JPS62291546A - Method and apparatus for measuring taste of rice - Google Patents
Method and apparatus for measuring taste of riceInfo
- Publication number
- JPS62291546A JPS62291546A JP61137215A JP13721586A JPS62291546A JP S62291546 A JPS62291546 A JP S62291546A JP 61137215 A JP61137215 A JP 61137215A JP 13721586 A JP13721586 A JP 13721586A JP S62291546 A JPS62291546 A JP S62291546A
- Authority
- JP
- Japan
- Prior art keywords
- taste
- rice
- sample
- measuring
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 81
- 235000009566 rice Nutrition 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 12
- 240000007594 Oryza sativa Species 0.000 title 1
- 241000209094 Oryza Species 0.000 claims abstract description 80
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims abstract description 23
- 229920000856 Amylose Polymers 0.000 claims abstract description 14
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 14
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 14
- 229920000945 Amylopectin Polymers 0.000 claims abstract description 13
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 238000011049 filling Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 9
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 2
- 239000011802 pulverized particle Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 description 13
- 235000018102 proteins Nutrition 0.000 description 11
- 235000013339 cereals Nutrition 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010411 cooking Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000014860 sensory perception of taste Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8592—Grain or other flowing solid samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/065—Integrating spheres
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
産業上の利用分野
本出願は、米の食味を左右する主要成分の測定をすると
共に、その測定値と主要成分ごとに設けた食味判定の特
定係数値とを演算し、米の食味測定値を表示する米の食
味測定方法とその装置に関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Field of Application This application measures the main components that affect the taste of rice, and also analyzes the measured values and the taste evaluation provided for each main component. The present invention relates to a rice taste measuring method and apparatus for calculating a specific coefficient value and displaying a rice taste measurement value.
従来技術とその問題点 米の食味は、品種の選択、生産地、栽培方法。Conventional technology and its problems The taste of rice depends on the selection of variety, production area, and cultivation method.
収穫方法等の生産段階で決定されるもの、あるいは、乾
燥、貯蔵、精米加工等の収穫後の加工処理段階で決定さ
れるもの、また炊飯加工時に影響を受けるものと多岐に
亘るものであるが、最も大きな影響を受けるのは生産段
階であり、次いで加工処理段階である。There are a wide variety of factors, including those determined at the production stage such as the harvesting method, those determined at the post-harvest processing stage such as drying, storage, and rice milling, and those affected during the rice cooking process. , the production stage is the most affected, followed by the processing stage.
一般的に、食味の良い銘柄として人気の高いのは、コシ
ヒカリ、ササニシキであるが、これ等の食味が良いとす
る主要素は、他の一般銘柄米に比べて蛋白質の含有成分
が少ないことと、蛋白質に占めるアミロースの含有量が
少ないことにある。勿論、同一銘柄であれば各成分の含
有量が同一であるというものではなく、栽培された産地
の条件(土質、水質)によっても、また見栄条件(気温
1日照時間、降雨等)によっても各成分の含有量は変化
するものであるから、過去に調査した食味のデータを頼
りとして米の買い付けあるいは配合を決定することは、
必ずしも合理的な米の管理ということができない。In general, Koshihikari and Sasanishiki are popular brands of rice with good taste, but the main reason for their good taste is that they contain less protein than other general brands of rice. This is due to the low content of amylose in protein. Of course, the same brand does not necessarily have the same content of each component, and may vary depending on the conditions of the region where it was grown (soil quality, water quality), and the appearance conditions (temperature, hours of sunshine, rainfall, etc.). Since the content of ingredients changes, it is not possible to decide on rice purchasing or blending based on past taste data.
This cannot necessarily be said to be rational rice management.
−例として、各銘柄米の標準精白度白米に含有する蛋白
質とアミロースの関係は下記表の通りである。- As an example, the relationship between protein and amylose contained in standard milled rice of each brand of rice is as shown in the table below.
そこで、特定の有名銘柄のみにとられれず、化学的に米
の成分を分析して食味の判定を行い、一般銘柄米から良
品質の米を見出すとともに、食味評価の低位ランク米の
食味をいかに向上させるかというテーマが生まれる。通
常、精米工場では単一銘柄米のみを確保することが難し
く、数種銘柄の米を配合して精米がなされており、この
食味評価の上位ランク米と低位ランク米とが適度に混合
されて食味の安定した精白米が流通しているものである
が、これ等は銘柄と産地との組合せを勘に頼って処理が
なされているのが実情であり、化学的な裏付けがないた
めに食味が一様でなく度々消費者から苦情が提起される
ものであった。Therefore, rather than focusing only on specific famous brands, we chemically analyze the ingredients of rice to determine its taste, find high-quality rice from general brands, and find ways to improve the taste of rice that ranks low in taste evaluation. The theme of how to improve is born. Normally, it is difficult for rice milling factories to secure only a single brand of rice, and the rice is milled by blending several brands of rice, with a moderate mix of rice ranked high and low ranked in taste evaluation. Polished rice with a stable taste is on the market, but the reality is that the processing of this type of rice relies on intuition based on the combination of brand and production area, and because there is no chemical evidence to support it, the taste may vary. Consumers often complained about the lack of uniformity.
一方、うるち米(一般白米)にモチ米を若干量加えて炊
飯すると食味がよくなると旧来より言い伝えられている
が、このことは、モチ米を加えることにより米飯の粘性
が増大して食味感覚が向上するためである。前述したよ
うに、蛋白質に占めるアミロースの含有量が多いと食味
は低下する傾向となるが、蛋白質はアミロースとアミロ
ペクチンとによって構成されているから、アミロースの
含有量が20%であるならアミロペクチンの含有量は8
0%ということになる。したがってモチ米の蛋白質に占
めるアミロペクチンの含有量は100%であるので、一
般うるち米のアミロペクチンの含有量が78%程度であ
るものにモチ米を若干量混入すれば、アミロペクチン含
有mの多い米の食味とほぼ同等に食味が向上するもので
ある。しかし、アミロペクチン含有量の適度を越すと、
粘性がつよすぎて米飯として逆に食味の感覚を低下する
ものである。On the other hand, it has long been said that adding a small amount of glutinous rice to non-glutinous rice (regular white rice) and cooking it improves the taste. This is to do so. As mentioned above, if the content of amylose in protein is high, the taste tends to deteriorate, but since protein is composed of amylose and amylopectin, if the content of amylose is 20%, the content of amylopectin is high. The amount is 8
This means 0%. Therefore, since the content of amylopectin in the protein of sticky rice is 100%, if a small amount of sticky rice is mixed into regular non-glutinous rice, which has an amylopectin content of about 78%, the taste of rice with high amylopectin content will be improved. The taste is improved almost to the same extent. However, if the amylopectin content exceeds a moderate level,
It is so viscous that it actually reduces the sense of taste when cooked.
また、収穫後の加工処理段階にお、ける米の食味を低下
する要因としては、米の過剰乾燥と、精米時に発生する
砕粒と発熱の程度とに関係がある。食味の要素をなす粘
度、硬度は、前記した蛋白質、アミロースの含有量とは
別に白米の含水率も大きな作用を有するものである。白
米の含水量が15%程度の場合には、釜の水中に浸漬し
ても白米に水分亀裂を生じないから完全な飯粒に炊き上
がるが、水分が14%を割った白米は浸漬時に吸水速度
が過ぎて瞬間的に米粒に亀裂を生じ、間もなく米粒内質
に貫通亀裂を生じるから、その割れ目に吸水し、また砕
米も同様に一気に吸水する特性により炊飯すると割れ目
から糊を湧出してべたついた米飯になり、米飯が崩れて
いるから哨みごたえも粘りもない低品質の米飯となる。In addition, factors that reduce the taste of rice during the post-harvest processing stage are related to excessive drying of rice, and the degree of crushed grains and heat generated during rice milling. In addition to the above-mentioned protein and amylose contents, the moisture content of polished rice also has a large effect on the viscosity and hardness, which are factors in taste. If the moisture content of white rice is around 15%, even if it is soaked in water in a pot, there will be no moisture cracks in the rice, so it will be cooked into perfect rice grains, but white rice with a moisture content of less than 14% will absorb water at a slower rate when soaked. As the rice grains pass, cracks occur instantaneously, and penetrating cracks soon form in the grain's internal structure, so water is absorbed into the cracks.Battered rice also absorbs water all at once, so when the rice is cooked, glue gushes out from the cracks, making it sticky. Since the rice is broken down, it becomes low-quality rice that lacks texture and stickiness.
したがって、収穫後の乾燥作業においては、過乾燥とな
らぬように機械操作が必要であるし、精米機においては
、部品の摩耗等によって精米効率を低下し、砕米の発生
あるいは発熱により乾燥を誘起せぬように、管理および
調整を必要とするものである。Therefore, during post-harvest drying work, mechanical operations are required to prevent overdrying, and in rice milling machines, polishing efficiency decreases due to abrasion of parts, etc., and drying is induced due to the generation of broken rice or heat generation. Management and coordination are required to prevent this from happening.
しかしながら、白米の水分含水量がすでに14%を割っ
ているものにあっては、その責任を前行程に科するだけ
では品質を復元することはできないから、白米粒に対し
て、米粒の自然吸水速度以内の水分吸水速度において水
分を供給し、水中亀裂を発生しない安全範囲の15%前
後に白米調湿を施す装置が普及している処である。However, if the moisture content of polished rice is already below 14%, it is not possible to restore the quality just by placing the blame on the previous process. Devices that supply moisture within the moisture absorption rate and adjust the humidity of polished rice to around 15%, the safe range that does not cause underwater cracking, are now in widespread use.
発明の目的
本、出願は、米の食味を左右する数種の主要成分を測定
すると共に、前記数種の主要成分に対して別途実験値を
基に食味判定の特定係数値を設け、前記主要成分の測定
値と食味判定の特定計数値とを演算し、その演算値によ
って米の食味を評価するもので、その測定値により数品
種の米を経済的に混合して食味の安定化を計ること、あ
るいは米の買付管理を行う等に活用するために、米の食
味を正確に測定できる米の食味測定方法と装置を提供せ
んとするものである。Purpose of the Invention The present invention and the application measure several main components that influence the taste of rice, and set specific coefficient values for taste determination based on separate experimental values for the several main components. The measured values of the ingredients and specific count values for taste evaluation are calculated, and the taste of rice is evaluated based on the calculated values, and several varieties of rice are mixed economically to stabilize the taste based on the calculated values. The purpose of the present invention is to provide a method and apparatus for measuring the taste of rice that can accurately measure the taste of rice for use in rice purchasing management, etc.
問題点を解決するための手段
上記目的を達成するために本出願の第1の発明は、反射
式近赤外分光分析装置によって米の食味を左右する主要
成分のうち蛋白質とアミロースまたはアミロペクチンの
含有(8)を測定する試料を500ミクロン以下の粒子
に粉砕し、光源の照射光をフィルターを介して近赤外光
として前記粉砕した試料に照射して得られる反射照度を
検出した前記主要成分ごとの測定値と、前記主要成分ご
とに設定した食味判定の特定係数値とを演算して算出し
た数値により食味測定値を求める手段とした。Means for Solving the Problems In order to achieve the above object, the first invention of the present application is to analyze the content of protein and amylose or amylopectin among the main components that affect the taste of rice using a reflection type near-infrared spectrometer. (8) The sample to be measured is pulverized into particles of 500 microns or less, and the reflected illuminance obtained by irradiating the irradiated light from a light source as near-infrared light through a filter is detected for each of the main components. The taste measurement value is determined by the numerical value calculated by calculating the measured value of and the specific coefficient value for taste determination set for each of the main components.
また、本出願の第2の発明は、反射鏡に配設したフィル
ターを介して光源の照射光を近赤外光として測定部に装
備した試料に照射して得られる反射光量を受光素子によ
って検出し、米の食味を左右する主要成分のうち蛋白質
とアミロースまたはアミロペクチンのそれぞれの含有量
を測定する反射式近赤外分光分析装置において、前記主
要成分ごとの食味判定の特定係数値を設定する記憶装置
と、前記測定部における前記主要成分ごとの測定値と前
記特定係数値とを演算処理する演算装置とを制御装置に
備え、前記演算処理によって算出した食味値を表示する
表示装置を前記制御装置に連結した手段を講じた。In addition, the second invention of the present application is such that a light receiving element detects the amount of reflected light obtained by irradiating near-infrared light from a light source onto a sample equipped in a measuring section through a filter disposed on a reflecting mirror. In a reflection type near-infrared spectrometer that measures the content of protein and amylose or amylopectin among the main components that affect the taste of rice, there is a memory for setting specific coefficient values for taste determination for each of the main components. and a calculation device that performs calculation processing on the measurement value for each of the main components in the measurement unit and the specific coefficient value, and a display device that displays the taste value calculated by the calculation processing in the control device. Measures were taken in conjunction with this.
作 用
食味測定しようとする米の試料を500ミクロン以下の
粒子に粉砕し、粉砕した試料を試料容器に充填して測定
部に装備する。光源の照射光をフィルターを介して近赤
外光として前記粉砕した試料に照射して得られる反射光
量を受光素子により検出し、その検出値を各主要成分ご
とに演算した測定値と、主要成分ごとの食味判定の特定
係数値とを制御装置において演算し、演算処理により算
出した食味値を表示装置に表示し、その表示される数値
が高いものほど食味がよいと評価されるものである。The rice sample whose taste is to be measured is ground into particles of 500 microns or less, and the ground sample is filled into a sample container and installed in the measuring section. The amount of reflected light obtained by irradiating the pulverized sample with the irradiated light from the light source as near-infrared light through a filter is detected by a light receiving element, and the detected value is calculated for each main component.The measured value and the main component The control device calculates the specific coefficient value for each taste evaluation, and the taste value calculated by the calculation process is displayed on the display device, and the higher the displayed numerical value, the better the taste is evaluated.
実施例
本出願の第1の発明および第2の発明の実施例を第1図
〜第6図により説明する。Embodiments Embodiments of the first invention and the second invention of the present application will be explained with reference to FIGS. 1 to 6.
(第1図、第2図参照)符号1で示す食味測定装置のキ
ャビネット2の内部に反射式近赤外分光分析装置3を内
設し、分析装置3の上部には光源4と反射鏡5を関連的
に配設し、また多角形状の反射鏡5の前面には複数個の
特定波長のフィルター6・・・を設けて反射鏡5と一体
的に形成し、フィルター6・・・を電動機10に連結し
て回転、傾斜角度自在に軸着し、積分球7の上部に特定
波長の近赤外反射光を取り入れる窓8を設けである。積
分球7の下方内部に受光素子9A、9Bを対称な位置に
設け、積分球7の底部を開口して測定部1とし、その下
部に透明板12を設けである。(第3図参照)キャビネ
ット2内部の近赤外分光分析装置3の側方には試料供給
装置13を配設する。試料供給装置13は、キャビネッ
ト2の上壁−側部14を開口して供給ホッパー15を装
着し、ホッパー15の開口部16を開閉するシャッター
17をスライド自在に設け、シャッター17に電磁石1
8を連結し、側壁にレベル計19を装着しである。(See Figures 1 and 2) A reflection type near-infrared spectrometer 3 is installed inside a cabinet 2 of the taste measuring device indicated by reference numeral 1. are arranged in relation to each other, and a plurality of filters 6 for specific wavelengths are provided in front of the polygonal reflecting mirror 5 and formed integrally with the reflecting mirror 5, and the filters 6 are connected to an electric motor. A window 8 is provided at the top of the integrating sphere 7 to take in near-infrared reflected light of a specific wavelength. Light-receiving elements 9A and 9B are provided at symmetrical positions inside the integrating sphere 7, the bottom of the integrating sphere 7 is opened to form a measuring section 1, and a transparent plate 12 is provided under the measuring section 1. (See FIG. 3) A sample supply device 13 is disposed on the side of the near-infrared spectrometer 3 inside the cabinet 2. The sample supply device 13 opens the upper wall-side part 14 of the cabinet 2, attaches the supply hopper 15, and is provided with a slidable shutter 17 that opens and closes the opening 16 of the hopper 15.
8 are connected and a level meter 19 is attached to the side wall.
ホッパー15の下部に多数の鋭利な突部を有する一対の
ローラー20.21を対向回転自在に軸架し、さらにそ
の下方に表面を平滑面とした一対の細粉用ローラー22
.23を対向回転自在に軸架し、粉砕室24内部の前記
ローラー20.21,22.23に対面して電磁弁を備
えた噴射ノズルとローラーに接触する弾性材とからなる
清掃装置25A〜25Dを設けである。A pair of rollers 20 and 21 each having a large number of sharp protrusions are rotatably supported at the bottom of the hopper 15, and below the rollers 20 and 21 a pair of fine powder rollers 22 with smooth surfaces are mounted.
.. Cleaning devices 25A to 25D are constructed of a spray nozzle equipped with an electromagnetic valve facing the rollers 20.21, 22.23 inside the grinding chamber 24, and an elastic material in contact with the rollers. This is provided.
粉砕室24の下方部に粉砕粒の選別装置26を配設して
あり、選別装置26は、−側部に素粒子排出口27を固
設した振動フレーム28を板バネ29により支架し、振
動フレーム28に多孔壁板30を装脱自在に設け、振動
フレーム28の側面31に近接して電磁石32を固設し
である。A pulverized grain sorting device 26 is disposed in the lower part of the pulverizing chamber 24. The sorting device 26 supports a vibrating frame 28 with a particle discharge port 27 fixedly attached to the minus side by a leaf spring 29, and vibrates. A perforated wall plate 30 is removably provided on the frame 28, and an electromagnet 32 is fixedly provided adjacent to a side surface 31 of the vibrating frame 28.
選別装置26の下方に粉砕試料を充填する試料容器33
を設ける。試料容器33は、試料容器移動体34に装着
した容器受台35に設けた案内溝36に装脱自在としで
ある。試料容器33の移動機構として、−側部にラック
37を固設した試料容器移動体34を中空軸とし該移動
体34に断面丸状の軌道軸38を挿入し、軌道軸38の
一側部39を回動用ハンドル40に他側部41を軸受台
42に軸架し、キャビネッl−2の底壁に固設した受台
43に支点台44を装着し、試料容器移動体34のラッ
ク37にモータ45に軸着した歯車46を係着し、モー
タ一台47にモーター45を装着したその端部を試料容
器移動体34に遊嵌すると共に、モータ一台47と支点
台44とにロッドが伸縮する電磁石48を回動自在に連
結しである。4つは試料容器33上の粉砕試料を圧縮充
填すると共に、過量試料を取除くための試料充填器とな
す回転ローラー、50は試料容器33の位置を充填部に
設定するための充填部位置センサー、51は試料容器3
3の位置を測定部に設定するための測定部位置センサー
であり、63は、ローラー20.21.22.23およ
び回転ローラー49を回転駆動する電動機である。52
は試料容器33内から試料を噴風により排除させると共
に清掃を行う噴射ノズル、53は不要試料を受取る受箱
、54は透明板12に接離して清掃する試料容器移動体
34に固設した清掃器である。Sample container 33 filled with crushed samples below the sorting device 26
will be established. The sample container 33 can be freely inserted into and removed from a guide groove 36 provided in a container holder 35 mounted on the sample container moving body 34. As a moving mechanism for the sample container 33, a sample container moving body 34 with a rack 37 fixed to the negative side is used as a hollow shaft, and an orbital shaft 38 having a round cross section is inserted into the moving body 34, and one side of the orbital shaft 38 39 is mounted on a rotating handle 40, the other side 41 is mounted on a bearing stand 42, a fulcrum stand 44 is mounted on a support stand 43 fixed to the bottom wall of the cabinet l-2, and the rack 37 of the sample container moving body 34 is mounted. A gear 46 which is pivoted to the motor 45 is engaged with the motor 45, and the end of the motor 45 attached to the motor 47 is loosely fitted to the sample container moving body 34, and a rod is connected between the motor 47 and the fulcrum stand 44. is rotatably connected to an electromagnet 48 that expands and contracts. 4 is a rotating roller serving as a sample filler for compressing and filling the crushed sample on the sample container 33 and removing an excess sample, and 50 is a filling part position sensor for setting the position of the sample container 33 in the filling part. , 51 is the sample container 3
3 is a measurement unit position sensor for setting the position of the measurement unit, and 63 is an electric motor that rotationally drives the rollers 20, 21, 22, and 23 and the rotating roller 49. 52
53 is a receiving box for receiving unnecessary samples, and 54 is a cleaning unit fixed to the sample container moving body 34 that cleans the sample container by moving into contact with and separating from the transparent plate 12. It is a vessel.
キャビネット2の前面部には表示器55A〜55Dより
なる表示装置55.操作用ボタン56・・・1手動操作
ボタン56A、自動操作ボタン56B、試料の外部供給
部57のそれぞれを設ける。58はプリンター、59は
、演算装置60と食味判定の特定係数と銘柄別の米価類
を設定した記憶装置61と、制御回路62を備えた制御
装置である。At the front of the cabinet 2, there is a display device 55. made up of displays 55A to 55D. Operation buttons 56...1 A manual operation button 56A, an automatic operation button 56B, and an external sample supply section 57 are provided, respectively. 58 is a printer; 59 is a control device that includes an arithmetic unit 60, a storage device 61 in which specific coefficients for taste determination and rice prices for each brand are set, and a control circuit 62.
次に、第5図により制御装置59の構成につき説明する
。演算装置60.記憶装置61.制御回路62等からな
る制御′II装置59の入力側には、受光素子9A、9
B、レベル計192位置廿ンサー50.51.自動操作
ボタン56B。Next, the configuration of the control device 59 will be explained with reference to FIG. Arithmetic device 60. Storage device 61. On the input side of the control II device 59, which includes a control circuit 62, light receiving elements 9A and 9 are provided.
B. Level meter 192 position sensor 50.51. Automatic operation button 56B.
キーボード64のそれぞれを連結し、制御装置59の出
力側には表示装置55.プリンター58を連結し、また
、光源4.電動機10.63゜電磁石18,32.48
.モーター45.清棉装置25A〜25D、噴射ノズル
52のそれぞれは駆動装置65〜73のそれぞれを介し
て制御装置59の出力側に連結しである。The keyboards 64 are connected to each other, and a display device 55. is connected to the output side of the control device 59. A printer 58 is connected, and a light source 4. Electric motor 10.63° Electromagnet 18, 32.48
.. Motor 45. Each of the cleaning devices 25A to 25D and the injection nozzle 52 is connected to the output side of a control device 59 via drive devices 65 to 73, respectively.
以下に上記構成における作用を第1図〜第5図および第
6図の動作フロー図を併用して説明する。The operation of the above configuration will be explained below using the operation flowcharts of FIGS. 1 to 5 and FIG. 6.
キーボード64から各主要成分ごとの食味判定の特定係
数値と、米の銘柄2等級別の米価路を制御装置59の記
憶装置61に入力する(ステップSr)。各主要成分ご
との食味判定の特定係数値は以下に示すとおりである。From the keyboard 64, the specific coefficient value for taste determination for each major component and the rice price road for each two grades of rice are input into the storage device 61 of the control device 59 (step Sr). Specific coefficient values for taste evaluation for each main component are as shown below.
T=50000/に2
但し、K=食味関連値、 T=食味評価値(Tの数値
が大きい程、食味ランクが上位)次に、自動操作ボタン
56Bを押すと(ステップS2)、反射式近赤外分光分
析装置3に通電され、光源4をONして該装置3を予熱
するとともにタイマーT 1を作動させ(ステップS3
)、電動163がONLでローラー20,21.22.
23および回転ローラー49それぞれを回転させ(ステ
ップS4)、次いで電磁石32に通電して振動フレーム
28を振動させる(ステップ85)。試料容器33が試
料の充填位置に所在していることを充填部位置センサー
50が検出すると(ステップS6)、次に供給ホッパー
15に試料が供給されているか、また近赤外分光分析装
置3の予熱時間が所定時間経過しているかを制御装置5
9によりチェックし、レベル計19が試料のあることを
検出し、タイマーT1の設定した所定時間を経過してい
る信号の入力により(ステップ87.a)、電磁石18
がONLでシャッター17を開成して試料を流出させる
(ステップ89)。ローラー20゜21間を通過して粉
砕した試料をざらに細粉用ローラー22.23間に通過
させて微粒子に粉砕しくステップ5Il)、粉砕された
試料は振動する多孔壁板30上に流下して粒選別作用を
受ける(ステップ511)。多孔壁板30の通孔を貫通
した粒子は試料容器33上に流下し、試料容器33上に
盛上がって過量となった試料は受箱53に流下し、多孔
壁板30上に残留する素粒子は素粒子排出口27を介し
て受箱53に流出する(ステップS 12 > 。T=50000/2 However, K=Taste related value, T=Taste evaluation value (The larger the value of T, the higher the Taste rank) Next, when the automatic operation button 56B is pressed (Step S2), the reflective type The infrared spectrometer 3 is energized, the light source 4 is turned on to preheat the device 3, and the timer T1 is activated (step S3).
), electric motor 163 is ONL and rollers 20, 21, 22.
23 and the rotating roller 49 (step S4), and then the electromagnet 32 is energized to vibrate the vibration frame 28 (step 85). When the filling part position sensor 50 detects that the sample container 33 is located at the sample filling position (step S6), it then checks whether the sample is being supplied to the supply hopper 15 and the near-infrared spectrometer 3. The control device 5 checks whether the preheating time has elapsed for a predetermined time.
9, the level meter 19 detects the presence of the sample, and by inputting a signal indicating that the predetermined time set by the timer T1 has passed (step 87.a), the electromagnet 18
opens the shutter 17 at the ONL to allow the sample to flow out (step 89). The sample crushed by passing between the rollers 20 and 21 is roughly crushed into fine particles by passing between the rollers 22 and 23 for fine powder (Step 5Il), and the crushed sample flows down onto the vibrating porous wall plate 30. and undergoes grain sorting action (step 511). Particles that have passed through the holes in the porous wall plate 30 flow down onto the sample container 33 , and the excess sample that has risen on the sample container 33 flows down into the receiving box 53 , and the particles remaining on the porous wall plate 30 flow down into the receiving box 53 . The particles flow out into the receiving box 53 via the elementary particle outlet 27 (step S12>).
供給ホッパー15内に供給された試料が完全に排出され
たことを検出したレベル計19の信号により(ステップ
513)、モーター45を作動して試料容器移動体34
を移動させる。その移動過程中において、試料容器33
に盛上がった試料を回転ローラー49により試料容器3
3に圧縮充填するとともに、上面を平坦面として過量の
試料を受箱53に流出させ、試料容器33が測定部11
下部の所定位置に到達したことを測定部位置センサー5
1が検知するとモーター45の作動を停止しくステップ
S 14 ) 、その停止信号によって近赤外分光分析
装置3の測定が開始される。In response to a signal from the level meter 19 that detects that the sample supplied into the supply hopper 15 has been completely discharged (step 513), the motor 45 is activated to move the sample container moving body 34.
move. During the movement process, the sample container 33
The raised sample is transferred to the sample container 3 by the rotating roller 49.
3 is compressed and filled, and the upper surface is made flat to allow excess sample to flow out into the receiving box 53, and the sample container 33 is placed in the measuring section 11.
The measurement unit position sensor 5 indicates that the predetermined position at the bottom has been reached.
1 is detected, the operation of the motor 45 is stopped (step S14), and measurement by the near-infrared spectrometer 3 is started based on the stop signal.
先ず光源4からの照射光を2130nm、のフィルター
6を介して反射鏡5から近赤外光を反射させ、試料容器
33内の試料に照射して積分球7に反射する反射照度を
受光素子9.10により検出し、その検出値を制御装置
59に連絡する(ステップS+5.+6)。反射照度の
検出信号の連絡とともに電動機10を作動させフィルタ
ー6・・・の回動と測定を順次行い、フィルター6・・
・の2180nm.、2270nm.、2310run
、におけるそれぞれの近赤外波長域の特性から得られる
反射照度を測定して制御装置59に連絡する(ステップ
SI7.+8)。First, near-infrared light from the light source 4 is passed through a filter 6 of 2130 nm and reflected from the reflecting mirror 5, and the reflected illuminance is irradiated onto the sample in the sample container 33 and reflected onto the integrating sphere 7. .10, and the detected value is communicated to the control device 59 (steps S+5.+6). When the reflected illuminance detection signal is communicated, the electric motor 10 is activated to sequentially rotate and measure the filters 6...
・2180nm. , 2270nm. , 2310run
, the reflected illuminance obtained from the characteristics of each near-infrared wavelength region is measured and communicated to the control device 59 (step SI7.+8).
各フィルター6・・・による測定が終了した信号により
くステップS 19 ) 、モーター45と清掃装置2
5A〜25Dを作動し、清掃装置25A〜25Dにより
各ロー7−20.21,22゜23の周面を高圧空気の
噴射により清掃しくステップ520)、またモーター4
5により試料容器移動体33を粉砕室24方向に移動さ
せ、充填部位置センサー50が試料容器33が所定位置
に到達することを検出するとモーター45の作動を停止
する(ステップ521)。試料容器移動体34の移動過
程において、清掃器54が測定部1下部の透明板2を清
掃する。タイマーT2の所定時間を経過すると清掃装置
25A〜25Dの作動を停止しくステップSη、23)
、電磁石18の作動を停止して供給ホッパー15のシャ
ッター17を閉成する(ステップ$24)。At step S19), the motor 45 and the cleaning device 2 receive a signal indicating that the measurement by each filter 6 has been completed.
5A to 25D, the cleaning devices 25A to 25D clean the peripheral surfaces of each row 7-20.21, 22.degree. 23 by jetting high-pressure air (step 520), and
5, the sample container moving body 33 is moved toward the crushing chamber 24, and when the filling section position sensor 50 detects that the sample container 33 has reached a predetermined position, the operation of the motor 45 is stopped (step 521). During the movement process of the sample container moving body 34, the cleaning device 54 cleans the transparent plate 2 at the bottom of the measuring section 1. Step Sη, 23) to stop the operation of the cleaning devices 25A to 25D when the predetermined time of the timer T2 has elapsed.
, the operation of the electromagnet 18 is stopped and the shutter 17 of the supply hopper 15 is closed (step $24).
試料容器33が充填部の所定位置に到達すると電磁石4
8を作動し、軌道軸38を中心としてモーター45ごと
試料容器移動体34を90゜反転させ(ステップ525
)、試料容器33に噴射ノズル52が高圧空気を噴射し
て試料を排除するとともに試料容器33を清掃する(ス
テップ828)。噴射ノズル52が一定時間作動した後
、噴射ノズルの作動を停止しくステップS27゜28)
、電磁石48を停止して試料容器移動体34を正常位置
に復帰させて次回の試料測定に備える(ステップ$29
)。制御装@59の演算装置60に連絡された受光素子
9A、9Bの反射照度検出値により、食味の主要成分と
する蛋白質、アミロース、含水率のそれぞれの演算と、
記憶装置61に入力した食味判定の特定係数とが演算さ
れ、演算された各種成分を基にした食味評価値は、キャ
ビネット2前而の表示器55A〜55Dにデジタル表示
されるとともに、プリンター58により各種測定値と食
味評価値とが自動的にプリントされて繰出される(ステ
ップ330〜531)。When the sample container 33 reaches a predetermined position in the filling section, the electromagnet 4
8 and rotates the sample container moving body 34 along with the motor 45 by 90 degrees around the orbital axis 38 (step 525).
), the injection nozzle 52 injects high-pressure air into the sample container 33 to remove the sample and clean the sample container 33 (step 828). After the injection nozzle 52 has operated for a certain period of time, the operation of the injection nozzle is stopped in step S27゜28).
, the electromagnet 48 is stopped and the sample container moving body 34 is returned to its normal position in preparation for the next sample measurement (step $29).
). Based on the reflected illuminance detection values of the light-receiving elements 9A and 9B that are communicated to the calculation device 60 of the control device @ 59, calculations are made for protein, amylose, and water content, which are the main components of taste, respectively.
The specific coefficient for taste evaluation input into the storage device 61 is calculated, and the calculated taste evaluation value based on the various components is digitally displayed on the displays 55A to 55D in front of the cabinet 2, and is also displayed by the printer 58. Various measured values and taste evaluation values are automatically printed and delivered (steps 330 to 531).
なお、複数回の試料測定の後、任意の食味とする米粒の
配合において、米の食味測定を行ったそれぞれの測定値
は記憶装置61に記憶されているので、キーボード64
から制御装置59に信号を入力すると、それぞれの測定
した米粒をそれぞれどのような比率で配合すると最も経
済的であるか等を知ることができる。It should be noted that after multiple sample measurements, the measured values of each rice taste measurement for rice grains with an arbitrary taste are stored in the storage device 61, so the keyboard 64
By inputting a signal to the control device 59 from the control unit 59, it is possible to know the most economical ratio of the rice grains to be mixed.
また、手動操作ボタン56Aを投入すれば、操作用押ボ
タン56により電動機1oを寸動させて反射115.フ
ィルター6・・・を任意に回動させることができ、電動
機63を起動して試料の粉砕も行える。そして、外部か
ら試料を試料容器33に充填して測定を行う場合には、
回動用ハンドル40を測定部11に向けて押込み、試料
容器33を外部供給部57から引出し、試料を試料容器
に充填し、上面部を平坦面に加圧した後試料容器33を
容器受台35の案内溝36に挿入し、試料容器33を測
定部11に装備して測定を行う。Furthermore, when the manual operation button 56A is turned on, the electric motor 1o is moved by the operation push button 56 and the reflection 115. The filters 6... can be rotated arbitrarily, and the electric motor 63 can be started to crush the sample. When measuring by filling the sample container 33 with the sample from the outside,
Push the rotation handle 40 toward the measuring section 11, pull out the sample container 33 from the external supply section 57, fill the sample container with the sample, pressurize the top surface to a flat surface, and then move the sample container 33 to the container holder 35. The sample container 33 is inserted into the guide groove 36 of the sample container 33, and the sample container 33 is mounted on the measuring section 11 to perform measurement.
各主成分の測定値を正確に行うためには、試料容器に充
填する試料を小粒子に粉砕する必要があり、その粒子は
500ミクロン以下とすべきであるが、FJ選別により
選別された粗粒子を排除したものでは部分的な測定とな
り測定誤差を沼くから、粉砕作用を2回繰返すことが望
ましい。In order to accurately measure the values of each main component, it is necessary to crush the sample to be filled into the sample container into small particles, and the particles should be 500 microns or less. It is desirable to repeat the pulverizing action twice, since removing particles results in a partial measurement and introduces measurement errors.
以下に示す表は、各主要成分の真値を100%としたと
きの試料を粉砕した粒子の大小と測定値の精度を示すも
のである。The table shown below shows the size of the particles obtained by crushing the sample and the accuracy of the measured values when the true value of each main component is taken as 100%.
粒子の大きさと測定精度との関係
欄中の小数点を有する数置ば精度・・・±粒子の大きさ
の単位・・・ミクロン
上記の表からも判断できるように、粒子の大きさによっ
て測定精度が異るので、食味判定の上から測定精度は±
0.5以外でないと食味判定の正確さに欠ける。したが
って、粉砕粒超の選別総26に使用する多孔壁ff13
0の通孔は500ミクロン以下の粒子となるものを使用
しなければならない。また、食味判定装置1の外で試料
を粉砕し、その試料を外部供給部57から測定部11に
装備して測定する場合も同様に、粉砕した粒子を篩選別
して500ミクロン以下の粒子のみを試料容器33に充
填すると測定精度が確保できる。Relationship between particle size and measurement accuracy If you place the number with a decimal point in the column, the accuracy...±Particle size unit...micron As can be seen from the table above, measurement accuracy depends on the particle size. The measurement accuracy is ± due to the difference in taste.
If it is other than 0.5, the accuracy of taste judgment will be lacking. Therefore, the porous wall ff13 used for sorting 26 of the crushed grains
No. 0 through holes must be used that result in particles of 500 microns or less. Similarly, when a sample is crushed outside the taste determination device 1 and the sample is supplied from the external supply section 57 to the measurement section 11 for measurement, the crushed particles are sieved and only particles of 500 microns or less are sampled. Filling the container 33 ensures measurement accuracy.
なお、上記説明では、蛋白質に占める成分をアミロース
の分析により食味測定を行うようにしたが、アミロペク
チンの含有量を測定し、アミロペクチンの特性による特
定係数を設けて測定および演算しても同様に食味評価を
行うことができるものであり、また、上記に説明した以
外に脂肪の含有量(少ないほうが食味評価として高い)
を加えて食味評価する場合もある。In the above explanation, the taste was measured by analyzing amylose, which is a component of protein.However, even if the content of amylopectin is measured and a specific coefficient is set based on the characteristics of amylopectin, the taste can be similarly measured and calculated. It is something that can be evaluated, and in addition to the above, fat content (the lower the content, the better the taste evaluation)
In some cases, flavor is evaluated by adding
発明の効果
上記に説明した如く本出願の第1の発明によれば、50
0ミクロン以下の粒子に粉砕した試料に近赤外光を照射
して得られる反射精度によって米の食味を左右する主要
成分の含有量を測定するものであるから、高精度の測定
ができ、その測定値と主要成分ごとに設けた食味判定の
特定係数値とを演算して食味測定値を産出するものであ
るから、誰でも容易にしかも正確な米の食味評価をする
ことができる。Effects of the Invention As explained above, according to the first invention of the present application, 50
The content of the main components that affect the taste of rice is measured based on the reflection accuracy obtained by irradiating near-infrared light onto a sample that has been ground into particles of 0 microns or less, so it is possible to measure with high precision. Since the taste measurement value is calculated by calculating the measured value and the specific coefficient value for taste evaluation provided for each main component, anyone can easily and accurately evaluate the taste of rice.
また、本出願の第2の発明によれば、一般の測定器では
分析困難な蛋白質成分中のアミロースを近赤外光によっ
て測定することができ、その他の米の食・味を左右する
主要成分のそれぞれの測定値と、各主要成分ごとに設け
た食味判定の特定係数値とを演口して食味測定値を表示
するものであるから、誰でもが容易に正確な米の食味の
測定を行うことができ、銘柄別あるいは産地別の旧来の
評価方法を改善し、各種の次行程作業を合理化すること
ができる。In addition, according to the second invention of the present application, amylose, a protein component that is difficult to analyze with general measuring instruments, can be measured using near-infrared light, and other major components that affect the eating and taste of rice. The taste measurement value is displayed by combining each measured value and the specific coefficient value for taste judgment set for each main component, so anyone can easily and accurately measure the taste of rice. It is possible to improve the traditional evaluation methods by brand or region of origin, and to streamline various subsequent processes.
第1図〜第6図は本発明の実施例図である。
第1図は食味測定装置の正面図、第2図は要部の拡大断
面図、第3図は要部を断面した装置全体図、第4図は要
部の斜視図、第5図は制御装置の構成を示すブロック図
、第6図は制御装置の動作フロー図である。
1・・・食味測定装置、2・・・キャビネット、3・・
・反射式近赤外分光分析装置、4・・・光源、5・・・
反射鏡、6・・・フィルター、7・・・積分球、8・・
・窓、9A、9B・・・受光素子、10・・・電動機、
11・・・測定部、12・・・透明板、13・・・試料
供給装置、14・・・−側部、15・・・供給ホッパー
、16・・・開口部、17・・・シャッター、18・・
・電磁石、19・・・レベル計、20.21・・・ロー
ラー、22.23・・・細粉用ローラー、24・・・粉
砕室、25A〜25D・・・清掃装置、26・・・選別
装置、27・・・素粒子排出口、28・・・振動フレー
ム、29・・・板バネ、30・・・多孔壁板、31・・
・側面、32・・・電磁石、33・・・試料容器、34
・・・試料容器移動体、35・・・容器受台、36・・
・案内溝、37・・・ラック、38・・・軌道軸、39
・・・−側部、40・・・回転用ハンドル、41・・・
他側部、42・・・軸受台、43・・・受台1.44・
・・支点台、45・・・モーター、46・・・歯車、4
7・・・モータ一台、48・・・電磁石、49・・・回
転ローラー、50・・・充填部位置センサー、51・・
・測定部位置センサー、52・・・噴射ノズル、53・
・・受箱、54・・・清掃器、55・・・表示装置、5
5A〜55D・・・表示器、56・・・操作用押ボタン
、56A・・・手動操作ボタン、56B・・・自動操作
ボタン、57・・・外部供給部、58・・・プリンター
、59・・・制御装置、60・・・演算装置、61・・
・記憶装置、62・・・制御回路、63・・・電動機、
64・・・キーボード、65〜73・・・駆動装置。1 to 6 are illustrations of embodiments of the present invention. Figure 1 is a front view of the taste measuring device, Figure 2 is an enlarged sectional view of the main parts, Figure 3 is an overall view of the apparatus with the main parts in section, Figure 4 is a perspective view of the main parts, and Figure 5 is the control. A block diagram showing the configuration of the device, and FIG. 6 is an operation flow diagram of the control device. 1...Taste measuring device, 2...Cabinet, 3...
・Reflection type near-infrared spectrometer, 4... light source, 5...
Reflector, 6... Filter, 7... Integrating sphere, 8...
・Window, 9A, 9B... Light receiving element, 10... Electric motor,
DESCRIPTION OF SYMBOLS 11... Measuring part, 12... Transparent plate, 13... Sample supply device, 14... - side part, 15... Supply hopper, 16... Opening part, 17... Shutter, 18...
・Electromagnet, 19... Level meter, 20.21... Roller, 22.23... Fine powder roller, 24... Grinding chamber, 25A to 25D... Cleaning device, 26... Sorting Device, 27... Elementary particle outlet, 28... Vibration frame, 29... Leaf spring, 30... Porous wall plate, 31...
・Side surface, 32... Electromagnet, 33... Sample container, 34
...Sample container moving body, 35...Container holder, 36...
・Guide groove, 37... Rack, 38... Raceway axis, 39
...-Side part, 40... Rotation handle, 41...
Other side part, 42... bearing stand, 43... cradle 1.44.
...Fulcrum stand, 45...Motor, 46...Gear, 4
7... One motor, 48... Electromagnet, 49... Rotating roller, 50... Filling part position sensor, 51...
・Measuring part position sensor, 52... Injection nozzle, 53・
...Receiving box, 54...Cleaning device, 55...Display device, 5
5A to 55D...Display device, 56...Push button for operation, 56A...Manual operation button, 56B...Automatic operation button, 57...External supply unit, 58...Printer, 59. ...Control device, 60...Arithmetic device, 61...
・Storage device, 62... Control circuit, 63... Electric motor,
64... Keyboard, 65-73... Drive device.
Claims (7)
左右する主要成分のうち蛋白質とアミロースまたはアミ
ロペクチンの含有量を測定する試料を500ミクロン以
下の粒子に粉砕し、光源の照射光をフィルターを介して
近赤外光として前記粉砕した試料に照射して得られる反
射照度を検出した前記主要成分ごとの測定値と、前記主
要成分ごとに設定した食味判定の特定係数値とを演算し
て算出した数値により食味測定値を求める米の食味測定
方法。(1) The content of protein and amylose or amylopectin, which are the main components that affect the taste of rice, is measured using a reflection type near-infrared spectrometer.The sample is ground into particles of 500 microns or less, and the sample is pulverized into particles of 500 microns or less. The measured value for each of the main components obtained by detecting the reflected illuminance obtained by irradiating the pulverized sample with near-infrared light through a filter and the specific coefficient value for taste determination set for each of the main components are calculated. A method of measuring the taste of rice that calculates the taste value based on the calculated value.
射光を近赤外光として測定部に装備した試料に照射して
得られる反射光量を受光素子によって検出し、米の食味
を左右する主要成分のうち蛋白質とアミロースまたはア
ミロペクチンのそれぞれの含有量を測定する反射式近赤
外光分析装置において、前記主要成分ごとの食味判定の
特定係数値を設定する記憶装置と、前記測定部における
前記主要成分ごとの測定値と前記特定係数値とを演算処
理する演算装置とを制御装置に備え、前記演算処理によ
って算出した食味値を表示する表示装置を前記制御装置
に連結したことを特徴とする米の食味測定装置。(2) Near-infrared light from a light source is passed through a filter installed in a reflector onto a sample installed in the measurement unit, and the amount of reflected light is detected by a light receiving element, which determines the taste of the rice. A reflection type near-infrared light analyzer for measuring the content of each of protein and amylose or amylopectin among the main components, comprising: a storage device for setting a specific coefficient value for taste determination for each of the main components; The control device is equipped with a calculation device that performs calculation processing on the measured value for each of the main components and the specific coefficient value, and a display device that displays the taste value calculated by the calculation processing is connected to the control device. Rice taste measuring device.
を少なくとも2130nm.、2180nm.、227
0nm.、2310nm.の複数個とし、前記それぞれ
の波長域に±10nm.の許容範囲を設け、前記複数個
のフィルターを交換自在に装設した特許請求の範囲第(
2)項記載の米の食味測定装置。(3) The wavelength range of the filter disposed on the reflecting mirror is at least 2130 nm. , 2180nm. , 227
0nm. , 2310nm. A plurality of wavelength ranges of ±10 nm. Claim No. 1 (2012), wherein the plurality of filters are replaceably installed with a permissible range of
2) The rice taste measuring device described in section 2).
る試料供給装置を設け、前記試料供給装置に対向回転自
在とした一組の試料粉砕用ローラーを軸架し、前記粉砕
用ローラーの下部に試料充填部を設け、前記測定部と前
記充填部との間に前記試料容器の移動機構を設けた特許
請求の範囲第(2)項記載の米の食味測定装置。(4) A sample supplying device for filling a sample into a sample container installed in the measurement section is provided, and a set of sample crushing rollers that are rotatable in opposite directions are mounted on the sample feeding device; The rice taste measuring device according to claim 2, wherein a sample filling section is provided at the lower part, and a moving mechanism for the sample container is provided between the measuring section and the filling section.
間に粉砕粒子選別装置を配設した特許請求の範囲第(4
)項記載の米の食味測定装置。(5) A pulverized particle sorting device is disposed between the sample pulverizing roller and the sample filling section.
) The rice taste measuring device described in item ).
充填する試料充填器を設けた特許請求の範囲第(4)項
記載の米の食味測定装置。(6) The rice taste measuring device according to claim (4), further comprising a sample filler for quantitatively and compressively filling the sample supplied into the sample container.
水率に対する食味判定の特定係数値を設定し、前記測定
部および前記制御装置に前記試料の含水率測定機能を設
けた特許請求の範囲第(2)項記載の米の食味測定装置
。(7) A patent in which the storage device is set with a specific coefficient value for taste determination with respect to the moisture content of rice, which is an element of the taste of rice, and the measurement unit and the control device are provided with a function of measuring the moisture content of the sample. A rice taste measuring device according to claim (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61137215A JPS62291546A (en) | 1986-06-11 | 1986-06-11 | Method and apparatus for measuring taste of rice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61137215A JPS62291546A (en) | 1986-06-11 | 1986-06-11 | Method and apparatus for measuring taste of rice |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62291546A true JPS62291546A (en) | 1987-12-18 |
Family
ID=15193478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61137215A Pending JPS62291546A (en) | 1986-06-11 | 1986-06-11 | Method and apparatus for measuring taste of rice |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62291546A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0260942A2 (en) * | 1986-09-19 | 1988-03-23 | Satake Engineering Co., Ltd. | Measuring apparatus for amylose and/or amylopectin content in rice |
JPH0768188A (en) * | 1993-11-29 | 1995-03-14 | Iseki & Co Ltd | Grain sorting method in grain drying and processing plant |
CN112345323A (en) * | 2020-10-31 | 2021-02-09 | 中国水稻研究所 | Method for developing standard substance of amylose content of rice |
-
1986
- 1986-06-11 JP JP61137215A patent/JPS62291546A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0260942A2 (en) * | 1986-09-19 | 1988-03-23 | Satake Engineering Co., Ltd. | Measuring apparatus for amylose and/or amylopectin content in rice |
JPH0768188A (en) * | 1993-11-29 | 1995-03-14 | Iseki & Co Ltd | Grain sorting method in grain drying and processing plant |
JP2526839B2 (en) * | 1993-11-29 | 1996-08-21 | 井関農機株式会社 | Grain sorting method in grain drying and preparation facility |
CN112345323A (en) * | 2020-10-31 | 2021-02-09 | 中国水稻研究所 | Method for developing standard substance of amylose content of rice |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910004140B1 (en) | Rise quality valuation device | |
EP0365205B1 (en) | Apparatus for evaluating quality of raw coffee beans | |
KR920004535B1 (en) | Measuring apparatus for amylose and/or amylopection content in rice | |
JPS62291546A (en) | Method and apparatus for measuring taste of rice | |
JPS6367547A (en) | Taste measuring instrument for rice | |
JPS6321538A (en) | Rice taste measuring apparatus | |
JPS6333644A (en) | Taste measuring apparatus for rice | |
JPH07104276B2 (en) | Rice component content rate measuring device | |
JPS62299743A (en) | Measuring instrument for taste of rice | |
JPS63304141A (en) | Method and device for evaluating quality of rice | |
JPS63246640A (en) | Method and apparatus for measuring content of amylose or amylopectin of rice | |
JPH07140134A (en) | Apparatus for measuring content of component of rice | |
JP2892084B2 (en) | Rice quality evaluation method and rice quality evaluation device | |
JPS63241338A (en) | Rice taste measuring apparatus | |
JPS63167243A (en) | Method for measuring component content of rice | |
JP2788025B2 (en) | Rice blending method and blending device based on taste management | |
JPS63313039A (en) | Method and instrument for measuring content of amylose or amylopectin of rice | |
JPS6375643A (en) | Method for measuring content of amylose or amylopectin of rice | |
JPH05232017A (en) | Rice taste evaluating device | |
JPS63210750A (en) | Method and apparatus for evaluating quality of rice | |
JPH02143147A (en) | Quality evaluating device for coffee bean | |
JP2904796B2 (en) | Method and apparatus for mixing coffee beans based on taste management | |
JP2739220B2 (en) | Quality evaluation method and apparatus for green coffee beans | |
JPH07104280B2 (en) | Evaluation method of rice taste | |
JPS63217254A (en) | Method for measuring taste of rice |