JPS6332131B2 - - Google Patents
Info
- Publication number
- JPS6332131B2 JPS6332131B2 JP20057481A JP20057481A JPS6332131B2 JP S6332131 B2 JPS6332131 B2 JP S6332131B2 JP 20057481 A JP20057481 A JP 20057481A JP 20057481 A JP20057481 A JP 20057481A JP S6332131 B2 JPS6332131 B2 JP S6332131B2
- Authority
- JP
- Japan
- Prior art keywords
- rice
- amount
- receiving element
- reflected light
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 241000209094 Oryza Species 0.000 claims description 72
- 235000007164 Oryza sativa Nutrition 0.000 claims description 72
- 235000009566 rice Nutrition 0.000 claims description 72
- 235000013339 cereals Nutrition 0.000 claims description 56
- 238000001514 detection method Methods 0.000 claims description 30
- 235000021329 brown rice Nutrition 0.000 claims description 28
- 238000012937 correction Methods 0.000 claims description 17
- 238000005498 polishing Methods 0.000 claims description 17
- 238000003801 milling Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 description 13
- 108010050181 aleurone Proteins 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- 239000003550 marker Substances 0.000 description 8
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 238000005303 weighing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/10—Starch-containing substances, e.g. dough
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、米粒精白度測定装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a rice grain polishing level measuring device.
精米作用とは、米粒の組織を外周から内部へ向
かつて順次除去し、米粒の内部組織を露出させる
作用であり、原料玄米を精米して白米にしたとき
の白米生産量の割合は精米歩留り(単に、歩留り
とも言う)ということばで表わされ、一般に次式
で示されている。
Rice polishing is an action that sequentially removes the structure of rice grains from the periphery to the inside, exposing the internal structure of the rice grains. When raw brown rice is milled into white rice, the ratio of white rice production is determined by the milling yield ( It is expressed simply as yield (also simply called yield) and is generally expressed by the following formula.
歩留り(%)=白米総重量/玄米総重量×100
この歩留りの良否は、原料玄米の性状や精米技
術により左右されるが、通常、糠層は玄米全体の
6%、胚は2%程度の割合を占めているので(第
4図参照)、原料が理想的なものであれば、歩留
りは90%前後になる。歩留りに影響を及ぼす要因
としては糠層の厚さ・堅さ胚の大きさ・離脱
性被害粒及び未熟粒の混入率米の剛度・含水
率等がある。 Yield (%) = Total weight of white rice / Total weight of brown rice x 100 The quality of this yield depends on the properties of raw brown rice and rice milling technology, but normally the bran layer accounts for 6% of the total brown rice, and the embryo accounts for about 2%. (See Figure 4), so if the raw materials are ideal, the yield will be around 90%. Factors that affect the yield include the thickness and hardness of the bran layer, the size of the embryo, the contamination rate of detached damaged grains and immature grains, the stiffness of the rice, and the moisture content.
このように、歩留りとは原料玄米に対する製品
(白米)の収量をいうのであり、例えば、むら搗
(つ)き等による精米後の米質の良否(商品的価
値)を直接判定するものではない。 In this way, yield refers to the yield of the product (white rice) relative to the raw material brown rice, and does not directly determine the quality (commercial value) of the rice after milling, for example, by uneven pounding. .
これに対し、糠層と胚が精米によつてどの程度
取り除かれて白くなつたか、つまり、米質(商品
的価値)の度合いを判定するものとして、精白度
(搗精率)という表わし方が用いられている。 On the other hand, the term milling degree (milling rate) is used to judge the extent to which the bran layer and embryo are removed during rice polishing, or in other words, the degree of rice quality (commercial value). It is being
精白度について、第4図及び第5図に示す玄米
の断面図を参照しながら説明する。玄米粒は、中
核部をなす澱粉層、すなわち内胚乳部とその外周
を包被する糠層とからなり、糠層は外糠層(42〜
48μ)と内糠層(25〜40μ)とからなる。さらに、
外糠層は外壁をなす果皮とその内壁面にある種皮
とからなり、内糠層は外胚乳と糊粉層(アリユー
ロン層)とで構成される。ところで、外糠層を剥
いだ粉体を、その色より黒糠と称し、内糠層まで
削つたものを白糠と呼び、内糠層の糊粉層まで全
て取り除いた状態を精白度100%とし、玄米を0
%とする。しかしながら、糊粉層の中には食味の
成分の一つとなる蛋白質及び油脂分が含まれてい
るから、糊粉層は食飯用の白米にとつて重要成分
であり、糊粉層を全て除去した白米は、いわゆる
澱粉白米となり、酒造用には適しても食飯用には
ならない。したがつて適正な精白度とは糊粉層を
幾分残して精米した精白米を意味する。 The degree of polishing will be explained with reference to cross-sectional views of brown rice shown in FIGS. 4 and 5. Brown rice grains consist of a starch layer that forms the core, that is, the endosperm, and a bran layer surrounding the outer periphery of the starch layer.
48μ) and an inner bran layer (25-40μ). moreover,
The outer bran layer consists of the outer pericarp and the seed coat on the inner wall, and the inner bran layer consists of the ectosperm and aleurone layer. By the way, the powder from which the outer bran layer has been removed is called black bran because of its color, and the powder that has been ground down to the inner bran layer is called white bran, and the state where all the inner bran layer has been removed, including the aleurone layer, is considered to have a polishing level of 100%. , 0 brown rice
%. However, the aleurone layer contains proteins and fats and oils, which are one of the flavor components, so the aleurone layer is an important component for polished rice for consumption, and the aleurone layer is completely removed. The polished rice becomes so-called starch white rice, which is suitable for sake brewing but not for eating. Therefore, an appropriate level of polishing means polished rice that has been polished with some aleurone layer remaining.
前述したように、精米作用が外糠層から内糠層
に進むにしたがい、しだいに米粒の白度が上昇
し、この上昇率はほぼ比例的であることから、従
来、米粒の白さの度合いを測定して白度と称し、
この値を精白度と同様の意味に解していた。 As mentioned above, as the rice polishing process progresses from the outer bran layer to the inner bran layer, the whiteness of the rice grain gradually increases, and this rate of increase is almost proportional. is measured and called whiteness,
This value was interpreted to have the same meaning as the degree of fineness.
白さの度合を測定する白度計は、積分球を用
い、試料米に照射した光量に対して試料から反射
する反射光量を光電管で受光し、その反射率を求
めるものであり、その測定値は酸化マグネシウム
の極微粉の白さを100、真黒を0としたときの割
合で示される。 A whiteness meter that measures the degree of whiteness uses an integrating sphere to receive the amount of light reflected from the sample with a phototube relative to the amount of light irradiated on the sample rice, and calculates the reflectance, and the measured value is expressed as a percentage when the whiteness of ultrafine magnesium oxide powder is 100 and the pure blackness is 0.
ところが、白度計によつて求めた白さの度合
は、米粒表面から反射した光量のみであり、米粒
を透過する光量及び米粒内に吸収される光量が加
味されてなく、精白度とは無関係の値である。例
えば、精米直後、わずかに白糠の付着した白米
は、これを十分除去・琢磨した白米より、はるか
に高い値の白度となる。これは米粒面が光沢を帯
びて密面を呈すると、面反射の傾向によつて乱反
射光量が減少し、透過光量が増加するからであ
り、進行している精白度に対して逆の値であるか
ら、この値は精白度に無関係の値であることを証
明している。すなわち、従来測定していた白度は
米粒表面からの反射光量のみであり、米粒表面状
態により、すなわち糠の付着した米粒、表面がザ
ラザラの米粒は乱反射のため白度が高く表示さ
れ、また、表面が滑面のものは乱反射が少なく白
度が低く表示される。そのために白度をもつて精
白度となすことは当を得ない思想である。
However, the degree of whiteness determined by a whiteness meter is only the amount of light reflected from the surface of the rice grain, and does not take into account the amount of light that passes through the rice grain and the amount of light that is absorbed within the rice grain, and has nothing to do with the degree of whiteness. is the value of For example, white rice with a slight amount of white bran attached to it immediately after milling has a much higher whiteness value than white rice that has been sufficiently removed and polished. This is because when the rice grain surface becomes glossy and dense, the amount of diffusely reflected light decreases due to the tendency of surface reflection, and the amount of transmitted light increases, which is the opposite value to the progressing whiteness. This proves that this value is unrelated to the degree of polishing. In other words, the whiteness that was conventionally measured was only the amount of light reflected from the surface of the rice grain, and depending on the surface condition of the rice grain, that is, rice grains with bran attached or grains with a rough surface may display high whiteness due to diffuse reflection. If the surface is smooth, there will be less diffused reflection and the whiteness will be lower. For this reason, it is an unreasonable idea to equate whiteness with refinement.
そこで本発明は、白米粒を透過する光線の光量
及び白米表面からの反射光線の光量に、さらに前
記透過光量に影響を及ぼす米粒密度(容積重)に
よる補正値と米粒の品種による補正値とを加味し
て真の精白度を求めることのできる米粒精白度測
定装置を提供することを技術的課題とする。 Therefore, the present invention provides a correction value based on the rice grain density (volumetric weight) and a correction value based on the variety of rice grains, which affect the amount of light transmitted through polished rice grains and the amount of reflected light from the surface of polished rice. A technical problem is to provide a rice grain polishing degree measuring device that can calculate the true polishing degree by taking into account.
前記問題点を解決するため本発明は、試料の容
積重を検出する容積重検出装置と、光源装置と、
この光源装置からの光を受ける試料流路と、光源
装置側からこの試料流路に向けて設けた反射光受
光素子と、光源装置の反対側から前記試料流路に
向けて設けた透過光受光素子とをそれぞれ設ける
と共に、前記反射受光素子からの反射光量に係数
を乗じたものと、前記透過光受光素子からの透過
光量に前記容積重検出装置からの容積重によつて
定まる値を乗じて更にこれに係数を乗じたものと
の和に、米粒の品種によつて予め定めた補正値を
加算して精白度を出力するようにした演算装置を
設けるという技術的手段を講じた。
In order to solve the above problems, the present invention provides a volumetric weight detection device for detecting the volumetric weight of a sample, a light source device,
A sample channel that receives light from the light source device, a reflected light receiving element provided from the light source device side toward the sample channel, and a transmitted light receiver provided toward the sample channel from the opposite side of the light source device. The amount of reflected light from the reflective light receiving element is multiplied by a coefficient, and the amount of transmitted light from the transmitted light receiving element is multiplied by a value determined by the volumetric weight from the volumetric weight detection device. Furthermore, a technical measure was taken to provide a calculation device that outputs the milling degree by adding a predetermined correction value depending on the type of rice grain to the sum of the product multiplied by a coefficient.
これにより、供給部の計量タンクに投入されて
ロードセルによつて容積重を測定された試料米粒
は、測定部に設けた透過光受光素子及び反射光受
光素子によつて透過光量と反射光量とを受光さ
れ、透過光量は透過度検出回路に、反射光量は反
射度検出回路にそれぞれ入力される。そして、反
射度検出回路では照射光量に対する反射光量の比
である反射度(反射率)を求めて、その反射度に
精白度換算のための係数値を乗ずる。一方、米粒
の容積重を測定したロードセルの信号は、容積重
検出回路に入力されて係数値によつて乗じられる
とともに、この信号は前記透過度検出回路におい
て求められている照射光量に対する透過光量の比
である透過度(透過率)を密度補正する。そして
密度補正された透過度に精白度換算のための係数
を乗じる。この値と前記反射度検出回路における
演算値とを加算し、さらに、品種あるいは作柄等
の性状に応じた補正値を加えて精白度を求める。
As a result, the sample rice grains, which have been placed in the weighing tank of the supply section and whose volumetric weight has been measured by the load cell, are able to detect the amount of transmitted light and the amount of reflected light by the transmitted light receiving element and the reflected light receiving element provided in the measuring section. The amount of transmitted light is input to a transmittance detection circuit, and the amount of reflected light is input to a reflectance detection circuit. Then, the reflectance detection circuit determines the reflectance (reflectance), which is the ratio of the amount of reflected light to the amount of irradiated light, and multiplies the obtained reflectance by a coefficient value for converting the brightness. On the other hand, the signal from the load cell that measures the volumetric weight of the rice grain is input to the volumetric weight detection circuit and multiplied by a coefficient value, and this signal is used to determine the amount of transmitted light relative to the amount of irradiation light determined by the transmittance detection circuit. The transmittance (transmittance), which is the ratio, is corrected for the density. Then, the density-corrected transmittance is multiplied by a coefficient for converting brightness. This value is added to the calculated value in the reflectance detection circuit, and a correction value corresponding to the characteristics of the variety or crop is added to determine the degree of fineness.
以下、本発明の好適な実施例を図面に基づいて
説明する。第1図は本実施例の概略断面図、第2
図はその電気回路図である。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. Figure 1 is a schematic sectional view of this embodiment, Figure 2 is a schematic sectional view of this embodiment.
The figure is its electrical circuit diagram.
米粒精白度測定装置1は測定部1Aと供給部1
Bとからなる。まず、測定部1Aについて説明す
る。積分球2には対向状に採光窓2aと測定窓2
bとを設け、採光窓2aには、集光レンズ4、単
色光フイルター7、熱線吸収フイルター6及び光
源ランプ5からなる光源装置50を臨設し、他
方、測定窓2bは、透明壁で形成するとともに上
部に投入シヤツター9を、下部に排出シヤツター
10を装着した試料流路3を臨設し、試料流路3
内には基準色板を備えた標柱8を設ける。試料流
路3の下端には排出路14を接続する。そして、
試料流路3を介して光源装置50の反対側には透
過光受光素子15Aを、光源装置50の側には反
射光受光素子15Bを、それぞれ設ける。 The rice grain polishing measurement device 1 includes a measurement section 1A and a supply section 1.
It consists of B. First, the measuring section 1A will be explained. The integrating sphere 2 has a lighting window 2a and a measurement window 2 facing each other.
b, and a light source device 50 consisting of a condensing lens 4, a monochromatic light filter 7, a heat ray absorption filter 6, and a light source lamp 5 is provided in the daylight window 2a, while the measurement window 2b is formed of a transparent wall. At the same time, a sample flow path 3 equipped with an input shutter 9 at the top and a discharge shutter 10 at the bottom is provided.
A marker post 8 equipped with a reference color plate is provided inside. A discharge channel 14 is connected to the lower end of the sample flow channel 3 . and,
A transmitted light receiving element 15A is provided on the opposite side of the light source device 50 via the sample channel 3, and a reflected light receiving element 15B is provided on the side of the light source device 50.
次に、供給部1Bであるが、試料流路3の上端
に連絡して振動装置11を備えた振動送穀樋12
を設け、振動送穀樋12の上方に設けた計量タン
ク13から流出する米粒が連続的かつ定量的に試
料流路3内に供給されるよう、図外の流路抵抗増
減装置によつて振動装置11は調節可能に形成さ
れる。計量タンク13の上方には、排出シヤツタ
ー18を備えた供給タンク19を吊設するととも
に、計量タンク13を囲繞して、計量タンク13
から溢流する米粒を受ける外側タンク20を設け
る。外側タンク20には、計量タンク13内に投
入された米粒が、該タンク13上端部に山形に堆
積して安息角を形成した状態(所定容量の米粒が
供給されたこと)を検出する静電容量式の近接ス
イツチ21が装着される。近接スイツチ21の検
出信号は、容積重検出回路22に設けた調節器2
3に入力される。また、計量タンク13の下端に
は排出シヤツター24を設けるとともに、計量タ
ンク13はロードセル25,25上に支架され、
その測定信号は調節器23を経て容積重検出回路
22に入力される。調節器23には各排出シヤツ
ター18,24の作動装置が連結され、これらの
シヤツター18,24は近接スイツチ21によつ
て作動し、計量タンク13に所定容量の米粒を供
給してその容積重を計測するよう形成される。こ
のように、計量タンク13、ロードセル25及び
容積重検出回路22等によつて、米粒の容積重を
検出する容積重検出装置を形成する。 Next, in the supply section 1B, a vibrating grain feeder 12 connected to the upper end of the sample channel 3 and equipped with a vibrating device 11 is provided.
In order to continuously and quantitatively supply the rice grains flowing out from the measuring tank 13 installed above the vibrating grain feeder 12 into the sample flow path 3, a flow path resistance increase/decrease device (not shown) vibrates the grains. The device 11 is configured to be adjustable. A supply tank 19 equipped with a discharge shutter 18 is suspended above the metering tank 13, and the metering tank 13 is surrounded by the metering tank 13.
An outer tank 20 is provided to receive rice grains overflowing from the tank. The outer tank 20 has an electrostatic capacitor that detects a state in which the rice grains put into the measuring tank 13 are deposited in a mountain shape at the upper end of the tank 13 to form an angle of repose (that a predetermined volume of rice grains has been supplied). A capacitive proximity switch 21 is installed. The detection signal of the proximity switch 21 is transmitted to the regulator 2 provided in the volume/weight detection circuit 22.
3 is input. Further, a discharge shutter 24 is provided at the lower end of the weighing tank 13, and the weighing tank 13 is supported on load cells 25, 25.
The measurement signal is input to the volumetric weight detection circuit 22 via the regulator 23. The actuating devices for the discharge shutters 18 and 24 are connected to the regulator 23, and these shutters 18 and 24 are operated by the proximity switch 21 to supply a predetermined volume of rice grains to the measuring tank 13 and calculate its volumetric weight. formed to measure. In this way, the measuring tank 13, the load cell 25, the volumetric weight detection circuit 22, etc. form a volumetric weight detection device that detects the volumetric weight of rice grains.
次に、第2図に基づいて演算装置を形成する演
算回路Xについて説明する。積分球2に設けた反
射光受光素子15Bを反射度検出回路1の増幅器
26に連結するとともに、減算器27、A/D変
換器28及び比較器29を直列状に連結し、比較
器29は標柱値設定器30に連結するとともにそ
の出力側を増幅度調節器31を介して前記増幅器
26に連結する。また、増幅器26の出力側を分
岐して暗電流記憶回路32を介して減算器27に
連結するとともに、減算器27の出力側を分岐
し、乗算器33及びA/D変換器34を介して加
算装置35に連結してある。一方、透過光受光素
子15Aは透過度検出回路16の増幅器36から
乗算器37、乗算器38及びA/D変換器39を
介して加算装置35に連結される。また、加算装
置には吊種別補正回路40を接続するとともに、
その出力側を精白度表示器41に接続する。容積
重検出回路22の調節器23は増幅器42及び乗
算器43を経て、透過度検出回路16の乗算器3
7に連結してある。 Next, the arithmetic circuit X forming the arithmetic device will be explained based on FIG. The reflected light receiving element 15B provided on the integrating sphere 2 is connected to the amplifier 26 of the reflectance detection circuit 1, and the subtracter 27, A/D converter 28, and comparator 29 are connected in series. It is connected to a marker value setter 30, and its output side is connected to the amplifier 26 via an amplification adjuster 31. Further, the output side of the amplifier 26 is branched and connected to the subtracter 27 via the dark current storage circuit 32, and the output side of the subtracter 27 is branched and connected via the multiplier 33 and the A/D converter 34. It is connected to an adder 35. On the other hand, the transmitted light receiving element 15A is connected to the adding device 35 via the amplifier 36 of the transmittance detection circuit 16, the multiplier 37, the multiplier 38, and the A/D converter 39. In addition, a suspension type correction circuit 40 is connected to the adding device, and
Its output side is connected to a precision indicator 41. The regulator 23 of the volumetric weight detection circuit 22 passes through an amplifier 42 and a multiplier 43, and then is connected to the multiplier 3 of the transparency detection circuit 16.
It is connected to 7.
なお、前記反射度検出回路17の減算器27で
は、積分球2の暗電流を記憶した暗電流記憶回路
32の出力を減算器27に入力してその暗電流値
を受光素子の受光量から減算し、比較器29で
は、標柱値設定器30の設定値と受光素子からの
受光量とを比較し、その比較差により増幅度調節
器31を介して増幅器26の増幅度を変化して標
柱値と一致するように調節する。 Note that the subtracter 27 of the reflectance detection circuit 17 inputs the output of the dark current storage circuit 32 that stores the dark current of the integrating sphere 2 to the subtracter 27, and subtracts the dark current value from the amount of light received by the light receiving element. The comparator 29 compares the setting value of the marker value setter 30 with the amount of light received from the light receiving element, and changes the amplification degree of the amplifier 26 via the amplification adjuster 31 based on the comparison difference, thereby adjusting the marker value. Adjust to match.
以上の構成において、増幅器26からの反射光
量に基づいた反射度と増幅器36からの透過光量
に基づいた透過度(密度補正される)及び品種別
補正回路40からの出力によつて計算される加算
装置35の計算値、すなわち、照射光量を基準値
とすると精白度は次の式によつて表される。 In the above configuration, the addition is calculated based on the reflectivity based on the amount of reflected light from the amplifier 26, the transmittance (density corrected) based on the amount of transmitted light from the amplifier 36, and the output from the product type correction circuit 40. When the calculated value of the device 35, that is, the amount of irradiated light is used as a reference value, the degree of brightness is expressed by the following formula.
精白度=α×(反射光量)
+β×(透過光量)×(容積重)K+H
なお、α,β及び指数Kは精白度に換算するた
めの係数(実験的に求めた数値)、Hは米粒の品
種別補正値である。 Fineness = α × (reflected light amount) + β × (transmitted light amount) × (volume weight) K + H Note that α, β, and index K are coefficients (experimentally determined values) for converting to fineness degree, and H is This is the corrected value for each type of rice grain.
以下、具体的作動について説明する。前記供給
タンク19の排出シヤツター18は調節器23か
らの信号によつて開成して所定時間後に閉成し、
該タンク19内の試料米粒(精白米)は下部の計
量タンク13に流下して充満するとともに、タン
ク13上端部に山形状に堆積して安息角を形成
し、所定容量以上の米粒は外側タンク20内を流
下して機外に排出される。そして、前記計量タン
ク13の山形状穀層の上端部分(所定容量の米粒
を意味する)を静電容量式の近接スイツチ21が
検出すると、その検出信号によつて直ちにタンク
重量をロードセル25,25が測定し、その測定
信号を調節器23に入力して容積重を算定する。
そして、調節器23からの信号によりシヤツター
24が開成し、振動送穀樋12が振動して米粒は
試料流路3に流入する。 The specific operation will be explained below. The discharge shutter 18 of the supply tank 19 is opened in response to a signal from the regulator 23 and closed after a predetermined time;
The sample rice grains (polished rice) in the tank 19 flow down into the lower measuring tank 13 and fill it, and are deposited in a mountain shape at the upper end of the tank 13 to form an angle of repose, and rice grains exceeding a predetermined capacity are transferred to the outer tank. 20 and is discharged outside the machine. When the electrostatic capacitance type proximity switch 21 detects the upper end portion of the mountain-shaped grain layer (meaning rice grains of a predetermined capacity) in the weighing tank 13, the tank weight is immediately transferred to the load cells 25, 25 based on the detection signal. The measurement signal is input to the controller 23 to calculate the volumetric weight.
Then, the shutter 24 is opened by a signal from the regulator 23, the vibrating grain feeding trough 12 vibrates, and the rice grains flow into the sample channel 3.
光電装置の光源ランプ5からの光線は、採光窓
2aから試料流路3内の米粒に照射されるととも
に、試料から積分球2内に反射する反射光量は反
射光受光素子15Bによつて受光される。この受
光信号は増幅器26によつて増幅されるとともに
減算器27によつて暗電流を差し引かれた後、乗
算器33に入力されるのであるが、この信号は分
岐されてA/D変換器28を介して比較器29に
入力し、標柱値設定器30の設定値と比較して、
その比較差を増幅度調節器31を介して増幅器2
6にフイードバツクし、増幅器26の増幅率を変
化させて標柱8に設けた基準色板と一致するよう
補正する。なお、この増幅器26の補正回路は、
透過度検出回路16における増幅器36にも設け
られる(図示せず)。減算器27から乗算器33
に入力した信号は、係数αを乗じてA/D変換さ
れ、加算装置35に入力される。 The light from the light source lamp 5 of the photoelectric device is irradiated onto the rice grains in the sample channel 3 through the lighting window 2a, and the amount of reflected light reflected from the sample into the integrating sphere 2 is received by the reflected light receiving element 15B. Ru. This light reception signal is amplified by the amplifier 26 and the dark current is subtracted by the subtracter 27, and then input to the multiplier 33. This signal is branched and sent to the A/D converter 28. is input to the comparator 29 via the , and compared with the setting value of the marker value setting device 30,
The comparison difference is sent to the amplifier 2 via the amplification degree adjuster 31.
6 and changes the amplification factor of the amplifier 26 to correct it so that it matches the reference color plate provided on the marker pole 8. Note that the correction circuit of this amplifier 26 is
The amplifier 36 in the transmittance detection circuit 16 is also provided (not shown). From the subtracter 27 to the multiplier 33
The input signal is multiplied by a coefficient α, A/D converted, and input to the adder 35 .
一方、積分球2の採光窓2aから入射する光線
は、試料流路3内の米粒を透過して透過光受光素
子15Aによつて受光され、この信号は増幅器3
6によつて乗算器37に入力されるのであるが、
この信号と、計量タンク13の容積重を計測する
ロードセル25,25の信号を増幅するととも
に、乗算器43によつてK乗された信号とが乗算
器37で処理されて乗算器38に入力される。こ
れにより、粒子の大きい米粒と小さいものとの容
積重(密度)の違いによる透過光量の差を補正す
る(大粒=密度小のものは透過光量が多く、小粒
=密度大のものは透過光量が少ない)。容積重は
1リツトル当りのキログラムで表し、白米の場合
0.8〜0.9である。そして、乗算器38で係数βを
乗じた後、A/D変換して加算装置35に入力さ
れる。 On the other hand, the light beam incident from the light window 2a of the integrating sphere 2 passes through the rice grain in the sample channel 3 and is received by the transmitted light receiving element 15A, and this signal is transmitted to the amplifier 3.
6 is input to the multiplier 37,
This signal and the signal from the load cells 25, 25 that measure the volumetric weight of the weighing tank 13 are amplified and multiplied to the K power by the multiplier 43, and then processed by the multiplier 37 and input to the multiplier 38. Ru. This corrects the difference in the amount of transmitted light due to the difference in volumetric weight (density) between large rice grains and small rice grains (Large grains = low density rice grains have a large amount of transmitted light, and small grains = high density rice grains have a large amount of transmitted light. few). Volumetric weight is expressed in kilograms per liter, for white rice
It is 0.8-0.9. Then, after being multiplied by a coefficient β in a multiplier 38, the signal is A/D converted and input to an adding device 35.
こうして、容積重による補正及び係数βによる
補正をされた透過光受光素子15Aの信号は、加
算装置35において、前記A/D変換器34から
入力される反射光受光素子15Bの信号と加算さ
れるとともに、品種別補正回路40からの係数H
を加えて精白度表示器41に出力し、精白度
(%)として表示する。 In this manner, the signal of the transmitted light receiving element 15A corrected by the volume weight and the coefficient β is added to the signal of the reflected light receiving element 15B inputted from the A/D converter 34 in the adding device 35. In addition, the coefficient H from the product type correction circuit 40
is added and output to the whiteness level display 41, and displayed as whiteness level (%).
前記品種別補正値を設けたのは、標準米に対し
て糊粉層の厚い品種(寒冷地に多い)と糊粉層の
薄い品種(温暖地方に多い)とがあり、同じ精白
作用を施しても糊粉層の厚い品種は糊粉層の薄い
ものに比して白度が上がらないこと、また、乳白
粒が多い品種及び作柄では、透過光量が少なく、
反射光量が多いことが知られており、このような
品種の違いに応じて補正をする必要があるからで
ある。 The above-mentioned correction values for each type of rice were established because there are varieties with a thick aleurone layer (common in cold regions) and varieties with a thin aleurone layer (common in warm regions) compared to standard rice. However, varieties with a thick aleurone layer do not have higher whiteness than those with a thinner aleurone layer, and varieties and crops with many milky white grains have a low amount of transmitted light.
This is because it is known that the amount of reflected light is large, and it is necessary to make corrections depending on the differences in product types.
第3図は別の実施例を示す演算回路図Yであ
る。この実施例の場合は、先の実施例における品
種別補正回路40に代えて、反射度検出回路17
A及び透過度検出回路16Aに玄米反射度記憶装
置44および玄米透過度記憶装置46を設け、そ
れぞれ減算器45及び47を介在させたものであ
る。この場合の精白度は次式で表わされる。 FIG. 3 is an arithmetic circuit diagram Y showing another embodiment. In this embodiment, the reflectance detection circuit 17 is replaced with the product type correction circuit 40 in the previous embodiment.
A and the transmittance detection circuit 16A are provided with a brown rice reflectivity storage device 44 and a brown rice transmittance storage device 46, and subtractors 45 and 47 are interposed therebetween, respectively. The degree of polishing in this case is expressed by the following formula.
精白度=α1×(白米反射光量−玄米反射光量)
+β1×[(白米透過光量)
×(白米容積重)K1
−(玄米透過光量)×(玄米容積重)K1]
=α1×(白米反射光量)+β1
(白米透過光量)×(白米容積重)K1
−[α1×(玄米反射光量)+β1
×(玄米透過光量)×(玄米容積重)K1]
なお、α1,β1及び指数K1は先の実施例と同様
に、実験的に求めた係数である。また、上記計算
式から明らかなように、上記式の中の−[α1×(玄
米反射光量)+β1×(玄米反射光量)×(玄米容積
重)K1]は、先の実施例における精白度を求める
計算式中の米粒の品種別補正値Hに相当する。Polishing degree = α 1 × (Amount of reflected light of polished rice - Amount of reflected light of brown rice) + β 1 × [(Amount of transmitted light of polished rice) × (Volume weight of polished rice) K1 - (Amount of transmitted light of brown rice) × (Volume weight of brown rice) K1 ] = α 1 × ( Reflected light amount of polished rice) + β 1 (Amount of transmitted light of polished rice) × (Volume weight of polished rice) K1 − [α 1 × (Amount of reflected light of brown rice) + β 1 × (Amount of transmitted light of brown rice) × (Volume weight of brown rice) K1 ] In addition, α 1 , β 1 and the index K 1 are coefficients determined experimentally, as in the previous embodiment. In addition, as is clear from the above calculation formula, -[α 1 × (Brown rice reflected light amount) + β 1 × (Brown rice reflected light amount) × (Brown rice volumetric weight) K1 ] in the above formula is This corresponds to the rice grain type correction value H in the calculation formula for calculating the degree of rice grain.
本実施例においては、先の実施例と同様に透過
受光素子15A及び反射光受光素子15Bによつ
て受光された光量は、それぞれ透過度検出回路1
6A及び反射度検出回路17Aに取り込まれる。
そして、前記各受光量を、玄米透過度記憶装置4
6及び玄米反射度記憶装置44に記憶された当該
米粒の玄米における透過光量及び反射光量の測定
値によつて減算し、各々加算装置35Aに入力し
て前記計算式によつて精白度を求め、精白度表示
器41Aに表示する。この場合も品種別補正回路
をもうけた場合と同様に、品種や作柄の違いにも
かかわらず正確な精白度を求めることができる。
その余の構成及び作用は、先の実施例と同様であ
るので説明を省略する。 In this embodiment, as in the previous embodiment, the amount of light received by the transmitted light receiving element 15A and the reflected light receiving element 15B is determined by the transmittance detection circuit 1, respectively.
6A and the reflectance detection circuit 17A.
Then, each amount of received light is stored in the brown rice transmittance storage device 4.
6 and the measured values of the amount of transmitted light and the amount of reflected light of the brown rice of the rice grains stored in the brown rice reflectance storage device 44, and input them into the adding device 35A to determine the degree of whitening by the above formula, It is displayed on the precision display 41A. In this case as well, as in the case where a variety-specific correction circuit is provided, accurate whiteness can be determined regardless of differences in variety or crop.
The rest of the structure and operation are the same as those of the previous embodiment, so their explanation will be omitted.
以上述べたように、本発明によれば以下のとお
り顕著な効果を奏する。すなわち、透過光量、反
射光量及び容積重を検出し、各検出値に精白度換
算のための係数を乗じるとともに、透過光検出値
は容積重による密度補正を行つた後、透過光検出
値と反射光検出値とを加算し、さらに、品種ある
いは作柄等の性状に応じた補正を行うことによ
り、乱反射光だけの白度計あるいは各種試験薬に
よる煩しい判定に比し、容易に正確な精白度が求
められ、これをもつて実際の商品の品位を評価す
ることができるものである。
As described above, according to the present invention, the following remarkable effects are achieved. In other words, the amount of transmitted light, amount of reflected light, and volumetric weight are detected, each detected value is multiplied by a coefficient for converting the degree of polishing, and the transmitted light detected value is subjected to density correction based on volumetric weight, and then the transmitted light detected value and reflected light are combined. By adding the light detection value and making corrections according to the characteristics of the variety or crop, it is possible to easily and accurately determine the whiteness level compared to the complicated judgment using a whiteness meter that only uses diffusely reflected light or various test chemicals. is required, and it is from this that the quality of the actual product can be evaluated.
第1図は本発明実施例の概略断面図、第2図は
その電気回路図、第3図は別の実施例の電気回路
図、第4図は玄米の縦断面図、第5図は第4図の
一部拡大図である。
1…米粒精白度測定装置、2…積分球、3…試
料流路、4…集光レンズ、5…光源ランプ、6…
熱線吸収フイルター、7…単色光フイルター、8
…標柱、9…投入シヤツター、10…排出シヤツ
ター、11…振動装置、12…振動送穀樋、13
…計量タンク、14…排出路、15A…透過光受
光素子、15B…反射光受光素子、16,16A
…透過度検出回路、17,17A…反射度検出回
路、18…排出シヤツター、19…供給タンク、
20…外側タンク、21…近接スイツチ、22…
容積重検出回路、23…調節器、24…排出シヤ
ツター、25…ロードセル、26…増幅器、27
…減算器、29…比較器、30…標柱値設定器、
31…増幅度調節器、32…暗電流記憶回路、3
3…乗算器、34…A/D変換器、35,35A
…加算装置、36…増幅器、37,38…乗算
器、39…A/D変換器、40…品種別補正回
路、41,41A…精白度表示器、42…増幅
器、43…乗算器、44…玄米反射度記憶装置、
45…減算器、46…玄米透過度記憶装置、47
…減算器、50…光源装置。
Fig. 1 is a schematic sectional view of an embodiment of the present invention, Fig. 2 is an electric circuit diagram thereof, Fig. 3 is an electric circuit diagram of another embodiment, Fig. 4 is a longitudinal sectional view of brown rice, and Fig. 5 is a schematic sectional view of brown rice. This is a partially enlarged view of Figure 4. DESCRIPTION OF SYMBOLS 1... Rice grain polishing measuring device, 2... Integrating sphere, 3... Sample channel, 4... Condensing lens, 5... Light source lamp, 6...
Heat ray absorption filter, 7... Monochromatic light filter, 8
... Marker pole, 9 ... Input shutter, 10 ... Discharge shutter, 11 ... Vibration device, 12 ... Vibrating grain feeder, 13
...Measuring tank, 14...Discharge path, 15A...Transmitted light receiving element, 15B...Reflected light receiving element, 16, 16A
...Transmittance detection circuit, 17, 17A...Reflectance detection circuit, 18...Discharge shutter, 19...Supply tank,
20...Outer tank, 21...Proximity switch, 22...
Volumetric weight detection circuit, 23...Adjuster, 24...Ejection shutter, 25...Load cell, 26...Amplifier, 27
...subtractor, 29...comparator, 30...marker value setter,
31... Amplification adjuster, 32... Dark current storage circuit, 3
3... Multiplier, 34... A/D converter, 35, 35A
... Adding device, 36... Amplifier, 37, 38... Multiplier, 39... A/D converter, 40... Product type correction circuit, 41, 41A... Sharpness display, 42... Amplifier, 43... Multiplier, 44... brown rice reflectance storage device,
45...Subtractor, 46...Brown rice transparency storage device, 47
...Subtractor, 50...Light source device.
Claims (1)
光源装置と、この光源装置からの光を受ける試料
流路と、光源装置側からこの試料流路に向けて設
けた反射光受光素子と、光源装置の反対側から前
記試料流路に向けて設けた透過光受光素子とをそ
れぞれ設けると共に、前記反射光受光素子からの
反射光量に係数を乗じたものと、前記透過光受光
素子からの透過光量に前記容積重検出装置からの
容積重によつて定まる値を乗じて更にこれに係数
を乗じたものとの和に、米粒の品種によつて定め
られる補正値を加算して精白度を出力するように
した演算装置を設けたことを特徴とする米粒精白
度測定装置。 2 前記演算装置は、前記試料を白米として算出
した前記和から、前記試料を玄米として算出した
前記和を減算して精白度を出力するようにした特
許請求の範囲第1項記載の米粒精白度測定装置。[Claims] 1. A volumetric weight detection device for detecting volumetric weight of a sample;
A light source device, a sample flow path receiving light from the light source device, a reflected light receiving element provided from the light source device side toward the sample flow path, and a reflected light receiving element provided toward the sample flow path from the opposite side of the light source device. a transmitted light receiving element, and the amount of reflected light from the reflected light receiving element multiplied by a coefficient, and the amount of transmitted light from the transmitted light receiving element multiplied by the volumetric weight from the volumetric weight detection device. The present invention is characterized by being equipped with an arithmetic device that outputs the milling degree by adding a correction value determined depending on the variety of rice grains to the sum of products multiplied by a determined value and further multiplied by a coefficient. Rice grain polishing measurement device. 2. Rice grain polishing degree according to claim 1, wherein the calculation device outputs the polishing degree by subtracting the sum calculated by assuming the sample as brown rice from the sum calculated by assuming the sample is brown rice. measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20057481A JPS58100751A (en) | 1981-12-11 | 1981-12-11 | Measuring device for degree of refining of rice grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20057481A JPS58100751A (en) | 1981-12-11 | 1981-12-11 | Measuring device for degree of refining of rice grain |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58100751A JPS58100751A (en) | 1983-06-15 |
JPS6332131B2 true JPS6332131B2 (en) | 1988-06-28 |
Family
ID=16426591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20057481A Granted JPS58100751A (en) | 1981-12-11 | 1981-12-11 | Measuring device for degree of refining of rice grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58100751A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2559902B1 (en) * | 1984-02-22 | 1986-06-20 | France Etat Armement | HYDRODYNAMIC TEST DEVICE |
-
1981
- 1981-12-11 JP JP20057481A patent/JPS58100751A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58100751A (en) | 1983-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2671414B2 (en) | Spectral sensitivity correction mechanism of photoelectric colorimeter | |
JPS59198325A (en) | Automatic zero-point adjusting method | |
JPS6332131B2 (en) | ||
AU716851B2 (en) | Method and apparatus for measuring ash content of food stuff | |
JPH0136574B2 (en) | ||
JPS62133323A (en) | Combined scale | |
JPS6361067B2 (en) | ||
JPH01142441A (en) | Apparatus for measuring polishing degree of grain of rice | |
JPH0125621B2 (en) | ||
JPH0510883A (en) | Apparatus for continuously measuring whiteness of grain of rice | |
JPS6148661B2 (en) | ||
JP3180847B2 (en) | Method and apparatus for measuring whiteness of sake rice | |
JPS6212284Y2 (en) | ||
RU2163758C2 (en) | Method and apparatus for controlling amounts of honey in hive | |
JPH08150343A (en) | Rice milling device | |
JPS6322539B2 (en) | ||
JPH0436745B2 (en) | ||
JP2564551B2 (en) | Powder flow rate measuring device | |
JPH06138043A (en) | Device for judging whole grain rate | |
JPH0143576B2 (en) | ||
JPS6322540B2 (en) | ||
JPS6128462A (en) | Controller for rate of removal of gluten | |
CN117740732A (en) | Refractometer and method for measuring concentration of liquid | |
JP3578617B2 (en) | Rice quality measuring device | |
JPS59112847A (en) | Controller for rate of de-gluten of rice huller |