JP2745025B2 - Rice quality evaluation method - Google Patents

Rice quality evaluation method

Info

Publication number
JP2745025B2
JP2745025B2 JP33303388A JP33303388A JP2745025B2 JP 2745025 B2 JP2745025 B2 JP 2745025B2 JP 33303388 A JP33303388 A JP 33303388A JP 33303388 A JP33303388 A JP 33303388A JP 2745025 B2 JP2745025 B2 JP 2745025B2
Authority
JP
Japan
Prior art keywords
rice
sample
component
measurement
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33303388A
Other languages
Japanese (ja)
Other versions
JPH02176448A (en
Inventor
利彦 佐竹
Original Assignee
株式会社佐竹製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社佐竹製作所 filed Critical 株式会社佐竹製作所
Priority to JP33303388A priority Critical patent/JP2745025B2/en
Publication of JPH02176448A publication Critical patent/JPH02176448A/en
Application granted granted Critical
Publication of JP2745025B2 publication Critical patent/JP2745025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料米の成分含有率を基に客観的に米の各
特性値を求めて行なう米の品質評価方法に関する。
Description: TECHNICAL FIELD The present invention relates to a rice quality evaluation method which objectively obtains each characteristic value of rice based on the component content of sample rice.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来、米の品質評価、特に食味に関する評価は、複数
の専門審査官が食味評価の対象とする米の外観、香り、
味、粘り、硬さ等の各特性項目を、評価の基準となる基
準米のそれらと比較してどれだけ優れているか或いは劣
っているかを繰り返し試験し、その平均値をとる、所謂
官能試験により行われていた。しかしながら、この官能
試験は、人により個人差がある味覚に基づき行われるも
のであるため、仮え複数の審査官による複数の評価結果
の平均をとったとしても、その評価値が時と場所を変え
ても、普遍的な客観的且つ絶対的な値とは言えないもの
であった。
Conventionally, rice quality evaluations, especially those related to taste, have been evaluated by multiple expert examiners for the appearance, aroma,
Each characteristic item such as taste, stickiness, hardness, etc., is repeatedly tested to see how good or inferior it is compared to those of the standard rice as the evaluation standard, and the average value is taken, by a so-called sensory test It was done. However, since this sensory test is performed based on tastes that differ from person to person, even if the average of multiple evaluation results by multiple examiners is taken, the evaluation Even if changed, it was not universal objective and absolute value.

ところで、米の組織、理科学的性質を科学的に測定・
分析し、前述の官能試験で得られた食味評価値との間の
相関関係を調べ、最終的には化学的に得られた測定値か
ら米の品質評価を行なおうとする研究が進められてきた
結果、米を構成する成分のうち米の品質を評価する上で
特に重要なものが、米の澱粉質を構成するアミロースと
アミロペクチンの含有率、蛋白質の含有率及び水分の含
有率であることが判明した。
By the way, the organization and scientific properties of rice are scientifically measured and
Analyzing and examining the correlation between the taste evaluation values obtained in the aforementioned sensory tests, and finally conducting research to evaluate the quality of rice from chemically obtained measurement values have been promoted. As a result, among the ingredients that make up rice, those that are particularly important in evaluating the quality of rice are the amylose and amylopectin content, protein content, and moisture content that make up rice starch. There was found.

このことから、米を構成する各成分の含有率の大小が
米の品質にどのように影響するかを説明する。
From this, it will be described how the magnitude of the content of each component constituting rice affects the quality of rice.

一般的には、日本で食味の良い米として人気が高い銘
柄は、コシヒカリとササニシキである。一例として、コ
シヒカリ、ササニシキを含めて数種銘柄米の各標準精白
度白米が含有する蛋白質の含有率と澱粉質に占めるアミ
ロースの含有比率を比較して表にすると次の第1表の通
りとなる。なお、同一銘柄であれば各成分の含有率が表
に示すものと常に同一であるというものではなく、栽培
された産地の地質条件(土質、水質)によっても、また
気象条件(気温、日照時間、降雨量等)によっても各成
分の含有率が微妙に変化することは言うまでもない。
Generally, Koshihikari and Sasanishiki are popular brands with good taste in Japan. For example, Koshihikari and Sasanishiki, including several kinds of rice, have a standard whiteness degree of white rice as compared with the protein content and the amylose content in starch, as shown in Table 1 below. Become. Note that the content of each component is not always the same as shown in the table for the same brand, but also depends on the geological conditions (soil and water quality) of the cultivated production area, and also on the weather conditions (temperature, sunshine hours). , Rainfall, etc.), it goes without saying that the content of each component slightly changes.

(蛋白質の含有率は重量比、アミロースの含有率は澱粉
質100%に対する比率を示す。) 上記第1表より、コシヒカリとササニシキの食味が良
いとする主要素が、他の一般銘柄米に比べて、蛋白質の
含有率が少ないことと、澱粉質に占めるアミロースの含
有比率が少ないことにあることが理解できる。
(The protein content is the weight ratio and the amylose content is the ratio to 100% starch.) From Table 1 above, the main factor that Koshihikari and Sasanishiki have good taste is compared with other general brand rice. Thus, it can be understood that the protein content is low and the amylose content ratio in the starch is low.

更に、白米含水率も、品質、特に炊飯等の米の粘度、
硬度に関連して食味に大きな影響を及ぼすものである。
白米の含水率が15%程度の場合、炊飯時、釜の水中に浸
漬しても白米に水分亀裂が生じず完全な飯粒に炊き上が
るが、含水率が14%を割った米の場合には、浸漬時の吸
水速度が早過ぎて瞬間的に米粒に亀裂を生じ、間もなく
米粒内質に貫通亀裂を生じるため、その割れ目に吸水し
割れ目から糊を涌出し、また砕米も同様に一気に吸水す
るのでべたついた米飯に炊き上がり、しかも米飯が崩れ
ているため噛みごたえも粘りもない低品質の米飯とな
る。
Furthermore, white rice moisture content, quality, especially the viscosity of rice such as rice cooked,
It has a great effect on taste in relation to hardness.
When the white rice has a water content of about 15%, when cooked, even if immersed in water in a kettle, the white rice is cooked into perfect rice grains without moisture cracks, but in the case of rice with a water content of less than 14% Since the water absorption rate during immersion is too fast, cracks occur in the rice grains instantaneously and penetrating cracks soon occur in the inside of the rice grains, so that water is absorbed in the cracks, glue is released from the cracks, and broken rice also absorbs water at a stretch at the same time It is cooked on sticky cooked rice, and it is a low-quality cooked rice that is not chewy or sticky because the cooked rice has collapsed.

なお、米の品質に大きな影響を及ぼす米の上記成分、
即ち蛋白質、澱粉質、水分の各含有率の他、脂肪の含有
率の大小も、その含有率が低いほど米の食味が良いとさ
れるように米の品質に影響を及ぼすが、影響の度合いは
前記3成分の含有率の大小による程大きなものではない
と言える。
In addition, the above ingredients of rice that have a great effect on the quality of rice,
That is, in addition to the protein, starch, and water contents, the size of the fat also affects the quality of the rice such that the lower the content, the better the taste of the rice. Can not be said to be as large as the content of the three components.

以上述べたことにより、米を構成する化学成分を科学
的に測定・分析することにより、また一般的に米の品質
評価を客観的に行うこと、また一般的に品質の良いとさ
れる特定の有名銘柄にとらわれず、一般銘柄米の中から
良品質の米を見出すこと、のテーマが生まれる。
Based on the above, it is possible to scientifically measure and analyze the chemical components that make up rice, to conduct an objective evaluation of the quality of rice in general, The theme is to find good quality rice among general brand rice, regardless of famous brands.

〔発明の目的〕[Object of the invention]

そこで、本発明は、試料米に含まれる各成分の含有率
を短時間で測定し、前記各成分含有率を基にして、米の
各特性値による客観的な米の品質判定を行う方法の提供
を目的とする。
Therefore, the present invention provides a method of measuring the content of each component contained in a sample rice in a short time, and objectively determining the quality of rice based on each characteristic value of rice based on the content of each component. For the purpose of providing.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によると、化学成分分析法により測定して得ら
れる既知の試料米の成分含有率と近赤外分光分析法によ
り得られる前記既知の試料米の吸光度測定値とによりあ
らかじめ成分換算係数を定め、 更に、既知の試料米の成分含有率と試料米の官能試験
等により得られる前記既知の試料米の各特性値とにより
あらかじめ特性係数を定め、 前記成分換算係数と前記近赤外分光分析法により得ら
れる未知の試料米の吸光度測定値とにより、試料米に含
まれるアミロース、蛋白質、水分の成分含有率を演算
し、 前記特性係数と前記成分含有率とにより、試料米の香
り・粘り・硬さの特性値を演算する米の品質評価方法に
より課題を解決するための手段とした。
According to the present invention, a component conversion coefficient is determined in advance based on the component content of a known sample rice obtained by measurement by a chemical component analysis method and the absorbance measurement value of the known sample rice obtained by near-infrared spectroscopy. Further, a characteristic coefficient is determined in advance based on the component content of the known sample rice and each characteristic value of the known sample rice obtained by a sensory test of the sample rice, and the component conversion coefficient and the near infrared spectroscopy Calculate the component content of amylose, protein, and water contained in the sample rice with the measured absorbance value of the unknown sample rice obtained by the above, and calculate the fragrance, stickiness, This is a means for solving the problem by a rice quality evaluation method that calculates a characteristic value of hardness.

〔作 用〕(Operation)

試料米を粉砕し、この試料米中に含まれる、米の味を
決定する主要素であるアミロース、蛋白質、水分等の含
有率を近赤外分光分析方法による分析値と、あらかじめ
定めた成分換算係数とによって求め、求めた各成分の含
有率を基にあらかじめ定めた特性係数により試料米の
香、味、粘り、硬さの特性値を求めることで、人的要因
が介在することなく、唯一、人間の介在する近赤外分光
分析においても個人差のある味覚に頼らないものである
ことで求められた評価値は、時と場所を変えても普遍的
で客観的な値となることは明らかである。
The sample rice is crushed, and the content of amylose, protein, water, etc., which are the main factors in determining the taste of rice contained in the sample rice, are analyzed by a near-infrared spectroscopic analysis method and converted into a predetermined component. By calculating the characteristic values of the flavor, taste, stickiness, and hardness of the sample rice based on the characteristic coefficients determined in advance based on the calculated content of each component, there is no human factor. However, even in the near-infrared spectroscopy with human intervention, the evaluation value obtained by not relying on tastes with individual differences is universal and objective value even when changing time and place. it is obvious.

〔実施例〕〔Example〕

以下、本発明に係る米の品質評価装置を、添付図面第
1図ないし第3図を参照しながら説明する。
Hereinafter, a rice quality evaluation device according to the present invention will be described with reference to the accompanying drawings FIG. 1 to FIG.

第1図は本発明による米の品質評価装置1を正面から
見たときの概略図である。キャビネット2の内部には、
その詳細な構成は次の第2図を参照して説明する近赤外
分光分析装置3及び制御装置4が配設される。キャビネ
ット2の前面パネルには、被測定米を入れる試料容器
(試料配置部)を装着するための試料容器装着箱5、装
置の操作手順や演算結果等を可視表示する発光ダイオー
ド又はCRT形式の表示装置6、操作用プッシュボタン7
及び演算結果のハードコピーを可能とするプリンター8
が配設される。制御装置4は、近赤外分光分析装置3の
光源、検出器、表示装置6、操作用プッシュボタン7、
プリンター8等に接続され各種信号を処理するための入
出力信号処理装置4aと、各成分の含有率を計算すたるた
めの成分換算係数値、品質評価値を計算するために米の
主成分ごとに個別に設定された特定係数、入力装置(キ
ーボード)9を介入して入力される各銘柄別あるいは品
位別の米価額、各種補正及び各種制御手順等を記憶する
ための記憶装置4bと、近赤外分光分析装置3により得ら
れる測定値と前記特定係数とに基づき米の特性値等を演
算するための演算装置4cとから成る。なお、米の主要成
分ごとに個別に設定される特定係数や必要な補正値が、
記憶装置4b内の読み出し専用のメモリ(以下、ROMと言
う)に予め記憶されている。また、プリンター8は内蔵
型に限られず、外部接続型であっても構わない。
FIG. 1 is a schematic view of the rice quality evaluation device 1 according to the present invention when viewed from the front. Inside cabinet 2
The near-infrared spectroscopic analyzer 3 and the control device 4 described in detail with reference to FIG. On the front panel of the cabinet 2, a sample container mounting box 5 for mounting a sample container (sample placement unit) for storing the rice to be measured, a light emitting diode or a CRT format display for visually displaying operation procedures and calculation results of the apparatus. Device 6, operation push button 7
And a printer 8 that enables a hard copy of the operation result
Is arranged. The control device 4 includes a light source of the near-infrared spectroscopic analyzer 3, a detector, a display device 6, an operation push button 7,
An input / output signal processing device 4a connected to the printer 8 and the like for processing various signals, and a component conversion coefficient value for calculating the content of each component, and a rice main component for calculating the quality evaluation value. A storage device 4b for storing individually set specific coefficients, rice prices for each brand or grade, which are input by intervening an input device (keyboard) 9, various corrections and various control procedures, etc .; And an arithmetic unit 4c for calculating rice characteristic values and the like based on the measured values obtained by the external spectroscopic analyzer 3 and the specific coefficient. In addition, the specific coefficient and necessary correction value that are set individually for each main component of rice are
It is stored in a read-only memory (hereinafter referred to as a ROM) in the storage device 4b in advance. Further, the printer 8 is not limited to the built-in type, but may be an external connection type.

ところで、試料に照射される近赤外線が試料に吸収さ
れるのは分子を構成する原子の連鎖が熱エネルギーによ
り振動するために起こる現象であり、原子の種類と連鎖
状態により固有振動数が異なるために、近赤外線の波長
域で振動の大きさが変化して熱吸収を生じる。また、試
料が初期に持っている熱エネルギーが少ない場合(温度
が低い場合)には、振動が小さいために分子構造の違い
による吸収量が正確に測定されないので温度の補正をす
る必要が生じる。通常、20℃以上の場合は補正を要しな
い。
By the way, the near-infrared rays irradiated to the sample are absorbed by the sample because the chain of atoms that make up the molecule vibrates due to thermal energy, and the natural frequency differs depending on the type of atom and the state of the chain. In addition, the magnitude of the vibration changes in the near-infrared wavelength region, causing heat absorption. In addition, when the sample initially has a small amount of thermal energy (when the temperature is low), the amount of absorption due to the difference in molecular structure is not accurately measured due to the small vibration, so that it is necessary to correct the temperature. Normally, no correction is required above 20 ° C.

温度設定器77は近赤外分光分析装置1を恒温に調整す
るもので、低温の場合加温装置78を動作させ通常25℃に
設定する。これは、前記試料温度の変化を防止するため
と、電気回路の温度による誤差をなくする目的を有する
ものである。
The temperature setting device 77 adjusts the temperature of the near-infrared spectroscopic analyzer 1 to a constant temperature. When the temperature is low, the heating device 78 is operated to set the temperature to 25 ° C. normally. This has the purpose of preventing the sample temperature from changing and eliminating errors due to the temperature of the electric circuit.

第2図は、キャビネット2の内部に配設される近赤外
分光分析装置3の一実施例の要部断面図である。図示さ
れる近赤外分光分析装置3は反射式のものであり、主な
る構成部品として、光源31、反射鏡32、狭帯域通過フィ
ルター33、積分球34及び検出器35a,35bを有する。光源3
1から発せられ、適当な光学系(図示せず)を通って平
行光線となった光は、狭帯域通過フィルター33を通過す
ることにより特定波長の近赤外光となった後、傾斜角度
を自由に変え得るように構成された反射鏡32により、積
分球34の上部を開口して設けられた採光窓36に向けて方
向を変えられる。反射鏡32で反射し、積分球34の採光窓
36を介して積分球34の内部に入った近赤外光は、積分球
34の底部を開口して設けられた測定部37、従って試料容
器装着箱5の後方所定位置に載置される試料容器52内の
試料米55に真上から照射される。試料米55からの拡散反
射光は、積分球34の内部に反射しながら、最終的には、
測定部37を中心に対象な位置に配設される一対の検出器
35a,35bに到達し、これにより反射光の強度が測定され
る。なお、前記試料容器52下部の試料容器装着箱5には
試料容器の温度を測定するセンサー79を設け、前記温度
設定器77について詳述した通り試料温度により分析値を
補正するものである。また図示実施例では、光学的な対
称性を修正し、試料米55からの反射光を効率良く受光す
るために検出器は一対、即ち参照番号35aと35bで示され
る二個が設けられているが、その数は二個に限られるこ
となく、一個であっても又は三個以上の検出器であって
も構わない。
FIG. 2 is a cross-sectional view of a main part of an embodiment of the near-infrared spectroscopic analyzer 3 disposed inside the cabinet 2. The illustrated near-infrared spectrometer 3 is of a reflection type, and includes, as main components, a light source 31, a reflector 32, a narrow band-pass filter 33, an integrating sphere 34, and detectors 35a and 35b. Light source 3
The light emitted from 1 and converted into parallel rays through an appropriate optical system (not shown) is converted into near-infrared light of a specific wavelength by passing through a narrow band pass filter 33, and then the inclination angle is changed. The direction can be changed toward a lighting window 36 provided by opening the upper part of the integrating sphere 34 by the reflecting mirror 32 configured to be freely changeable. Light is reflected by the reflector 32 and the lighting window of the integrating sphere 34
The near-infrared light entering the integrating sphere 34 via the
The measuring unit 37 provided with an opening at the bottom of the sample 34, and thus the sample rice 55 in the sample container 52 placed at a predetermined position behind the sample container mounting box 5 is irradiated from directly above. While the diffusely reflected light from the sample rice 55 is reflected inside the integrating sphere 34, finally,
A pair of detectors arranged at target positions around the measurement unit 37
35a and 35b are reached, whereby the intensity of the reflected light is measured. Note that a sensor 79 for measuring the temperature of the sample container is provided in the sample container mounting box 5 below the sample container 52, and the analysis value is corrected by the sample temperature as described in detail for the temperature setting device 77. Further, in the illustrated embodiment, a pair of detectors, that is, two detectors indicated by reference numerals 35a and 35b are provided in order to correct the optical symmetry and efficiently receive the reflected light from the sample rice 55. However, the number is not limited to two, and may be one or three or more detectors.

ここで、光源31と反射鏡32との間に設けられ、光源31
から出た光がこれを通過することにより特定波長の近赤
外光となる狭帯域通過フィルター33の構成及びこれに要
求される物理的特性等を説明する。狭帯域通過フィルタ
ー33は、それぞれが異なる主波長通過特性を有する任意
複数個のフィルター(例えば、6個のフィルター33a〜3
3f)からなり、これらを回転円盤に取り付けこれを適当
角度づつ回動させることにより、光源31と反射鏡32とを
結ぶ線上に所望のフィルターが位置するように順次選択
・交換できる構成とする。なお、フィルターの通過特性
で主波長とは、フィルターの面に対して入射光軸が直角
の時は透過する近赤外線のうちの最大透過波長のことで
ある。狭帯域通過フィルター33の他の具体的構成例とし
ては、角柱状の反射鏡32を内部に位置させ、その反射鏡
の各面に対向する位置に複数個のフィルター33a〜33fを
それぞれ位置させて角柱状に構成しこれを回転可能とす
る構成もある。なお、狭帯域通過フィルター33が円板状
のものであるとき、入射光軸に対するその回転面の傾斜
角度を、電動機等の手段により微細に且つ連続的に調整
できるようにしておけば、各フィルターが持つ通過特性
の主波長からシフトした異なる波長の近赤外光を連続的
に作り出すことができる。これは、一般的に良く知られ
ている現象であるが、フィルターの面に対する入射光軸
の角度を90゜から変化させると、その角度変化に応じて
最大透過波長から数十nmの範囲でシフトする現象によ
る。
Here, the light source 31 is provided between the light source 31 and the reflecting mirror 32.
The configuration of the narrow band-pass filter 33 which becomes near-infrared light of a specific wavelength when light emitted from the filter passes therethrough, and physical characteristics required for the filter will be described. The narrow band-pass filter 33 includes an arbitrary number of filters (for example, six filters 33a to 33a) each having a different dominant wavelength pass characteristic.
3f), these are mounted on a rotating disk and rotated by an appropriate angle so that the filter can be sequentially selected and exchanged so that a desired filter is located on a line connecting the light source 31 and the reflecting mirror 32. The dominant wavelength in the transmission characteristics of the filter refers to the maximum transmission wavelength of near infrared rays that are transmitted when the incident optical axis is perpendicular to the surface of the filter. As another specific configuration example of the narrow band pass filter 33, a prismatic reflecting mirror 32 is located inside, and a plurality of filters 33a to 33f are respectively located at positions facing each surface of the reflecting mirror. There is also a configuration in which it is formed in a prism shape and can be rotated. When the narrow band-pass filter 33 is a disk-shaped filter, if the inclination angle of the rotating surface with respect to the incident optical axis can be finely and continuously adjusted by a motor or the like, each filter can be adjusted. Near-infrared light of a different wavelength shifted from the main wavelength of the transmission characteristic of the NIR can be continuously produced. This is a well-known phenomenon.When the angle of the incident optical axis with respect to the filter surface is changed from 90 °, the maximum transmission wavelength shifts in the range of several tens of nm according to the angle change. It depends on the phenomenon.

次に、狭帯域通過フィルター33に要求される物理的特
性を第3図に基づき説明する。第3図は、異なる材料米
に対して波長が連続的に変化する近赤外線光を照射した
ときの、照射波長と吸光度との関係を示すグラフ(吸光
度曲線)である。吸光度log I0/Iは、基準照射光量(全
照射光量)I0に対する試料米からの反射光量Iの比の逆
数の常用対数である。前記各成分の含有量の多少が吸光
度差として顕著に現れていることが容易に理解できる。
本発明はこの現象を利用して試料米に含まれる所定の成
分の含有率を測定するものであるため、測定のために試
料米に照射される近赤外光の波長としては、波長領域19
00〜2500nmのうち、各成分に対して吸光度曲線上特異的
なピークが見られる(本実施例では1960nm,2030nm,2100
nm,2130nm,2270nm,2370nm等とする)。従って、狭帯域
通過フィルター33が備える各フィルター33a〜33fは、試
料米に含まれる各成分の測定に適した前記各波長の近赤
外光を作るべく、前記各波長を特定通過特性、即ち主波
長として持つことが要求される。
Next, physical characteristics required for the narrow band pass filter 33 will be described with reference to FIG. FIG. 3 is a graph (absorbance curve) showing the relationship between the irradiation wavelength and the absorbance when near-infrared light whose wavelength continuously changes is irradiated to different material rice. The absorbance log I 0 / I is a common logarithm of the reciprocal of the ratio of the reflected light amount I from the sample rice to the reference irradiation light amount (total irradiation light amount) I 0 . It can be easily understood that the content of each of the components is remarkably expressed as a difference in absorbance.
Since the present invention measures the content of a predetermined component contained in the sample rice using this phenomenon, the wavelength of the near-infrared light applied to the sample rice for the measurement has a wavelength range of 19 nm.
Among the 00 to 2500 nm, specific peaks are seen on the absorbance curve for each component (in this example, 1960 nm, 2030 nm, 2100 nm).
nm, 2130 nm, 2270 nm, 2370 nm, etc.). Accordingly, the filters 33a to 33f included in the narrow band pass filter 33 pass the respective wavelengths through a specific pass characteristic, i.e., a main characteristic, in order to generate near-infrared light of the respective wavelengths suitable for measurement of each component contained in the sample rice. It is required to have a wavelength.

次に、上記構成を有する本発明の試料米の品質評価装
置の具体的動作を説明する。まず、操作用プッシュボタ
ン7の操作により光源31を点灯させ、光源31から発せら
れた光に基づく測定部37に到達する特定波長の近赤外光
が安定するまで、近赤外分光分析装置3の全体を加温装
置78等で予熱する。予熱のための所定時間が経過した
ら、試料容器装着箱5を装置のキャビネット2から一旦
引き出し、粉砕した試料米55を充填した試料容器52を所
定位置に載置させた後、キャビネット2内に挿入するこ
とにより測定準備を完了する。このとき試料容器装置箱
5の温度センサー79は試料容器52の温度を測定する。な
お、試料米55は、測定値に誤差が生じないようにするた
めに、その粒子の大きさが約50ミクロン以下に粉砕され
ていることが望ましいが、必ずしも粉砕しなければなら
ないものではない。また、乱反射による光のロスを少な
くする為に、粉砕された試料米55は、その表面が平坦面
となるような状態で試料容器52に充填されること、さら
に、透明ガラス板で多少圧力を加えながらその表面を覆
うことが好ましい。
Next, the specific operation of the sample rice quality evaluation device of the present invention having the above-described configuration will be described. First, the light source 31 is turned on by operating the operation push button 7, and until the near-infrared light of a specific wavelength reaching the measuring unit 37 based on the light emitted from the light source 31 is stabilized, the near-infrared spectroscopic analyzer 3 Is preheated by a heating device 78 or the like. After a lapse of a predetermined time for preheating, the sample container mounting box 5 is once pulled out of the cabinet 2 of the apparatus, and the sample container 52 filled with the crushed sample rice 55 is placed at a predetermined position, and then inserted into the cabinet 2. To complete the measurement preparation. At this time, the temperature sensor 79 of the sample container device box 5 measures the temperature of the sample container 52. The sample rice 55 is desirably ground to a particle size of about 50 microns or less in order to prevent an error in the measured value, but is not necessarily ground. In addition, in order to reduce light loss due to irregular reflection, the crushed sample rice 55 is filled in the sample container 52 in a state where the surface becomes flat, and further, a pressure is slightly applied by a transparent glass plate. It is preferable to cover the surface while adding.

前記測定準備作業が完了したら、次に、最初に1960nm
を主波長として持つフィルター33Aが光源31と反射鏡32
とを結ぶ線上に来るように選択され、波長1960nmの近赤
外光を試料米55に対して照射したときの反射吸光度の測
定作業に入る。反射吸光度の測定作業は、試料米55に対
して照射される全照射量、即ち基準光量の測定と、試料
米55に対して前記基準照射光量を照射した時に試料米55
で実際に反射される反射光量の測定との2つの測定から
なる。1つのフィルターについてこれから2つの測定の
どちらかを先に実施しても構わないが、以下の説明で
は、基準照射光量の測定の方が先に実施されるものとし
て説明する。基準照射光量の測定は、傾斜角度が可変に
構成された反射鏡32の傾斜角度を、これらの反射光が積
分球34の内壁に直接当たるような角度に、電動機等を用
いた回動手段(図示せず)により変えた状態で実施され
る。こうすることにより、積分球34の内壁に直接当てら
れた反射鏡32からの光は、内壁を多方向に拡散反射しな
がら最終的には検出器35a,35bに到達し、基準照射光量
として検出される。一方試料米55からの反射光量の測定
は、反射鏡32の傾斜角度が第2図に示す元の位置に戻さ
れた後、前述した原理により行われる。なお、測定準備
完了後の最初のフィルターの選択、基準照射光量の測定
及び反射光量の測定までの各実行は、制御装置4の記憶
装置4b内のROMに手順プログラムを記憶させ、そのプロ
グラムに従って自動的に行えるようにできることは言う
までもない。また、1つのフィルターについての前述基
準照射光量及び反射光量の各測定をそれぞれ複数回実施
し、測定値としてそれらの平均を採れるようにすること
も測定精度を上げるのに役立つ。検出器35a,35bによっ
て検出された基準照射光量及び試料米55からの反射光量
に基づく各測定値は、試料米に含まれるアミロース、蛋
白質、脂肪、水分等の各含有率を計算するための実測デ
ータとして制御装置4に連絡され、記憶装置4b内の書き
込み可能なメモリ(以下、RAMと言う)に一旦記憶され
る。
When the measurement preparation work is completed, first, 1960nm
Is the light source 31 and the reflecting mirror 32
The process starts measuring the reflection absorbance when the sample rice 55 is irradiated with near-infrared light having a wavelength of 1960 nm, which is selected so as to be on the line connecting The measurement operation of the reflection absorbance is performed by measuring the total irradiation amount irradiated to the sample rice 55, that is, the reference light amount, and measuring the sample rice 55 when the sample rice 55 is irradiated with the reference irradiation light amount.
And the measurement of the amount of reflected light that is actually reflected in the measurement. Although one of the two measurements may be performed first for one filter, the following description will be made on the assumption that the measurement of the reference irradiation light amount is performed first. The measurement of the reference irradiation light amount is performed by turning the inclination angle of the reflecting mirror 32 having a variable inclination angle to an angle such that the reflected light directly hits the inner wall of the integrating sphere 34 by using a rotating means using a motor or the like. (Not shown). In this way, the light from the reflecting mirror 32 directly applied to the inner wall of the integrating sphere 34 reaches the detectors 35a and 35b while diffusing and reflecting the inner wall in multiple directions, and is finally detected as the reference irradiation light amount. Is done. On the other hand, the measurement of the amount of reflected light from the sample rice 55 is performed according to the above-described principle after the inclination angle of the reflecting mirror 32 is returned to the original position shown in FIG. It should be noted that the procedure from selection of the first filter after the completion of the preparation for measurement, measurement of the reference irradiation light amount and measurement of the reflected light amount is performed by storing a procedure program in the ROM in the storage device 4b of the control device 4 and automatically executing the program according to the program. Needless to say, it can be done in a specific way. Further, it is also useful to increase the measurement accuracy by performing each of the above-described measurement of the reference irradiation light amount and the reflected light amount for one filter a plurality of times, and taking an average of the measured values. Each measurement value based on the reference irradiation light amount detected by the detectors 35a and 35b and the reflected light amount from the sample rice 55 is an actual measurement for calculating each content rate of amylose, protein, fat, moisture, etc. contained in the sample rice. The data is communicated to the control device 4 as data, and is temporarily stored in a writable memory (hereinafter referred to as a RAM) in the storage device 4b.

照射波長1960nmにおける吸光度の測定が終了したら、
次の照射波長、即ち本実施例の場合2030nmでの吸光度の
測定に移行する。ここでも、基準照射光量の測定及び反
射光量の測定が、前述1960nmでのときと同じ方法及び手
順で実施される。各測定値は、前回と同様に、各成分の
含有率計算のための実測データとして制御装置4に連絡
され、記憶装置4b内のRAMに一時記憶される。以下同様
に、残りの各吸光度測定、即ち、波長2100nm,2130nm,22
70nm,2370nmでの吸光度測定が順次行われ、各測定値
は、実測データとして制御装置4に連絡され、RAMに記
憶される。なお、ある特定波長での吸光度測定が終わり
次の特定波長での吸光度測定への移行に伴う狭帯域通過
フィルター33の各フィルター33a〜33fの交換・選択動作
は、通常、制御装置4の記憶装置4b内のROMに予め書き
込まれている手順プログラムに従い自動的に行われる
が、本実施例の場合でも、必ずしも上記6波長全てにつ
いて吸光度測定を行わなければならない訳ではなく、測
定の対象となる波長は、求める特性値に要求される精度
或いは測定に係る所要時間等を考慮して任意に選択する
ことができ、その選択は、操作用プッシュボタン7内の
測定波長選択ボタンにより行うことができる。
When the measurement of the absorbance at the irradiation wavelength of 1960 nm is completed,
The process shifts to the measurement of the absorbance at the next irradiation wavelength, that is, at 2030 nm in this embodiment. Here, the measurement of the reference irradiation light amount and the measurement of the reflected light amount are performed by the same method and procedure as in the case of 1960 nm described above. Each measurement value is communicated to the control device 4 as actual measurement data for calculating the content of each component as in the previous case, and is temporarily stored in the RAM in the storage device 4b. Hereinafter, similarly, the remaining absorbance measurements, that is, wavelengths 2100 nm, 2130 nm, 22
Absorbance measurements at 70 nm and 2370 nm are sequentially performed, and each measured value is communicated to the control device 4 as actual measurement data and stored in the RAM. It should be noted that the operation of exchanging and selecting each of the filters 33a to 33f of the narrow band pass filter 33 accompanying the transition to the absorbance measurement at a specific wavelength after the absorbance measurement at a specific wavelength is completed is usually performed by a storage device of the control device 4. The measurement is automatically performed in accordance with the procedure program pre-written in the ROM in 4b. However, even in the case of this embodiment, it is not always necessary to perform the absorbance measurement for all of the above six wavelengths. Can be arbitrarily selected in consideration of the accuracy required for the desired characteristic value, the required time for measurement, and the like. The selection can be made with the measurement wavelength selection button in the operation push button 7.

これまで説明した吸光度の測定は、単に狭帯域通過フ
ィルター33に設定された6個のフィルター33a〜33fを順
次交換することにより、各フィルター33a〜33fが持つ各
主波長でのスポット的吸光度の測定方法であったが、前
述した通りフィルターの面に対する入射光の入射角度を
基準となる90゜から変化させると、最大透過波長が主波
長から数十nmの範囲でシフトするという現象を利用し
て、成分含有量の差が吸光度差に顕著に現れる波長領域
1900nm〜2500nmでの連続的な吸光度測定も可能である。
図示第1実施例の場合、円板状に構成された狭帯域通過
フィルター33への入射光軸の角度を、制御装置4からの
指令信号に基づき電動機等の適当な調節手段(図示せ
ず)により微細に且つ連続的に変化させることによりこ
れが可能である。
The measurement of the absorbance described so far is performed simply by sequentially exchanging the six filters 33a to 33f set in the narrow band pass filter 33, thereby measuring the spot-like absorbance at each main wavelength of each of the filters 33a to 33f. Although it was a method, as described above, if the incident angle of the incident light with respect to the surface of the filter is changed from the reference 90 °, the phenomenon that the maximum transmission wavelength shifts in the range of several tens nm from the main wavelength is used. , Wavelength region where the difference in component content is noticeable in the absorbance difference
Continuous absorbance measurement at 1900 nm to 2500 nm is also possible.
In the case of the first embodiment shown in the figure, the angle of the optical axis incident on the narrow band-pass filter 33 formed in a disc shape is adjusted appropriately by a motor or the like based on a command signal from the controller 4 (not shown). This is possible by finer and continuous changes.

次に、制御装置4の演算装置4cは、記憶装置4bのRAM
に記憶されている吸光度測定で得られた多数の実測デー
タ、即ち各測定波長における基準照射光量及び反射光量
の測定値と、記憶装置4bのROMに予め記憶されている各
成分の含有率計算のための成分換算係数値とに基づき、
試料米の品質を評価する上で重要な成分であるアミロー
スと、蛋白質、脂肪、水分等の各含有率を計算する。な
お、各成分に関して記憶装置4bのROMに予め書き込まれ
るこの成分換算係数値は、多数の試料米に対して例えば
化学定量分析法を用いて測定された各成分の含有率を基
準に、検出器からの吸光度測定値を信号処理し、重回帰
分析法により求められた定数である。
Next, the arithmetic unit 4c of the control device 4 is connected to the RAM of the storage device 4b.
Numerous measured data obtained by the absorbance measurement stored in the storage device 4b, that is, the measured values of the reference irradiation light amount and the reflected light amount at each measurement wavelength, and the content ratio calculation of each component stored in the ROM of the storage device 4b in advance. Based on the component conversion coefficient value for
Calculate the contents of amylose, which is an important component in evaluating the quality of sample rice, and the contents of proteins, fats, moisture, and the like. Note that the component conversion coefficient value previously written in the ROM of the storage device 4b for each component is based on the content of each component measured using, for example, a chemical quantitative analysis method for a large number of sample rices. Is a constant determined by multiple regression analysis after signal processing of the measured absorbance value from.

ここで成分換算係数を求める重回帰分析について一例
を示す。たとえば6個のフィルターP1nm,P2nm,P3nm,P4n
m,P5nm,P6nmを使用して試料米の一成分Aについて検出
器で吸光度測定を行ったとき、次の線型関係が成立する
ものとする。
Here, an example of a multiple regression analysis for obtaining a component conversion coefficient will be described. For example, six filters P 1 nm, P 2 nm, P 3 nm, P 4 n
When the absorbance of a component A of sample rice is measured by a detector using m, P 5 nm, and P 6 nm, the following linear relationship is established.

A1=F0a+F1a・X11+F2a・X21+…+F6a・X61+ε このときAn:試料米の成分Aの原子吸光分析法による含
有率パーセント。
A 1 = F 0 a + F 1 a · X 11 + F 2 a · X 21 + ... + F 6 a · X 61 + ε 1 this time An: content percentage by atomic absorption spectrometry of the sample rice components A.

F0a〜F6a :重回帰分析による成分換算係数値。F 0 a~F 6 a: component conversion coefficient value by multiple regression analysis.

X1〜X6 :P1〜P6のフィルターにそれぞれ対応する吸
光度(Iog値)。
X 1 ~X 6: P 1 ~P each filter corresponding absorbance 6 (IOG value).

εn :誤差。εn: error.

である。It is.

同様にしてn個の試料について吸光度分析を行ない重
回帰式に代入すると、 A1=F0a+F1a・X11・F2a・X21+……+F6a・X61+ε A2=F0a+F1a・X12+F2a・X22+……+F6a・X62+ε An=F0a+F1a・X1n+ F2a・X2n+…+F6a・X6n+εn となり、上記n個の重回帰式により重回帰分析を行いF0
a〜F6aの成分換算係数値を求めると A=F0a+F1a・X1+F2a・X2+ …+F6a・X6 となり。成分Aを検出器で吸光度測定を行う関係式が成
立する。
Substituting into n multiple regression equation performs absorbance analysis for the samples in the same manner, A 1 = F 0 a + F 1 a · X 11 · F 2 a · X 21 + ...... + F 6 a · X 61 + ε 1 A 2 = F 0 a + F 1 a · X 12 + F 2 a · X 22 + ...... + F 6 a · X 62 + ε 2 An = F 0 a + F 1 a · X 1 n + F 2 a · X 2 n + ... + F 6 a · X 6 n + εn, and a multiple regression analysis is performed using the n multiple regression equations described above, and F 0
to F 6 seek a component converted coefficient values of the A = F 0 a + F 1 a · X 1 + F 2 a · X 2 + ... + F 6 a · X 6 next. A relational expression for measuring the absorbance of the component A with a detector is established.

ところで、前記フィルターP1〜P6のフィルターは、一
実施例を示したものであり、正確を期するためにの最適
フィルターの選定は、前記回帰分析を1900nm〜2500nmの
波長域で細分化した波長域、たとえば2nm間隔で得た吸
光度を用いて行列的に全てを組み合わせて見い出すので
ある。
However, the filter of the filter P 1 to P 6 is an illustration of an example, the optimum filter selection of the to ensure accuracy were subdivided the regression analysis in the wavelength range of 1900nm~2500nm All are combined and found in a matrix using the absorbances obtained at wavelength ranges, for example, at 2 nm intervals.

次に6個のフィルターを用いて試料米の一成分Bにつ
いて検出器でn個の試料の吸光度測定を行なって前記成
分A同様次式が成立する。
Next, the absorbance of n samples is measured with a detector for one component B of the sample rice using six filters, and the following equation is established similarly to the component A.

B=F0b+F1b・X1+F2b・X2+…+F6b・X6 以上のごとく各成分において重回帰分析を行ないそれ
ぞれの成分換算係数を求めて。各成分の含有率を検出器
の吸光度測定で求める。
B = F 0 b + F 1 b · X 1 + F 2 b · X 2 + ... + F 6 in b · X 6 or more as the components seeking each component conversion factor performs multiple regression analysis. The content of each component is determined by measuring the absorbance of the detector.

演算装置4cは次に、上述の如くして求められたアミロ
ース、蛋白質、脂肪、水分等の各含有率に基づき、計算
式により特性値を計算する。
Next, the arithmetic unit 4c calculates a characteristic value by a calculation formula based on the respective contents of amylose, protein, fat, water and the like obtained as described above.

ここで試料の粘り・硬さ・香り・味等を決定づける成
分をA,B成分とする。この各成分は前述の重回帰分析で
求められた成分換算係数により計算されたものである。
ここで各特性値を求めるための特性係数を求める回帰分
析について一実施例を示す。
Here, components that determine the stickiness, hardness, aroma, taste, etc. of the sample are A and B components. Each component is calculated by the component conversion coefficient obtained by the multiple regression analysis described above.
Here, an example of a regression analysis for obtaining a characteristic coefficient for obtaining each characteristic value will be described.

特定値(T)は T=a(Ax×By)+b で求められると仮定する。上記のa,b,x,yを前記成分A,B
同様にn個の試料米の官能試験等により得られた特性値
と検出器で求めたn個の試料米のそれぞれの成分A,Bと
により最小二乗法で求めると、このa,b,x,yが特性係数
となる。
It is assumed that the specific value (T) is obtained by T = a (A x × B y ) + b. The above a, b, x, y are the components A, B
Similarly, when the characteristic values obtained by the sensory test and the like of the n sample rice and the respective components A and B of the n sample rice obtained by the detector are obtained by the least square method, a, b, x , y are characteristic coefficients.

たとえば特性値のうち硬さを例にしてアミロースと水
分で米の硬さが決定されるとすると 硬さ=a(アミロース×水分)+b が成立すると仮定して、n個のサンプルそれぞれについ
て(この例では)アミロースと水分の含有率及び官能試
験等で得られる硬さの特性値の各値を上式に代入し、得
られたn個の関係式を同時に満足するa,b,x,yを求める
ことになる。
For example, assuming that the hardness of rice is determined by amylose and moisture using the hardness as an example of the characteristic values, it is assumed that hardness = a (amylose x × moisture y ) + b holds, and for each of n samples, (In this example) The values of the characteristic values of the hardness obtained by the contents of amylose and water and the sensory test are substituted into the above equation, and the obtained n relational equations are simultaneously satisfied. A, b, x , y.

上記求められた各特性係数と品質評価の計算式で計算
された各特性値は、演算装置4cでの計算終了と同時に、
表示装置6に可視表示されると共に、自動的に又は操作
用プッシュボタン7への指令に基づきプリンター8から
ハードコピーとして繰り出される。また、品質評価値を
求める途中の過程で求められたアミロース、蛋白質、脂
肪、水分等の各成分の各含有率を、官能評価値と共に表
示装置6に同時に可視表示させてもよい。
Each characteristic value calculated by the above-described each characteristic coefficient and the quality evaluation calculation formula, at the same time as the completion of the calculation in the arithmetic device 4c,
In addition to being visually displayed on the display device 6, it is fed out as a hard copy from the printer 8 automatically or based on a command to the operation push button 7. Further, the respective content rates of the components such as amylose, protein, fat, and moisture determined in the process of obtaining the quality evaluation value may be simultaneously displayed on the display device 6 together with the sensory evaluation value.

本品質評価装置により計算された各試料米の成分含有
率及び官能評価値は、フロッピーディスク等の磁気媒体
を用いた外部記憶装置にデータとして記憶しておくこと
ができ、また、上記複数種類の試料米の混合比率の計算
時等では、外部記憶装置からデータを本装置内の記憶装
置4bのRAMに読み込んで、これに基づき必要な計算を行
うことも可能である。
The component content and sensory evaluation value of each sampled rice calculated by the present quality evaluation device can be stored as data in an external storage device using a magnetic medium such as a floppy disk. At the time of calculating the mixing ratio of the sample rice or the like, it is also possible to read data from an external storage device into the RAM of the storage device 4b in the present device and perform necessary calculations based on the data.

なお、上記の説明では、試料米を粉砕したものを用い
たが、必ずしも粉砕したものでなくても構わない。しか
し、この場合、得られる品質評価値の精度がある程度低
下することは言うまでもない。
In the above description, the sampled rice is crushed, but the crushed rice is not necessarily required. However, in this case, it goes without saying that the accuracy of the obtained quality evaluation value is reduced to some extent.

上述実施例の品質評価装置では、試料米に特定波長の
近赤外光を照射したときの吸光度の測定を、試料米から
の反射光の強度を測定することにより行う反射式の近赤
外分光分析装置を用いたが、試料米を透過してきた透過
光の強度を測定することにより行う透過式の近赤外分光
分析装置を用いることもでき、さらには、反射光及び透
過光の両方に基づき吸光度の測定を行う、より精密な近
赤外分光分析装置とすることができる。
In the quality evaluation device of the above-described embodiment, the absorbance when the sample rice is irradiated with near-infrared light having a specific wavelength is measured by measuring the intensity of the reflected light from the sample rice. Although an analyzer was used, a transmission-type near-infrared spectroscopy analyzer that measures the intensity of transmitted light transmitted through the sample rice can also be used.Furthermore, based on both reflected light and transmitted light, A more accurate near-infrared spectrometer for measuring the absorbance can be provided.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明による米の品質評価方法
によれば、個人差のある味覚に基づく官能試験、あるい
は時間がかかり、熟練を要する化学定量分析等の方法に
よることなく、誰でもが容易に且つ短時間で正確な米の
特性値を得ることができる。
As described in detail above, according to the rice quality evaluation method of the present invention, anyone can use a sensory test based on taste with individual differences, or a method that requires time and skill such as chemical quantitative analysis. Accurate rice characteristic values can be obtained easily and in a short time.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による米の品質評価装置の正面概略図、
第2図は第1図の品質評価装置に用いられる近赤外分光
分析装置の要部側断面図、第3図は銘柄の異なる試料米
に対する近赤外線照射波長と吸光度との関係を示すグラ
フ(吸光度曲線)である。 図において、1……米の品質評価装置、2……キャビネ
ット、3……近赤外分光分析装置、4……制御装置、4a
……入出力信号処理装置、4b……記憶装置(ROM,RA
M)、4c……演算装置、5……試料容器装着箱、6……
表示装置、7……操作用プッシュボタン、8……プリン
ター、9……入力装置(キーボード)、31……光源、32
……反射鏡、33……狭帯域通過フィルター、33a〜33f…
…フィルター、34……積分球、35a,35b……検出器、36
……採光窓、37……測定部、52……試料容器、55……試
料米、77……温度設定器、78……加温装置、79……温度
センサー。
FIG. 1 is a schematic front view of a rice quality evaluation device according to the present invention,
FIG. 2 is a side cross-sectional view of a main part of a near-infrared spectroscopy analyzer used in the quality evaluation apparatus of FIG. 1, and FIG. 3 is a graph showing a relationship between near-infrared irradiation wavelength and absorbance of sample rice of different brands ( Absorbance curve). In the figure, 1... Rice quality evaluation device, 2... Cabinet, 3... Near infrared spectroscopy analyzer, 4... Control device, 4a
…… I / O signal processing device, 4b …… Storage device (ROM, RA
M), 4c: arithmetic unit, 5: sample container mounting box, 6:
Display device 7, push button for operation, 8 printer, 9 input device (keyboard), 31 light source, 32
…… Reflector, 33 …… Narrow bandpass filter, 33a-33f…
... Filter, 34 ... Integrating sphere, 35a, 35b ... Detector, 36
… Lighting window, 37… measurement unit, 52… sample container, 55… sample rice, 77… temperature setting device, 78… heating unit, 79… temperature sensor.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】化学成分分析法により測定して得られる既
知の試料米の成分含有率と近赤外分光分析法により得ら
れる前記既知の試料米の吸光度測定値とによりあらかじ
め成分換算係数を定め、 更に、既知の試料米の成分含有率と試料米の官能試験等
により得られる前記既知の試料米の各特性値とによりあ
らかじめ特性係数を定め、 前記成分換算係数と前記近赤外分光分析法により得られ
る未知の試料米の吸光度測定値とにより、試料米に含ま
れるアミロース、蛋白質、水分の成分含有率を演算し、 前記特性係数と前記成分含有率とにより、試料米の香り
・粘り・硬さの特性値を演算することを特徴とする米の
品質評価方法。
1. A component conversion factor is determined in advance based on the component content of a known sample rice obtained by a chemical component analysis method and the absorbance measurement value of the known sample rice obtained by a near-infrared spectroscopic analysis method. Further, a characteristic coefficient is determined in advance based on the component content of the known sample rice and each characteristic value of the known sample rice obtained by a sensory test of the sample rice, and the component conversion coefficient and the near infrared spectroscopy Calculate the component content of amylose, protein, and water contained in the sample rice with the measured absorbance value of the unknown sample rice obtained by the above, and calculate the fragrance, stickiness, A rice quality evaluation method characterized by calculating a characteristic value of hardness.
JP33303388A 1988-12-27 1988-12-27 Rice quality evaluation method Expired - Fee Related JP2745025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33303388A JP2745025B2 (en) 1988-12-27 1988-12-27 Rice quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33303388A JP2745025B2 (en) 1988-12-27 1988-12-27 Rice quality evaluation method

Publications (2)

Publication Number Publication Date
JPH02176448A JPH02176448A (en) 1990-07-09
JP2745025B2 true JP2745025B2 (en) 1998-04-28

Family

ID=18261520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33303388A Expired - Fee Related JP2745025B2 (en) 1988-12-27 1988-12-27 Rice quality evaluation method

Country Status (1)

Country Link
JP (1) JP2745025B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048084A (en) * 2016-11-02 2018-05-10 한국식품연구원 Quality measurement system of rice
WO2018084612A1 (en) * 2016-11-02 2018-05-11 한국식품연구원 System for measuring quality of rice, method for evaluating palatability of rice, system for predicting germination rate of grain and method for predicting germination rate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051515A (en) * 2020-09-29 2020-12-08 中国科学院长春光学精密机械与物理研究所 High-power LED whole lamp temperature stress accelerated aging on-line detection device
CN118169068B (en) * 2024-05-15 2024-08-16 奥谱天成(厦门)光电有限公司 A brown rice taste value detection method device, medium and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950261A (en) * 1982-09-17 1984-03-23 Toyota Motor Corp Shift control method for automatic transmission
JPH066977B2 (en) * 1983-05-09 1994-01-26 トヨタ自動車株式会社 Control device for continuously variable transmission for vehicle
JPH07104279B2 (en) * 1987-03-24 1995-11-13 株式会社佐竹製作所 Evaluation method of rice taste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
育種学雑誌 35巻 別冊2 (1985) P.250−251

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048084A (en) * 2016-11-02 2018-05-10 한국식품연구원 Quality measurement system of rice
WO2018084612A1 (en) * 2016-11-02 2018-05-11 한국식품연구원 System for measuring quality of rice, method for evaluating palatability of rice, system for predicting germination rate of grain and method for predicting germination rate

Also Published As

Publication number Publication date
JPH02176448A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
KR910004140B1 (en) Rise quality valuation device
Zude et al. Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
CN101907564B (en) Rapeseed quality non-destructive testing method and device based on near infrared spectrum technology
Yang et al. Portable, visual, and nondestructive detector integrating Vis/NIR spectrometer for sugar content of kiwifruits
KR100441801B1 (en) Method and apparatus for estimating quality of grains
JPH01216265A (en) Nondestructive measurement for quality of fruit and vegetable by near infra red rays
JP2745025B2 (en) Rice quality evaluation method
JP2828287B2 (en) Quality evaluation method of cooked rice
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP2022527850A (en) Methods for configuring a spectroscopic measuring device
JP2757021B2 (en) Near infrared spectroscopy
KR200404482Y1 (en) Portable Data Aquisition Apparatus for Internal Qualtity of Fruits
JP2008122412A (en) Method of measuring calorie of food item, and device for measuring calorie of food item
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
JP2757005B2 (en) Quality evaluation method of coffee beans
JP2878377B2 (en) Quality evaluation method of cooked rice
JPS63175747A (en) Instrument for measuring content of amylose or amylopectin of rice
JPH07104279B2 (en) Evaluation method of rice taste
CN113340845A (en) Quantitative detection method for protein in soybean based on support vector regression algorithm and terahertz absorption spectrum
Omar et al. Visible spectral linearisation, gradient shift and normalisation in quantifying carambola acidity
JPH0829335A (en) Rice analyzing and evaluating apparatus
JPS63221234A (en) Method for evaluating quality of rice
Shen et al. Study on quality model of apple during controlled atmosphere storage based on VIS/NIR spectroscopy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees