JP2878378B2 - Rice quality evaluation method - Google Patents

Rice quality evaluation method

Info

Publication number
JP2878378B2
JP2878378B2 JP6506390A JP6506390A JP2878378B2 JP 2878378 B2 JP2878378 B2 JP 2878378B2 JP 6506390 A JP6506390 A JP 6506390A JP 6506390 A JP6506390 A JP 6506390A JP 2878378 B2 JP2878378 B2 JP 2878378B2
Authority
JP
Japan
Prior art keywords
rice
quality evaluation
sample
absorbance curve
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6506390A
Other languages
Japanese (ja)
Other versions
JPH03264848A (en
Inventor
利彦 佐竹
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE SEISAKUSHO KK
Original Assignee
SATAKE SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE SEISAKUSHO KK filed Critical SATAKE SEISAKUSHO KK
Priority to JP6506390A priority Critical patent/JP2878378B2/en
Publication of JPH03264848A publication Critical patent/JPH03264848A/en
Application granted granted Critical
Publication of JP2878378B2 publication Critical patent/JP2878378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、米の品質を評価する品質評価方法に係り、
より詳しくは、近赤外分光分析による米の品質評価方法
に関する。
The present invention relates to a quality evaluation method for evaluating rice quality,
More specifically, the present invention relates to a method for evaluating rice quality by near-infrared spectroscopy.

【従来の技術】[Prior art]

従来、米の品質評価、特に、食味に関する評価は、専
ら官能検査法によって行われてきた。官能検査法は評価
対象となる米飯に付き、複数の調査者(パネル)が、評
価の基準となる基準米(滋賀県湖南地区産の「日本
晴」)と比較してどれだけ優れているか、あるいは劣っ
ているかを繰り返し試験して、その平均値をとって行っ
ていた。しかしながら、この官能検査法は、人により個
人差がある味覚に基づいて行われるものであり、しか
も、味覚は舌触り、きゅう覚又は視覚等によって影響さ
れることが多く、たとえ複数の調査者による複数の評価
結果の平均をとったとしても、その評価値が時と場所を
変えても普遍的、客観的かつ絶対的な値とは言い難い。 そこで、試料米(精白米)に対し、品質の異なる米の
間の品質差が吸光度差として顕著に現われる特定波長の
近赤外線を照射してその吸光度を短時間で測定し、この
測定値と、官能検査による多数の異なる品質の米の品質
評価値とこれらの米の吸光度との関連からあらかじめ求
めた品質評価係数値と、に基づき当該試料米の品質評価
値を演算して表示する米の品質評価装置が提案された
(特開昭63−218844)。
Conventionally, quality evaluation of rice, particularly evaluation of taste, has been performed exclusively by sensory test methods. The sensory test method is based on the rice to be evaluated, and how many surveyors (panels) are superior to the standard rice for evaluation (“Nipponbare” from the Konan area in Shiga prefecture) They were repeatedly tested for inferiority and averaged. However, this sensory test method is performed based on tastes that vary from person to person, and tastes are often affected by tongue, olfactory sensation, or visual sense. Even if the evaluation result is averaged, it is hard to say that the evaluation value is universal, objective and absolute even if it changes time and place. Therefore, the sample rice (milled rice) is irradiated with near-infrared light of a specific wavelength at which the difference in quality between the different quality rice appears remarkably as an absorbance difference, and the absorbance is measured in a short time. The quality of the rice, which is calculated and displayed based on the sensory test for the quality evaluation values of many different quality rice and the quality evaluation coefficient value obtained in advance from the relationship between the absorbance of these rice and the sample rice. An evaluation device has been proposed (JP-A-63-218844).

【発明が解決しようとする課題】[Problems to be solved by the invention]

米飯の品質評価の大きい要因として、前記公報に記載
のとおり、米に元来存在する性質によるもの、つまり品
種が見逃せない。コシヒカリやササニシキに代表される
優良品種というのは生産から炊飯に至る各段階を通じ、
収量や貯蔵性、玄米・精白米の性状、その他炊飯した米
飯の味に関係するあらゆる環境条件について、常に良い
品質が保たれる品種をいうのであり、その要因の一つと
して、優良品種ほど生デンプンに占めるアミロースの含
有比率が低いことが指摘されている(表1参照)。 このことは、デンプン質に占めるアミロペクチンの含
有比率が80%程度の一般うるち米に、アミロペクチンの
含有比率がほぼ100%であるモチ米を若干量添加して炊
飯すれば、アミロペクチンの含有比率が多い、すなわち
アミロースの含有比率が少ない米(優良品種)の品質と
ほぼ同等に品質が向上することが経験的に知られている
ことからも理解できる。これは、アミロペクチンは結晶
性が弱くα化が進みやすく、かつ粘性を有するのに比
べ、アミロースは結晶性が強くα化が進みにくく、かつ
粘性が少ないことに起因すると思われる。 ところで、前記の米の品質評価装置は、主として精白
米、すなわち加熱処理を行わない米粒を前提として品質
評価値を求めるものであるので、水洗及び水浸を含む炊
飯時の条件は加味されておらず、したがって、精白米で
の品質評価値が高い値であっても、炊飯等の仕方によっ
ては必ずしもその米飯が高品質のままとは限らない。 炊飯とは、米の生デンプンが糊化(α化)して糊化デ
ンプンになることである。生デンプン粒子は約20%のア
ミロースと約80%のアミロペクチンとからできており、
ブドウ糖分子鎖の一部がある程度規則正しく配列して束
をなした密な状態でミセルと呼ばれる構造(アミロー
ス)と、不規則な部分(アミロペクチン)とが入り混じ
っている。このミセル構造は水分子も入ることのできな
いほどの狭い間げきをもって並んでいるが、生デンプン
が水と共に加熱されていくと水及び生デンプンの分子の
運動が盛んになり、ついにはミセル構造の一部が崩れて
すき間ができる。そして、このすき間に水分子が浸入
し、順次、外側のミセルが崩れて膨潤する。これを糊化
(Gelatination)といい、約70〜75℃の温度で起こる。
更に熱すると、ミセル構造は完全にほどけてアミロース
とアミロペクチンとの分子又はこれらの分子の集合とな
り、多量の水に取り囲まれたコロイド(Colloid)溶液
状となる。 例えば、米粒を水浸しないで加熱すると米粒の表面だ
けが糊化し、それによって米粒の中心部への水の浸透も
熱の伝導も遅くなり、食味のよい高品質な米飯ができな
い。適度な粘り、硬さ及び風味を備えた品質のよい米飯
をつくるためには米粒が十分に水分を吸収していて、生
デンプンが完全に膨潤すること、つまり、加熱によりデ
ンプン細胞中のデンプン粒が完全に糊化されていること
が大切である。そのためには加熱前に最低30分間水中で
の浸漬が必要であり、更に、火加減も重要である。 加うるに、前記米の品質評価装置においては、試料米
に照射する近赤外線の波長として、米を構成する主な成
分に対して吸光度曲線上特異的なピークがみられる一つ
あるいは複数の特定の波長だけを選定していたため、精
度的になお問題があった。 この発明は以上の点にかんがみ、高精度で、しかも、
炊飯した米、すなわち米飯における品質評価値をも得る
ことのできる米の品質評価方法を提供することを技術的
課題とする。
As described in the above-mentioned gazette, a major factor in the quality evaluation of cooked rice is that it cannot be overlooked due to the nature inherent in rice, ie, a variety. The best varieties such as Koshihikari and Sasanishiki are produced at every stage from production to rice cooking.
This refers to varieties that always maintain good quality in terms of yield, storage, properties of brown rice and milled rice, and other environmental conditions related to the taste of cooked rice. It is pointed out that the content ratio of amylose in starch is low (see Table 1). This means that if the content of amylopectin in starch is about 80% and the amount of amylopectin is about 100% and rice is cooked by adding a small amount of waxy rice with amylopectin content of almost 100%, the content of amylopectin is large. That is, it can be understood from experience that it is empirically known that the quality is improved to be almost equivalent to the quality of rice (excellent variety) having a low amylose content ratio. This seems to be due to the fact that amylopectin has low crystallinity and is easily converted into α-form and has viscosity, whereas amylose has strong crystallinity and is hardly formed into α-form and has low viscosity. By the way, since the rice quality evaluation device mainly determines the quality evaluation value on the premise of polished rice, that is, rice grains that are not subjected to heat treatment, conditions for rice cooking including washing and immersion are not taken into account. Therefore, even if the quality evaluation value of the polished rice is a high value, the quality of the cooked rice does not always remain high depending on the method of cooking rice or the like. Cooking rice means that raw rice starch is gelatinized (gelatinized) into gelatinized starch. Raw starch particles are made up of about 20% amylose and about 80% amylopectin,
A structure called a micelle (amylose) and an irregular portion (amylopectin) are mixed in a dense state in which a part of the glucose molecular chain is regularly arranged to form a bundle. This micelle structure is arranged with a narrow gap that water molecules cannot enter, but as raw starch is heated together with water, the movement of water and raw starch molecules becomes active, and finally the micellar structure Some of them collapse and there are gaps. Then, water molecules penetrate into the gaps, and the outer micelles collapse and swell sequentially. This is called gelatinization and occurs at a temperature of about 70-75 ° C.
Upon further heating, the micellar structure is completely unraveled into molecules of amylose and amylopectin or a collection of these molecules, forming a colloid solution surrounded by a large amount of water. For example, when rice grains are heated without being immersed in water, only the surface of the rice grains is gelatinized, whereby the penetration of water into the center of the rice grains and the conduction of heat are slowed down, so that high quality cooked rice cannot be eaten. In order to produce high quality cooked rice with moderate stickiness, hardness and flavor, the rice grains absorb enough water and the raw starch swells completely, that is, the starch grains in the starch cells by heating It is important that the gelatin is completely gelatinized. For this, it is necessary to immerse in water for at least 30 minutes before heating, and it is also important to control the heat. In addition, in the rice quality evaluation device, one or a plurality of specific peaks having a specific peak on an absorbance curve with respect to a main component constituting rice are observed as a wavelength of near-infrared light irradiating the sample rice. However, since only the wavelength was selected, there was still a problem in accuracy. In view of the above points, the present invention is highly accurate,
It is a technical object to provide a quality evaluation method for cooked rice, that is, a rice that can also obtain a quality evaluation value for cooked rice.

【発明の要約】SUMMARY OF THE INVENTION

本発明によれば、試料米を測定部に供給し、この試料
に対して近赤外線を照射したときの吸光度曲線と、あら
かじめ設定した基準の吸光度曲線との差に基づいて試料
米の品質評価値を演算して表示する米の品質評価方法が
提供される。試料米としては、一定の精白米に精米され
た精白米のほか玄米や米飯をも含み、あらかじめ設定さ
れる基準の吸光度曲線は、これら品質評価値の対象とな
る米に対応して設定される。 更に、本発明によれば、米飯又は精白米からなる試料
米を測定部に供給し、この試料に対して近赤外線光を照
射したときの吸光度曲線と、あらかじめ設定された、基
準となる米飯及び精白米の吸光度曲線のうち前記試料に
対応する基準の吸光度曲線と、の差に基づいて試料米の
品質評価値を演算して表示する米の品質評価方法が提供
される。
According to the present invention, the sample rice is supplied to the measurement unit, and the quality evaluation value of the sample rice based on the difference between the absorbance curve when irradiating the sample with near-infrared light and the absorbance curve of a preset reference. And a method for evaluating the quality of rice, which calculates and displays the following. Sample rice includes not only polished rice that has been polished to a certain level of polished rice, but also brown rice and cooked rice, and the absorbance curve of the preset standard is set corresponding to the rice that is the target of these quality evaluation values . Furthermore, according to the present invention, a sample rice made of cooked rice or polished rice is supplied to the measurement unit, and an absorbance curve when this sample is irradiated with near-infrared light, and a preset rice rice as a reference and There is provided a rice quality evaluation method for calculating and displaying a quality evaluation value of a sample rice based on a difference between a reference absorbance curve corresponding to the sample among the absorbance curves of the polished rice.

【発明の実施例】DESCRIPTION OF THE PREFERRED EMBODIMENTS

以下、第1図乃至第4図に例示するところに従って、
本発明に使用する米の品質評価装置及び作業方法を説明
する。 第1図は、本発明を実施するための米の品質評価装置
1を正面から見たときの概略図である。キャビネット2
の内部には、その詳細は次の第2図を参照して説明する
近赤外光分析装置3及び制御装置4が配設される。キャ
ビネット2の前面パネルには、被測定試料米を入れる試
料容器52を装着するための試料容器装着箱5、装置の操
作手順や演算結果等を可視表示する発行ダイオード又は
CRT形式の表示装置6、操作用プッシュボタン7及び演
算結果のハードコピーを可能とするプリンター8がそれ
ぞれ配設される。制御装置4は、近赤外分光分析装置3
の光源・検出器、表示装置6、操作用プッシュボタン7
並びにプリンター8等に接続され、各種信号を処理する
ための入出力信号処理装置4aと、品質評価の基準となる
米の吸光度曲線(第3図における曲線A)、入力装置
(キーボード)9を介して入力される各種補正値及び各
種制御手順等を記憶するための記憶装置4bと、近赤外分
光分析装置3により得られる測定結果(吸光度曲線)と
前記基準の吸光度曲線とに基づき試料米の品質評価値等
を演算するための演算装置4cとから成る。 第2図は、キャビネット2の内部に配設される近赤外
分光分析装置3の一実施例の要部断面図である。図示さ
れる近赤外分光分析装置3は反射式のものであり、主な
る構成部品として、光源31、反射鏡32、積分球34及び検
出器35a,35bを有するとともに、波長約1,200nm〜約2,50
0nmの近赤外線を連続的に変化させるための回析格子38
を備える。光源31から発せられ、適当な光学系(図示せ
ず)及び回析格子38を通り、連続的に波長を変えながら
平行光線となった光は、傾斜角度を自由に変え得るよう
に構成された反射鏡32により、積分球34の上部を開口し
て設けられた採光窓36に向けて方向を変えられる。反射
鏡32で反射し、積分球34の採光窓36を介して積分球34の
内部に入った近赤外光は、積分球34の底部を開口して設
けられた測定部37、したがって試料容器装着箱5の後方
所定位置に載置される試料容器52内の試料米55に真上か
ら照射される。試料米55からの拡散反射光は、積分球34
の内壁に反射しながら、最終的には、測定部37を中心に
対称な位置に配設される一対の検出器35a,35bに到達
し、これにより反射光の強度が測定される。なお、図示
実施例では、光学的な対称性を修正し、試料米55からの
反射光を効率良く受光するために、検出器は一対すなわ
ち参照番号35aと35bとで示される二個が設けられている
が、その数は二個に限られることなく、一個であっても
又は三個以上の検出器であっても構わない。 次に、上記構成を有する米の品質評価装置1の具体的
動作を説明する。まず、操作用プッシュボタン7の操作
により光源31を点灯させ、光源31から発せられた光に基
づく測定部37に到達する特定波長の近赤外光が安定する
まで、近赤外分光分析装置3の全体を予熱する。予熱の
ための所定時間が経過したら、試料容器装着箱5を装置
のキャビネット2から一たん引き出し、試料を充填す
る。本実施例では、まず、炊飯したコシヒカリ(前掲表
1)を測定することとし、操作用プッシュボタンにより
米飯用の測定モードに切換える。試料米飯は、炊飯直後
の米飯若しくは炊飯後に水中に浸漬して糊化デンプンが
β化しないように保存された米飯を、そのまま若しくは
すりつぶしたもの、又は炊飯直後の米飯を温度を下げな
いで乾燥し(β化を防ぐ)た後、粉砕したものを用いる
とよい。 こうして測定準備作業が完了したら、次に、近赤外光
を試料米飯55に対して照射したときの反射吸光度の連続
測定作業に入る。反射吸光度の測定作業は、試料米飯55
に対して照射される全反射光量、すなわち基準照射光量
の測定と、試料米飯55に対して前記基準照射光量を照射
した時に試料米飯55で実際に反射される反射光量の測定
との2つの測定からなる。基準照射光量の測定は、傾斜
角度が可変に構成された反射鏡32の傾斜角度を、これら
の反射光が積分球34の内壁に直接当たるような角度に、
電動機等を用いた回動手段(図示せず)により変えた状
態で実施される。こうすることにより、積分球34の内壁
に直接当てられた反射鏡32からの光は、内壁を他方向に
拡散反射しながら最終的には検出器35a,35bに到達し、
基準照射光量として検出される。一方、試料米飯55から
の反射光量の測定は、反射鏡32の傾斜角度が第2図に示
す元の位置に戻された後、前述した原理により、例えば
1.5nmおきに走査状に検出して行われる。なお、測定基
準完了後の基準照射光量の測定及び反射光量の測定まで
の各実行は、制御装置4の記憶装置(ROM)4b内に手順
プログラムを記憶させ、そのプログラムに従って自動的
に行えるようにできることは言うまでもない。また、前
述基準反射光量及び反射光量の各測定をそれぞれ複数回
実施し、測定値としてそれらの平均を取れるようにする
ことも測定精度を上げるのに役立つ。検出器35a,35bに
よって検出された基準照射光量及び試料米飯55からの反
射光量に基づく各測定値は、実測データとして制御装置
4に連絡され、記憶装置4b内の書き込み可能なメモリ
(RAM)に一たん記憶される。 こうして測定された吸光度値は、あらかじめ設定され
た、基準となる吸光度値と比較される。すなわち、第3
図において実線で示す曲線Aは、前掲表1においてアミ
ロースの含有比率が21.4%の日本晴を炊飯したものを、
例えば1.5nmの波長おきに吸光度を測定して得た吸光度
曲線(スペクトルカーブ)であり、品質評価の基準値と
して記憶装置4bにあらかじめ記憶している。この基準と
なる吸光度曲線Aの占める面積と、記憶装置4bにいった
ん記憶されている吸光度測定で得られた実測データ(測
定値)によるコシヒカリの吸光度曲線(=第3図におい
て一点鎖線で示す曲線B)の占める面積と、の差を演算
装置4Cにて求める。その結果、基準となる吸光度曲線A
の占める面積よりも実測データによる吸光度曲線Bの方
が大きく、例えば、日本晴の品質評価値を50とすると、
コシヒカリの品質評価値を75というふうにその差に応じ
て即座に算出して表示装置6に表示する。第3図におけ
る二点鎖線の曲線Cは前掲表1のイシカリの場合を示
し、この場合は前述と同様の作用により、品質評価値を
40と表示する。 次に、精白米を測定する場合について説明する。プッ
シュボタン7の操作により、米飯から精白米測定に切換
えるとともに、一定精白度に精米したコシヒカリを更に
一定粒度に粉砕して試料容器52内に充填し、測定部37に
セットする。そして、米飯と同様の作用で測定を行い、
第4図の点線Bで示す吸光度曲線を得る。この際、基準
となる吸光度曲線としては第4図の実線Aで示す日本晴
の精白米における吸光度曲線が設定されており、両者の
差からコシヒカリの品質評価値75内外を演算して表示部
6に表示し、同時にプリンター8からハードコピーを繰
り出す。 第4図一点鎖線Cで示すのはイシカリ(表1)の精白
米における吸光度曲線であり、前記同様、基準となる日
本晴の吸光度曲線との差を演算して品質評価値を表示す
る。
Hereinafter, as illustrated in FIGS. 1 to 4,
A rice quality evaluation device and a working method used in the present invention will be described. FIG. 1 is a schematic diagram of a rice quality evaluation device 1 for carrying out the present invention when viewed from the front. Cabinet 2
The near-infrared light analyzing device 3 and the control device 4 whose details will be described with reference to FIG. On the front panel of the cabinet 2, there is provided a sample container mounting box 5 for mounting a sample container 52 into which the sample rice to be measured is to be mounted, an emitting diode for visually displaying the operation procedure of the apparatus and the calculation result,
A display device 6 in CRT format, an operation push button 7, and a printer 8 that enables a hard copy of a calculation result are provided. The control device 4 is a near-infrared spectroscopic analyzer 3
Light source / detector, display device 6, operation push button 7
And an input / output signal processing device 4a connected to a printer 8 for processing various signals, an absorbance curve (curve A in FIG. 3) of rice as a reference for quality evaluation, and an input device (keyboard) 9. Storage device 4b for storing various correction values, various control procedures, and the like, which are inputted by the user, and a sample rice based on the measurement results (absorbance curve) obtained by the near-infrared spectroscopic analyzer 3 and the reference absorbance curve. And an arithmetic unit 4c for calculating a quality evaluation value or the like. FIG. 2 is a cross-sectional view of a main part of an embodiment of the near-infrared spectroscopic analyzer 3 disposed inside the cabinet 2. The illustrated near-infrared spectroscopic analyzer 3 is of a reflection type, and includes a light source 31, a reflecting mirror 32, an integrating sphere 34, and detectors 35a and 35b as main components, and a wavelength of about 1,200 nm to about 2,50
Diffraction grating 38 for continuously changing near-infrared light at 0 nm
Is provided. Light emitted from the light source 31, passing through an appropriate optical system (not shown) and the diffraction grating 38, and being converted into parallel rays while continuously changing the wavelength is configured so that the inclination angle can be freely changed. By the reflecting mirror 32, the direction can be changed toward a lighting window 36 provided with an opening at the top of the integrating sphere 34. The near-infrared light reflected by the reflecting mirror 32 and entering the inside of the integrating sphere 34 through the lighting window 36 of the integrating sphere 34 is a measuring unit 37 provided with an opening at the bottom of the integrating sphere 34, and thus a sample container. The sample rice 55 in the sample container 52 placed at a predetermined position behind the mounting box 5 is irradiated from directly above. The diffusely reflected light from the sample rice 55
Finally, the light reaches the pair of detectors 35a and 35b disposed at symmetric positions with respect to the measurement unit 37 while being reflected on the inner wall of the light source, thereby measuring the intensity of the reflected light. In the illustrated embodiment, in order to correct the optical symmetry and efficiently receive the reflected light from the sample rice 55, a pair of detectors, that is, two detectors indicated by reference numerals 35a and 35b are provided. However, the number is not limited to two, and may be one or three or more detectors. Next, a specific operation of the rice quality evaluation device 1 having the above configuration will be described. First, the light source 31 is turned on by operating the operation push button 7, and until the near-infrared light of a specific wavelength reaching the measuring unit 37 based on the light emitted from the light source 31 is stabilized, the near-infrared spectroscopic analyzer 3 Preheat the whole. After a lapse of a predetermined time for preheating, the sample container mounting box 5 is pulled out of the cabinet 2 of the apparatus, and the sample is filled. In the present embodiment, first, the cooked rice Koshihikari (Table 1) is measured, and the operation mode is switched to the measurement mode for cooked rice using the push button. The sample cooked rice is the rice cooked immediately after cooking or cooked rice immersed in water after cooking and preserved so that gelatinized starch is not converted to beta, or dried as it is, without lowering the temperature. After (preventing β-formation), a pulverized product is preferably used. When the measurement preparation work is completed in this way, next, the work for continuous measurement of the reflection absorbance when the sample rice 55 is irradiated with near-infrared light is started. For the measurement of the reflection absorbance, the sample cooked rice 55
Measurement of the total amount of reflected light irradiating the sample rice, ie, measurement of the reference amount of light, and measurement of the amount of reflected light actually reflected by the sample rice 55 when the sample rice 55 is irradiated with the reference amount of light. Consists of The measurement of the reference irradiation light amount is performed by setting the inclination angle of the reflecting mirror 32 having a variable inclination angle to an angle at which the reflected light directly hits the inner wall of the integrating sphere 34.
It is carried out in a state changed by rotating means (not shown) using a motor or the like. By doing so, the light from the reflecting mirror 32 directly applied to the inner wall of the integrating sphere 34 finally reaches the detectors 35a and 35b while diffusing and reflecting the inner wall in the other direction,
It is detected as a reference irradiation light amount. On the other hand, the measurement of the amount of reflected light from the sample cooked rice 55 is performed, for example, according to the principle described above, after the inclination angle of the reflecting mirror 32 is returned to the original position shown in FIG.
The detection is performed by scanning every 1.5 nm. It should be noted that a procedure program is stored in the storage device (ROM) 4b of the control device 4 so that each procedure from the completion of the measurement reference to the measurement of the reference irradiation light amount and the measurement of the reflected light amount can be automatically performed according to the program. It goes without saying that you can do it. It is also useful to increase the measurement accuracy by performing each of the above-described measurement of the reference reflected light amount and the reflected light amount a plurality of times, and obtaining an average of the measured values. Each measured value based on the reference irradiation light amount detected by the detectors 35a and 35b and the reflected light amount from the sampled rice 55 is communicated to the control device 4 as actual measurement data, and is stored in a writable memory (RAM) in the storage device 4b. It is memorized once. The measured absorbance value is compared with a preset reference absorbance value. That is, the third
Curve A shown by a solid line in the figure is obtained by cooking Nipponbare having an amylose content ratio of 21.4% in Table 1 above,
For example, it is an absorbance curve (spectrum curve) obtained by measuring absorbance at wavelengths of 1.5 nm, and is stored in the storage device 4b in advance as a reference value for quality evaluation. The absorbance curve of Koshihikari based on the area occupied by the absorbance curve A serving as the reference and the actual measurement data (measured value) once obtained in the absorbance measurement stored in the storage device 4b (= curve B indicated by a dashed line in FIG. 3) The difference between the area occupied by the parentheses) is calculated by the arithmetic unit 4C. As a result, the reference absorbance curve A
The absorbance curve B based on the measured data is larger than the area occupied by, for example, if the quality evaluation value of Nipponbare is 50,
The quality evaluation value of Koshihikari is immediately calculated according to the difference, such as 75, and is displayed on the display device 6. Curve C indicated by a two-dot chain line in FIG. 3 shows the case of Ishikari in Table 1 described above.
Display as 40. Next, the case of measuring the polished rice will be described. By operating the push button 7, the measurement is switched from cooked rice to polished rice, and Koshihikari polished to a certain degree of crushing is further crushed to a certain particle size, filled into the sample container 52, and set in the measuring unit 37. And measure it with the same action as cooked rice,
An absorbance curve indicated by a dotted line B in FIG. 4 is obtained. At this time, the absorbance curve of Nipponbare polished rice shown by the solid line A in FIG. 4 is set as the reference absorbance curve, and the inside and outside of the Koshihikari quality evaluation value 75 is calculated from the difference between the two and displayed on the display unit 6. Is displayed, and a hard copy is sent out from the printer 8 at the same time. The dashed line C in FIG. 4 shows the absorbance curve of polished rice of Ishikari (Table 1). The difference from the absorbance curve of Nipponbare, which is the reference, is calculated and the quality evaluation value is displayed.

【発明の効果】【The invention's effect】

以上述べたように本発明によれば、品質評価の基準と
なる吸光度曲線と試料米が描く吸光度曲線との差に基づ
いて試料米の品質評価値を求めるものであり、単色光に
よる測定に比し、より多くのスペクトル情報に基づいて
精度の高い品質評価値を迅速に得ることができる。 更に、本発明によれば、米飯と精白米の基準の吸光度
曲線をそれぞれ設定することにより、米飯の試料と精白
米の試料とを同一の装置で測定して各々の品質評価値を
容易に求めることができ、しかも、米飯による測定は、
水洗・浸漬・火加減という条件を加味し、より実情に合
った品質評価を行うことができる。
As described above, according to the present invention, a quality evaluation value of a sample rice is obtained based on a difference between an absorbance curve serving as a reference for quality evaluation and an absorbance curve drawn by the sample rice. Then, a highly accurate quality evaluation value can be quickly obtained based on more spectral information. Furthermore, according to the present invention, by setting a standard absorbance curve for cooked rice and polished rice, respectively, a sample of cooked rice and a sample of polished rice are measured with the same apparatus, and each quality evaluation value is easily obtained. And the measurement with cooked rice is
Taking into account the conditions of washing, immersion, and heat control, it is possible to perform quality evaluation that is more suited to the actual situation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施するための米の品質評価装置の正
面概略図、第2図は第1図の品質評価装置に用いられる
近赤外分光分析装置の側断面概略図、第3図は銘柄の異
なる米飯の吸光度曲線、第4図は銘柄の異なる精白米の
吸光度曲線である。 1……米の品質評価装置、2……キャビネット、3……
近赤外分光分析装置、4……制御装置、4a……入出力信
号処理装置、4b……記憶装置、4c……演算装置、5……
試料容器装置箱、6……表示装置、7……プッシュボタ
ン、8……プリンター、9……入力装置、31……光源、
32……反射光、34……積分球、35a,35b……検出器、36
……採光窓、37……測定部、38……回析格子、52……試
料容器、55……試料米。
1 is a schematic front view of a rice quality evaluation device for carrying out the present invention, FIG. 2 is a schematic side sectional view of a near-infrared spectroscopic analyzer used in the quality evaluation device of FIG. 1, and FIG. Fig. 4 shows the absorbance curve of cooked rice of different brands, and Fig. 4 shows the absorbance curve of milled rice of different brands. 1 ... Rice evaluation device for rice 2 ... cabinet 3 ...
Near-infrared spectrometer, 4 ... control device, 4a ... input / output signal processing device, 4b ... storage device, 4c ... arithmetic device, 5 ...
Sample container device box, 6 display device, 7 push button, 8 printer, 9 input device, 31 light source,
32… reflected light, 34… integrating sphere, 35a, 35b… detector, 36
… Lighting window, 37… measurement unit, 38… diffraction grating, 52… sample container, 55… sample rice.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/61 JOIS──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/00-21/61 JOIS

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】近赤外線を試料米に照射して当該試料米の
品質評価を行う米の品質評価方法であって、 予め基準米の品質評価値と該基準米に光を照射して得ら
れる吸光度曲線の占める面積とを記憶し、 複数の既知の品質評価値の米に光を照射して得られる吸
光度曲線の占める面積と基準米の吸光度曲線の占める面
積とを比較して得られる面積差と、前記複数の既知の品
質評価値とから、面積差と品質評価値との関係式を予め
定め、 未知の品質評価値の試料米に光を照射して得られる吸光
度曲線の占める面積と基準米の吸光度曲線の占める面積
とを比較して得られる面積差と、前記関係式とに基づい
て試料米の品質評価値を演算することを特徴とする米の
品質評価方法。
1. A rice quality evaluation method for irradiating a sample rice with near-infrared rays to evaluate the quality of the sample rice, which is obtained by previously irradiating light to the reference rice quality evaluation value and the reference rice. The area occupied by the absorbance curve is stored, and the area difference obtained by comparing the area occupied by the absorbance curve obtained by irradiating a plurality of known quality evaluation values of rice with light and the area occupied by the absorbance curve of the reference rice is obtained. And, from the plurality of known quality evaluation values, a relational expression between the area difference and the quality evaluation value is determined in advance, and the area occupied by the absorbance curve obtained by irradiating the sample rice with the unknown quality evaluation value with light and the standard. A rice quality evaluation method, wherein a rice quality evaluation value is calculated based on an area difference obtained by comparing an area occupied by an absorbance curve of rice with the relational expression.
【請求項2】米は、米飯、玄米又は精白米であって、そ
れぞれに対応した関係式を備え、試料米に応じて関係式
を切り換えることを特徴とす請求項1記載の米の品質評
価方向。
2. The quality evaluation of rice according to claim 1, wherein the rice is cooked rice, brown rice or polished rice, and has a relational expression corresponding to each rice, and switches the relational expression according to the sample rice. direction.
JP6506390A 1990-03-14 1990-03-14 Rice quality evaluation method Expired - Fee Related JP2878378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6506390A JP2878378B2 (en) 1990-03-14 1990-03-14 Rice quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6506390A JP2878378B2 (en) 1990-03-14 1990-03-14 Rice quality evaluation method

Publications (2)

Publication Number Publication Date
JPH03264848A JPH03264848A (en) 1991-11-26
JP2878378B2 true JP2878378B2 (en) 1999-04-05

Family

ID=13276125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6506390A Expired - Fee Related JP2878378B2 (en) 1990-03-14 1990-03-14 Rice quality evaluation method

Country Status (1)

Country Link
JP (1) JP2878378B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
家政学雑誌28(3)(1977)p.194−201

Also Published As

Publication number Publication date
JPH03264848A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
US8808628B2 (en) Device for measuring calories of food items based on near-infrared optical measurements using a plurality of light sources
JP4104075B2 (en) Object calorie measuring method and object calorie measuring device
Berntsson et al. Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry
US20060235621A1 (en) Imaging techniques and associated apparatus
Osborne Principles and practice of near infra‐red (NIR) reflectance analysis
JP2010185719A (en) Method and apparatus for discriminating grain flour
Gandia et al. Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaign
Anderson et al. Detection of bruises on golden delicious apples using spatial-frequency-domain imaging
JP2828287B2 (en) Quality evaluation method of cooked rice
JP2878378B2 (en) Rice quality evaluation method
Blanco et al. Critical evaluation of methods for end-point determination in pharmaceutical blending processes
JP2878377B2 (en) Quality evaluation method of cooked rice
Osborne et al. Assessment of wheat grain texture by near infrared reflectance measurements on bühler‐milled flour
JP4747371B2 (en) Food calorie measuring method and food calorie measuring device
JP3495185B2 (en) Method and apparatus for measuring rice taste value
JP3017639B2 (en) Taste value measuring device
JP2745025B2 (en) Rice quality evaluation method
JPH07104279B2 (en) Evaluation method of rice taste
JP7171222B2 (en) Method for determining contamination with different types of gum
JP3100224B2 (en) Nondestructive method for measuring the ripening degree of natural cheese by near infrared
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
JPS63221234A (en) Method for evaluating quality of rice
JPS63175747A (en) Instrument for measuring content of amylose or amylopectin of rice
JPH0829335A (en) Rice analyzing and evaluating apparatus
Henry Use of a scanning near‐infrared reflectance spectrophotometer for assessment of the malting potential of barley

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees