JP2010025883A - Method of evaluating freshness of fruit and vegetable - Google Patents

Method of evaluating freshness of fruit and vegetable Download PDF

Info

Publication number
JP2010025883A
JP2010025883A JP2008190757A JP2008190757A JP2010025883A JP 2010025883 A JP2010025883 A JP 2010025883A JP 2008190757 A JP2008190757 A JP 2008190757A JP 2008190757 A JP2008190757 A JP 2008190757A JP 2010025883 A JP2010025883 A JP 2010025883A
Authority
JP
Japan
Prior art keywords
freshness
vegetables
fruits
equivalent
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190757A
Other languages
Japanese (ja)
Other versions
JP5326166B2 (en
Inventor
Kohei Nakano
浩平 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Original Assignee
Gifu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC filed Critical Gifu University NUC
Priority to JP2008190757A priority Critical patent/JP5326166B2/en
Publication of JP2010025883A publication Critical patent/JP2010025883A/en
Application granted granted Critical
Publication of JP5326166B2 publication Critical patent/JP5326166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of accurately evaluating freshness of fruits and vegetables with a single measurement without relying on sensory evaluation. <P>SOLUTION: The method of evaluating freshness of fruits and vegetables includes: a step of determining the lipid peroxide equivalent, phospholipid equivalent and glycolipid equivalent which are contained in fruits and vegetables; a step of calculating, based on the determined lipid peroxide equivalent, phospholipid equivalent and glycolipid equivalent, the freshness value having a high correlation with the accumulated temperature to which the fruits and vegetables have been exposed from the time of harvest to the time of evaluating the freshness; and a step of determining the freshness of the fruits and vegetables from the calculated freshness value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、青果物の鮮度を定量的に評価する技術に関し、特に青果物中の脂質過酸化物とリン脂質と糖脂質の含量を計測し、その計測結果を用いて青果物の鮮度を正確に評価する技術に関する。   The present invention relates to a technique for quantitatively evaluating the freshness of fruits and vegetables, and in particular, measures the content of lipid peroxide, phospholipid and glycolipid in fruits and vegetables, and accurately evaluates the freshness of fruits and vegetables using the measurement results. Regarding technology.

青果物の中には、品質の劣化が早く、長期の保存が困難なものが多い。そこで消費者は、青果物を購入する際に、できるだけ鮮度の高いもの、即ち収穫時の品質ができるかぎり維持されているものを選ぼうとする傾向がある。このため青果物の流通や販売に携わる者から、取り扱っている青果物の鮮度を定量的に評価し、評価結果を消費者にわかりやすく提示したいという要望があった。   Many fruits and vegetables have a rapid deterioration in quality and are difficult to preserve for a long time. Therefore, when purchasing fruits and vegetables, consumers tend to select products that are as fresh as possible, that is, products that maintain the quality at harvest as much as possible. For this reason, there has been a demand from a person involved in the distribution and sale of fruits and vegetables to quantitatively evaluate the freshness of the fruits and vegetables handled and to present the evaluation results to consumers in an easy-to-understand manner.

従来は、青果物の鮮度を評価する方法として、評価者が外観、触感(テクスチャー)、香り等の項目を評価する官能試験が広く行われてきた。しかし官能評価は、評価者の主観が入る恐れがあり、また官能評価の基準そのものが経験に基づいた大まかなものである場合があった。又、青果物は比較的鮮度の高い時期において、外観、テクスチャー、香りに明らかな変化を呈さず、劣化の兆候が現れるまでの猶予期間がある品種がある。このような青果物についてその猶予期間内に官能評価を行った場合、一見同じような鮮度であると評価された場合であっても、鮮度が異なる場合がある。このため、より客観的で定量的であって、且つ官能評価ではその変化が認めにくい期間内であってもその鮮度の違いを評価できる青果物の鮮度評価方法が求められてきた。   Conventionally, as a method for evaluating the freshness of fruits and vegetables, sensory tests in which an evaluator evaluates items such as appearance, touch (texture), and fragrance have been widely performed. However, the sensory evaluation may involve the evaluator's subjectivity, and the sensory evaluation criteria itself may be a rough one based on experience. In addition, there are varieties of fruits and vegetables that have a grace period until signs of deterioration appear, with no apparent changes in appearance, texture, or scent at a relatively high freshness period. When sensory evaluation is performed on such fruits and vegetables within the grace period, freshness may differ even if it is evaluated that the freshness is similar at first glance. For this reason, there has been a demand for a freshness evaluation method for fruits and vegetables that can evaluate the difference in freshness even during a period that is more objective and quantitative, and in which a change in sensory evaluation is difficult to recognize.

青果物の鮮度を定量的に評価するための一つの方法として、青果物に含まれるビタミンCの量の変動を計測する方法が知られている。青果物は、収穫後の時間経過と貯蔵環境温度とに対応して、ビタミンCの含量が低下する。そこで、ビタミンCの含量の変動を計測することによって、鮮度を推定することが可能である。しかしながら、今回改めて検討を行った結果、図18に示すように、青果物はその品種や作型等によって、収穫直後のビタミンCの初発含量及びその後の含量が大きく異なることが確認された。例えば、1月に収穫されたほうれん草の場合、ビタミンCの初発含量の平均値は乾燥ほうれん草1g当たり12mgである。これに対して、10月に収穫されたほうれん草のビタミンCの初発含量の平均値は、乾燥ほうれん草1g当たり8.5mgであり、1月に収穫されたほうれん草の初発含量との間に大きな隔たりがあることが明らかとなった。又、収穫後の貯蔵環境温度が10℃で5日間経過した場合、即ち積算温度にして50℃・日の温度条件に遭遇した場合、1月に収穫されたほうれん草には、乾燥ほうれん草1g当たり平均7.7gのビタミンCが含まれているのに対して、10月に収穫されたほうれん草は、乾燥ほうれん草1g当たり平均6mgのビタミンCしか含有されていない。このように、収穫時期の異なるほうれん草は、同じ条件で保存された場合であっても、よってビタミンCの含量が大きく異なることが明らかとなった。   As one method for quantitatively evaluating the freshness of fruits and vegetables, a method of measuring a change in the amount of vitamin C contained in the fruits and vegetables is known. Fruits and vegetables have a reduced content of vitamin C corresponding to the passage of time after harvest and the storage environment temperature. Therefore, it is possible to estimate the freshness by measuring the variation in the content of vitamin C. However, as a result of re-examination this time, as shown in FIG. 18, it was confirmed that fruits and vegetables differ greatly in the initial content of vitamin C immediately after harvest and the subsequent content depending on the variety and cropping type. For example, for spinach harvested in January, the average initial content of vitamin C is 12 mg / g dry spinach. In contrast, the average value of the initial content of vitamin C in spinach harvested in October is 8.5 mg per gram of dried spinach, and there is a large gap between the initial content of spinach harvested in January. It became clear that there was. Also, when the storage environment temperature after harvesting is 10 ° C for 5 days, that is, when the integrated temperature is encountered at 50 ° C / day, the average amount of dried spinach per 1g of spinach harvested in January Spinach harvested in October contains only an average of 6 mg of vitamin C per gram of dried spinach, compared to 7.7 g of vitamin C. Thus, it was clarified that spinach with different harvesting times has a significantly different vitamin C content even when stored under the same conditions.

このようなビタミンCの含量のばらつきを考慮した上で青果物の鮮度をビタミンCの含量によって評価する方法の1つに、予め収穫時の青果物に含まれるビタミンCの初発値を計測し、鮮度検査を実施する時点で更に追加の含量の計測を行って、初発値に対する比率としてその変動量を算出して評価する方法がある。図19に示すように、収穫時の初発値に対する相対ビタミンC含量は、その品種や作型に拘わらず時間の経過と高い相関を保って減少していることが明らかであり、この方法によって、青果物の鮮度は推定できると考えられる。しかしながら、流通や小売の現場で青果物の鮮度を評価したい場合に、その青果物が収穫された時のビタミンCの初発値を入手することは非常に難しい。以上のことから、流通や小売の現場で、ビタミンCの含量の変動を指標として鮮度を評価することは、困難であると言わざるを得ない。   One of the methods for evaluating the freshness of fruits and vegetables based on the content of vitamin C in consideration of such variation in vitamin C content, the initial value of vitamin C contained in the fruits and vegetables at the time of harvest is measured in advance, and the freshness test There is a method in which an additional content is measured at the time of carrying out the process, and the amount of change is calculated and evaluated as a ratio to the initial value. As shown in FIG. 19, it is clear that the relative vitamin C content with respect to the initial value at the time of harvesting is decreased with a high correlation with the passage of time regardless of its variety and cropping type. The freshness of fruits and vegetables can be estimated. However, when it is desired to evaluate the freshness of fruits and vegetables at distribution and retail sites, it is very difficult to obtain the initial value of vitamin C when the fruits and vegetables are harvested. From the above, it must be said that it is difficult to evaluate the freshness using distribution of vitamin C content as an index at distribution and retail sites.

非特許文献1には、青果物の鮮度劣化と青果物の呼吸量との間に正の相関関係があることが開示されている。青果物は収穫した後も呼吸を行っており、呼吸によって水分が蒸散すると共に、糖・酸、ビタミンなどの成分を消耗して、鮮度が落ちていく。非特許文献1が開示する知見に基づけば、収穫後から継続して青果物の呼吸量を計測し、回帰分析を行うことで青果物の鮮度を評価することが可能となる。しかしながら、流通と小売の現場で継続的に青果物の呼吸量を計測することは、特別な装置の配置が必要であると同時にコスト面の問題があり、呼吸量による鮮度の評価方法はほとんど行われていないのが現状である。   Non-Patent Document 1 discloses that there is a positive correlation between the freshness deterioration of fruits and vegetables and the respiration rate of fruits and vegetables. Fruits and vegetables still breathe after harvesting, and the moisture transpires by breathing, and the consumption of sugar, acid, vitamins, and other ingredients is consumed, and the freshness decreases. Based on the knowledge disclosed in Non-Patent Document 1, it becomes possible to evaluate the freshness of fruits and vegetables by measuring the respiration rate of fruits and vegetables continuously after harvesting and performing regression analysis. However, continuously measuring the respiratory rate of fruits and vegetables at distribution and retail sites requires special equipment and costs, and there are almost no methods for assessing freshness based on respiratory rate. The current situation is not.

又、非特許文献1には、青果物の呼吸量が貯蔵環境温度と正の相関を有することが開示されている。この知見に基づけば、収穫後の青果物が流通段階と小売段階で遭遇した貯蔵環境温度を積算し、この積算値を回帰分析することによって、青果物の鮮度を評価できると考えられる。しかしこの評価方法は、青果物が遭遇する貯蔵環境温度を常に記録して積算する装置が必要となるために、呼吸量による鮮度の評価方法と同様に、ほとんど実施されていないのが現状である。
「青果物流通技術の基礎知識」、(株)流通システム研究センター、2007年、p.45
Non-Patent Document 1 discloses that the respiration rate of fruits and vegetables has a positive correlation with the storage environment temperature. Based on this knowledge, it is considered that the freshness of fruits and vegetables can be evaluated by accumulating the storage environment temperatures encountered by the harvested fruits and vegetables at the distribution stage and the retail stage and performing regression analysis on the accumulated values. However, since this evaluation method requires a device that constantly records and accumulates the storage environment temperature encountered by the fruits and vegetables, it is almost never implemented as in the freshness evaluation method based on the respiration rate.
“Basic knowledge of fruit and vegetable distribution technology”, Distribution System Research Center, Inc., 2007, p. 45

従来、流通と小売の現場で行われている青果物の鮮度評価方法は、評価者の官能評価による方法が主であって、客観的で定量的な判断が困難であり、且つ比較的鮮度が高い状態では高精度に鮮度の違いを評価することが困難であるという問題点があった。又、青果物のビタミンCの含量から青果物の鮮度を定量的に評価する方法は、収穫時と鮮度計測時の少なくとも2回ビタミンCの含量の計測を行う必要があるために、流通と小売の現場でこの評価方法を実施する事は困難であった。同様に、青果物の呼吸量や青果物が遭遇した温度の積算値を用いて鮮度を評価する方法は、呼吸量や遭遇した温度の積算値を継続して簡易に計測することが困難であるという問題点があった。   Traditionally, freshness assessment methods for fruits and vegetables used at distribution and retail sites are mainly methods based on sensory evaluation by evaluators, which are difficult to make objective and quantitative judgments, and have relatively high freshness. In the state, there is a problem that it is difficult to evaluate the difference in freshness with high accuracy. In addition, the method for quantitatively evaluating the freshness of fruits and vegetables from the content of vitamin C in fruits and vegetables requires the measurement of vitamin C content at least twice at the time of harvest and freshness measurement. It was difficult to carry out this evaluation method. Similarly, the method of evaluating freshness using the integrated value of the respiratory rate of fruits and vegetables and the temperature encountered by the fruits and vegetables is difficult to continuously measure the integrated value of respiratory rate and the temperature encountered. There was a point.

本発明は、上記の課題に鑑みてなされたものであって、単回の計測によって青果物の鮮度を精度高く評価する方法を提供することを目的としてなされたものである。   This invention is made | formed in view of said subject, Comprising: It aims at providing the method of evaluating the freshness of fruits and vegetables with high precision by single measurement.

更に本発明は、単回の計測によって青果物の鮮度を精度高く評価する装置を提供することを目的としてなされたものである。   Furthermore, this invention is made | formed for the purpose of providing the apparatus which evaluates the freshness of fruit and vegetables with high precision by single measurement.

本発明は、青果物の鮮度評価方法に関する。本発明の鮮度評価方法は、青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測する計測工程と、前記計測工程で計測した脂質過酸化物当量と、リン脂質当量と、糖脂質当量とから、青果物が収穫時から鮮度評価時までに遭遇した積算温度と高い相関を有する鮮度値を算出する算出工程と、この鮮度値に基づいて青果物の鮮度を判定する判定工程とを含むことを特徴とする。   The present invention relates to a method for evaluating freshness of fruits and vegetables. The freshness evaluation method of the present invention includes a measuring step for measuring lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent contained in fruits and vegetables, a lipid peroxide equivalent measured in the measuring step, and a phospholipid. From the equivalent and glycolipid equivalent, a calculation process that calculates a freshness value that has a high correlation with the accumulated temperature that the fruit and vegetables encountered from the time of harvest to the time of freshness evaluation, and a determination that determines the freshness of the fruit and vegetables based on this freshness value And a process.

発明者は、青果物が収穫直後から鮮度評価時までに遭遇した環境温度を積算した積算温度の値が、青果物の鮮度の官能評価値と高い相関を有することを確認した。更に鋭意検討した結果、青果物の鮮度が低下して細胞質脂質が過酸化された場合には、青果物中の脂質過酸化物が増加すると同時に、リン脂質と、糖脂質の含量が減少することを確認した。そして、青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測して、これら3種類の成分値から鮮度値を算出した結果、この鮮度値が積算温度と高い相関を有していることを見出し、更に鮮度値によって青果物の鮮度が定量的に判定可能であることを見出して本発明を完成するに至った。   The inventor has confirmed that the integrated temperature value obtained by integrating the environmental temperatures encountered from the time when the fruits and vegetables are harvested to the time of freshness evaluation has a high correlation with the sensory evaluation value of the freshness of the fruits and vegetables. As a result of further intensive studies, it was confirmed that when the freshness of fruits and vegetables declines and cytoplasmic lipids are peroxidized, the lipid peroxides in fruits and vegetables increase, and at the same time the contents of phospholipids and glycolipids decrease. did. Then, the lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent contained in the fruits and vegetables were measured, and the freshness value was calculated from these three component values. As a result, the freshness value was highly correlated with the integrated temperature. The present invention was completed by finding that the freshness of fruits and vegetables can be quantitatively determined by the freshness value.

本発明の鮮度判定方法における青果物の鮮度値は、式: 鮮度値= 脂質過酸化物当量 / (リン脂質当量 + 糖脂質当量 +脂質過酸化物当量)によって算出されることを特徴としている。   The freshness value of fruits and vegetables in the freshness determination method of the present invention is characterized by being calculated by the formula: freshness value = lipid peroxide equivalent / (phospholipid equivalent + glycolipid equivalent + lipid peroxide equivalent).

又、本発明は、青果物の鮮度判定装置に関する。本発明の青果物の鮮度判定装置は、青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測する計測手段と、この計測手段によって計測された脂質過酸化物当量と、リン脂質当量と、糖脂質当量とから、青果物が収穫時から鮮度評価時までに遭遇した積算温度と高い相関を有する鮮度値を算出する算出手段と、算出された鮮度値に基づいて、前記青果物の鮮度を判定する判定手段とを備えていることを特徴とする。   Moreover, this invention relates to the freshness determination apparatus of fruit and vegetables. The fruit and vegetable freshness determination apparatus of the present invention is a measuring means for measuring a lipid peroxide equivalent, a phospholipid equivalent, and a glycolipid equivalent contained in the fruit, and a lipid peroxide equivalent measured by the measuring means. From the phospholipid equivalent and the glycolipid equivalent, a calculation means for calculating a freshness value having a high correlation with the integrated temperature at which the fruits and vegetables were encountered from the time of harvest to the time of freshness evaluation, and based on the calculated freshness value, And determining means for determining the freshness of the fruits and vegetables.

更に本発明は、更なる青果物の鮮度評価方法を提供する。本発明の青果物の鮮度評価方法は、 青果物に含まれる脂質過酸化物当量を計測する計測工程と、脂質過酸化物当量から、前記青果物が収穫時から鮮度評価時までに遭遇した積算温度を算出する算出工程と、積算温度に基づいて、前記青果物の鮮度を判定する判定工程とを含むことを特徴とする。   Furthermore, this invention provides the freshness evaluation method of the further fruit and vegetables. The method for evaluating freshness of fruits and vegetables of the present invention is a measuring step for measuring lipid peroxide equivalents contained in fruits and vegetables, and from the lipid peroxide equivalents, the integrated temperature at which the fruits and vegetables are encountered from the time of harvest until the time of freshness evaluation is calculated. And a determination step of determining freshness of the fruits and vegetables based on the integrated temperature.

本発明の青果物の鮮度評価方法及び装置は、青果物の脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測することによって青果物の鮮度値を算出することができる。本発明で算出される鮮度値を用いることによって、単回の計測によって青果物の鮮度を客観的且つ定量的に評価することが可能となる。   The freshness evaluation method and apparatus for fruits and vegetables of the present invention can calculate the freshness value of fruits and vegetables by measuring the lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent of the fruits and vegetables. By using the freshness value calculated in the present invention, it is possible to objectively and quantitatively evaluate the freshness of fruits and vegetables by a single measurement.

本発明の青果物の鮮度評価方法及び装置によって、劣化の兆候が現れていない比較的鮮度の高い期間においても、その鮮度の違いを定量的に評価することができる。   With the freshness evaluation method and apparatus for fruits and vegetables of the present invention, the difference in freshness can be quantitatively evaluated even in a relatively high freshness period in which no signs of deterioration appear.

本発明の青果物の鮮度評価方法は、青果物の鮮度と高い相関を示す鮮度値を、
式: 鮮度値= 脂質過酸化物当量 / (リン脂質当量 + 糖脂質当量 +脂質過酸化物当量)
を用いて算出することで、青果物の鮮度を高精度で確実に評価することが可能となる。
The method for evaluating freshness of fruits and vegetables of the present invention has a freshness value showing a high correlation with the freshness of fruits and vegetables.
Formula: Freshness value = lipid peroxide equivalent / (phospholipid equivalent + glycolipid equivalent + lipid peroxide equivalent)
By calculating using, it becomes possible to reliably evaluate the freshness of fruits and vegetables with high accuracy.

本発明の青果物の鮮度評価方法は、青果物に含まれる脂質過酸化物当量を計測することによって、青果物の鮮度を定量的に評価することが可能となる。   The freshness evaluation method for fruits and vegetables of the present invention can quantitatively evaluate the freshness of fruits and vegetables by measuring the lipid peroxide equivalent contained in the fruits and vegetables.

本発明の青果物の鮮度評価方法及び鮮度評価装置は、上限値に到達するまでに今後どの程度の環境温度でどの程度の期間の貯蔵が可能であるかを評価して表示することができる。この貯蔵が可能な期間を知ることで、青果物の流通や販売に携わる者は、入荷した青果物を流通させることのできる期間を推定することが可能となる。   The freshness evaluation method and freshness evaluation apparatus for fruits and vegetables of the present invention can evaluate and display what environmental temperature and how long can be stored in the future before reaching the upper limit value. By knowing the period during which this storage is possible, a person involved in the distribution and sale of fruits and vegetables can estimate the period during which the received fruits and vegetables can be distributed.

葉菜類、果菜類、根菜類、花菜類のいずれの青果物であっても、青果物が収穫直後から鮮度評価時までに遭遇した環境温度を積算した積算温度の値は、青果物の鮮度の官能評価値と高い相関を有する。そこで、本発明の実施の形態では、鮮度評価の基準値として積算温度の値を好適に用いている。ここでいう積算温度とは、青果物が収穫後に遭遇した環境温度と時間との積を求め、この積の値を日単位で示したものである。例えば、収穫後に20℃の環境下で1日間保管された青果物と、5℃で4日間保管された青果物とが遭遇した積算温度は、いずれも20℃・日となる。又、収穫後に20℃の環境下で1日間保管されたあと10℃で2日間保管された青果物が遭遇した積算温度は、40℃・日となる。   Regardless of the fruits and vegetables of leaf vegetables, fruit vegetables, root vegetables, and flower vegetables, the integrated temperature value obtained by integrating the environmental temperature encountered from the time of harvest until the time of freshness evaluation is the sensory evaluation value of the freshness of the fruits and vegetables. High correlation. Therefore, in the embodiment of the present invention, the value of the integrated temperature is suitably used as the reference value for freshness evaluation. The integrated temperature here refers to the product of the environmental temperature and time encountered after harvesting the fruits and vegetables, and the value of this product expressed in units of days. For example, the integrated temperature at which the fruits and vegetables stored for 1 day in an environment of 20 ° C. after harvesting and the fruits and vegetables stored for 4 days at 5 ° C. are both 20 ° C. · day. Further, the integrated temperature encountered by the fruits and vegetables stored for 1 day in an environment of 20 ° C. after harvesting and then stored for 2 days at 10 ° C. is 40 ° C. · day.

本発明における実施の形態では、積算温度と線形関係を有する鮮度値を算出するために、青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測してこれら3種類の成分値のうちの1種類以上の値を用いている。この鮮度値は、青果物が流通と小売の段階で呼吸を行っており、青果物の鮮度が低下していくときには、青果物中の細胞質脂質が酸化されて、リン脂質と、糖脂質の含量が減少すると同時に、脂質過酸化物が増加することに着目して定義されている。鮮度値が算出されると、この鮮度値と積算温度との関係を示す一次式に鮮度値を当てはめることによって、青果物が収穫されてから遭遇した積算温度が推定される。この推定された積算温度が、青果物の鮮度の定量的な評価値となる。   In the embodiment of the present invention, in order to calculate the freshness value having a linear relationship with the integrated temperature, the lipid peroxide equivalent, the phospholipid equivalent, and the glycolipid equivalent contained in the fruits and vegetables are measured and these three types are measured. One or more types of component values are used. This freshness value indicates that when fruits and vegetables are breathing at the distribution and retail stages, when the freshness of the fruits and vegetables decreases, the cytoplasmic lipids in the fruits and vegetables are oxidized, and the content of phospholipids and glycolipids decreases. At the same time, it is defined focusing on the increase in lipid peroxide. When the freshness value is calculated, the accumulated temperature encountered after the fruits and vegetables are harvested is estimated by applying the freshness value to a linear expression indicating the relationship between the freshness value and the accumulated temperature. This estimated integrated temperature becomes a quantitative evaluation value of the freshness of fruits and vegetables.

以下に、本発明の青果物の鮮度評価方法の実施例を、図面を参照しつつ説明する。
(第1実施例) 図1は、本発明の第1実施例の青果物の鮮度評価方法に適用される鮮度評価装置1の構成を模式的に示す図である。本実施例の鮮度評価装置1は、コンピュータ2と、計測手段3とを備えている。計測手段3は、リン脂質と、糖脂質と脂質過酸化物の含量を計測する。コンピュータ2は、計測手段3が計測した計測値から、青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量を算出し、これらの値を用いて積算温度と高い相関を有する鮮度値を算出する算出手段と、算出された鮮度値に基づいて、前記青果物の鮮度を判定する判定手段としての機能を備えている。
Below, the Example of the freshness evaluation method of the fruits and vegetables of this invention is described, referring drawings.
First Embodiment FIG. 1 is a diagram schematically showing a configuration of a freshness evaluation apparatus 1 applied to a freshness evaluation method for fruits and vegetables according to a first embodiment of the present invention. The freshness evaluation apparatus 1 according to this embodiment includes a computer 2 and a measuring unit 3. The measuring means 3 measures the content of phospholipid, glycolipid and lipid peroxide. The computer 2 calculates the lipid peroxide equivalent, the phospholipid equivalent, and the glycolipid equivalent contained in the fruits and vegetables from the measured values measured by the measuring means 3, and has a high correlation with the integrated temperature using these values. A calculation means for calculating a freshness value and a function as a determination means for determining the freshness of the fruits and vegetables based on the calculated freshness value are provided.

図2に、第1実施例の鮮度評価方法のフローチャートを示す。本実施例における鮮度評価方法では、青果物の脂質過酸化物、リン脂質、糖脂質の含量とを計測し、これら3成分の値から鮮度値を算出する。   FIG. 2 shows a flowchart of the freshness evaluation method of the first embodiment. In the freshness evaluation method in this example, the lipid peroxide, phospholipid and glycolipid content of fruits and vegetables are measured, and the freshness value is calculated from the values of these three components.

最初にステップS1では、脂質過酸化物、リン脂質、糖脂質を抽出するための青果物の評価用試料の調整が行われる。調整方法は以下の通りである。まず、青果物の可食部全体をみじん切りにして混合する。混合した青果物約30gを50mlのビーカーに入れ、液体窒素をかけて凍結する。次に、凍結した試料を凍結乾燥機によって1〜2日間乾燥する。凍結乾燥した試料を、乳鉢中で粉砕し、500μmメッシュの篩いにかけて精粒する。   First, in step S1, a sample for evaluation of fruits and vegetables for extracting lipid peroxides, phospholipids and glycolipids is prepared. The adjustment method is as follows. First, chop the whole edible part of the fruits and vegetables and mix. About 30 g of mixed fruits and vegetables are put into a 50 ml beaker and frozen with liquid nitrogen. Next, the frozen sample is dried by a freeze dryer for 1-2 days. The freeze-dried sample is pulverized in a mortar and sieved through a 500 μm mesh sieve.

ステップS2では、青果物の評価用試料から、Bligh-Dyler法(新生化学実験講座 第4巻 「脂質IIリン脂質」、(社)日本生化学会編、(株)東京化学同人、1991年、P7−10)によって脂質を抽出する。抽出方法の概要は、以下の通りである。凍結乾燥した試料10mgを試験管にとり、1mlの蒸留水を加えて懸濁する。この懸濁液に2.5mlのメタノールと1.25mlのクロロホルムとを加え、ボルテックスミキサーにて2分間撹拌し、10分間放置する。その後、更に1.25mlのクロロホルムを加えてミキサーにて30秒間撹拌する。再度、1.25mlのクロロホルムを加え、30秒間撹拌する。3500rpmで5分間遠心分離し、水およびメタノール層、フラップ層、およびクロロホルム層に分離させて、下層のクロロホルム層をパスツールピペットにて回収する。再度、1mlのクロロホルムを加え、5分間遠心分離して、クロロホルム層を回収する。このクロロホルム層をリン脂質と糖脂質分析のための試料として供する。   In step S2, from the sample for evaluation of fruits and vegetables, the Bligh-Dyler method (Shinsei Chemistry Experiment Course Volume 4 “Lipid II Phospholipids”, edited by Japan Biochemical Society, Tokyo Chemical Dojin, 1991, P7- 10) Extract the lipid. The outline of the extraction method is as follows. Take 10 mg of the lyophilized sample in a test tube and add 1 ml of distilled water to suspend. To this suspension are added 2.5 ml of methanol and 1.25 ml of chloroform, and the mixture is stirred for 2 minutes with a vortex mixer and left for 10 minutes. Thereafter, 1.25 ml of chloroform is further added and stirred for 30 seconds with a mixer. Add 1.25 ml of chloroform again and stir for 30 seconds. Centrifugation is performed at 3500 rpm for 5 minutes to separate into a water and methanol layer, a flap layer, and a chloroform layer, and the lower chloroform layer is collected with a Pasteur pipette. Add 1 ml of chloroform again and centrifuge for 5 minutes to recover the chloroform layer. This chloroform layer is used as a sample for phospholipid and glycolipid analysis.

ステップS3では、ステップS2で抽出した試料を用いて、青果物のリン脂質当量を定量する。リン脂質の定量はBartlett法(「医化学実験法講座 第1巻B 生体構成成分II」、(株)中山書店、1972年、P167)に従っている。リン脂質の含量の定量方法の概要は、以下に示した通りである。まず最初に、計測手段3は、リン濃度が既知の標準溶液について830nmの吸光度の計測を行う。コンピュータ2は、計測手段3から標準溶液のリン濃度と吸光度の計測結果とを入力されると、これらの値からリン濃度と吸光度の検量線を作成する。次に、計測手段3は、試料のリン脂質の含量を計測する。ステップS2で作成した試料溶液0.5mlを用いて、窒素流気下で溶媒を除去する。これに70体積%の過塩素酸を0.4ml加え、160℃で2時間分解する。放冷後の試料に、蒸留水4.2ml、5質量%のモリブデン酸アンモニウム0.2ml、アミドール試薬0.2mlを加え、沸騰水中で7分間加熱する。流水中で放冷後、830nmにおける吸光度を計測する。コンピュータ2は、計測手段3から吸光度の計測値が入力されると、予め作成した検量線上にプロットすることで、試料溶液中のリン濃度を得る。得られたリン濃度を、単位体積の試料溶液に含まれる抽出乾燥試料のグラム数で除すことによって、単位乾燥青果物重量当たりに含有されるリン脂質量、即ち青果物のリン脂質当量を定量する。   In step S3, the phospholipid equivalent of fruits and vegetables is quantified using the sample extracted in step S2. Phospholipids are quantified in accordance with the Bartlett method ("Medical Chemistry Experimental Course Vol. 1 B Biological Component II", Nakayama Shoten, 1972, P167). The outline of the quantification method of the phospholipid content is as shown below. First, the measuring means 3 measures the absorbance at 830 nm for a standard solution with a known phosphorus concentration. When the computer 2 receives the phosphorus concentration of the standard solution and the measurement result of the absorbance from the measuring means 3, the computer 2 creates a calibration curve of the phosphorus concentration and the absorbance from these values. Next, the measuring means 3 measures the phospholipid content of the sample. Using 0.5 ml of the sample solution prepared in step S2, the solvent is removed under a nitrogen stream. To this, 0.4 ml of 70% by volume perchloric acid is added and decomposed at 160 ° C. for 2 hours. To the sample after standing to cool, 4.2 ml of distilled water, 0.2 ml of 5% by mass ammonium molybdate and 0.2 ml of amidol reagent are added and heated in boiling water for 7 minutes. After cooling in running water, the absorbance at 830 nm is measured. When the measurement value of absorbance is input from the measuring means 3, the computer 2 obtains the phosphorus concentration in the sample solution by plotting it on a calibration curve prepared in advance. By dividing the obtained phosphorus concentration by the number of grams of the extracted dry sample contained in a unit volume of the sample solution, the amount of phospholipid contained per unit dry fruit and vegetable weight, that is, the phospholipid equivalent of the fruit and vegetable is quantified.

ステップS4では、ステップS2で抽出された試料を用いて、青果物の糖脂質当量を定量する。糖脂質の定量はフェノール硫酸法(新生化学実験講座 第3巻 「糖質I」(社)日本生化学会編、(株)東京化学同人、1990年、P143−144)に従っている。糖脂質の含量の定量方法の概要は、以下に示した通りである。まず最初に、計測手段3は、グルコース濃度が既知の標準溶液について、490nmの吸光度の計測を行う。コンピュータ2は、計測手段3から標準溶液のグルコース濃度と吸光度の計測結果を入力されると、これらの値からグルコース濃度と吸光度の検量線を作成する。次に、計測手段3は、試料の糖脂質の含量を計測する。ステップS2で抽出した試料溶液を1ml用いて、窒素流気下で溶媒を除去する。蒸留水2mlを加え、1分間撹拌する。5質量%のフェノール溶液を加えて、1分間更に撹拌する。濃硫酸5mlを加えてこれと反応させる。放冷後、490nmにおける吸光度を計測する。コンピュータ2は、計測手段3から吸光度の計測値が入力されると、予め作成された検量線上にプロットすることで、試料溶液中の糖脂質濃度を得る。得られた糖脂質濃度を、単位体積の試料溶液に含まれる抽出乾燥試料のグラム数で除すことによって、単位乾燥青果物重量当たりに含有される糖脂質量、即ち青果物の糖脂質当量を定量する。   In step S4, the glycolipid equivalent of fruits and vegetables is quantified using the sample extracted in step S2. The quantification of glycolipid is in accordance with the phenol sulfate method (Shinsei Kagaku Kogaku Koza 3 Vol. “Carbohydrate I”, edited by the Japanese Biochemical Society, Tokyo Chemical Dojin, 1990, P143-144). The outline of the method for quantifying the content of glycolipid is as shown below. First, the measuring means 3 measures the absorbance at 490 nm for a standard solution with a known glucose concentration. When the computer 2 receives the measurement results of the glucose concentration and absorbance of the standard solution from the measuring means 3, the computer 2 creates a calibration curve of glucose concentration and absorbance from these values. Next, the measuring means 3 measures the content of the glycolipid in the sample. Using 1 ml of the sample solution extracted in step S2, the solvent is removed under a nitrogen stream. Add 2 ml of distilled water and stir for 1 minute. Add 5 wt% phenol solution and further stir for 1 minute. Add 5 ml of concentrated sulfuric acid and react with it. After standing to cool, the absorbance at 490 nm is measured. When the measurement value of absorbance is input from the measuring means 3, the computer 2 obtains the glycolipid concentration in the sample solution by plotting it on a calibration curve prepared in advance. By dividing the obtained glycolipid concentration by the number of grams of the extracted dry sample contained in the unit volume of the sample solution, the amount of glycolipid contained per unit dry fruit and vegetable weight, that is, the glycolipid equivalent of the fruit and vegetable is quantified. .

ステップS5では、ステップS1で調整された青果物の脂質過酸化物当量が定量される。定量は脂質過酸化物の含量をマロンジアルデヒドの含量として算出している。定量方法は、チオバルビツール酸(TBA)法(脂質過酸化実験法 (広川化学と生物実験ライン (2))、福沢健二、寺尾純二、(株)廣川書店、1990年、P84−89)に従っている。マロンジアルデヒドの含量の定量方法の概要は、以下に示した通りである。凍結乾燥された試料0.1gを試験管にとり、0.1質量%のトリクロロ酢酸(TCA)で懸濁し、1分間ボルテックスミキサーで撹拌する。2mlをエッペンドルフチューブに入れ、10,000×gで5分間遠心分離する。上澄み液1mlを試験管にとり、0.5質量%TBA+20質量%TCA溶液を4ml加える。95℃の湯浴中で15分間加熱する。放冷後、計測手段3は、試料の532nmにおける吸光度を計測する。試料の吸光度の計測結果を入力されたコンピュータ2は、分子吸光係数(1.56×10−1 cm−1)を用いて、試料溶液中の含まれるマロンジアルデヒド(以下、MDAとも称する)の濃度を得る。得られたマロンジアルデヒドの濃度を、単位体積の試料溶液に含まれる抽出乾燥試料のグラム数で除すことによって、単位乾燥青果物重量当たりに含有されるマロンジアルデヒド量、即ち青果物の脂質過酸化物当量を定量する。 In step S5, the lipid peroxide equivalent of the fruits and vegetables adjusted in step S1 is quantified. For the determination, the lipid peroxide content is calculated as the malondialdehyde content. The quantification method is according to the thiobarbituric acid (TBA) method (lipid peroxidation experiment method (Hirokawa Chemical and Biological Experiment Line (2)), Kenji Fukuzawa, Junji Terao, Yodogawa Shoten, 1990, P84-89). Yes. The outline of the method for quantifying the content of malondialdehyde is as shown below. 0.1 g of the lyophilized sample is taken into a test tube, suspended in 0.1% by mass of trichloroacetic acid (TCA), and stirred with a vortex mixer for 1 minute. Place 2 ml in an Eppendorf tube and centrifuge at 10,000 × g for 5 minutes. Take 1 ml of the supernatant into a test tube and add 4 ml of 0.5 wt% TBA + 20 wt% TCA solution. Heat in a 95 ° C. water bath for 15 minutes. After standing to cool, the measuring means 3 measures the absorbance at 532 nm of the sample. The computer 2 to which the measurement result of the absorbance of the sample has been input uses the molecular extinction coefficient (1.56 × 10 5 M −1 cm −1 ), and malondialdehyde (hereinafter also referred to as MDA) contained in the sample solution. ). The amount of malondialdehyde contained per unit dry fruit and vegetable weight, that is, lipid peroxidation of fruits and vegetables, by dividing the concentration of the obtained malondialdehyde by the number of grams of dry extract sample contained in the unit volume of the sample solution. The product equivalent is quantified.

ステップS6では、定量が行われたリン脂質当量と、糖脂質当量と、脂質過酸化物当量を用いて、鮮度値の算出が行われる。鮮度値の算出は、コンピュータ2内に記憶されている以下の式に、ステップS3からステップS5で得られた定量結果を当てはめることで行われる。
(式1)
脂質過酸化物当量 / (リン脂質当量 + 糖脂質当量 +脂質過酸化物当量)=鮮度値 ・・(1)
In step S6, the freshness value is calculated using the quantified phospholipid equivalent, glycolipid equivalent, and lipid peroxide equivalent. The freshness value is calculated by applying the quantitative result obtained in steps S3 to S5 to the following expression stored in the computer 2.
(Formula 1)
Lipid peroxide equivalent / (phospholipid equivalent + glycolipid equivalent + lipid peroxide equivalent) = freshness value (1)

更に以下に於いては、上記式1によって求められた鮮度値の値に100を乗じることによって得られた以下の式(2)の値を、鮮度値パーセント(以下、鮮度値%とも記載する)と称して、青果物の鮮度の評価の指標に使用している。
(式2)
鮮度値 × 100 = 鮮度値% ・・(2)
Further, in the following, the value of the following formula (2) obtained by multiplying the value of the freshness value obtained by the above formula 1 by 100 is a freshness value percentage (hereinafter also referred to as freshness value%). It is used as an index for evaluating the freshness of fruits and vegetables.
(Formula 2)
Freshness value x 100 = Freshness value% (2)

ステップS6で、式(1)によって求められる鮮度値及び式(2)によって求められる鮮度値%は、葉菜類、果菜類、根菜類、花菜類のいずれの青果物であっても、青果物が収穫直後から鮮度評価時までに遭遇した環境温度を積算した積算温度の値と高い相関を有しており、具体的には線形関係を有している。このため、実際に積算温度を測定しなくとも、リン脂質当量と、糖脂質当量と、脂質過酸化物当量とを計測して鮮度値%を算出することによって、青果物が遭遇した積算温度を推定することが可能である。   In step S6, the freshness value obtained by the formula (1) and the freshness value% obtained by the formula (2) are the fruits and vegetables of the leaf vegetables, the fruit vegetables, the root vegetables, and the flower vegetables. It has a high correlation with the integrated temperature value obtained by integrating the ambient temperature encountered up to the time of freshness evaluation, and specifically has a linear relationship. Therefore, without actually measuring the accumulated temperature, the accumulated temperature encountered by the fruits and vegetables is estimated by calculating the freshness value% by measuring the phospholipid equivalent, glycolipid equivalent, and lipid peroxide equivalent. Is possible.

本実施例で算出される鮮度値%が、積算温度と線形関係にあることを、葉菜類であるほうれん草、小松菜及びパセリと、果菜類であるキュウリと、根菜類であるニンジンと、花菜類であるブロッコリーの5種類の青果物について詳細に検証する。図4には、0℃(収穫直後)、20℃・日、40℃・日、60℃・日、100℃・日の5段階の積算温度に遭遇した小松菜、パセリ、ブロッコリーと、0℃(収穫直後)、40℃・日、60℃・日、80℃・日、100℃・日の5段階の積算温度に遭遇したキュウリ及びニンジンについて、リン脂質当量(乾燥青果物重量1g当たりに含有されるリン脂質量(μg))と、糖脂質当量(乾燥青果物重量1g当たりに含有される糖脂質量(μg))と、脂質過酸化物当量(乾燥青果物重量1g当たりに含有される脂質過酸化物当量(μg))を定量した定量結果と、これらの定量結果から算出される鮮度値%とが示されている。図4では、脂質過酸化物当量は、MDAと略称されている。計測の結果、5種類全ての青果物は、リン脂質当量と、糖脂質当量と、脂質過酸化物当量の変化について、常に同一の傾向があることが確認された。即ち、リン脂質当量と糖脂質当量とは、積算温度が増加すると、直線的に減少する。一方で、脂質過酸化物当量は、積算温度が増加すると、全ての青果物に於いて、直線的に増加する。これらの傾向は、収穫時期や品種の異なる青果物全てで確認されている。   The fact that the freshness value% calculated in this example is linearly related to the integrated temperature is the leaf vegetables spinach, komatsuna and parsley, the fruit vegetables cucumber, the root vegetables carrot, and the flower vegetables. We will examine in detail 5 kinds of broccoli fruits and vegetables. In FIG. 4, komatsuna, parsley, broccoli that have encountered five stages of accumulated temperature at 0 ° C (immediately after harvest), 20 ° C / day, 40 ° C / day, 60 ° C / day, 100 ° C / day, Phospholipid equivalent (contained per gram of dried fruits and vegetables) for cucumbers and carrots that have encountered 5 stages of integrated temperature at 40 ° C / day, 60 ° C / day, 80 ° C / day, 100 ° C / day. Phospholipid amount (μg)), glycolipid equivalent (glycolipid amount contained per gram of dried fruit and vegetables (μg)), and lipid peroxide equivalent (lipid peroxide contained per gram of dried fruit and vegetables) The quantitative results obtained by quantifying the equivalent weight (μg) and the freshness value% calculated from these quantitative results are shown. In FIG. 4, the lipid peroxide equivalent is abbreviated as MDA. As a result of the measurement, it was confirmed that all the five types of fruits and vegetables always had the same tendency with respect to changes in phospholipid equivalent, glycolipid equivalent, and lipid peroxide equivalent. That is, the phospholipid equivalent and the glycolipid equivalent decrease linearly as the integrated temperature increases. On the other hand, the lipid peroxide equivalent increases linearly in all fruits and vegetables as the integrated temperature increases. These trends have been confirmed in all fruits and vegetables with different harvest times and varieties.

リン脂質当量と、糖脂質当量と、脂質過酸化物当量の計測結果を用いて式(1)及び式(2)で算出される鮮度値%は、積算温度が増加すると直線的に増加していることが、図4から明らかである。そこで、鮮度値%と積算温度が線形関係を有していることを確認するために、積算温度を説明変数とし、鮮度値%を目的変数として単回帰分析(直線回帰分析)を行った結果を、表1に示す。ここでは、図4に脂質の計測結果を示した示した小松菜、パセリ、キュウリ、ニンジン、ブロッコリーに加えて、ほうれん草についても検証を行っている。ほうれん草は、収穫時期の違いによって、栄養素の含量が異なることが知られている。そこで、ほうれん草については、10月収穫と1月収穫のそれぞれ30サンプル、計60サンプルについて、鮮度値%を算出して積算温度との単回帰分析を行った。   The freshness value% calculated by Equation (1) and Equation (2) using the measurement results of phospholipid equivalent, glycolipid equivalent, and lipid peroxide equivalent increases linearly as the integrated temperature increases. It is clear from FIG. Therefore, in order to confirm that the freshness value% and the integrated temperature have a linear relationship, the results of performing a single regression analysis (linear regression analysis) using the integrated temperature as an explanatory variable and the freshness value% as an objective variable Table 1 shows. Here, in addition to komatsuna, parsley, cucumber, carrot and broccoli whose lipid measurement results are shown in FIG. 4, spinach is also verified. It is known that spinach has different nutrient contents depending on the harvest time. Therefore, for spinach, freshness value% was calculated for 30 samples each of October harvest and January harvest, and a total of 60 samples, and a single regression analysis with the integrated temperature was performed.

表1に示される数値のうちa及びbは、以下に示す単回帰分析に用いた回帰式(3)の係数であり、Rは鮮度値%と積算温度の決定係数(相関係数)である。
(回帰式3)
鮮度値%= a×積算温度+b ・・(3)

Figure 2010025883
A and b of the numerical values set forth in Table 1 are the coefficients of the regression equation (3) using a single regression analysis shown below, R 2 is a coefficient of determination of freshness value percent cumulative temperature (correlation coefficient) is there.
(Regression equation 3)
Freshness value% = a x integrated temperature + b (3)
Figure 2010025883

ほうれん草についての積算温度と鮮度値%の単回帰分析の結果グラフを図5に示す。小松菜についての積算温度と鮮度値%の単回帰分析の結果グラフを図6に示す。パセリについての積算温度と鮮度値%の単回帰分析の結果グラフを図7に示す。キュウリについての積算温度と鮮度値%の単回帰分析の結果を図8に示す。ニンジンについての積算温度と鮮度値%の単回帰分析の結果グラフを図9に示す。ブロッコリーについての積算温度と鮮度値%の単回帰分析の結果グラフを図10に示す。以上6種類の青果物の積算温度と鮮度値%との相関係数は、最低でも小松菜の0.869であり、他の5種類の相関係数は0.9以上の非常に高い値となる。このように本実施例に於いて検証を行った青果物は、全て積算温度と鮮度値%の相関係数が極めて高く、線形関係が成立していることが確認された。以上のことから本実施例において鮮度値を求めるために使用される式(1)及び鮮度値%を求めるために使用される式(2)は、積算温度と相関の高い値を算出するために非常に適した式であることが検証された。   FIG. 5 shows a result graph of the single regression analysis of the integrated temperature and freshness value% for spinach. The result graph of the single regression analysis of the integrated temperature and freshness value% for Komatsuna is shown in FIG. FIG. 7 shows a result graph of the single regression analysis of the integrated temperature and freshness value% for parsley. The result of the single regression analysis of the integrated temperature and freshness value% for cucumber is shown in FIG. The result graph of the single regression analysis of the integrated temperature and freshness value% for carrots is shown in FIG. The result graph of the single regression analysis of the integrated temperature and freshness value% for broccoli is shown in FIG. The correlation coefficient between the accumulated temperature and the freshness value% of the six types of fruits and vegetables is at least 0.869 for Komatsuna, and the other five types of correlation coefficients are extremely high values of 0.9 or more. As described above, it was confirmed that all the fruits and vegetables tested in this example had a very high correlation coefficient between the integrated temperature and the freshness value%, and a linear relationship was established. From the above, the formula (1) used for obtaining the freshness value and the formula (2) used for obtaining the freshness value% in this embodiment are for calculating a value highly correlated with the integrated temperature. It was verified that it was a very suitable formula.

積算温度と鮮度値%の単回帰分析で得られた回帰式は、いずれの青果物についても非常に相関係数が高い。そこで、算出された鮮度値%の値をこの回帰式に当てはめることで、積算温度の値を推定することが可能である。コンピュータ2は、青果物の種類毎に、回帰式とその係数a,bを、青果物の鮮度を判定する処理に使用するために記憶している。   The regression equation obtained by the single regression analysis of the integrated temperature and the freshness value% has a very high correlation coefficient for all fruits and vegetables. Accordingly, the value of the integrated temperature can be estimated by applying the calculated freshness value% to the regression equation. The computer 2 stores the regression equation and its coefficients a and b for each type of fruit and vegetable for use in processing for determining the freshness of the fruit and vegetable.

ステップS7においてコンピュータ2は、算出された鮮度値%の値を、予め定義されている回帰式に当てはめることで、青果物が遭遇した積算温度の推定値を得る。この積算温度の推定値によって、鮮度の差異を高精度に評価し表示することができる。積算温度の推定値によって鮮度を評価することにより、収穫後の積算温度が小さく従来は劣化の兆候が識別できなかった一見新鮮な青果物についても、定量的な鮮度の評価が可能となる。   In step S <b> 7, the computer 2 obtains an estimated value of the accumulated temperature encountered by the fruits and vegetables by applying the calculated freshness value% to a predefined regression equation. With the estimated value of the integrated temperature, the difference in freshness can be evaluated and displayed with high accuracy. By evaluating the freshness based on the estimated value of the integrated temperature, it is possible to quantitatively evaluate the freshness of seemingly fresh fruits and vegetables that have a low integrated temperature after harvesting and conventionally cannot identify signs of deterioration.

又、コンピュータ2は、青果物の種類毎に、食用として流通させることのできる鮮度の限界値を、積算温度の上限値として記憶している。コンピュータ2は、算出された積算温度の推定値を積算温度の上限値と比較して、上限値に到達するまでに今後どの程度の環境温度でどの程度の期間の貯蔵が可能であるかを評価して表示することができる。この貯蔵が可能な期間を知ることで、青果物の流通や販売に携わる者は、入荷した青果物を流通させることのできる期間を推定することが可能となる。   Further, the computer 2 stores, as the upper limit value of the integrated temperature, a freshness limit value that can be distributed for food use for each type of fruit and vegetable. The computer 2 compares the estimated value of the calculated integrated temperature with the upper limit value of the integrated temperature, and evaluates how much environmental temperature can be stored in the future until reaching the upper limit value. Can be displayed. By knowing the period during which this storage is possible, a person involved in the distribution and sale of fruits and vegetables can estimate the period during which the received fruits and vegetables can be distributed.

以下に、コンピュータ2が記憶している鮮度の限界値の根拠となっている、積算温度と官能評価との相関関係を、野菜の種類毎に例示する。ほうれん草の場合には、80℃・日までは官能評価で変化が認められないが、積算温度が100℃・日を超えると葉全体の黄変が始まる。キュウリの場合には、80℃・日までは官能評価で変化が認められないが、積算温度が100℃・日を超えると、見た目の変化は少ないもののテクスチャーが軟化する。小松菜の場合には、60℃・日までは官能評価で変化が認められないが、積算温度が80℃・日を超えると葉全体の黄変が始まる。にんじんの場合には、60℃・日までは官能評価で変化が認められないが、80℃・日でテクスチャーが軟化し、100℃・日を超えると部分的に変色が始まる。パセリの場合には、60℃・日までは官能評価で変化が認められないが、80℃・日で葉の緑色が薄くなり始め、100℃・日を超えると葉全体の黄変が始まる。ブロッコリーの場合には、40℃・日までは官能評価で変化が認められないが、60℃・日で緑色が退色し始め、80℃・日を超えると全体の黄変が始まる。これらの外観及び触感の変化は、いずれも、積算温度に比例して、一定の割合で進行している。   Below, the correlation of integrated temperature and sensory evaluation which becomes the basis of the freshness limit value which the computer 2 memorize | stores is illustrated for every kind of vegetable. In the case of spinach, no change is recognized in the sensory evaluation until 80 ° C./day, but when the integrated temperature exceeds 100 ° C./day, yellowing of the entire leaf begins. In the case of cucumber, no change is recognized in the sensory evaluation until 80 ° C. · day, but when the integrated temperature exceeds 100 ° C. · day, the texture is softened although there is little change in appearance. In the case of Komatsuna, no change is recognized by sensory evaluation until 60 ° C / day, but when the integrated temperature exceeds 80 ° C / day, yellowing of the entire leaf begins. In the case of carrots, no change is observed in the sensory evaluation until 60 ° C./day, but the texture softens at 80 ° C./day, and when the temperature exceeds 100 ° C./day, partial discoloration starts. In the case of parsley, no change is observed in the sensory evaluation until 60 ° C./day, but the green color of the leaves starts to fade at 80 ° C./day, and the yellowing of the entire leaf starts after 100 ° C./day. In the case of broccoli, no change is observed in the sensory evaluation until 40 ° C./day, but the green color starts to fade at 60 ° C./day, and when the temperature exceeds 80 ° C./day, the entire yellowing starts. These changes in appearance and tactile sensation all proceed at a constant rate in proportion to the integrated temperature.

上記の官能評価結果との対応から明らかであるように、ほうれん草と、キュウリと、にんじんと、パセリにおいては、積算温度100℃・日が、食用として流通させることのできる鮮度の限界値である。同様に、小松菜とブロッコリーは、積算温度80℃・日が、食用として流通させることのできる鮮度の限界値である。これらの積算温度の値は、鮮度の限界値としてコンピュータ2に記憶されており、ステップS7で、鮮度の評価時に使用される。   As is clear from the correspondence with the above sensory evaluation results, in spinach, cucumber, carrot, and parsley, the integrated temperature of 100 ° C./day is the limit value of freshness that can be distributed for food. Similarly, for komatsuna and broccoli, an integrated temperature of 80 ° C./day is the limit value of freshness that can be distributed for food. These integrated temperature values are stored in the computer 2 as the freshness limit values, and are used when the freshness is evaluated in step S7.

本実施例の鮮度評価方法と鮮度評価装置1は、青果物のリン脂質当量と、糖脂質当量と、脂質過酸化物当量を定量し、これらそれぞれの値を式(1)と式(2)に当てはめることで、青果物の鮮度を示す鮮度値%を算出し、更に鮮度値%から青果物が遭遇した積算温度を推定することが可能である。このように、単回の計測によって青果物が遭遇した積算温度を推定することによって、官能評価ではその劣化が認識されないような比較的新鮮な青果物であっても、その鮮度を定量的且つ高精度に評価することが可能となる。又、積算温度の推定値を積算温度上限値と比較することで、評価を行った青果物が今後どの程度の環境温度下でどの程度の期間の保管が可能であるかを評価して表示することができる。   The freshness evaluation method and freshness evaluation apparatus 1 of the present example quantifies the phospholipid equivalent, glycolipid equivalent, and lipid peroxide equivalent of fruits and vegetables, and these values are expressed in Equations (1) and (2), respectively. By applying, it is possible to calculate a freshness value% indicating the freshness of the fruits and vegetables, and further estimate the accumulated temperature encountered by the fruits and vegetables from the freshness value%. In this way, by estimating the accumulated temperature encountered by the fruits and vegetables by a single measurement, even for relatively fresh fruits and vegetables whose degradation is not recognized by sensory evaluation, the freshness can be quantitatively and highly accurate. It becomes possible to evaluate. In addition, by comparing the estimated value of the accumulated temperature with the accumulated temperature upper limit value, it is possible to evaluate and display the environmental temperature at which the evaluated fruits and vegetables can be stored in the future. Can do.

(第2実施例) 図3に、本発明の第2実施例の鮮度評価方法のフローチャートを示す。鮮度評価装置の構成の中で第1実施例と同一のものについては、同一符号を付与して重複説明を割愛する。   Second Embodiment FIG. 3 shows a flowchart of a freshness evaluation method according to a second embodiment of the present invention. Among the configurations of the freshness evaluation apparatus, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施例の鮮度評価方法は、ステップS11で青果物の評価用試料を第1実施例と同様に凍結乾燥することによって調整し、ステップS12で脂質過酸化物当量の定量を行う。脂質過酸化物当量の定量は、第1実施例と同一のチオバルビツール酸法で行われる。本実施例における鮮度評価方法は、ステップS13で、青果物の中の脂質過酸化物当量を、鮮度値として評価に使用している。本実施例における鮮度値は、青果物が呼吸を行って青果物の鮮度が低下していくとき、青果物中の細胞質脂質が酸化されて、脂質過酸化物が増加することに着目して定義されている。   In the freshness evaluation method of this example, the sample for fruit and vegetable evaluation is adjusted by lyophilization in the same manner as in the first example in step S11, and the lipid peroxide equivalent is quantified in step S12. The lipid peroxide equivalent is quantified by the same thiobarbituric acid method as in the first example. The freshness evaluation method in a present Example is using the lipid peroxide equivalent in fruit and vegetables for evaluation in step S13 as a freshness value. The freshness value in this example is defined by focusing on the fact that when the fruits and vegetables breathe and the freshness of the fruits and vegetables decreases, the cytoplasmic lipids in the fruits and vegetables are oxidized and the lipid peroxide increases. .

脂質過酸化物当量が積算温度が増加するに従って増加することは、図4の積算温度毎の脂質過酸化物当量の計測値の変化から明らかである。そこで、本実施例における過酸化脂質当量と積算温度が線形関係を有していることを確認するために、積算温度を説明変数とし、鮮度値即ち脂質過酸化物当量を目的変数として単回帰分析(直線回帰分析)を行った結果を、表2に示す。ここでは、ほうれん草、小松菜、パセリ、キュウリ、ニンジン、ブロッコリーの6種類の青果物について、単回帰分析を行っている。   It is apparent from the change in the measured value of the lipid peroxide equivalent for each integrated temperature in FIG. 4 that the lipid peroxide equivalent increases as the integrated temperature increases. Therefore, in order to confirm that the lipid peroxide equivalent and the integrated temperature in this example have a linear relationship, a single regression analysis is performed using the integrated temperature as an explanatory variable and the freshness value, that is, the lipid peroxide equivalent, as an objective variable. The results of (linear regression analysis) are shown in Table 2. Here, simple regression analysis is performed on six types of fruits and vegetables: spinach, Japanese mustard spinach, parsley, cucumber, carrot and broccoli.

表2に示される数値のうちa及びbは、以下の単回帰分析に用いた回帰式(4)の係数であり、Rは過酸化脂質当量と積算温度の決定係数(相関係数)である。
(回帰式4)
過酸化脂質当量= a×積算温度+ b ・・(4)

Figure 2010025883

Among the numerical values shown in Table 2, a and b are coefficients of the regression equation (4) used for the following single regression analysis, and R 2 is a coefficient of determination (correlation coefficient) of lipid peroxide equivalent and integrated temperature. is there.
(Regression equation 4)
Lipid peroxide equivalent = a x accumulated temperature + b (4)
Figure 2010025883

ほうれん草についての積算温度と脂質過酸化物当量の単回帰分析の結果グラフを図11に示す。小松菜についての積算温度と脂質過酸化物当量の単回帰分析の結果グラフを図12に示す。パセリについての積算温度と脂質過酸化物当量の単回帰分析の結果グラフを図13に示す。キュウリについての積算温度と脂質過酸化物当量の単回帰分析の結果グラフを図14に示す。ニンジンについての積算温度と脂質過酸化物当量の単回帰分析の結果グラフを図15に示す。ブロッコリーについての積算温度と脂質過酸化物当量の単回帰分析の結果グラフを図16に示す。以上6種類の青果物のうち、積算温度と脂質過酸化物当量との相関係数が最も低い青果物はブロッコリーであり、ブロッコリーに関しては、第1実施例の鮮度値を適用して、鮮度の評価を行うことがより好ましい事が明らかとなった。しかし一方で、検証を行った他の5種類の青果物の相関係数は0.8以上の値となっており、積算温度と脂質過酸化物当量の相関係数が高く、線形関係が成立していることが確認された。以上の事から、本実施例において脂質過酸化物当量を用いて鮮度を評価する方法は、特に脂質酸化物当量と積算温度の関係が検証された場合には充分有効であることが検証された。   FIG. 11 is a graph showing the results of single regression analysis of the accumulated temperature and lipid peroxide equivalent for spinach. FIG. 12 shows a graph showing the results of single regression analysis of the accumulated temperature and lipid peroxide equivalent for Komatsuna. FIG. 13 shows a graph showing the results of single regression analysis of the accumulated temperature and lipid peroxide equivalent for parsley. FIG. 14 shows a graph showing the results of single regression analysis of the accumulated temperature and lipid peroxide equivalent for cucumber. The result graph of the single regression analysis of the integrated temperature and lipid peroxide equivalent for carrots is shown in FIG. The result graph of the single regression analysis of the integrated temperature about a broccoli and a lipid peroxide equivalent is shown in FIG. Among the above six types of fruits and vegetables, the fruits and vegetables having the lowest correlation coefficient between the accumulated temperature and the lipid peroxide equivalent are broccoli. For broccoli, the freshness value of the first embodiment is applied to evaluate the freshness. It became clear that it was more preferable to do this. However, on the other hand, the correlation coefficient of the other five types of fruits and vegetables that have been verified is 0.8 or more, and the correlation coefficient between the accumulated temperature and the lipid peroxide equivalent is high, and a linear relationship is established. It was confirmed that From the above, it was verified that the method for evaluating freshness using the lipid peroxide equivalent in this example is sufficiently effective particularly when the relationship between the lipid oxide equivalent and the integrated temperature is verified. .

ステップS13においてコンピュータ2は、計測され定量された脂質過酸化物当量の値を、予め定義されている回帰式に当てはめることで、青果物が遭遇した積算温度の推定値を得る。この積算温度の推定値によって、収穫後の経過時間が短くこれまでは劣化の兆候が識別できなかった青果物も含めて、鮮度の現状を定量的且つ高精度に評価し表示することができる。又、コンピュータ2は、青果物の種類毎に、食用として流通させることのできる鮮度の限界値を、積算温度の上限値として記憶している。コンピュータ2は、算出された積算温度の推定値を積算温度の上限値と比較して、上限値に到達するまでに今後どの程度の環境温度でどの程度の期間の保管が可能であるかを評価して表示することができる。この保管が可能な期間を知ることで、青果物の流通や販売に携わる者は、入荷した青果物を流通させることのできる期間を推定することが可能となる。   In step S13, the computer 2 obtains an estimated value of the accumulated temperature encountered by the fruits and vegetables by applying the measured and quantified value of the lipid peroxide equivalent to a predefined regression equation. With the estimated value of the integrated temperature, it is possible to quantitatively and accurately evaluate and display the current state of freshness, including fruits and vegetables for which the elapsed time after harvesting is short and signs of deterioration have not been identified so far. Further, the computer 2 stores, as the upper limit value of the integrated temperature, a freshness limit value that can be distributed for food use for each type of fruit and vegetable. The computer 2 compares the estimated value of the calculated integrated temperature with the upper limit value of the integrated temperature, and evaluates how much environmental temperature can be stored in the future until reaching the upper limit value. Can be displayed. By knowing the period during which this storage is possible, a person involved in the distribution and sale of fruits and vegetables can estimate the period during which the received fruits and vegetables can be distributed.

本実施例の鮮度評価方法と鮮度評価装置は、青果物の脂質過酸化物当量を定量し、この値を青果物の鮮度を示す鮮度値として用いている。本実施例の鮮度評価技術は、第1実施例よりも計測を行う脂質の種類が少ないため、より簡易な方法によって青果物の鮮度を定量的に評価することを可能とする。   The freshness evaluation method and the freshness evaluation apparatus of this example quantitate the lipid peroxide equivalent of fruits and vegetables, and use this value as a freshness value indicating the freshness of fruits and vegetables. Since the freshness evaluation technique of this embodiment has fewer types of lipids to be measured than in the first embodiment, the freshness of fruits and vegetables can be quantitatively evaluated by a simpler method.

(第3実施例)本実施例の鮮度評価方法は、青果物の中の脂質過酸化物当量を糖脂質当量で除してその値に100を乗じた値を鮮度値%として使用することを特徴とする。本実施例における鮮度値%は、青果物が呼吸を行って青果物の鮮度が低下していくとき、青果物中の細胞質脂質が酸化されて、糖脂質の含量が低下すると同時に脂質過酸化物が増加することに着目して定義されている。   (Third embodiment) The freshness evaluation method of this embodiment uses a value obtained by dividing the lipid peroxide equivalent in fruits and vegetables by the glycolipid equivalent and multiplying that value by 100 as the freshness value%. And The freshness value% in the present example is that when the fruits and vegetables breathe and the freshness of the fruits and vegetables decreases, the cytoplasmic lipids in the fruits and vegetables are oxidized, and the content of glycolipids decreases and the lipid peroxide increases at the same time. It is defined by paying attention to it.

ほうれん草についての積算温度を説明変数(x)とし、本実施例における鮮度値%(脂質過酸化物当量を糖脂質当量で除してその値に100を乗じた値)を目的変数(y)としたときの関係を単回帰分析した結果グラフを図17に示す。単回帰分析の結果、この鮮度値%を目的変数とした回帰式は、y = 0.0052x + 0.0349で表され、その場合の回帰係数は、0.9013 となることが判明した。このように、本実施例で定義された鮮度値%は、積算温度との相関係数が充分高く、線形関係が成立していることが確認された。以上の事から、本実施例の鮮度値%を用いて特定の青果物の鮮度を評価できることが検証された。   The integrated temperature for spinach is the explanatory variable (x), and the freshness value% in this example (the value obtained by dividing the lipid peroxide equivalent by the glycolipid equivalent and multiplying that value by 100) is the objective variable (y). FIG. 17 is a graph showing the result of a single regression analysis of the relationship at the time. As a result of simple regression analysis, it was found that a regression equation with this freshness value% as an objective variable was represented by y = 0.0052x + 0.0349, and the regression coefficient in that case was 0.9013. As described above, it was confirmed that the freshness value% defined in this example has a sufficiently high correlation coefficient with the integrated temperature and a linear relationship is established. From the above, it was verified that the freshness of specific fruits and vegetables can be evaluated using the freshness value% of this example.

本実施例におけるコンピュータ2は、鮮度値%を算出した後、上記の回帰式に鮮度値%を当てはめることで、青果物が遭遇した積算温度の推定値を得る。コンピュータ2は、青果物の種類毎に、食用として流通させることのできる鮮度の限界値を、積算温度の値として記憶している。そして、算出された積算温度の値を、鮮度の限界値として記憶されている積算温度の値と比較して評価する。鮮度の劣化は、積算温度に比例して進行することが明らかであるため、算出された鮮度の指標は、鮮度の定量的な評価値として利用することができる。   After calculating the freshness value%, the computer 2 in the present embodiment applies the freshness value% to the above regression equation to obtain an estimated value of the integrated temperature encountered by the fruits and vegetables. The computer 2 stores, for each type of fruit and vegetables, a limit value of freshness that can be distributed for food use as an integrated temperature value. Then, the calculated integrated temperature value is compared with the integrated temperature value stored as the freshness limit value for evaluation. Since it is clear that the deterioration of freshness proceeds in proportion to the integrated temperature, the calculated freshness index can be used as a quantitative evaluation value of freshness.

以上、実施例に基づいて本発明の構成を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体的な形態を様々に変形、変更したものが含まれる。例えば、リン脂質、糖脂質、脂質過酸化物の含量を計測する方法については、実施例に挙げた方法以外であっても適用が可能である。又、実施例においては、青果物が遭遇した積算温度を推定するために、リン脂質、糖脂質、脂質過酸化物の特定の組み合わせを鮮度値として単回帰分析を行ったことで充分相関の高い回帰式を得ることができたが、重回帰分析を行うことによって積算温度の推定を行うことも可能である。積算温度の推定には脂質過酸化物当量の寄与率が特に高いが、糖脂質当量やリン脂質当量を考慮することで、より推定の精度を高めることができる。そこで、鮮度値を定義する場合に、例えば、脂質過酸化物当量値をリン脂質と糖脂質の合計値のみで除した値を使用することも可能である。     As mentioned above, although the structure of this invention was demonstrated in detail based on the Example, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes made to the specific modes exemplified above. For example, the method for measuring the content of phospholipids, glycolipids, and lipid peroxides can be applied to methods other than those described in the examples. In addition, in the examples, in order to estimate the accumulated temperature encountered by the fruits and vegetables, a sufficiently high regression was obtained by performing a single regression analysis using a specific combination of phospholipid, glycolipid, and lipid peroxide as a freshness value. Although the equation could be obtained, it is also possible to estimate the integrated temperature by performing multiple regression analysis. Although the contribution rate of lipid peroxide equivalent is particularly high for estimation of the integrated temperature, the accuracy of estimation can be further improved by considering glycolipid equivalent and phospholipid equivalent. Therefore, when defining the freshness value, for example, it is possible to use a value obtained by dividing the lipid peroxide equivalent value by only the total value of phospholipid and glycolipid.

第1実施例の青果物の鮮度評価装置1の構成を模式的に示す図である。It is a figure which shows typically the structure of the freshness evaluation apparatus 1 of the fruits and vegetables of 1st Example. 第1実施例の鮮度測定方法のフローチャートである。It is a flowchart of the freshness measuring method of 1st Example. 第2実施例の鮮度測定方法のフローチャートである。It is a flowchart of the freshness measuring method of 2nd Example. 5段階の積算温度に遭遇した小松菜、パセリ、キュウリ、ニンジン、ブロッコリーについて、リン脂質当量と、糖脂質当量と、脂質過酸化物当量を定量した定量結果と、これらの定量結果から算出される鮮度値%を示す図である。Quantitative results of quantifying phospholipid equivalent, glycolipid equivalent, and lipid peroxide equivalent for komatsuna, parsley, cucumber, carrot and broccoli that have encountered five levels of accumulated temperature, and freshness calculated from these quantitative results It is a figure which shows value%. 第1実施例のほうれん草の積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and freshness value% of the spinach of 1st Example. 第1実施例の小松菜の積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and freshness value% of Komatsuna of 1st Example. 第1実施例のパセリの積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and freshness value% of the parsley of 1st Example. 第1実施例のキュウリの積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and freshness value% of the cucumber of 1st Example. 第1実施例のニンジンの積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and freshness value% of the carrot of 1st Example. 第1実施例のブロッコリーの積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integration temperature and freshness value% of the broccoli of 1st Example. 第2実施例のほうれん草の積算温度と脂質過酸化物当量の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and the lipid peroxide equivalent of the spinach of 2nd Example. 第2実施例の小松菜の積算温度と脂質過酸化物当量の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and lipid peroxide equivalent of Komatsuna of 2nd Example. 第2実施例のパセリの積算温度と脂質過酸化物当量の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integration temperature of a parsley of 2nd Example, and a lipid peroxide equivalent. 第2実施例のキュウリの積算温度と脂質過酸化物当量の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature of a cucumber of 2nd Example, and a lipid peroxide equivalent. 第2実施例のニンジンの積算温度と脂質過酸化物当量の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and the lipid peroxide equivalent of the carrot of 2nd Example. 第2実施例のブロッコリーの積算温度と脂質過酸化物当量の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integration temperature and lipid peroxide equivalent of the broccoli of 2nd Example. 第3実施例のほうれん草の積算温度と鮮度値%の単回帰分析の結果グラフである。It is a result graph of the single regression analysis of the integrated temperature and freshness value% of the spinach of 3rd Example. ほうれん草のビタミンC含量と積算温度との関係を示す図である。It is a figure which shows the relationship between the vitamin C content of spinach, and integrated temperature. ほうれん草の収穫時のビタミンC含量に対する相対含量と積算温度との関係を示す図である。It is a figure which shows the relationship between the relative content with respect to the vitamin C content at the time of the harvest of spinach, and integrated temperature.

符号の説明Explanation of symbols

1 鮮度評価装置
2 コンピュータ
3 計測手段
1 Freshness Evaluation Device 2 Computer
3 Measuring means

Claims (4)

青果物の鮮度評価方法であって、
青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測する計測工程と、
前記計測工程で計測した脂質過酸化物当量と、リン脂質当量と、糖脂質当量とから、前記青果物が収穫時から鮮度評価時までに遭遇した積算温度と高い相関を有する鮮度値を算出する算出工程と、
前記鮮度値に基づいて、前記青果物の鮮度を判定する判定工程と、
を含むことを特徴とする青果物の鮮度評価方法。
A method for evaluating the freshness of fruits and vegetables,
A measuring step for measuring the lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent contained in the fruits and vegetables;
Calculation to calculate a freshness value having a high correlation with the accumulated temperature encountered from the time of harvest to the time of freshness evaluation from the lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent measured in the measurement step Process,
A determination step of determining freshness of the fruits and vegetables based on the freshness value;
A method for evaluating the freshness of fruits and vegetables.
青果物の鮮度値は、
式: 鮮度値= 脂質過酸化物当量 / (リン脂質当量 + 糖脂質当量 +脂質過酸化物当量)
によって算出されることを特徴とする請求項1に記載の青果物の鮮度評価方法。
The freshness value of fruits and vegetables
Formula: Freshness value = lipid peroxide equivalent / (phospholipid equivalent + glycolipid equivalent + lipid peroxide equivalent)
The freshness evaluation method for fruits and vegetables according to claim 1, wherein
青果物の鮮度評価装置であって、
青果物に含まれる脂質過酸化物当量と、リン脂質当量と、糖脂質当量とを計測する計測手段と、
前記計測された脂質過酸化物当量と、リン脂質当量と、糖脂質当量とから、前記青果物が収穫時から鮮度評価時までに遭遇した積算温度と高い相関を有する鮮度値を算出する算出手段と、
前記鮮度値に基づいて、前記青果物の鮮度を判定する判定手段と、
を備えることを特徴とする青果物の鮮度評価装置。
A freshness assessment device for fruits and vegetables,
Measuring means for measuring lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent contained in fruits and vegetables,
A calculating means for calculating a freshness value having a high correlation with the integrated temperature encountered from the time of harvest to the time of freshness evaluation, from the measured lipid peroxide equivalent, phospholipid equivalent, and glycolipid equivalent; ,
Determination means for determining the freshness of the fruits and vegetables based on the freshness value;
A freshness evaluation apparatus for fruits and vegetables characterized by comprising:
青果物の鮮度評価方法であって、
青果物に含まれる脂質過酸化物当量を計測する計測工程と、
前記脂質過酸化物当量から、前記青果物が収穫時から鮮度評価時までに遭遇した積算温度を算出する算出工程と、
前記積算温度に基づいて、前記青果物の鮮度を判定する判定工程と、
を含むことを特徴とする青果物の鮮度評価方法。
A method for evaluating the freshness of fruits and vegetables,
A measurement process for measuring the lipid peroxide equivalent contained in the fruits and vegetables;
From the lipid peroxide equivalent, a calculation step of calculating an integrated temperature encountered by the fruits and vegetables from harvest time to freshness evaluation time,
A determination step of determining freshness of the fruits and vegetables based on the accumulated temperature;
A method for evaluating the freshness of fruits and vegetables.
JP2008190757A 2008-07-24 2008-07-24 Method for evaluating freshness of fruits and vegetables Expired - Fee Related JP5326166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190757A JP5326166B2 (en) 2008-07-24 2008-07-24 Method for evaluating freshness of fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190757A JP5326166B2 (en) 2008-07-24 2008-07-24 Method for evaluating freshness of fruits and vegetables

Publications (2)

Publication Number Publication Date
JP2010025883A true JP2010025883A (en) 2010-02-04
JP5326166B2 JP5326166B2 (en) 2013-10-30

Family

ID=41731848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190757A Expired - Fee Related JP5326166B2 (en) 2008-07-24 2008-07-24 Method for evaluating freshness of fruits and vegetables

Country Status (1)

Country Link
JP (1) JP5326166B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184079A1 (en) * 2019-03-13 2020-09-17 パナソニックIpマネジメント株式会社 Information provision method, information provision system, fragrance application device, fragrance detection device, and information management device
CN113155776A (en) * 2021-04-29 2021-07-23 华东交通大学 Prediction method for optimal harvest time of oranges
JPWO2022138829A1 (en) * 2020-12-25 2022-06-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105194A (en) * 1998-07-31 2000-04-11 Iseki & Co Ltd Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce
JP2008094616A (en) * 2006-10-16 2008-04-24 Fukuoka Prefecture Transport quality control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105194A (en) * 1998-07-31 2000-04-11 Iseki & Co Ltd Device for evaluating taste of farm produce and device for evaluating processing characteristic of farm produce
JP2008094616A (en) * 2006-10-16 2008-04-24 Fukuoka Prefecture Transport quality control system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012064819; YAMAUCHI,N. 他: '"Polar Lipids Content and their Fatty Acid Composition with Reference to Yellowing of Stored Spinac' Journal of the Japanese Society for Horticultural Science Vol.55, No.3, 1986, pp.355-362 *
JPN6012064821; 中田絵里子 他: '"鮮度評価システムと積算温度計としてのバイオサーモメーターの有用性に関する研究"' 日本食品工学会第9回(2008年度)年次大会講演要旨集 , 20080717, p.95 *
JPN6012064824; 打田宏: '"果物・花きの鮮度保持包装について"' 包装技術 Vol.32, No.9, 19940901, pp.852-862 *
JPN6012064827; BERTOLUZZA,A. 他: '"Vibrational spectroscopy for the evaluation of molecular perturbations induced in fruit lipids by' Journal of Molecular Structure Vol.324, 1994, pp.177-188 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184079A1 (en) * 2019-03-13 2020-09-17 パナソニックIpマネジメント株式会社 Information provision method, information provision system, fragrance application device, fragrance detection device, and information management device
JP7457963B2 (en) 2019-03-13 2024-03-29 パナソニックIpマネジメント株式会社 Information provision method, information provision system, fragrance imparting device, fragrance detection device, and information management device
JPWO2022138829A1 (en) * 2020-12-25 2022-06-30
CN113155776A (en) * 2021-04-29 2021-07-23 华东交通大学 Prediction method for optimal harvest time of oranges

Also Published As

Publication number Publication date
JP5326166B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
Larsson et al. Chocolate consumption and risk of myocardial infarction: a prospective study and meta-analysis
Mehta et al. Comparison of five analytical methods for the determination of peroxide value in oxidized ghee
Marina et al. Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein
Sothornvit Edible coating and post-frying centrifuge step effect on quality of vacuum-fried banana chips
Milic et al. Haematological and iron-related parameters in male and female athletes according to different metabolic energy demands
Budtz-Jørgensen et al. Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages
Wibowo et al. Integrated science-based approach to study quality changes of shelf-stable food products during storage: A proof of concept on orange and mango juices
ANDRAE‐NIGHTINGALE et al. Textural changes in chocolate characterized by instrumental and sensory techniques
Bach et al. Effects of harvest time and variety on sensory quality and chemical composition of Jerusalem artichoke (Helianthus tuberosus) tubers
Keshani et al. Effect of temperature and concentration on rheological properties pomelo juice concentrates.
Jha et al. Physico-chemical quality parameters and overall quality index of apple during storage
Olivares et al. Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT-MS
van Hoye et al. Validation of the SenseWear Pro3 Armband using an incremental exercise test
Ostojic et al. Indicators of iron status in elite soccer players during the sports season
Ioannidis et al. Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce
Bugaud et al. Rheological and chemical predictors of texture and taste in dessert banana (Musa spp.)
Li et al. Applying sensory and instrumental techniques to evaluate the texture of French fries from fast food restaurant
JP5326166B2 (en) Method for evaluating freshness of fruits and vegetables
Marx et al. Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim
Greenhaff et al. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man?
Messia et al. Storage stability assessment of freeze-dried royal jelly by furosine determination
Ma et al. Prediction of banana maturity based on the sweetness and color values of different segments during ripening
Di Marino et al. Early metabolic response to acute myocardial ischaemia in patients undergoing elective coronary angioplasty
Lopes et al. Heart rate and blood lactate concentration response after each segment of the Olympic Triathlon event
Jhun et al. The association between blood metal concentrations and heart rate variability: a cross-sectional study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Ref document number: 5326166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees