JPH01250739A - Measuring apparatus of reflectance and transmittance of granular aggregate - Google Patents

Measuring apparatus of reflectance and transmittance of granular aggregate

Info

Publication number
JPH01250739A
JPH01250739A JP7596488A JP7596488A JPH01250739A JP H01250739 A JPH01250739 A JP H01250739A JP 7596488 A JP7596488 A JP 7596488A JP 7596488 A JP7596488 A JP 7596488A JP H01250739 A JPH01250739 A JP H01250739A
Authority
JP
Japan
Prior art keywords
measured
light
reflectance
transmittance
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7596488A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ichimura
清 市村
Kozo Yasuhara
安原 幸三
Takao Kawashima
川嶋 伯夫
Masayuki Shinomura
篠村 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP7596488A priority Critical patent/JPH01250739A/en
Publication of JPH01250739A publication Critical patent/JPH01250739A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make an apparatus small in size and to dispense with the positional alignment of optical axes and others, by leading a light from a light source onto the surface of a vessel to be measured by two optical fibers. CONSTITUTION:A light from a light source is led onto the surface of a substance to be measured by two optical fiber bundles 10a and 10b, and the fiber bundles 10a and 10b are disposed so that the two optical axes thereof on the size of the substance 2 to be measured intersect each other at prescribed incident angles and from the opposite directions on the surface of the substance 2. Moreover, a reflected light (or a transmitted light) from the surface of the substrate 2 to be measured is led to a light-sensing element 5 (or 7) through a fiber bundle 11 (or 12). First a standard white plate having a reflecting of about 90% is set in place of the substance 2 to be measured, the reflected light is measured, and thereafter the quantity of a transmitted light is measured in the state wherein the white plate is removed. Next, the substance 2 being set, each quantity of the reflected or transmitted light is measured and then the reflectance or the transmittance is measured by computation. This method needs only the alignment of the direction and position of the end part of the optical fiber on the side of irradiation of the light. Since the reflected light or the transmitted light is led to the photo-sensing element by the optical fiber, in addition, it is possible to make an apparatus small in size and simultaneously to dispense with positional alignment and to facilitate an operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、米穀等の粒状物体の光に対する反射率及び透
過率をlj定するための装置と<K。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for determining the reflectance and transmittance of a granular object such as rice grains to light.

その精米度を測定する装置に関する。This invention relates to a device for measuring the degree of rice polishing.

〔従来の技術〕[Conventional technology]

第3図はこの柚の従来開発されてきた粒状物の反射率及
び透過率測定装置の概略構成図である。同図に2いて、
光源1と粒状試料を充填した被測定物体2とが互いに離
隔配置され、光源1に対して粒状試料七光鷹し走破測定
物体2は七の表面が垂直になる工うに置かれているが、
光源1から放射される光は光源全体が均一な光源のもの
は・なく、光源1と被測定物体2との位置関係が少しず
れると入射光量に大きな変動をきたすため、このような
不都合が生じないよう光源1からの放射光が被測定物体
2に直接届かないような手法が講じられている。そして
、この方法は光源1と被測定物体2との略中間で、しか
も、左右対称の位置にミラー3a、3bが配設され、光
源1から放射される光を反射せしめて、同一の入射角で
互いに反対の方向から被測定物体21に照射する構成が
とられている。また、光源1と被測定物体2との間に、
レンズ4及び受光素子5が設けられ、被測定物体2の光
照射面に対して垂直方向に反射する光をレンズ4で集光
し、受光素子5がこれ全電気信号に変換する。一方、光
源1から見て被測定物体2の表側に、レンズ6および受
光素子7が設けらへ被測定物体2を透過する光のうち、
光間射面に対して垂直方向に進む光をレンズ6で集光し
、受光素子7がこれを電気信号に変換する。また、受光
素子5及び7の″電気信号が光量検出回路8に取込まれ
、ここで、反射率および透過率に対応する信号に変換さ
れ、表示回路9に反射率及び透過率が表示される。
FIG. 3 is a schematic diagram of a conventionally developed apparatus for measuring the reflectance and transmittance of granules of yuzu. 2 in the same figure,
The light source 1 and the object to be measured 2 filled with a granular sample are arranged at a distance from each other, and the object 2 to be measured is placed in such a way that the surface of the granular sample is perpendicular to the light source 1.
This inconvenience occurs because the light emitted from the light source 1 is not uniform throughout the entire light source, and a slight shift in the positional relationship between the light source 1 and the object to be measured 2 will cause a large fluctuation in the amount of incident light. To prevent this, a method is taken to prevent the emitted light from the light source 1 from directly reaching the object to be measured 2. In this method, mirrors 3a and 3b are disposed approximately midway between the light source 1 and the object to be measured 2, and in symmetrical positions, and reflect the light emitted from the light source 1 to achieve the same incident angle. The object to be measured 21 is irradiated with light from opposite directions. Moreover, between the light source 1 and the measured object 2,
A lens 4 and a light receiving element 5 are provided, and the lens 4 collects light reflected in a direction perpendicular to the light irradiation surface of the object to be measured 2, and the light receiving element 5 converts the light into an electrical signal. On the other hand, a lens 6 and a light receiving element 7 are provided on the front side of the object to be measured 2 when viewed from the light source 1, so that out of the light that passes through the object to be measured 2,
Light traveling in a direction perpendicular to the light incident plane is focused by a lens 6, and a light receiving element 7 converts this into an electrical signal. In addition, the electrical signals from the light receiving elements 5 and 7 are taken into the light amount detection circuit 8, where they are converted into signals corresponding to the reflectance and transmittance, and the reflectance and transmittance are displayed on the display circuit 9. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述し九従来の粒状物の反射率及び透過率測定装置は、
単一の光源より放射される光を、それぞれミラーを用い
て被測定物体に導く構成になっていたがために、光路長
が長くなって装置が大型化すると同時に、光路幅の絞り
込みが難しくミラー、レンズ及び受光素子に対してそれ
ぞれ微妙な位置合わせが必要となるという問題点がめっ
た。
The nine conventional particulate matter reflectance and transmittance measuring devices mentioned above are:
Since the light emitted from a single light source was configured to be guided to the measured object using mirrors, the optical path length became long, making the device larger, and it was difficult to narrow down the optical path width using mirrors. However, a problem frequently arises in that delicate positioning is required for each of the lens and the light-receiving element.

また、米穀粒の糊白度等を未装置によって測定すること
は人の目視判定による精度のばらつきや、精白度の自動
測定などが難しく、精米機は可成りの振動を発生する装
置であるため、従来の装置では測定用光路に乱れが生じ
易く)米粒の精白度の正確な測定が難しいという難点も
めった。
In addition, measuring the whiteness of rice grains using unequipped equipment may result in variations in accuracy due to human visual judgment, and it is difficult to automatically measure the degree of polishing, as rice milling machines are devices that generate considerable vibration. However, with conventional devices, it is difficult to accurately measure the polishing degree of rice grains (because disturbances tend to occur in the measurement optical path).

また、従来用いられてい走光の反射率及び被測定物体に
て粒子状物体を測定するには、この物体である試料容器
中に粒状物を光量して測定していたか扱う粒状物の粒子
形状は球体なるものは極めて少なく米穀粒の如き球体物
でない粒体の光の反射率、透過率を測定するに当っては
試料容器中への粒状体の充*’a度の差がその測定結果
に大きく影響するという難点がめった。
In addition, in order to measure particulate matter using the conventionally used phototrace reflectance and measuring object, it is necessary to measure the particle shape of the particulate matter by placing the light amount in a sample container, which is the object. There are very few spherical particles, and when measuring the light reflectance and transmittance of non-spherical particles such as rice grains, the difference in the degree of filling of the sample container with the particles affects the measurement results. The problem was that it had a big impact.

本発明の目的は、装置の小戯化t−実埃し得ると同時に
微妙な光軸等の位置合わせを不要化し得ると共に常に正
しい粒状物集合体の反射率及び透過率測定装置を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for measuring the reflectance and transmittance of a particulate matter aggregate, which can reduce the complexity of the apparatus, eliminate the need for delicate alignment of the optical axis, etc., and always be accurate. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は単一光源より放射される光を、粒状物集
合体試料を充填し走破測定物体容器の表面に同一の入射
角で互いに反対方向より照射し、前記被測定物体容器の
表面から垂直方向に反射する反射光量に対応する信号に
基いて粒状物体の反射率を測定し、被測定物体容器の裏
面の垂直方向に透過する透過光量に対応する信号に基い
て粒状物体の光透過軍を測定する装置であり、前記光源
より放射される光を、2条の光ファイバにて前記被測定
物体容器の表面に導くと共に、これら光ファイバより放
射される光の光軸が前記被測定物体容器の表面上で交わ
るように配置してあるとともに、粒状試料集合体を充填
する被測定物体容器に撮動機構を設けたこと全特徴とす
る粒状物集合体の反射率及び透過率測定装置にある。
An object of the present invention is to irradiate light emitted from a single light source onto the surface of a traveling measuring object container filled with a particulate aggregate sample from opposite directions at the same angle of incidence, so that the light emitted from the surface of the measuring object container is The reflectance of the granular object is measured based on the signal corresponding to the amount of reflected light reflected in the vertical direction, and the light transmittance of the granular object is measured based on the signal corresponding to the amount of transmitted light transmitted in the vertical direction on the back surface of the object to be measured container. In this device, the light emitted from the light source is guided to the surface of the object to be measured container through two optical fibers, and the optical axis of the light emitted from these optical fibers is aligned with the object to be measured. A device for measuring reflectance and transmittance of a particulate material aggregate, characterized in that the objects to be measured are arranged so as to intersect on the surface of the container, and a photographing mechanism is provided on the measuring object container filled with the particulate sample aggregate. be.

さらにマ次、光源の光量変動に伴う測定値の変動を補正
するために、光源の光量を検出する光ファイバと受光素
子と光量検出回路と、この光量検出回路の出力に基づい
て測定値を補正する測定値補正回路とを備え次ものであ
る。
Furthermore, in order to compensate for fluctuations in the measured value due to fluctuations in the light intensity of the light source, the measured value is corrected based on the optical fiber, light receiving element, and light intensity detection circuit that detect the light intensity of the light source, and the output of this light intensity detection circuit. The system is equipped with a measured value correction circuit.

〔作用〕[Effect]

上記のように2本の光ファイバ東金用いて光源の光を導
くようにすれば、被測定物体容器と光源との相対位置、
光ファイバ束の長さに関係なく、単に光が放射される側
の光フアイバ束端部の方向と位置を合わせるだけで済む
ことから、ミラーを用いて被測定容器表面を照射する従
来装置と比較して装置の小型化を図り得ると共に、微妙
な位置合わせが不要になる。
If the light from the light source is guided using two optical fibers as described above, the relative position of the object to be measured and the light source,
Regardless of the length of the optical fiber bundle, it is sufficient to simply align the direction and position of the end of the optical fiber bundle on the side from which the light is emitted, compared to conventional equipment that uses a mirror to illuminate the surface of the container to be measured. This allows the device to be made smaller and eliminates the need for delicate positioning.

また、被測定物体容器表面に光を導くだけでなく、それ
ぞれ反射光及び透過光をも光ファイバ束により受光素子
に導くようにしたことで、レンズを用いる従来装置と比
べてよりー層の小型化が図られると同時に、微妙な位置
合わせが不要比される。
In addition, in addition to guiding the light to the surface of the container of the object to be measured, reflected light and transmitted light are also guided to the light-receiving element using optical fiber bundles, making it much more compact than conventional devices that use lenses. At the same time, delicate alignment becomes unnecessary.

さらに、光源の光量検出回路と、測定値補正回路とを備
えたことにより、電源変動や特性変動により光源の光量
が変化したとしても、反射率及び透過’JK?常に正確
に測定することができ、これによって装置信頼性を高め
ることができる。
Furthermore, by being equipped with a light intensity detection circuit of the light source and a measured value correction circuit, even if the light intensity of the light source changes due to power supply fluctuations or characteristic fluctuations, the reflectance and transmission 'JK? Measurements can always be made accurately, thereby increasing device reliability.

本発明の粒状物集合体の光透過率及び反射率測定装置は
、とくに米穀粒の精米度を測定するのに極めて有用な装
置であるが、精米過程の米穀粒を被測定物体容器に充填
する場合、従来は人手で行なうと該粒状物の容器内への
充填率にバラツキが生じるため測定値にバラツキが生じ
正確な精米度を測定することができなかったのであるが
、本発明においては被測定容器に振動機構を備えさせ之
ため、同種の試料であれば常に一定の充jjIil:を
被測定容器に充填できるたべ米穀粒の精米度を自動的に
正確に測定できるようになし得ている。
The device for measuring the light transmittance and reflectance of a granular material aggregate according to the present invention is an extremely useful device, especially for measuring the degree of polishing of rice grains. In the past, when this was done manually, there were variations in the filling rate of the granules into the container, which caused variations in the measured values, making it impossible to accurately measure the degree of rice polishing. By equipping the measuring container with a vibration mechanism, it is possible to automatically and accurately measure the degree of polishing of edible rice grains, which can always fill the measuring container with a constant amount if the sample is of the same type. .

〔実施例〕〔Example〕

第1図は本発明の一実施例の概略構成図でちゃ1図中第
3図と同一の符号を付したものはそれぞれ同一の要素を
示している。そして第3図中のミラー3a、3b、レン
ズ4,5を除去し、その代わりに2本の光フアイバ束1
Q辱、IQbを用いて光源1より放射される光を被測定
物体表面に導くと共に、光ファイバ束IQa、10kl
の被測定物体2@の光軸が被測定物体20表面上で、所
定の入射角をもって反対方向より交るように配置し、さ
らに、被測定物体2の表面からの反射光を、光ファイバ
束11を用いて受光素子5に導き、被測定物体2からの
透過光音、光ファイバ束12を用いて受光素子7に導く
ように構成したものである。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention. In FIG. 1, the same reference numerals as in FIG. 3 indicate the same elements. Mirrors 3a, 3b and lenses 4, 5 in FIG. 3 are removed, and two optical fiber bundles 1 are replaced instead.
The light emitted from the light source 1 is guided to the surface of the object to be measured using the optical fiber bundle IQa, 10 kl.
The optical axis of the object to be measured 2@ is arranged so that it crosses the surface of the object to be measured 20 from opposite directions at a predetermined angle of incidence, and the reflected light from the surface of the object to be measured 2 is connected to an optical fiber bundle. 11 is used to guide the light to the light receiving element 5, and the transmitted light sound from the object to be measured 2 is guided to the light receiving element 7 using the optical fiber bundle 12.

なお本実施例において用いた光ファイバ束10a、10
b、11及び12は、10φ直径の光ファイバと0.5
φ直径の光ファイバを集束した光ファイバ束として使用
し友。
Note that the optical fiber bundles 10a, 10 used in this example
b, 11 and 12 are optical fibers with a diameter of 10φ and 0.5
Optical fibers with a diameter of φ can be used as a focused optical fiber bundle.

この場合、光ファイバ束10a、10klの被測定容器
2 @(D1部の入が所定の方向を向いておれば、光源
1の位置が変わっても測定には支障がなく、ま之、光フ
ァイバ束11,120被測定容器2側の端部がこの被測
定容器表面に垂直になっておれば、その他端はどこであ
ってもよく、従って、受光素子5,7の位置?任意に選
択することができる。
In this case, if the optical fiber bundle 10a and the 10kl container to be measured 2 @(the D1 section is facing in the predetermined direction, there will be no problem in measurement even if the position of the light source 1 changes; As long as the end of the bundle 11, 120 on the side of the container to be measured 2 is perpendicular to the surface of the container to be measured, the other end may be anywhere. Therefore, the positions of the light receiving elements 5, 7 can be arbitrarily selected. Can be done.

ここで、反射率、透過率を測定する具体的手法としては
、先ず、被測定容器2の代わりに反射率が90%程度の
標準白板を装着して反射光量fe測測定る。次いで、こ
の標準白板を取り去った状態で透過光′fIkヲ測定す
る。次に、被測定物体2を装着して反射光量及び透過光
fitを測定した後、演算により反射率及び透過率を測
定する。
Here, as a specific method for measuring reflectance and transmittance, first, a standard white board with a reflectance of about 90% is attached in place of the container 2 to be measured, and the amount of reflected light fe is measured. Next, with this standard white plate removed, the transmitted light 'fIk' is measured. Next, after attaching the object 2 to be measured and measuring the amount of reflected light and transmitted light fit, the reflectance and transmittance are measured by calculation.

第2図は本発明の他の実施例の概略構成図であり、図中
、第1図と同一の符号を付したものはそれぞれ同一の要
素金示している。そして、新たに光源1の放射光を、光
ファイバ13を用いて受光素子14に導き、さらに、受
光素子14の出力に基いて光量検出回路15が光源1の
光tを測定するようにし九点、この光量検出回路15の
出力と、前記反射光量及び透過光量全測定する光量検出
回路8の出力とを測定値補正回路16に入力すると、こ
の測定値補正回路16が光源1の光量変動に伴う反射率
、透過率の各測定値の変動分を補正して表示回路9に与
えるようにした点が第1因と異っている。
FIG. 2 is a schematic diagram of another embodiment of the present invention, and in the figure, the same reference numerals as in FIG. 1 indicate the same elements. Then, the emitted light from the light source 1 is newly guided to the light receiving element 14 using the optical fiber 13, and the light amount detection circuit 15 measures the light t from the light source 1 based on the output of the light receiving element 14. When the output of this light amount detection circuit 15 and the output of the light amount detection circuit 8 that measures the total amount of reflected light and transmitted light are input to the measured value correction circuit 16, this measured value correction circuit 16 adjusts the amount of light caused by the fluctuation of the light amount of the light source 1. This differs from the first cause in that the fluctuations in the measured values of reflectance and transmittance are corrected and applied to the display circuit 9.

かかる構成によれば、電源電圧の変動、時間の経過に伴
う特性変動等があっても、反射率及び透過率を高精度に
て測定することができる。
According to this configuration, reflectance and transmittance can be measured with high precision even if there are fluctuations in power supply voltage, characteristic fluctuations over time, etc.

なお、上記実施例を構成する受光素子5,7゜14とし
てはフォトトランジスタあるいはフォトダイオードを用
いればよく、また、光量検出回路8,15としては受光
素子の出力を増幅する直流増幅器、その出力をディジタ
ル信号に変換するム・D変換器、変換されたディジタル
データに基づいて反射率及び透過率を演算するマイクロ
プロセッサで構成すればよい。また、測定値補正回路1
6としては利得制御可能な増幅器を用いても、あるいは
マイクロプロセッサを用いてもよい。マイクロプロセッ
サを用いる場合には光量検出回路8,150機能と測定
値補正回路16の機能を1つのマイクロプロセッサに持
たせてもよい。
Note that phototransistors or photodiodes may be used as the light-receiving elements 5, 7, 14 constituting the above embodiment, and the light amount detection circuits 8, 15 may include DC amplifiers that amplify the output of the light-receiving elements, and the output thereof. It may be configured with a Mu/D converter that converts into a digital signal, and a microprocessor that calculates reflectance and transmittance based on the converted digital data. In addition, the measured value correction circuit 1
6 may be a gain controllable amplifier or a microprocessor. When a microprocessor is used, the functions of the light amount detection circuits 8 and 150 and the measured value correction circuit 16 may be provided in one microprocessor.

また本実施例の実捲に当っては第4因(イ)〜(ハ)に
図示する如き振動機構を備え念被測定物体容器を用いた
Further, in actually winding up this embodiment, a container for the object to be measured was used, which was equipped with a vibration mechanism as shown in the fourth factors (a) to (c).

底部にガラス(2b)が固定され次受皿(2a)に米(
2フヲ充てんし、フタ(2e)にガラス(2b)dE固
定され底部に開孔部(2f)を持つ被測定物体容器(2
C)内に米を入れた受皿(2a)t−納めフタ(2e)
+する。
A glass (2b) is fixed to the bottom, and then rice (2a) is placed on the saucer (2a).
A measuring object container (2) is filled with 2 bottles, a glass (2b) dE is fixed to the lid (2e), and has an opening (2f) at the bottom.
C) Saucer with rice inside (2a) T-lid (2e)
+

そしてこの被測定物体容器を$1図、第2図で示す測定
装置に設置して、米粒集合体の光の反射及び透過率の測
定を行うわけであるが、その場合米を受皿に入れる場合
測°定者の感覚にまかすと充てん債が一定せず、複数回
の測定を行うと測定値特に透過度値に差が生じるのであ
るが被測定用物体容器(2Cンの側部をソレノイド07
)金柑いて打撃し振動を与える。ソレノイドOB゛?時
(17a)、ON時θ7 b)となり被測定用物体容器
(2りの側部を打撃する。打撃サイクルは5回/ se
c 、時間は1.5式としたが特に限定されるものでは
ない。これにより被測定物体容器の表面を構成するガラ
ス(2d)面積より小さく設定され次有効測定範囲(2
g)内での米粒充てん密度は米粒充てん量によらずほぼ
一定となシ測定精度には何ら影響せず測定の安定性が向
上した。また打撃機構はソレノイドθ7)に限定するも
のではなく粉体測定には超音波等使うとよい。
This object to be measured container is then installed in the measuring device shown in Figures 1 and 2 to measure the light reflection and transmittance of the rice grain aggregate.In this case, when rice is placed in a saucer, If it is left to the senses of the measurer, the charging rate will not be constant, and if measurements are taken multiple times, there will be differences in the measured values, especially the transmittance value.
) Kumquats are struck and vibrated. Solenoid OB゛? (17a), θ7 b) when ON, and the sides of the object container to be measured (2) are struck.The striking cycle is 5 times/se.
c. The time was set to 1.5, but is not particularly limited. As a result, the area of the glass (2d) constituting the surface of the object to be measured container is set smaller than the next effective measurement range (2d).
The packed density of rice grains in g) was almost constant regardless of the amount of packed rice grains, which did not affect the measurement accuracy and improved the stability of the measurement. Further, the impact mechanism is not limited to the solenoid θ7), and it is preferable to use ultrasonic waves or the like for powder measurement.

〔発明の効果〕〔Effect of the invention〕

本発明の反射率及び透過率測定装置は、以上説明したよ
うに構成されているので、以下に記載するような効果を
奏する。
Since the reflectance and transmittance measuring device of the present invention is configured as described above, it produces the effects described below.

2本の光ファイバ束を用いて光源の光を導くことにより
、光が放射される側の光フアイバ端部の方向と位tlt
k合わせるだけでよく、これによって装置の小型化を図
9得ると共に、微妙な位置合わせが不要化される。
By guiding the light from the light source using two optical fiber bundles, the direction and position of the optical fiber end on the side from which the light is emitted can be determined.
It is only necessary to align the positions k, thereby making the device more compact as shown in FIG. 9, and eliminating the need for delicate positioning.

そして、反射光及び透過光をも、光ファイバを用いて受
光素子に導くようにしたことにより、−層の小型化が図
られると同時に、位置合わせが容易化される。
By guiding the reflected light and the transmitted light to the light receiving element using optical fibers, the size of the -layer can be reduced, and at the same time alignment can be facilitated.

また、光源の光量変動に伴う測定値変動分の1正回路を
備えることによジ測定精度と信頼性向上させることがで
きる。
Further, by providing a positive circuit corresponding to the variation in measured value due to variation in the light amount of the light source, the measurement accuracy and reliability can be improved.

更に、本発明においては被測定物体容器に振機構が設け
られているため、該容器に充填さる粒体の充填密度は常
に一定なものとするこができ、測定者による測定値の変
動はほとんなく正確な測定を行なうことができた。
Furthermore, in the present invention, since the container for the object to be measured is provided with a shaking mechanism, the packing density of the particles filled in the container can always be kept constant, and there are almost no fluctuations in the measured values by the measurer. We were able to perform accurate measurements without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光の反射率及び透過不測定置の一実施
例の概略構成図、第2図は他の実例の概要構成図、第3
図は従来の光の反射率び透過率測定装置の概略構成図で
あり、第4(イ)〜p→は本発明の装置に装着した被測
定物体器の一例及びその振動機構の概略の一例を示図で
ある。 1・・・光源、2・・・被測定物体容器、2a・・・受
皿1.7.14・・・受光素子、8,15・・・光量検
出路、9・・・表示回路、10a、10b、11゜2.
13・・・光ファイバ、17“°°ソレノイド118・
・・測定値補正回路 特許出願人 三菱レイヨン株式会社
Figure 1 is a schematic configuration diagram of one embodiment of the light reflectance and transmission measurement device of the present invention, Figure 2 is a schematic configuration diagram of another example, and Figure 3
The figure is a schematic configuration diagram of a conventional light reflectance and transmittance measuring device, and 4th (a) to 4th (a) to p are an example of an object to be measured attached to the device of the present invention and a schematic example of its vibration mechanism. is shown. DESCRIPTION OF SYMBOLS 1... Light source, 2... Measured object container, 2a... Receiver 1.7.14... Light receiving element, 8, 15... Light amount detection path, 9... Display circuit, 10a, 10b, 11°2.
13...Optical fiber, 17"°° solenoid 118.
...Measurement value correction circuit patent applicant Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 単一の光源より放射される光を粒状物集合体試料を充填
した被測定物体容器の表面に同一の入射角で互いに反対
方向より照射し、前記被測定物体表面から垂直に反射す
る反射光量に対応する信号に基づいて反射率を測定し、
裏面へ垂直に透過する透過光量に対応する信号に基づい
て透過率を測定する反射率及び透過率測定装置において
、前記光源より放射される光を、2本の光ファイバを用
いて前記被測定容器の表面に導くと共に、これらの光フ
ァイバの光軸が前記被測定物体の表面上で交わるように
配置してあると共に前記粒状試料を充填する被測定物体
容器に振動機構を設けたことを特徴とする粒状物集合体
の反射率及び透過率測定装置。
Light emitted from a single light source is irradiated from opposite directions at the same angle of incidence onto the surface of a container to be measured filled with a particulate aggregate sample, and the amount of reflected light reflected perpendicularly from the surface of the object to be measured is determined by Measure the reflectance based on the corresponding signal,
In a reflectance and transmittance measuring device that measures transmittance based on a signal corresponding to the amount of transmitted light transmitted perpendicularly to the back surface, the light emitted from the light source is transmitted to the container to be measured using two optical fibers. The granular sample is guided to the surface of the object to be measured, and the optical fibers are arranged so that their optical axes intersect on the surface of the object to be measured, and a vibration mechanism is provided in the object to be measured container filled with the granular sample. Reflectance and transmittance measuring device for particulate matter aggregates.
JP7596488A 1988-03-31 1988-03-31 Measuring apparatus of reflectance and transmittance of granular aggregate Pending JPH01250739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7596488A JPH01250739A (en) 1988-03-31 1988-03-31 Measuring apparatus of reflectance and transmittance of granular aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7596488A JPH01250739A (en) 1988-03-31 1988-03-31 Measuring apparatus of reflectance and transmittance of granular aggregate

Publications (1)

Publication Number Publication Date
JPH01250739A true JPH01250739A (en) 1989-10-05

Family

ID=13591410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7596488A Pending JPH01250739A (en) 1988-03-31 1988-03-31 Measuring apparatus of reflectance and transmittance of granular aggregate

Country Status (1)

Country Link
JP (1) JPH01250739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002479A1 (en) * 2017-06-29 2019-01-03 Siemens Aktiengesellschaft Device and method for detecting particles
CN113533256A (en) * 2021-06-30 2021-10-22 奥比中光科技集团股份有限公司 Method, device and equipment for determining spectral reflectivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106080A (en) * 1977-02-26 1978-09-14 Ritsuo Hasumi Reflection and transmission factor measuring instrument
JPS56106144A (en) * 1980-01-18 1981-08-24 Univ Groningen Optical reflectometer
JPH01142441A (en) * 1987-11-28 1989-06-05 Satake Eng Co Ltd Apparatus for measuring polishing degree of grain of rice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106080A (en) * 1977-02-26 1978-09-14 Ritsuo Hasumi Reflection and transmission factor measuring instrument
JPS56106144A (en) * 1980-01-18 1981-08-24 Univ Groningen Optical reflectometer
JPH01142441A (en) * 1987-11-28 1989-06-05 Satake Eng Co Ltd Apparatus for measuring polishing degree of grain of rice

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002479A1 (en) * 2017-06-29 2019-01-03 Siemens Aktiengesellschaft Device and method for detecting particles
CN113533256A (en) * 2021-06-30 2021-10-22 奥比中光科技集团股份有限公司 Method, device and equipment for determining spectral reflectivity
CN113533256B (en) * 2021-06-30 2024-03-12 奥比中光科技集团股份有限公司 Method, device and equipment for determining spectral reflectivity

Similar Documents

Publication Publication Date Title
EP0997748B1 (en) Chromatic optical ranging sensor
US4859062A (en) Optoelectrical measuring system and apparatus
EP0383244A1 (en) Fiber optic scatterometer
JPS6379003A (en) Light probe for measuring shape
CA2330793A1 (en) Container sealing surface area inspection
JPS63241336A (en) Particle size measuring apparatus
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
FR2553190A1 (en) METHOD AND DEVICE FOR MEASURING A FILL LEVEL
JP3375752B2 (en) LED chip optical characteristics measurement sensor
JPH01250739A (en) Measuring apparatus of reflectance and transmittance of granular aggregate
JPS6246207A (en) Distance detector
CN110441200B (en) Laser measuring device
JP2677369B2 (en) Infrared measuring device
JPS60501125A (en) Method and device for measuring suspended solids content in a fluid medium
JPS5972012A (en) Method and device for detecting gap and angle
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPS59120940A (en) Infrared ray type moisture measuring apparatus
JPH01277740A (en) Submerged turbidity meter
RU2173833C1 (en) Photoelectric device for measurement of article diameter
JP2019060714A (en) Liquid sample measuring attachment, refractive index measurement device and refractive index measurement method
JPH041942A (en) Reflected light measuring element
JPS63292039A (en) Apparatus for detecting fine grain in liquid
US4623221A (en) Device for providing a substantially flat light field
JPS58174802A (en) Two dimensional position measuring device
JPH02300603A (en) Measuring instrument