaluation device. According to the invention of claim 3, a conversion coefficient for processing characteristic evaluation is determined in advance from a correlation between the processing characteristic evaluation value of agricultural products such as cereals and beans and the spectral characteristics of the agricultural products such as cereals and beans, and the conversion coefficient and a sample sample are determined. Calculating the processing characteristic evaluation value from the spectral characteristics obtained by irradiating visible light or near-infrared light to evaluate the processing characteristics of the agricultural product, the degree of deterioration is less than a predetermined value of the agricultural product of the processing characteristics evaluation An agricultural product processing characteristic evaluation device comprising a conversion coefficient determining means for determining a conversion coefficient. According to the invention of claim 4, a conversion factor for processing characteristic evaluation is determined in advance from the correlation between the processing characteristic evaluation value of agricultural products such as cereals and beans and the spectral characteristics of the agricultural products such as cereals and beans, and the conversion factor and the test sample are determined. Deterioration degree detecting means for detecting the degree of deterioration of the agricultural product, in which the processing characteristic evaluation value is calculated by calculating the processing characteristic evaluation value from the spectral characteristic obtained by irradiating visible light or near infrared light to the agricultural product, Processing characteristic evaluation conformity determination means for determining whether the agricultural product conforms to the processing characteristic evaluation based on the detected degree of deterioration of the agricultural product, and performing processing characteristic evaluation with the agricultural product having the degree of deterioration equal to or less than a predetermined value. This is a device for evaluating the processing characteristics of agricultural products.

【0007】[0007]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に、本発明の食味評価装置の構成図を
示す。食味評価装置は、分光分析機Aと、その分光分析
機Aの各部を制御するとともに、分光分析機Aから得ら
れるデータの処理と食味評価を行う制御処理装置Bから
構成する。
FIG. 1 shows a configuration diagram of a taste evaluation device of the present invention. The taste evaluation device includes a spectroscopic analyzer A and a control processing device B that controls each unit of the spectroscopic analyzer A and performs processing of data obtained from the spectroscopic analyzer A and taste evaluation.

【0009】分光分析機Aは、光源1、反射鏡2、回析
格子3、レンズ4、波長校正用フィルタホイール5、反
射光用光検出器61、透過光用光検出器62、試料セル
7、排出弁8で構成し、反射鏡2、回析格子3、レンズ
4、波長校正用フィルタホイール5、試料セル7、反射
光用光検出器61、透過光用光検出器62をそれぞれ光
源1の光路上に配置する。
The spectroscopic analyzer A includes a light source 1, a reflecting mirror 2, a diffraction grating 3, a lens 4, a filter wheel 5 for wavelength calibration, a light detector 61 for reflected light, a light detector 62 for transmitted light, and a sample cell 7. , A discharge valve 8, and a reflecting mirror 2, a diffraction grating 3, a lens 4, a wavelength calibration filter wheel 5, a sample cell 7, a reflected light photodetector 61, and a transmitted light photodetector 62, respectively. On the optical path of

【0010】校正用フィルタは、波長校正用フィルタホ
イール5の駆動モータ5aを回転して光路上にセットす
る。分光は、回析格子3の駆動モータ3a(ステッピン
グモータ)を回動し、回析格子3の光軸に対する角度を
連続的に切換えて光の波長を変化させる。試料セル7
は、試料セル移送モータ(図示しない)により測定位置
まで移送し、測定終了後には所定位置まで戻るように構
成する。
The calibration filter is set on the optical path by rotating the drive motor 5a of the wavelength calibration filter wheel 5. In the spectroscopy, the wavelength of the light is changed by rotating the drive motor 3a (stepping motor) of the diffraction grating 3 and continuously switching the angle of the diffraction grating 3 with respect to the optical axis. Sample cell 7
Is configured to be transferred to a measurement position by a sample cell transfer motor (not shown), and to return to a predetermined position after the measurement is completed.

【0011】図2に、制御処理装置Bのブロック図を示
す。
FIG. 2 shows a block diagram of the control processor B.

【0012】図2において、20はCPU(中央処理装
置)であり、後述のような制御処理を行う。CPU20
には、入出力インタフェース21を介して光源3、回折
格子駆動モータ5、試料セル移送モータ22、透過光検
出器8、および反射光検出器9を接続する。また、CP
U20には、入力インタフェース23を介して入力キー
24を接続するとともに、出力インタフェース25を介
して表示装置26を接続する。さらに、CPU20に
は、後述のような処理手順を記憶するROM、およびデ
ータを一時的に記憶するRAMからなる記憶装置27を
接続する。
In FIG. 2, reference numeral 20 denotes a CPU (Central Processing Unit), which performs control processing as described later. CPU 20
Is connected to the light source 3, the diffraction grating drive motor 5, the sample cell transfer motor 22, the transmitted light detector 8, and the reflected light detector 9 via an input / output interface 21. Also, CP
U20 is connected to an input key 24 via an input interface 23 and a display device 26 via an output interface 25. Further, the CPU 20 is connected to a storage device 27 including a ROM for storing a processing procedure described later and a RAM for temporarily storing data.

【0013】図3に、食味評価装置の処理ブロック図を
示す。食味評価装置は、まず、分光特性処理手段201
において、基準板を分光分析機Aの測定位置にセット
し、分光分析機Aを動作させると、光源1から発射する
近赤外線は、反射鏡2を経由して回折格子3に到達し、
ここで分光されたのち、レンズ4、波長校正用フィルタ
ホイール5を経由して基準板で反射し、その反射光は反
射光検出器61で検出される。回折格子3の回転に伴っ
て反射光の波長が変わるので、反射光検出器61では波
長に応じた信号が連続的に検出される。そこで、その検
出信号を読み込む動作(対照スペクトルの測定)を、所
定回数行ったのち、そのスペクトルの平均を求める。
FIG. 3 shows a processing block diagram of the taste evaluation device. The taste evaluation device firstly includes a spectral characteristic processing unit 201.
In, when the reference plate is set at the measurement position of the spectrometer A and the spectrometer A is operated, the near-infrared ray emitted from the light source 1 reaches the diffraction grating 3 via the reflecting mirror 2,
After being separated here, the light is reflected by the reference plate via the lens 4 and the wavelength calibration filter wheel 5, and the reflected light is detected by the reflected light detector 61. Since the wavelength of the reflected light changes with the rotation of the diffraction grating 3, the reflected light detector 61 continuously detects a signal corresponding to the wavelength. Then, after performing the operation of reading the detection signal (measurement of the reference spectrum) a predetermined number of times, the average of the spectrum is obtained.

【0014】次に、測定成分の濃度がわかっている標準
試料の入った試料セル7を試料セル移送モータ(図示し
ない)を駆動して測定位置にセットする。そして、分光
分析機Aが再び動作すると、反射光検出器61は標準試
料からの反射光を検出する。そこで、標準試料のスペク
トルの測定を所定回数行ったのち、その測定スペクトル
の平均を求め、対照スペクトルと測定スペクトルとから
吸光度を算出する。
Next, the sample cell 7 containing the standard sample whose concentration of the measurement component is known is set at the measurement position by driving a sample cell transfer motor (not shown). Then, when the spectrometer A operates again, the reflected light detector 61 detects the reflected light from the standard sample. Therefore, after measuring the spectrum of the standard sample a predetermined number of times, the average of the measured spectra is obtained, and the absorbance is calculated from the control spectrum and the measured spectrum.

【0015】そして、濃度の異なる複数の標準試料につ
いて上述のように吸光度を求め、その測定吸光度と既知
の濃度に基づき、基準温度における検量線をあらかじめ
求めておく。
Then, the absorbance is determined for a plurality of standard samples having different concentrations as described above, and a calibration curve at a reference temperature is determined in advance based on the measured absorbance and the known concentration.

【0016】さらに、測定成分がわかっている標準試料
について、例えば温度が摂氏3度近傍、摂氏20度近
傍、および摂氏34度近傍における各吸光度スペクトル
を求め、引き続き、温度が摂氏20度のときの吸光度ス
ペクトルを基準とし、それと温度が摂氏3度のときの吸
光度スペクトルとのずれ量を算出するとともに、温度が
摂氏34度のときの吸光度スペクトルと上記の基準スペ
クトルとのずれ量をあらかじめ算出しておく。そして、
これら算出したずれ量を、記憶装置27にあらかじめ記
憶する。そして、測定する試料米が入った試料セル7を
測定位置にセットし、上記のようにして求めた検量線、
およびずれ量により試料米の成分測定を行い、測定の結
果得られた化学特性値を記憶手段204としての記憶装
置27に記憶する。
Further, with respect to a standard sample whose measurement components are known, for example, respective absorbance spectra at temperatures near 3 degrees Celsius, near 20 degrees Celsius, and near 34 degrees Celsius are determined. Subsequently, when the temperature is 20 degrees Celsius, Based on the absorbance spectrum as a reference, calculate the amount of deviation from the absorbance spectrum when the temperature is 3 degrees Celsius, and calculate the amount of deviation between the absorbance spectrum when the temperature is 34 degrees Celsius and the reference spectrum in advance. deep. And
These calculated shift amounts are stored in the storage device 27 in advance. Then, the sample cell 7 containing the sample rice to be measured is set at the measurement position, and the calibration curve obtained as described above is obtained.
The composition of the sample rice is measured based on the deviation and the amount of shift, and the chemical property values obtained as a result of the measurement are stored in the storage device 27 as the storage unit 204.

【0017】次に、食味評価適合判定手段202におい
て、記憶手段204より試料米の劣化度合を示す化学特
性値を読み出し、この試供米が食味評価に適合するかど
うかを判定する。試料米の劣化度合は、例えば、脂肪酸
度より判定し、玄米では30mgKOH/100g以
下、精米では6mgKOH/100g以下のものを食味
評価適合と判定する。そして、脂肪酸度がこれ以上のも
のを食味評価不適合と判定する。試料米の劣化度合は、
この他に水溶性酸度、PH酸性度、発芽率、酵素活性、
結合脂質含有率、色調変化、肌荒れ度合などによって判
定してもよい。これらの値は理化学的な分析装置や近赤
外光による光学的な分析装置によって測定することがで
きる。
Next, in the taste evaluation conformity determination means 202, a chemical property value indicating the degree of deterioration of the sampled rice is read from the storage means 204, and it is determined whether or not the sample rice conforms to the taste evaluation. The degree of deterioration of the sampled rice is determined, for example, from the degree of fatty acid, and brown rice having a concentration of 30 mgKOH / 100 g or less and polished rice having a concentration of 6 mgKOH / 100 g or less are determined to be suitable for taste evaluation. Then, those having a fatty acid degree higher than this are determined to be unsuitable for taste evaluation. The degree of deterioration of the sample rice is
In addition, water-soluble acidity, PH acidity, germination rate, enzyme activity,
The determination may be made based on the bound lipid content, color tone change, skin roughness, and the like. These values can be measured by a physicochemical analyzer or an optical analyzer using near-infrared light.

【0018】次に、食味評価手段203において、記憶
手段204より試料米の化学特性値を読み出し、この化
学特性値と食味評価の換算係数から食味評価値を算出す
る。この換算係数は、上述の脂肪酸度が玄米では30m
gKOH/100g以下、精米では6mgKOH/10
0g以下の米を官能検査して求めた米の食味評価値に基
づいて設定する。そして、算出した食味評価値を表示装
置26に出力して表示する。
Next, the taste evaluation means 203 reads the chemical characteristic value of the sampled rice from the storage means 204 and calculates a taste evaluation value from the chemical characteristic value and the conversion coefficient of the taste evaluation. The conversion factor is as follows.
gKOH / 100g or less, 6mgKOH / 10 for polished rice
It is set based on the taste evaluation value of rice obtained by sensory test of rice of 0 g or less. Then, the calculated taste evaluation value is output to the display device 26 and displayed.

【0019】次に、複数の特定波長の近赤外光を米に照
射したときの吸光度から食味評価値とは異なる指標値を
回帰分析によって求め、得られた指標値の予測値を官能
による食味推定値の回帰式に代入して食味総合評価値を
算出する米の食味評価方法について説明する。
Next, an index value different from the taste evaluation value is determined by regression analysis from the absorbance when the rice is irradiated with near-infrared light of a plurality of specific wavelengths, and the predicted value of the obtained index value is determined by sensory taste. A description will be given of a rice taste evaluation method of calculating a comprehensive taste evaluation value by substituting the estimated value into a regression equation.

【0020】この食味評価方法は、米の食味を推計する
ための特定指標値(G値)を算出するのに必要な複数の
特定波長の近赤外光を米に照射したときの吸光度を検出
する。そして、検出した複数の吸光度にG値に換算する
ための定数を乗算してG値を求める。次に、G値から官
能による食味推定値(食味総合評価値)に換算するため
の食味評価係数を用いて米の食味推定値を算出する。
This taste evaluation method detects the absorbance when irradiating rice with a plurality of near-infrared lights having specific wavelengths necessary for calculating a specific index value (G value) for estimating the taste of rice. I do. Then, a G value is obtained by multiplying the plurality of detected absorbances by a constant for converting into a G value. Next, a rice taste estimation value is calculated using a taste evaluation coefficient for converting the G value to a sensory taste estimation value (taste total evaluation value).

【0021】具体的には、米のうまみはマグネシウムが
関係し、蛋白質を構成する窒素やカリウムあるいは澱粉
質に占めるアミロースの含有率が多いと食味を低下させ
ることから、G=Mg/K/N/Aml と定義する。 ここで、Mg :マグネシウム(mg/100g) K :カリウム (mg/100g) N :窒素 (%) Aml:アミロース (%) である。 上記の複数の特定波長における吸光度をXiとして G=k0 +k1 *X1 +k2 *X2 +・・+kn*Xn (1) とする。ここで、kiは定数で多数個の米を化学分析し
てG値を求め、かつ特定波長における吸光度を測定して
おき重回帰分析によりあらかじめ求めておく。次に、こ
のG値を食味推定値Tに換算する。 T=A*G+B (2) ここで、A、Bは食味評価係数で、官能による食味総合
評価値とG値の相関によりあらかじめ決定された定数で
ある。以上の(1)、(2)式により、米の食味推定値
を算出する。このとき、マグネシウム、カリウム、窒
素、アミロースをそれぞれ独立した回帰式で算出して表
示装置26に多次元マップ表示する。これにより、米の
食味推定値と含有成分の関係がマップ表示されるので、
施肥改善の指針を一目で認識できる。
Specifically, the taste of rice is related to magnesium, and if the content of amylose in nitrogen, potassium or starch constituting protein is high, the taste is reduced. Therefore, G = Mg / K / N / Aml. Here, Mg: magnesium (mg / 100 g) K: potassium (mg / 100 g) N: nitrogen (%) Aml: amylose (%) G = k0 + k1 * X1 + k2 * X2 +. + Kn * Xn (1) Here, ki is a constant, and a large number of rice are chemically analyzed to determine a G value, and absorbance at a specific wavelength is measured, and is previously determined by a multiple regression analysis. Next, this G value is converted into a taste estimation value T. T = A * G + B (2) Here, A and B are taste evaluation coefficients, which are constants determined in advance by the correlation between the taste-evaluated overall taste-based evaluation value and the G value. From the above equations (1) and (2), the estimated rice taste is calculated. At this time, magnesium, potassium, nitrogen, and amylose are calculated by independent regression equations, respectively, and displayed on the display device 26 as a multidimensional map. As a result, the relationship between the estimated value of the taste of rice and the contained components is displayed on a map,
You can recognize at a glance the guidelines for improving fertilizer application.

【0022】上記の例では、特定指標値(G値)から食
味推定値を求めたが、予め官能により求めた食味評価値
と、近赤外光の照射による吸光度との相関から食味評価
の換算係数を決定手段で決定し、この換算係数と所定波
長の吸光度から直接食味評価値を求めてもよい。
In the above example, the taste estimation value was obtained from the specific index value (G value). However, the conversion of the taste evaluation was performed based on the correlation between the taste evaluation value obtained in advance by the sensory function and the absorbance due to the irradiation of near-infrared light. The coefficient may be determined by the determining means, and the taste evaluation value may be directly obtained from the conversion coefficient and the absorbance at a predetermined wavelength.

【0023】次に、食味評価のもう一つの柱である理化
学的分析値に基づいて食味評価を行う装置について説明
する。この装置は、米に近赤外線を照射して得られる分
光特性から理化学的分析値を求め、この値に換算のため
の特定定数を乗じて米の外観、香り、味、粘り、硬さ、
総合の官能評価値(T値)を単独もしくは複数算出す
る。このときの換算のための特定定数は、劣化度合が所
定値以下の米を官能検査して求めた官能評価値に基づい
て設定する。
Next, an apparatus for evaluating taste based on physicochemical analysis values, which is another pillar of taste evaluation, will be described. This device calculates the physicochemical analysis value from the spectral characteristics obtained by irradiating the rice with near-infrared light, multiplies this value by a specific constant for conversion, and looks, aroma, taste, stickiness, hardness,
One or more total sensory evaluation values (T values) are calculated. The specific constant for the conversion at this time is set based on a sensory evaluation value obtained by performing a sensory test on rice whose degree of deterioration is equal to or less than a predetermined value.

【0024】官能評価値を求めるための特定指標値(G
値)は、少なくともマグネシウムとカリウムをベースに
した複数の含有成分やブレークダウン値などの理化学的
分析値を夫々求め、それらの組合せで算出する。なお、
味、粘り、総合の官能評価値を求める場合は、 G=Mg/K G=Mg/K/N G=Mg/K/N/Aml G=Mg*(Mg+K)/K/N G=Mg*P/K/N G=a*Mg+b*K+c*N+d*Aml などのよ
うに設定し、前記と同様の方法をもってG値からT値を
求める。ここで、P :リン (mg/100g)
である。また、硬さの官能評価値を求める場合は、H=
1/G などのように設定することにより、求めること
ができる。
A specific index value (G) for obtaining a sensory evaluation value
The value) is calculated based on at least a plurality of components based on magnesium and potassium and physicochemical analysis values such as a breakdown value, and a combination thereof. In addition,
To obtain the taste, stickiness and overall sensory evaluation value, G = Mg / K G = Mg / K / NG = Mg / K / N / Aml G = Mg * (Mg + K) / K / NG = Mg * P / K / NG = a * Mg + b * K + c * N + d * Aml, etc., and the T value is determined from the G value by the same method as described above. Here, P: phosphorus (mg / 100 g)
It is. When the sensory evaluation value of hardness is obtained, H =
It can be obtained by setting such as 1 / G.

【0025】香りの官能評価値は、米の香気成分を検出
する匂いセンサ出力を理化学的分析値とし、これに換算
のための特定定数を乗じて算出する。匂いセンサ出力
は、米の劣化度合に応じて増加し、劣化度合が所定値以
上になると香りの官能評価値は多岐にわたり安定しな
い。従って、香りの官能評価において、劣化度合が所定
値以下の米に限定することにより、評価値が安定して精
度が向上する。また、劣化度合判定に、前述の脂肪酸度
等に換えて匂いセンサ出力を用いて食味評価に適合する
かどうかを判定してもよい。この場合、劣化度合検出手
段として、米からの揮発性成分を検出する半導体型匂い
センサやフラーレン分子構造を有するC60等で構成され
た匂いセンサ等種々なものがあり、このセンサを試料セ
ル近傍に設定(図示せず)することでミネラル等の成分
と並行して測定できる。
The sensory evaluation value of the fragrance is calculated by multiplying the output of the odor sensor for detecting the fragrance component of rice as a physicochemical analysis value and a specific constant for conversion. The output of the odor sensor increases in accordance with the degree of deterioration of the rice, and when the degree of deterioration exceeds a predetermined value, the sensory evaluation value of the scent varies and is not stable. Therefore, in the sensory evaluation of the fragrance, by limiting the degree of deterioration to rice having a degree of deterioration equal to or less than a predetermined value, the evaluation value is stabilized and the accuracy is improved. Further, in determining the degree of deterioration, it may be determined whether or not the degree of deterioration matches the taste evaluation by using the output of the odor sensor instead of the fatty acid degree described above. In this case, as the deterioration degree detecting means, there are those, such as variety odor sensor configured with C 60 or the like having a semiconductor-type odor sensor or a fullerene molecular structure of detecting the volatile components from the US, near the sample cell the sensor (Not shown), measurement can be performed in parallel with components such as minerals.

【0026】米の外観の官能評価値は、白度計などの出
力を理化学的分析値とし、これに換算のための特定定数
を乗じて算出する。炊飯した米の外観評価は、炊飯前の
精米の白度や色調と深い関連があることが知られてい
る。すなわち、白度の低い精米や黄色みのある精米を炊
飯すると、官能評価値は低くなる。また、所定の精米条
件下では、玄米と精米の色調と白度は深い関係があり、
例えば、玄米白度の高い米は精米後の白度も高く、炊飯
後の外観の官能評価値も高い。しかし、劣化が進行した
場合、退色や表面の肌荒れなどにより米の白度や色調の
測定値が安定しない。例えば、劣化が進行した玄米は肌
荒れが著しく、白度の測定値は見かけ上高くなり、精米
や炊飯後の評価と異なることがある。従って、米の外観
の官能評価において、劣化度合が所定値以下の米に限定
することにより、評価値が安定して精度が向上する。
The sensory evaluation value of the appearance of rice is calculated by multiplying the output of a whiteness meter or the like as a physicochemical analysis value by a specific constant for conversion. It is known that the appearance evaluation of cooked rice is closely related to the whiteness and color tone of the polished rice before cooking. That is, when rice with low whiteness or rice with a yellow tint is cooked, the sensory evaluation value decreases. In addition, under predetermined rice polishing conditions, the color tone and whiteness of brown rice and rice are deeply related,
For example, rice with a high degree of whiteness of brown rice has a high degree of whiteness after rice polishing and a high sensory evaluation value of the appearance after cooking. However, when the deterioration progresses, the measured values of whiteness and color tone of rice are not stable due to fading or rough surface. For example, brown rice that has deteriorated has significantly roughened skin, and the measured value of whiteness is apparently high, which may be different from the evaluation after rice polishing or rice cooking. Therefore, in the sensory evaluation of the appearance of rice, by limiting the degree of deterioration to rice having a degree of deterioration equal to or less than a predetermined value, the evaluation value is stabilized and the accuracy is improved.

【0027】この他、炊飯米をテクスチュロメータによ
って測定した粘弾性特性値(粘りと硬さのバランス)、
精米粉をアミログラフィーによって測定した熱糊化特性
値(最高粘度、ブレークダウン、セットバックなどの特
性値)、炊飯液をクッキングクオリティテストによって
測定したヨード呈色度などを理化学的分析値として官能
評価値を算出する。
In addition, a viscoelastic characteristic value (balance between stickiness and hardness) of cooked rice measured by a texturometer,
Sensory evaluation of thermal gelatinization characteristic values (characteristic values of maximum viscosity, breakdown, setback, etc.) measured by amyography of milled rice powder, and iodine coloration measured by cooking quality test of cooked rice liquor as physicochemical analysis values Calculate the value.

【0028】劣化が進行した場合、粘弾性特性値は粘り
が減って硬さが増すという形で明瞭な差が出てくる。ま
た、ブレークダウン値は値が大きいほど良食味米とされ
ているが、劣化が進行した場合、熱糊化特性値は、例え
ば、ブレークダウン値が大きくなることがあり、評価が
不適切になる。従って、粘弾性特性値や熱糊化特性値に
よる米の官能評価において、劣化度合が所定値以下の米
に限定することにより、評価値が安定して精度が向上す
る。
When the deterioration proceeds, a clear difference appears in the viscoelastic characteristic value in the form that the viscosity decreases and the hardness increases. In addition, the higher the breakdown value, the better the taste of the rice, but if the deterioration progresses, the thermal gelatinization characteristic value, for example, the breakdown value may increase, and the evaluation becomes inappropriate. . Therefore, in the sensory evaluation of rice based on the viscoelastic characteristic value and the thermal gelatinization characteristic value, the evaluation value is stabilized and the accuracy is improved by limiting the degree of deterioration to rice having a predetermined degree or less.

【0029】また、炊飯液のヨード呈色度は値が小さい
ほど粘りのある良食味米とされているが、例えば、炊飯
液のヨード呈色度が大きく不良食味米とされる米でも、
劣化が進行した場合、炊飯液のヨード呈色度が小さくな
ることがあり、評価が不適切になる。従って、炊飯液の
ヨード呈色度による米の官能評価において、劣化度合が
所定値以下の米に限定することにより、評価値が安定し
て精度が向上する。
Further, the smaller the value of the iodine coloration of the cooked rice liquid, the more sticky and good-tasting rice is.
When the deterioration proceeds, the degree of iodine coloration of the rice cooking liquid may decrease, and the evaluation becomes inappropriate. Therefore, in the sensory evaluation of rice based on the degree of iodine coloration of the rice cooking liquid, by limiting the degree of deterioration to rice having a degree of deterioration equal to or less than a predetermined value, the evaluation value is stabilized and accuracy is improved.

【0030】なお、以上は、うるち米を対象に説明した
が、もち米の外観、香り、味、こし、のび、硬さ、総合
の官能評価を行う際にも適用できる。それだけでなく、
小麦や大麦、コーヒー豆、トウモロコシなどの原料から
製造される食品類の官能評価にも適用できる。例えば、
小麦粉のゆで麺の色、外観、硬さ、粘弾性、なめらか
さ、味、総合などの官能評価についても適用できる。こ
の小麦のパンや麺の食味評価値を求める場合は、G=M
g*N/K などのように設定する。以下にそれらの代
表的実施例として小麦のゆで麺の食味評価方法について
説明する。ゆで麺原材料の小麦原粒もしくは小麦粉で劣
化度合いの制限されたサンプルの理化学分析値(G値、
I値)を以下の実施例の方法で求め、 G=Mg*N/K G=最高粘度、ブレークダウン、セットバック等の特性
値(アミログラフ) I=f(L,a,b)(色調) 次に理化学分析値を算出したサンプルによりゆで麺を製
作し官能検査を実施して得たデータから官能評価値Tと
しての色、外観、硬さ、粘弾性、なめらかさ、味、総合
に換算するための定数を決定しG値(I値)からT値へ
の換算式を作製する。 T=A*G(もしくはI)+B (A,Bは定数) これよりあらかじめ作製された可視および近赤分析によ
るG値(I値)から上記T値への換算式を用いることで
迅速かつ簡便に官能食味評価値を得ることができる。大
豆、小豆、コーヒー豆等の豆類についても米麦同様の作
用効果を有する。その事例として、豆腐製造用原料大豆
の分光特性と製品豆腐の官能評価値との相関から豆腐の
食味評価の換算係数をあらかじめ定め、この換算係数と
供試原料大豆に可視から近赤光を照射して得られる分光
特性から食味評価値を算出して原料大豆の食味評価を行
うものにおいて、原料大豆の劣化度合い検出手段と検出
した原料大豆の劣化度合いによりその原料大豆が豆腐と
しての食味評価に適合するかどうかを判定する食味評価
適合判定手段とを備えて、劣化度合いが所定値以下の原
料大豆に限定して前記豆腐としての食味評価の換算係数
の決定と豆腐としての食味評価を行う場合について説明
する。豆腐は米麦に比較して地域性の高い食品であり豆
腐の官能評価方法として全国的に統一された方法はない
が、米麦の加工食品同様に外観色調、硬さ・弾力・舌触
りなどのテクスチャ、甘味・苦味・コクなどの呈味特
性、食味総合評価値等の評価項目で評価している。一般
に柔らかく滑らかな舌触りで且つホンノリした甘味とコ
クを感じるものが良とされる。これらの評価項目は原料
大豆のタンパク含量Cp、全糖含量Cs、不飽和脂肪酸含量
Cf等の複数の化学成分含量が大きく関与している。たと
えば、甘味の食味評価値Tg、硬さの食味評価値Thを Tg=bCs+cCf (b、cは定数) Th=a’Cp+b’Cs+c’Cf (a’、b’、c’は定
数) 複数の化学成分値を分光分析方法で求めて上記食味評価
式に代入して各々食味評価値を算出する。一方、原料大
豆の乾燥・調整処理や貯蔵状態によってはその劣化度合
い(逆にいえば新鮮度)が異なる。劣化の進んだ大豆は
脂質が変化し特に不飽和脂肪酸が酸化し飽和脂肪酸へ変
化するにつれ甘味を中心として呈味特性、テクスチャ等
に不良をきたし良食味とはいいがたい。その過程は米麦
同様に複雑多岐になり食味評価としての定量的安定性に
欠く。よって、試料原料大豆の劣化度合いを、脂肪酸
度、水溶性酸度、PH酸性度、発芽率、色調変化、等より
判定する。したがって、上記の代表的実施例である甘
味、硬さ食味評価値を算出する際の食味評価の換算係数
であるb、c、a’、b’、c’は劣化度合いを所定値
以下に限定した多数個の供試原料大豆の複数の化学成分
値と供試原料大豆から所定の工程条件で製造した製品豆
腐の官能検査による食味評価値との相関により決定す
る。また、食味評価値の算出方法としては、官能評価値
を直接、分光特性から求めてもよい。さらに、テクスチ
ョロメータによるテクスチャ特性値やバイオセンサ等の
味覚センサ特性値を官能評価値の代用特性値として分光
特性から求めて次に代用特性値と官能評価値の関係から
食味評価値を決定することもよい。以上の構成により劣
化の進んだ原料大豆の評価を除外することで、その製品
である豆腐の食味評価を正確、迅速かつ簡便に実施でき
る。このことは豆腐のみならず味噌や豆乳加工において
も同様である。
Although the above description has been made with reference to glutinous rice, the present invention can also be applied to the evaluation of glutinous rice in appearance, fragrance, taste, stiffness, spread, hardness, and overall sensory evaluation. not only that,
The present invention can also be applied to sensory evaluation of foods produced from raw materials such as wheat, barley, coffee beans, and corn. For example,
The present invention can also be applied to sensory evaluation such as color, appearance, hardness, viscoelasticity, smoothness, taste, and overall quality of boiled noodles of flour. When calculating the taste evaluation value of this wheat bread or noodle, G = M
Set as g * N / K. Hereinafter, a method for evaluating the taste of boiled wheat noodles will be described as a representative example thereof. Physicochemical analysis values (G value,
G = Mg * N / K G = Characteristic values of maximum viscosity, breakdown, setback, etc. (amylograph) I = f (L, a, b) (color tone) Next, boiled noodles are manufactured from the sample for which the physicochemical analysis values have been calculated, and the data obtained by conducting a sensory test are converted into color, appearance, hardness, viscoelasticity, smoothness, taste, and overall as a sensory evaluation value T. And a conversion formula from the G value (I value) to the T value is prepared. T = A * G (or I) + B (A and B are constants) Quick and simple by using the above-mentioned conversion formula from G value (I value) by visual and near-red analysis to T value. The sensory taste evaluation value can be obtained. Beans such as soybeans, red beans and coffee beans also have the same effect as rice and wheat. As an example, a conversion factor for taste evaluation of tofu is determined in advance from the correlation between the spectral characteristics of the raw soybean for tofu production and the sensory evaluation value of the product tofu, and the conversion factor and the test raw soybean are irradiated with visible to near red light. In the evaluation of the taste of the raw material soybean by calculating the taste evaluation value from the spectral characteristics obtained by the method, the raw material soybean is used for the evaluation of the taste of tofu as a tofu based on the degree of deterioration detection of the raw material soybean and the detected degree of deterioration of the raw material soybean. A taste evaluation suitability determination means for determining whether or not the taste is good, when the degree of deterioration is limited to a raw material soybean having a predetermined value or less and the conversion coefficient of the taste evaluation as the tofu is determined and the taste evaluation as the tofu is performed. Will be described. Tofu is a food with high locality compared to rice and wheat, and there is no standardized method for the sensory evaluation of tofu nationwide.However, as with processed rice and wheat, the appearance color, hardness, elasticity, tongue, etc. Evaluation is made based on evaluation items such as texture, taste characteristics such as sweetness, bitterness, and richness, and overall evaluation value of taste. In general, those that have a soft and smooth tongue and feel a sweet and rich taste are considered good. These evaluation items were the protein content Cp, total sugar content Cs, and unsaturated fatty acid content of the raw soybeans.
The contents of multiple chemical components such as Cf are greatly involved. For example, the taste evaluation value Tg of sweetness and the taste evaluation value Th of hardness are expressed as follows: Tg = bCs + cCf (b and c are constants) Th = a'Cp + b'Cs + c'Cf (a ', b', c 'Is a constant) A plurality of chemical component values are obtained by a spectroscopic analysis method and substituted into the above-mentioned taste evaluation formula to calculate each taste evaluation value. On the other hand, the degree of deterioration (or, conversely, the degree of freshness) of the raw soybeans varies depending on the drying / adjustment treatment and storage conditions. Deteriorated soybeans have a change in lipids, and in particular, as the unsaturated fatty acids are oxidized and converted to saturated fatty acids, exhibit poor taste characteristics and texture, mainly sweetness, and are not very good in taste. The process is as complicated and diverse as rice and wheat, and lacks quantitative stability as a taste evaluation. Therefore, the degree of degradation of the sample soybean is determined from the degree of fatty acid, the degree of water-soluble acidity, the degree of PH acidity, the rate of germination, the change in color tone, and the like. Therefore, the conversion factors b, c, a ', b', and c 'of the taste evaluation when calculating the sweetness and hardness taste evaluation values of the above-described representative examples limit the degree of deterioration to a predetermined value or less. It is determined by the correlation between a plurality of chemical component values of a large number of test material soybeans and a taste evaluation value by sensory test of a product tofu produced from the test material soybeans under predetermined process conditions. As a method of calculating the taste evaluation value, the sensory evaluation value may be directly obtained from the spectral characteristics. Further, a texture characteristic value by a text cholometer or a taste sensor characteristic value such as a biosensor is obtained from a spectral characteristic as a substitute characteristic value of a sensory evaluation value, and then a taste evaluation value is determined from a relationship between the substitute characteristic value and the sensory evaluation value. It is also good. By excluding the evaluation of the deteriorated raw material soybean by the above configuration, the taste evaluation of the product tofu can be accurately, promptly and simply performed. This is true not only for tofu but also for processing miso and soy milk.

【0031】以上の食味評価の結果は、図4に示すよう
に、縦軸をG値(あるいはT値)、横軸を新鮮度(もし
くは劣化度合)とする2次元座標を9分割したセグメン
トのどの位置に属するかで表示する。このセグメントか
ら、食味評価値と新鮮度を切り離して別々に認識するこ
とができる。 ここで、新鮮度=100−玄米脂肪酸度 あるいは 新鮮度=100−精米脂肪酸度*5 とする。 即ち、新鮮度=100−劣化度、と表すことができる。
脂肪酸度、匂いのほかに、種々の劣化度合判定手段を用
いてよい。例えば、 新鮮度=発芽率 新鮮度=100−色調変化度合 のように表すことができる。
As shown in FIG. 4, the results of the above-mentioned taste evaluation are obtained by dividing a two-dimensional coordinate into nine segments in which the vertical axis is the G value (or T value) and the horizontal axis is the freshness (or the degree of deterioration). Indicate to which position it belongs. From this segment, the taste evaluation value and the freshness can be separately recognized separately. Here, freshness = 100−brown rice fatty acid degree or freshness = 100−milled rice fatty acid degree * 5. That is, freshness = 100−deterioration degree can be expressed.
In addition to the fatty acid degree and odor, various means for determining the degree of deterioration may be used. For example, freshness = germination rate freshness = 100−color tone change degree.

【0032】上記セグメントには、それぞれ精米の目標
歩留りを明示する。例えば、セグメント1、2、4は、
良食味米で新鮮度も高いので、精米の目標歩留りを90
%として糠落ちを少なめにする。セグメント3、5、
6、7は、食味と新鮮度が中程度なので、精米の目標歩
留りを89%とする。セグメント8、9は、食味と新鮮
度が低いので、精米の目標歩留りを88%として糠落ち
を多めにするなどである。なお、精米の目標歩留り値は
精米機の種類によって個別に設定する。以上のように新
鮮度が所定以内の食味評価値と新鮮度を別々に数値化表
示することで精米歩留り制御のめやすがたち、作業の合
理的管理ができる。
Each of the above segments clearly indicates a target yield of milled rice. For example, segments 1, 2, 4
Good yield rice and high freshness, so target yield of 90
% To reduce bran dropping. Segments 3, 5,
In Nos. 6 and 7, since the taste and freshness are moderate, the target yield of milled rice is set to 89%. Segments 8 and 9 have low taste and freshness, so that the target yield of milled rice is 88% and the amount of rice bran is increased. It should be noted that the target yield value of rice milling is set individually according to the type of rice milling machine. As described above, by separately displaying the taste evaluation value and the freshness of which the freshness is within a predetermined value as a numerical value, it is possible to control rice yield and control the work rationally.

【0033】上記セグメントには、それぞれブレンドの
適・不適を明示する。例えば、上記の目標歩留りで精米
した場合、隣り合うセグメント間でブレンド可とする。
また、玄米の場合、隣り合う縦方向のセグメント間でブ
レンド可とするなどである。新鮮度が所定以内の食味評
価値と新鮮度を、別々の数値化表示することで、種々の
ブレンドの指標が立ち合理的なブレンド管理ができ、ブ
レンド後の品質が安定する。
In the above segments, the suitability or unsuitability of the blend is specified. For example, when rice is polished at the above target yield, blending is possible between adjacent segments.
In the case of brown rice, blending can be performed between adjacent vertical segments. By displaying the taste evaluation value and the freshness with freshness within a predetermined range as different numerical values, various blending indexes can be set and rational blend management can be performed, and the quality after blending is stabilized.

【0034】上記セグメントの分割境界値は、米の用
途、品種、産地、年次などによって可変にする。例え
ば、劣化しやすい品種、未熟粒が多い品種や産地では新
鮮度の分割境界値を厳しく設定する。また、不作年次に
は良品が少ないので分割境界値を甘く設定するなどであ
る。
The segmentation boundary value of the above segment is made variable depending on the purpose, variety, place of production, year, etc. of rice. For example, in the case of varieties that are easily degraded, varieties with many immature grains, and production areas, the freshness division boundary value is set strictly. Further, since there are few non-defective products in the poor year, the division boundary value is set loosely.

【0035】上記セグメントの分割境界値を、精米機の
種類や精米歩留りなどの精米条件によって可変にする。
例えば、精米後段に研米手段を持つ場合は、新鮮度の分
割境界値を甘く設定する。また、精米歩留りを多くして
糠を残す場合は、新鮮度の分割境界値を厳しく設定する
などである。
The segmentation boundary value of the segment is made variable depending on the milling conditions such as the type of milling machine and milling yield.
For example, when a rice polishing means is provided at the latter stage of the rice polishing, the division boundary value of the freshness is set loosely. In addition, when the rice bran yield is increased and the bran is left, the dividing boundary value of the freshness is set strictly.

【0036】以上の食味評価の結果は、上記座標におけ
る基準米の評価値を基準点とする位置からの方向と距離
で良否を判定すると好適である。基準サンプルの新鮮度
φ,評価値Tを点A(φ0,T0)に置く。ここで、基準サ
ンプルは滋賀県産日本晴とするも良し、ユーザが、実測
値として あるいは仮想値として任意
に設定しても良い。そこで、測定対象サンプル 点P
(φ,T)とし、点Aと点Pの距離として幾何学距離を
実例にとりrとする。すると、例えば、次のような判定
がなされる。 r<r1のとき 基準サンプルAと同等である。 r1<r<r2のとき 不確定域で明確に判断は出来
ないが基準サンプルAとは異なり以下の評価に近いと判
断される。 r2<rのとき φ=φ0、T=T0 線で区画され
る4つの象限ごと次のように評価される。 ・P1ゾーン ;サンプルAに対し評価値Tで良、新鮮度
φで良 ・P2ゾーン ;サンプルAに対し評価値Tで不良、新鮮
度φで良 ・P3ゾーン ;サンプルAに対し評価値Tで不良、新鮮
度φで不良 ・P4ゾーン ;サンプルAに対し評価値Tで良、新鮮度
φで不良 以上のように、評価対象サンプルと基準サンプルの相対
的評価をすることで、通常、基準サンプルに対する相対
評価値として数値定量化する官能検査による食味評価値
を絶対的評価値として算出するために実状の精度をこえ
た従来の食味評価方法に比較して、基準サンプルが劣化
した場合の官能検査による食味評価にも、その劣化度合
いを明確にすることで所定の劣化度合の範囲にわたり適
応でき、またその相対評価として算出した数値の信頼性
が高い。基準サンプルと同等であるなど実態に即した評
価値も得られる特徴を持つ。さらに精米作業、ブレンド
作業等の過去の実績に即したサンプルを基準サンプルと
して(実測値でも仮想値でも可)任意に1点ないし複数
点をユーザが設定することで、過去の経験と本発明の定
量的評価値を組み合わせたより確実性の高い評価となり
大きい効果を生む。あるいは、任意の基準点からの方向
と距離によって良否を判定してもよい。
It is preferable that the result of the above-mentioned taste evaluation is determined based on the direction and the distance from the position using the evaluation value of the reference rice at the coordinates as the reference point. The freshness φ and the evaluation value T of the reference sample are set at a point A (φ0, T0). Here, the reference sample may be Nipponbare from Shiga Prefecture, or the user may arbitrarily set it as a measured value or a virtual value. Therefore, the sample point P
Let (φ, T) be the geometric distance as an example of the distance between point A and point P, and let it be r. Then, for example, the following determination is made. When r <r1, it is equivalent to the reference sample A. When r1 <r <r2 Although the judgment cannot be clearly made in the uncertainty region, unlike the reference sample A, it is judged that the evaluation is close to the following. When r2 <r Each of the four quadrants defined by the line φ = φ0 and T = T0 is evaluated as follows.・ P1 zone: good for evaluation value T for sample A, good for freshness φ ・ P2 zone: bad for evaluation value T for sample A, good for freshness φ ・ P3 zone: good for evaluation value T for sample A Poor, poor in freshness φ ・ P4 zone: good in evaluation value T with respect to sample A, poor in freshness φ As described above, the relative evaluation of the sample to be evaluated and the reference sample is usually performed to obtain the reference sample. Quantitatively quantifies the evaluation value as a relative evaluation value to the sensory test.The sensory test is used to calculate the taste evaluation value as the absolute evaluation value. By clarifying the degree of deterioration, it can be applied to a range of a predetermined degree of deterioration, and the reliability of the numerical value calculated as the relative evaluation is high. It has the characteristic that the evaluation value according to the actual situation can be obtained, such as being equivalent to the reference sample. Further, the user can set one or more points arbitrarily as a reference sample (either an actual measurement value or a virtual value) based on the past results of the rice milling operation, the blending operation, etc. Combining the quantitative evaluation values makes the evaluation more reliable and produces a great effect. Alternatively, pass / fail may be determined based on a direction and a distance from an arbitrary reference point.

【0037】以上の食味評価の結果は、T値(あるいは
G値)と新鮮度を乗算した次の式で評価してもよい。 総合評価=T(あるいはG)・(新鮮度) ここで、a,bは定数とする。定数a、bは、米の用
途、品種、産地、年次などによって変更する。または、
精米機の種類や精米歩留りなどの精米条件によって変更
する。または、貯蔵温度などの貯蔵条件によって変更す
る。食味評価において新鮮度は大きく影響し劣化度合い
により複雑な特性を示すので、従来の食味評価値では、
劣化情報も加味して食味評価しているので精度不良のた
め、格付けには利用しがたいが、上記のように食味評価
値(新鮮度の高い状態での官能値)と新鮮度(劣化度合
い)を乗算して格付けとしての総合評価値を算出するこ
とで、劣化の進行したサンプルであっても、信頼性のあ
る総合評価値を得ることができ、現状の品質を的確に捉
えた合理的な格付けができる。
The result of the above taste evaluation is the T value (or
G value) and freshness may be multiplied by the following equation. Comprehensive evaluation = Ta(Or Ga) ・ (Freshness)b  Here, a and b are constants. Constants a and b are for rice
Change according to the method, variety, production area, year, etc. Or
Changes depending on milling conditions such as mill type and milling yield
I do. Alternatively, change according to storage conditions such as storage temperature.
You. Freshness greatly influences taste evaluation
Because it shows more complex characteristics, the conventional taste evaluation value
Because the taste is evaluated taking into account the deterioration information, the accuracy is poor.
Is difficult to use for rating, but as described above, taste evaluation
Value (sensory value in the state of high freshness) and freshness (degree of deterioration)
) To calculate the overall evaluation value as a rating.
Therefore, even if the sample has deteriorated,
To obtain a comprehensive evaluation value that accurately captures the current quality.
Can be given a reasonable rating.

【0038】次に、本発明の食味評価装置が算出した食
味評価値を試料米の劣化度合によって補正する装置につ
いて説明する。本発明の食味評価装置は、劣化度合が所
定値以下の米に限定して食味評価を行うので、劣化度合
が所定値以上の米については食味評価ができない。そこ
で、劣化度合が所定値以上の米であっても、その劣化度
合に応じて補正をかけることにより、劣化度合によらず
安定した食味評価ができるようにする。
Next, an apparatus for correcting the taste evaluation value calculated by the taste evaluation apparatus of the present invention according to the degree of deterioration of sample rice will be described. Since the taste evaluation device of the present invention evaluates the taste only for rice having a degree of deterioration equal to or less than a predetermined value, the taste evaluation cannot be performed for rice having a degree of deterioration equal to or more than a predetermined value. Therefore, even if the degree of deterioration of rice is equal to or more than a predetermined value, a correction is made in accordance with the degree of deterioration so that stable taste evaluation can be performed regardless of the degree of deterioration.

【0039】このため、例えば、次の計算式によって食
味評価値を補正する。玄米の場合、 補正後の食味評価値=食味評価値×(100−脂肪酸
度)/100 精米の場合、 補正後の食味評価値=食味評価値×(100−脂肪酸度
*5)/100 以上は、食味評価に関する例について説明したが、農産
物の加工特性評価の際にも、劣化度合を加味した評価が
重要であり、以下米加工、麦加工、豆加工について順次
説明する。先ず米加工について、説明する。米の炊飯加
工において、一般に炊飯時の水加減量(加水量)は白米
重量の1.4〜1.6倍程度とされ適宜炊飯時に調整されてい
る。最近の炊飯器では水加減量の不適合にも対応すべく
マイコン火力制御対応がなされてはいるが、種々の原料
米に対応した適正な仕上がり米飯を得るには水加減量が
適正であることが重要である。水加減量は原料米の複数
の化学成分値により支配され食味評価値同様に分光分析
手段で測定できる。しかし、劣化が進行した場合、水加
減量を10%増量し炊飯してきたが、安定して十分な仕上
がりの米飯にはなっていない。したがって、劣化度合い
を限定した範囲において米の水加減量を推定すること
は、仕上がり米飯の品質の安定化に大きく寄与する。こ
のことは、米の炊飯時の水加減量に限定したことではな
く、種々の米の精米歩留、精米時の精米抵抗(精米のし
易さ)、米粉加工特性等、米の複数の化学成分に係わる
加工特性評価値に応用される。また、小麦の加工におい
ても、上記同様に加工工程に係わる小麦の複数の化学成
分に係わる特性評価値に応用される。その事例として製
粉特性評価値の1つであるふすま質混入率を劣化度合い
を限定した範囲において推定することについて説明す
る。ふすま質混入率は製品小麦粉に混入した穀皮の粉砕
量を示しており、穀皮の製粉時のはがれやすさを知るこ
とができ原料小麦の複数の化学成分値により支配され米
の水加減量と同様に分光分析手段で測定できる。しか
し、劣化が進行した場合、特に発芽率が低下した原料小
麦においてはふすま質混入率は不安定であり十分な仕上
がりの小麦粉とはいえない。したがって、劣化度合いを
限定した範囲においてをふすま質混入率を推定すること
は、製粉加工時の品質の安定化に大きく寄与する。この
ことは、小麦の製粉時の歩留、製粉時の製粉抵抗(製粉
のし易さ)、その他の製粉特性評価値等、小麦の複数の
化学成分に係わる加工特性評価値に応用される。さら
に、豆類は脂質含量、タンパク含量も多いので、原料の
劣化度合いに伴う脂質、タンパク質の変性は加工製品の
食味評価のみならず、たとえば大豆においては豆腐加工
中の凝固特性やおから生成量すなわち豆腐の歩留まり、
豆乳の収率など種々の品質に著しく影響する。これらの
品質特性評価値は、原料大豆の複数の化学成分値により
支配され米の水加減量と同様に分光分析手段で測定でき
る。したがって、劣化度合いを限定した範囲においてを
豆腐加工中の凝固特性やおから生成量すなわち豆腐の歩
留まり、豆乳の収率など種々の加工時の特性評価値を推
定することは、加工時の品質の安定化に大きく寄与す
る。新鮮度が影響する加工特性評価値について、新鮮度
が所定値以内の炊飯加工時の水加減量、精米加工時の精
米抵抗、等の米加工特性評価値、小麦製粉加工時のふす
ま質混入率等の製粉特性評価値、や豆腐加工時の凝固特
性、歩留等の豆腐加工特性評価値とその原材料の新鮮度
(劣化度合い)を2分し評価することで、その原材料が
保有する加工特性を一義的に評価値として評価するもの
よりも、より的確な評価ができ、加工条件等の設定予測
が立ちその原材料に応じた適切な処理ができ、仕上製品
の品質が安定する。代表的実施としては、図4のような
二次元表示が望ましい。さらに、3次元表示等内容に応
じて高度化してもよい。なお、新鮮度が影響する加工特
性評価値では、従来方式では劣化情報も加味して評価し
ているので精度不良のため、加工適正の格付けには利用
しがたいが、上記のように新鮮度の高い状態での加工特
性評価値と新鮮度(劣化度合い)を乗算して格付けとし
ての総合評価値を算出することで現状の品質を的確に捉
えた合理的な格付けができる。また、米飯加工、製粉加
工、豆腐加工等の業者にあっては、穀粒や豆類において
原料状態で劣化度合い(新鮮度)を検出し、その食味の
みならず加工時の品質評価するに適合か不適合かを簡便
に判定することで、その仕上がり製品の品質向上に寄与
するところである。
For this reason, for example, the taste evaluation value is corrected by the following formula. In the case of brown rice, the corrected taste evaluation value = taste evaluation value x (100-fatty acid degree) / 100 In the case of polished rice, the corrected taste evaluation value = taste evaluation value x (100-fatty acid degree * 5) / 100 Although the example relating to taste evaluation has been described, it is important to evaluate the degree of deterioration in the evaluation of the processing characteristics of agricultural products, and rice processing, wheat processing, and bean processing will be sequentially described below. First, rice processing will be described. In the rice cooking process, the weight loss (water content) during rice cooking is generally about 1.4 to 1.6 times the weight of white rice, and is appropriately adjusted during rice cooking. In recent rice cookers, microcomputer thermal control has been adopted to cope with incompatibilities in water weight loss, but water weight loss is appropriate in order to obtain appropriate finished rice for various raw rice. is important. The water loss is governed by a plurality of chemical component values of the raw rice and can be measured by spectroscopic analysis means like the taste evaluation value. However, when the deterioration has progressed, the rice has been cooked by increasing the water loss by 10%, but the rice is not stable and sufficiently finished. Therefore, estimating the water weight loss of rice within a range in which the degree of deterioration is limited greatly contributes to stabilization of the quality of finished cooked rice. This is not limited to water loss during rice cooking, but is not limited to rice milling yield, rice milling resistance (easiness of rice milling), rice flour processing characteristics, and other chemical properties of rice. Applied to the processing characteristic evaluation value related to the component. Also in the processing of wheat, similarly to the above, the present invention is applied to characteristic evaluation values of a plurality of chemical components of wheat in the processing step. As an example thereof, estimation of the bran contamination rate, which is one of the milling characteristic evaluation values, in a range in which the degree of deterioration is limited will be described. The bran mixing ratio indicates the amount of crushed husk mixed in the product flour, which indicates the ease of peeling during husk milling and is governed by multiple chemical component values of raw wheat, and the water weight loss of rice Can be measured by the spectroscopic analysis means in the same manner as described above. However, when the deterioration progresses, especially in the raw wheat in which the germination rate is lowered, the bran mixing ratio is unstable and it cannot be said that the wheat flour is a sufficiently finished flour. Therefore, estimating the bran mixing ratio in a range in which the degree of deterioration is limited greatly contributes to stabilization of quality during milling. This is applied to processing characteristic evaluation values relating to a plurality of chemical components of wheat, such as the yield at the time of milling wheat, the milling resistance at the time of milling (easiness of milling), and other evaluation values of milling characteristics. Further, since beans have a high lipid content and protein content, the modification of lipids and proteins due to the degree of deterioration of raw materials is not limited to the evaluation of the taste of processed products.For example, in the case of soybean, the coagulation characteristics during tofu processing and the amount of okara production, The yield of tofu,
It significantly affects various qualities such as the yield of soymilk. These quality characteristic evaluation values are governed by a plurality of chemical component values of the raw material soybean, and can be measured by spectroscopic analysis means in the same manner as the water weight loss of rice. Therefore, in the range where the degree of deterioration is limited, estimating the characteristic evaluation values at the time of various processings such as the coagulation characteristics during the tofu processing and the amount of okara generation, that is, the yield of the tofu, the yield of soymilk, it is the quality of the processing It greatly contributes to stabilization. Regarding the processing characteristic evaluation value affected by freshness, rice processing characteristic evaluation values such as water loss during rice cooking with freshness within a predetermined value, rice resistance during rice polishing, bran mixing ratio during wheat flour processing The evaluation value of flour milling characteristics such as tofu, the solidification characteristics during tofu processing, the evaluation value of tofu processing characteristics such as yield, and the freshness (degree of deterioration) of the raw material are evaluated in two parts, and the processing characteristics possessed by the raw material are evaluated. Can be evaluated more accurately than the one which is uniquely evaluated as an evaluation value, setting conditions such as processing conditions can be predicted, appropriate processing can be performed according to the raw material, and the quality of the finished product can be stabilized. In a typical implementation, a two-dimensional display as shown in FIG. 4 is desirable. Further, it may be advanced according to the contents such as three-dimensional display. In the processing characteristic evaluation value affected by the freshness, the conventional method is evaluated in consideration of the deterioration information. Therefore, the accuracy is poor. By multiplying the processing characteristic evaluation value in a high state and the freshness (degree of deterioration) to calculate an overall evaluation value as a rating, a reasonable rating that accurately captures the current quality can be obtained. In addition, for companies that process cooked rice, milling, tofu, etc., whether the degree of deterioration (freshness) of the grains or beans in the raw material state is detected, and whether it is suitable for evaluating not only the taste but also the quality during processing By simply determining whether or not it is non-conforming, it is contributing to the improvement of the quality of the finished product.

【0040】[0040]

【発明の効果】例えば、米が劣化すると成分や性状が酸
化作用で変化し、米の食味変化は複雑多岐にわたるた
め、米の食味評価値は大きくばらつき不安定になる。そ
こで本発明は、劣化度合が所定値以下の場合に食味評価
の換算係数の決定と食味評価を行う。従って、本発明に
よれば、食味評価の不安定要素となる農産物の劣化度合
の影響を取り除いて食味評価を行うので、従来の評価デ
ータに比べて精度と信頼性が大幅に向上する。即ち、従
来、劣化も含めた1つの食味評価値であったため、たと
えば、劣化の著しいものかどうかが明瞭でないのでその
品質情報は具体性に欠けており、その後の加工、処理工
程の制御・計画が立てにくいのが現実であった。すなわ
ち、加工工程中の原料から製品への変化は、すべて原料
中に存在する化学成分の変化を伴うものである。したが
って、劣化による原料の化学成分の変化や変質は加工、
処理工程に大きく関与し仕上製品の品質に大きく影響し
制御、調整の対応が不充分であった。しかし、上記のよ
うに評価を2分することで、劣化状態が良好な時点での
食味評価値、あるいはこの食味評価値と劣化状況を並列
的評価ができるので、たとえば米においては、品質別仕
分け指標、精米歩留の制御、ブレンドの指針、炊飯工程
の水加減・火力制御等に活用できる。また、新鮮度が影
響する加工特性評価値について、新鮮度が所定値以内の
炊飯加工時の水加減量、精米加工時の精米抵抗、等の米
加工特性評価値、小麦製粉加工時のふすま質混入率等の
製粉特性評価値、や豆腐加工時の凝固特性、歩留等の豆
腐加工特性評価値とその原材料の新鮮度(劣化度合い)
を2分し評価することで、その原材料が保有する加工特
性を一義的に評価値として評価するものよりも、より的
確な評価ができ、加工条件等の設定予測が立ちその原材
料に応じた適切な処理ができ、仕上製品の品質が安定す
る。
For example, when rice deteriorates, its components and properties change by oxidizing action, and the change in the taste of rice is complicated and diversified. Therefore, the evaluation value of the taste of rice greatly varies and becomes unstable. Therefore, in the present invention, when the degree of deterioration is equal to or less than a predetermined value, determination of a conversion coefficient for taste evaluation and taste evaluation are performed. Therefore, according to the present invention, since the taste evaluation is performed by removing the influence of the degree of deterioration of the agricultural product, which is an unstable factor of the taste evaluation, accuracy and reliability are greatly improved as compared with the conventional evaluation data. That is, conventionally, since one taste evaluation value including deterioration was used, for example, it was not clear whether or not the deterioration was remarkable. Therefore, the quality information lacked specificity. It was a reality that it was difficult to stand. That is, any change from a raw material to a product during a processing step is accompanied by a change in a chemical component present in the raw material. Therefore, changes and alterations in the chemical composition of the raw materials due to deterioration are processed,
It was greatly involved in the treatment process, greatly affected the quality of the finished product, and the control and adjustment were insufficient. However, by dividing the evaluation into two as described above, the taste evaluation value at the time when the deterioration state is good or the taste evaluation value and the deterioration state can be evaluated in parallel. It can be used for index, rice yield control, blending guideline, water control / heat control of rice cooking process, etc. In addition, regarding the processing characteristic evaluation value affected by the freshness, rice processing characteristic evaluation values such as water loss during rice processing, freshness resistance during rice polishing, etc., and bran quality during wheat milling, where the freshness is within a predetermined value Evaluation value of milling characteristics such as mixing ratio, solidification characteristics during tofu processing, evaluation value of tofu processing characteristics such as yield, and freshness of raw materials (degree of deterioration)
Is divided into two and evaluated, the more accurate evaluation can be performed than the one that uniquely evaluates the processing characteristics possessed by the raw material as an evaluation value. Process, and the quality of finished products is stable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の全体の構成を示す図である。FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention.

【図2】その制御処理系のブロック図である。FIG. 2 is a block diagram of the control processing system.

【図3】その食味評価装置の処理ブロック図である。FIG. 3 is a processing block diagram of the taste evaluation device.

【図4】食味評価結果を2次元座標にセグメント図で表
示したある。
FIG. 4 is a diagram showing the taste evaluation results in two-dimensional coordinates in a segment diagram.

【図5】食味評価結果を、2次元座標上のφ=φ0、T=
T0 線で区画される4つの象限に表示した図である。
FIG. 5 shows the results of taste evaluation on two-dimensional coordinates φ = φ0, T =
It is a figure displayed in four quadrants divided by the T0 line.

【符号の説明】[Explanation of symbols]

1 光源 2 反射鏡 3 回析格子 4 レンズ 5 波長校正用フィルタホイール 6 光検出器 7 試料セル 8 排出弁 20 CPU 21 入出力インタフェース 22 試料セル移送モータ 23 入力インタフェース 24 入力キー 25 出力インタフェース 26 表示装置 27 記憶装置 A 分光分析機 B 制御処理装置 Reference Signs List 1 light source 2 reflecting mirror 3 diffraction grating 4 lens 5 wavelength calibration filter wheel 6 photodetector 7 sample cell 8 discharge valve 20 CPU 21 input / output interface 22 sample cell transfer motor 23 input interface 24 input key 25 output interface 26 display device 27 Storage device A Spectroscopic analyzer B Control processor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 穀類、豆類等の農産物の官能評価値とそ
の穀類、豆類等の農産物の分光特性との相関から食味評
価の換算係数をあらかじめ定め、この換算係数と供試サ
ンプルに可視光あるいは近赤外光を照射して得られる分
光特性から食味評価値を算出して該農産物の食味評価を
行うものにおいて、 劣化度合が所定値以下の農産物により前記食味評価の換
算係数を決定する換算係数決定手段を備えることを特徴
とする農産物の食味評価装置。
1. A conversion factor for taste evaluation is determined in advance from a correlation between a sensory evaluation value of agricultural products such as cereals and beans and the spectral characteristics of agricultural products such as cereals and beans, and the conversion factor and visible light or Calculating a taste evaluation value from spectral characteristics obtained by irradiating near-infrared light to evaluate the taste of the agricultural product, wherein a conversion factor for determining a conversion factor of the taste evaluation with the agricultural product having a degree of deterioration of not more than a predetermined value. An apparatus for evaluating the taste of agricultural products, comprising a determination unit.
【請求項2】 穀類、豆類等の農産物の官能評価値とそ
の穀類、豆類等の農産物の分光特性との相関から食味評
価の換算係数をあらかじめ定め、この換算係数と供試サ
ンプルに可視光あるいは近赤外光を照射して得られる分
光特性から食味評価値を算出して該農産物の食味評価を
行うものにおいて、 該農産物の劣化度合を検出する劣化度合検出手段と、 検出した該農産物の劣化度合によりその農産物が食味評
価に適合しているかどうかを判定する食味評価適合判定
手段と、を備えて前記劣化度合が所定値以下の農産物に
より食味評価を行うことを特徴とする請求項1記載の農
産物の食味評価装置。
2. A conversion factor for taste evaluation is determined in advance from a correlation between a sensory evaluation value of an agricultural product such as cereals and beans and the spectral characteristics of the agricultural product such as a cereal and beans, and the conversion factor and visible light or A device for calculating the taste evaluation value from the spectral characteristics obtained by irradiating near-infrared light and evaluating the taste of the agricultural product, wherein a deterioration degree detecting means for detecting the degree of deterioration of the agricultural product; 2. A taste evaluation suitability determining means for judging whether or not the agricultural product conforms to the taste evaluation according to the degree, and the taste evaluation is performed on the agricultural products whose degree of deterioration is equal to or less than a predetermined value. A taste evaluation device for agricultural products.
【請求項3】 穀類、豆類等の農産物の加工特性評価値
とその穀類、豆類等の農産物の分光特性との相関から加
工特性評価の換算係数をあらかじめ定め、この換算係数
と供試サンプルに可視光あるいは近赤外光を照射して得
られる分光特性から加工特性評価値を算出して該農産物
の加工特性評価を行うものにおいて、 劣化度合が所定値以下の農産物により前記加工特性評価
の換算係数を決定する換算係数決定手段を備えることを
特徴とする農産物の加工特性評価装置。
3. A conversion coefficient for processing characteristic evaluation is determined in advance from a correlation between the processing characteristic evaluation value of agricultural products such as cereals and beans and the spectral characteristics of the agricultural products such as cereals and beans, and the conversion coefficient and the conversion coefficient are visualized in the test sample. A processing characteristic evaluation value is calculated from spectral characteristics obtained by irradiating light or near-infrared light to evaluate the processing characteristics of the agricultural product. A processing characteristic evaluation device for agricultural products, comprising a conversion coefficient determining means for determining the processing coefficient.
【請求項4】 穀類、豆類等の農産物の加工特性評価値
とその穀類、豆類等の農産物の分光特性との相関から加
工特性評価の換算係数をあらかじめ定め、この換算係数
と供試サンプルに可視光あるいは近赤外光を照射して得
られる分光特性から加工特性評価値を算出して該農産物
の加工特性評価を行うものにおいて、 該農産物の劣化度合を検出する劣化度合検出手段と、 検出した該農産物の劣化度合によりその農産物が加工特
性評価に適合しているかどうかを判定する加工特性評価
適合判定手段と、を備えて前記劣化度合が所定値以下の
農産物により加工特性評価を行うことを特徴とする請求
項3記載の農産物の加工特性評価装置。
4. A conversion coefficient for processing characteristic evaluation is determined in advance from a correlation between the processing characteristic evaluation value of agricultural products such as cereals and beans and the spectral characteristics of the agricultural products such as cereals and beans, and the conversion coefficient and the conversion factor are visualized in a test sample. A processing characteristic evaluation value is calculated from spectral characteristics obtained by irradiating light or near-infrared light to evaluate processing characteristics of the agricultural product; and a deterioration degree detecting means for detecting a deterioration degree of the agricultural product. Processing characteristic evaluation conformity determination means for determining whether the agricultural product conforms to the processing characteristic evaluation based on the degree of deterioration of the agricultural product, and performing the processing characteristic evaluation with the agricultural product having the degree of deterioration equal to or less than a predetermined value. 4. The apparatus for evaluating processing characteristics of agricultural products according to claim 3.
JP21887799A 1998-07-31 1999-08-02 Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce Withdrawn JP2000105194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21887799A JP2000105194A (en) 1998-07-31 1999-08-02 Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-217384 1998-07-31
JP21738498 1998-07-31
JP21887799A JP2000105194A (en) 1998-07-31 1999-08-02 Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce

Publications (1)

Publication Number Publication Date
JP2000105194A true JP2000105194A (en) 2000-04-11

Family

ID=26521991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21887799A Withdrawn JP2000105194A (en) 1998-07-31 1999-08-02 Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce

Country Status (1)

Country Link
JP (1) JP2000105194A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015903A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic electronic component
JP2005111170A (en) * 2003-10-10 2005-04-28 Inoac Corp Method for designing facial sponge
JP2010025883A (en) * 2008-07-24 2010-02-04 Gifu Univ Method of evaluating freshness of fruit and vegetable
CN106295185A (en) * 2016-08-11 2017-01-04 云南中烟工业有限责任公司 A kind of quantitative forecasting technique of Medicated cigarette cocoa odor type
CN106290638A (en) * 2016-08-11 2017-01-04 云南中烟工业有限责任公司 A kind of quantitative forecasting technique of Medicated cigarette bean odor type
KR20180048084A (en) * 2016-11-02 2018-05-10 한국식품연구원 Quality measurement system of rice
KR20180048265A (en) * 2016-11-02 2018-05-10 한국식품연구원 Method for Evaluating An Eating Quality of Rice
WO2018084612A1 (en) * 2016-11-02 2018-05-11 한국식품연구원 System for measuring quality of rice, method for evaluating palatability of rice, system for predicting germination rate of grain and method for predicting germination rate
KR20190049251A (en) * 2017-11-01 2019-05-09 한국식품연구원 Prediction System and Prediction Method for Germination Rate of Grain
KR102012758B1 (en) * 2018-02-28 2019-10-21 주식회사 크레펀 Electronic Commerce System of Agricultural and Animal and Fishery Products using Mobile Application based on Social Platform
CN111307735A (en) * 2019-12-04 2020-06-19 佛山科学技术学院 Detection method of bean curd product
JP2020154854A (en) * 2019-03-20 2020-09-24 株式会社ニコン Inspection device, evaluation device, and program
CN114136918A (en) * 2021-11-29 2022-03-04 中国科学院合肥物质科学研究院 Near-infrared-based rice taste quality evaluation method
JP7262868B1 (en) * 2022-11-29 2023-04-24 順彦 佐藤 Apparatus for providing taste information of packaged cooked rice and system for providing taste information of packaged cooked rice
WO2024053616A1 (en) * 2022-09-08 2024-03-14 順彦 佐藤 Taste information providing device and taste information providing system for rice balls or cooked rice packs

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015903A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic electronic component
JP4501235B2 (en) * 2000-06-29 2010-07-14 パナソニック株式会社 Manufacturing method of ceramic electronic component
JP2005111170A (en) * 2003-10-10 2005-04-28 Inoac Corp Method for designing facial sponge
JP2010025883A (en) * 2008-07-24 2010-02-04 Gifu Univ Method of evaluating freshness of fruit and vegetable
CN106295185A (en) * 2016-08-11 2017-01-04 云南中烟工业有限责任公司 A kind of quantitative forecasting technique of Medicated cigarette cocoa odor type
CN106290638A (en) * 2016-08-11 2017-01-04 云南中烟工业有限责任公司 A kind of quantitative forecasting technique of Medicated cigarette bean odor type
KR101979832B1 (en) * 2016-11-02 2019-05-17 한국식품연구원 Method for Evaluating An Eating Quality of Rice
KR102434363B1 (en) * 2016-11-02 2022-08-19 한국식품연구원 Quality measurement system of rice
WO2018084612A1 (en) * 2016-11-02 2018-05-11 한국식품연구원 System for measuring quality of rice, method for evaluating palatability of rice, system for predicting germination rate of grain and method for predicting germination rate
KR20180048265A (en) * 2016-11-02 2018-05-10 한국식품연구원 Method for Evaluating An Eating Quality of Rice
KR20180048084A (en) * 2016-11-02 2018-05-10 한국식품연구원 Quality measurement system of rice
KR102138808B1 (en) * 2017-11-01 2020-07-29 한국식품연구원 Prediction System and Prediction Method for Germination Rate of Grain
KR20190049251A (en) * 2017-11-01 2019-05-09 한국식품연구원 Prediction System and Prediction Method for Germination Rate of Grain
KR102012758B1 (en) * 2018-02-28 2019-10-21 주식회사 크레펀 Electronic Commerce System of Agricultural and Animal and Fishery Products using Mobile Application based on Social Platform
JP2020154854A (en) * 2019-03-20 2020-09-24 株式会社ニコン Inspection device, evaluation device, and program
CN111307735A (en) * 2019-12-04 2020-06-19 佛山科学技术学院 Detection method of bean curd product
CN114136918A (en) * 2021-11-29 2022-03-04 中国科学院合肥物质科学研究院 Near-infrared-based rice taste quality evaluation method
CN114136918B (en) * 2021-11-29 2023-11-14 中国科学院合肥物质科学研究院 Near infrared-based rice taste quality evaluation method
WO2024053616A1 (en) * 2022-09-08 2024-03-14 順彦 佐藤 Taste information providing device and taste information providing system for rice balls or cooked rice packs
JP7262868B1 (en) * 2022-11-29 2023-04-24 順彦 佐藤 Apparatus for providing taste information of packaged cooked rice and system for providing taste information of packaged cooked rice

Similar Documents

Publication Publication Date Title
Villareal et al. Rice amylose analysis by near-infrared transmittance spectroscopy
JP2000105194A (en) Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce
Oyeyinka et al. Value added snacks produced from Bambara groundnut (Vigna subterranea) paste or flour
Poysa et al. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality
Kong et al. Advances in instrumental methods to determine food quality deterioration
Heenan et al. Characterisation of fresh bread flavour: Relationships between sensory characteristics and volatile composition
Windham et al. Prediction of cooked rice texture quality using near‐infrared reflectance analysis of whole‐grain milled samples
Su et al. Chemometrics in tandem with near infrared (NIR) hyperspectral imaging and Fourier transform mid infrared (FT-MIR) microspectroscopy for variety identification and cooking loss determination of sweet potato
Billiris et al. Rice degree of milling effects on hydration, texture, sensory and energy characteristics. Part 1. Cooking using excess water
Lanning et al. Comparison of milling characteristics of hybrid and pureline rice cultivars
Escuredo et al. Potential of near infrared spectroscopy for predicting the physicochemical properties on potato flesh
Botosoa et al. Use of front face fluorescence for monitoring lipid oxidation during ageing of cakes
Champagne et al. Near‐infrared reflectance analysis for prediction of cooked rice texture
Lado et al. Integration of sensory analysis into plant breeding: a review
Barton et al. Optimal geometries for the development of rice quality spectroscopic chemometric models
Kawamura et al. Visual and near-infrared reflectance spectroscopy for rice taste evaluation
Simonelli et al. Chemical, physical, textural and sensory evaluation on Italian rice varieties
Kwak et al. Influence of rice varieties on sensory profile and consumer acceptance for frozen-cooked rice.
JP3495185B2 (en) Method and apparatus for measuring rice taste value
Muktiningrum et al. Sensory profile analysis of chocolate drinks using quantitative descriptive analysis (QDA)
Chun et al. Effects of various steeping periods on physical and sensory characteristics of Yukwa (Korean rice snack)
Xue et al. Relationships between instrumental measurements and sensory evaluation in instant noodles studied by partial least squares regression
KR20190038160A (en) Rice composition for preparing cooked rice with high quality and method of preparing the same
Mlček et al. Application of near infrared spectroscopy to estimate selected free amino acids and soluble nitrogen during cheese ripening
Henry Use of a scanning near‐infrared reflectance spectrophotometer for assessment of the malting potential of barley

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003