JPH07140134A - Apparatus for measuring content of component of rice - Google Patents

Apparatus for measuring content of component of rice

Info

Publication number
JPH07140134A
JPH07140134A JP6117388A JP11738894A JPH07140134A JP H07140134 A JPH07140134 A JP H07140134A JP 6117388 A JP6117388 A JP 6117388A JP 11738894 A JP11738894 A JP 11738894A JP H07140134 A JPH07140134 A JP H07140134A
Authority
JP
Japan
Prior art keywords
rice
sample
measuring
light
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6117388A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
利彦 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP6117388A priority Critical patent/JPH07140134A/en
Publication of JPH07140134A publication Critical patent/JPH07140134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide an apparatus for measuring the content of components of rice in which a near infrared component analyzer receives near infrared rays reflected on a sample rice and a controller detects the infrared absorbance of the sample rice and operates the content of components based on the detected value and a prestored component conversion coefficient. CONSTITUTION:Component conversion coefficients for operating the content of main components of rice, a set temperature, and a temperature correction value are set, on a keyboard, into the memory 61 of a controller 59 or previously inputted into the memory 61. A button 56D for measuring/selecting the quantity of reflected/transmitted light and an automatic operation button 56B are depressed, a near infrared spectrometer 1 is conducted and and a light source 4 is turned ON to operate a temperature regulator 77 in order to sustain the spectrometer 1 at a constant temperature. A motor 63 is turned ON by a signal from a temperature detector 78 to rotate rollers 20-23 and 49. Subsequently, an electromagnet 32 is conducted to vibrate a vibration frame 28. A position sensor 50 detects that a sample container 33 is located at a filling position of sample rice and a level gauge 19 detects that the sample rice has been fed to a supply hopper 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、米の食味を左右する各
成分の含有率を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the content of each component that affects the taste of rice.

【0002】[0002]

【従来の技術】米の食味は、品種の選択,生産地,栽培
方法,収穫方法等の生産段階で決定されるもの、あるい
は、乾燥,貯蔵,精米加工等の収穫後の加工処理段階で
決定されるもの、また炊飯加工時に影響を受けるものと
多岐に亘るものであるが、最も大きな影響を受けるのは
生産段階であり、次いで加工処理段階である。
2. Description of the Related Art The taste of rice is determined at the production stage such as variety selection, production area, cultivation method and harvesting method, or at the post-harvest processing stage such as drying, storage and rice polishing processing. There is a wide variety of things that are affected and that are affected during rice cooking processing, but the most affected is the production stage, and then the processing stage.

【0003】一般的に、食味の良い銘柄として人気の高
いのは、コシヒカリ,ササニシキであるが、これ等の食
味が良いとする主要素は、他の一般銘柄米に比べて澱粉
質に占めるアミロースの含有率が少ないことと蛋白質含
有率が少ないことにある。また水分の含有率が多いこと
も食味の良い条件である。勿論、同一銘柄であれば澱粉
質に占めるアミロースや蛋白質の含有率が同一であると
いうものではなく、栽培された産地の条件(土質,水
質)によっても、また気象条件(気温,日照時間,降雨
等)によっても含有率は変化するものであるから、たと
え前年度の食味評価が高かったとしても、今年度収穫さ
れる米の食味が前年度と同一であるという保証はなく、
過去に調査した食味のデータを頼りとして米の買い付
け、あるいは配合を決定することは、必ずしも合理的な
米の管理ということができない。
[0003] Generally, Koshihikari and Sasanishiki are the most popular brands with good taste, but the main factor that makes them taste good is amylose in starch quality compared to other general brands of rice. It is because of low content of protein and low protein content. In addition, a high content of water is also a good tasting condition. Of course, the same brand does not mean that the contents of amylose and protein in starch are the same, and it depends on the conditions (soil, water quality) of the cultivated place and the weather conditions (temperature, sunshine hours, rainfall). Even if the taste evaluation of the previous year was high, there is no guarantee that the taste of rice harvested this year will be the same as that of the previous year.
It is not always a rational management of rice to purchase rice or decide the composition by relying on the taste data collected in the past.

【0004】一例として、各銘柄米の標準精白度白米に
含有するアミロース並びに蛋白質は次表の通りである。
As an example, the amylose and protein contained in the standard polished white rice of each brand rice are as shown in the following table.

【0005】 銘 柄 産 地 アミロース% 蛋白質% コシヒカリ 新 潟 19.9 6.70 ササニシキ 山 形 20.9 6.89 イシカリ 北海道 23.2 8.48 (アミロースの含有率は澱粉質100%に対する比率
を、蛋白質は米重量に対する比率を示す)そこで、特定
の有名銘柄のみにとらわれず、化学的に米のアミロース
またはアミロペクチンの含有率や蛋白質や水分の含有率
の測定を行い、一般銘柄米から良品質の米を見出すとと
もに、食味評価の低位ランク米の食味をいかに向上させ
るかというテーマが生まれる。通常、精米工場では単一
銘柄米のみを確保することが難しく、数種銘柄の米を配
合して精米がなされており、この食味評価の上位ランク
米と低位ランク米とが適度に混合されて食味の安定した
精白米が流通しているものであるが、これ等は銘柄と産
地との組合せを勘に頼って処理がなされているのが実情
であり、化学的な裏付けがないために食味が一様でなく
度々消費者から苦情が提起されるものであった。
Brand Origin Amylose% Protein% Koshihikari Niigata 19.9 6.70 Sasanishiki Yamagata 20.9 6.89 Ishikari Hokkaido 23.2 8.48 (Amylose content relative to 100% starch) , Protein indicates the ratio to the weight of rice.) Therefore, the chemical content of amylose or amylopectin and the content of protein and water in rice are measured without being restricted to specific famous brands. The theme is how to improve the taste of low-ranked rice, which has a low taste evaluation. Usually, it is difficult to secure only a single brand of rice in a rice mill, and rice is milled by mixing several brands of rice, and the high rank rice and low rank rice of this taste evaluation are mixed appropriately. Although polished rice with a stable taste is distributed, the fact is that these are processed by taking into consideration the combination of the brand and the production area. However, the complaints were frequently raised by consumers.

【0006】[0006]

【発明が解決しようとする問題点】従来、米飯の食味の
評価方法として、実際に食して官能的に評価する官能検
査、あるいは物理的測定によって粘度や硬さを測定し食
味を評価する方法があり、装置としてはブラベンダーア
ミログラフやテクスチュロメーターなどが知られてい
る。また、化学的に含有成分を測定して食味を評価する
方法があり、澱粉中のアミロースまたはアミロペクチン
の化学的測定法としてはヨウ素呈色比色法やヨウ素電流
滴定法などがあるが、いずれの方法も測定にかなりの熟
練を要し、バラツキも大きく、測定に長時間を要すると
いう問題点があった。
[Problems to be Solved by the Invention] Conventionally, as a method for evaluating the taste of cooked rice, there has been a sensory test of actually eating and sensory evaluation, or a method of evaluating taste by measuring viscosity and hardness by physical measurement. There are known devices such as a Brabender amylograph and a texturometer. In addition, there is a method of chemically assessing the content of ingredients to evaluate the taste, and as a chemical measurement method of amylose or amylopectin in starch, there are iodine colorimetric colorimetric method and iodine amperometric method. The method also requires a considerable amount of skill in measurement, has large variations, and has a problem that it takes a long time for measurement.

【0007】本発明は、前記従来技術の問題点を解消す
るために近赤外光を用いて、米の食味を左右する成分の
含有率を容易かつ正確に測定する米の成分含有率測定装
置を提供することを目的とするものである。
In order to solve the above-mentioned problems of the prior art, the present invention uses a near-infrared light to easily and accurately measure the content rate of the ingredients that influence the taste of rice. It is intended to provide.

【0008】[0008]

【問題点を解決するための手段】本発明による米の食味
を左右する主要成分の含有率測定装置では、回折格子に
よる分光素子を利用したフィルターによって近赤外光を
得、これを試料米に照射し、試料米による近赤外光の吸
収程度を検出する。一方、米の食味を左右する主要成分
の含有率と試料米による近赤外光の吸収程度との関連を
定めた成分換算係数を準備しておき、検出された前記の
吸収程度と成分換算係数とから試料米における主要成分
の含有率を演算する手段を用いる。
[Means for Solving the Problems] In the apparatus for measuring the content rate of main components that influence the taste of rice according to the present invention, near-infrared light is obtained by a filter using a diffraction grating-based spectroscopic element, and this is used as sample rice. Irradiate and detect the degree of absorption of near infrared light by the sample rice. On the other hand, a component conversion coefficient that defines the relationship between the content of the main components that affect the taste of rice and the absorption degree of near infrared light by sample rice is prepared, and the detected absorption degree and the component conversion coefficient From the above, a means for calculating the content rates of the main components in the sample rice is used.

【0009】[0009]

【作用】回折格子による分光素子を利用したフィルター
は波長域の連続した近赤外光を提供する。近赤外分光分
光装置は試料米に対する近赤外光の照射、試料米を経た
近赤外光の受光を行う。制御装置は試料米による近赤外
光の吸収程度を検出し、その検出値とあらかじめ記憶さ
れた成分換算係数とから成分含有率を演算する。
The filter using the spectroscopic element with the diffraction grating provides near-infrared light having a continuous wavelength range. The near-infrared spectroscopic spectroscope irradiates the sample rice with near-infrared light and receives near-infrared light passing through the sample rice. The control device detects the degree of absorption of near infrared light by the sample rice, and calculates the component content rate from the detected value and the component conversion coefficient stored in advance.

【0010】[0010]

【実施例】本発明の実施例を図1〜図8により説明す
る。図1,図2において、符号1で示す近赤外分光分析
装置1のキャビネット2内の上部には、回折格子による
分光素子79を利用したフィルター(図8)が配置され
ている。このものでは、光源からの照射光が集光レンズ
80により集光されて一部の光がスリット81を通過し
て入光ミラー82に照射され、入光ミラー82で反射し
た光は反射鏡83によりさらに反射され、分光素子79
に任意の入射角度αで入射し分光される。これにより受
光ミラー84から任意波長帯の近赤外光を得られる。分
光素子79を回動し、反射鏡83からの入射角度を制御
すると1900nm〜2500nmの波長域の連続した
近赤外光を得られる。このフィルターにより近赤外分光
分析装置1は前記の連続した近赤外光で試料米を走査し
必要とする波長域における測定値を得られる。また任意
の波長域を選択して測定することも可能である。
Embodiments of the present invention will be described with reference to FIGS. In FIGS. 1 and 2, a filter (FIG. 8) using a spectroscopic element 79 formed of a diffraction grating is arranged in the upper part of the cabinet 2 of the near infrared spectroscopic analyzer 1 shown by reference numeral 1. In this structure, the irradiation light from the light source is condensed by the condensing lens 80, a part of the light passes through the slit 81, is irradiated to the light entering mirror 82, and the light reflected by the light entering mirror 82 is reflected by a reflecting mirror 83. Is further reflected by the spectroscopic element 79.
Is incident at an arbitrary incident angle α and is dispersed. As a result, near infrared light in an arbitrary wavelength band can be obtained from the light receiving mirror 84. By rotating the spectroscopic element 79 and controlling the incident angle from the reflecting mirror 83, continuous near-infrared light in the wavelength range of 1900 nm to 2500 nm can be obtained. With this filter, the near-infrared spectroscopic analyzer 1 can scan the sample rice with the continuous near-infrared light to obtain a measurement value in a required wavelength range. It is also possible to select and measure an arbitrary wavelength range.

【0011】第1,2図に示すものは他のフィルター形
式であって、光源4と反射鏡5とを関連的に配設し、反
射鏡5の前面には複数個の特定波長のフィルター6…を
設ける。フィルター6…を電動機10に連結し、電動機
10の微回動によって照射光軸と任意のフィルター6の
交差角度を任意に設定可能としてある。積分球7の上部
にはスリット3の隙間を通過した特定波長の近赤外光を
取り入れる窓8を設けてある。
1 and 2 show another filter type in which a light source 4 and a reflecting mirror 5 are associated with each other, and a plurality of filters 6 having specific wavelengths 6 are provided in front of the reflecting mirror 5. ... is provided. The filters 6 are connected to the electric motor 10, and the crossing angle between the irradiation optical axis and the arbitrary filter 6 can be arbitrarily set by finely rotating the electric motor 10. A window 8 for taking in near-infrared light of a specific wavelength that has passed through the gap of the slit 3 is provided above the integrating sphere 7.

【0012】近赤外分光分析装置1は、さらに、積分球
7の下方内部に反射光量検出器9A,9B(受光器)を
対称な位置に設け、積分球7の底部を開口して測定部1
1とし、測定部11に透明板12を設け、その下方に透
過光量検出器9C(受光器)を配設してある。キャビネ
ット2内部の側方には試料供給装置13を配設する。試
料供給装置13は、キャビネット2の上壁一側部14を
開口して供給ホッパー15を装着し、ホッパー15の開
口部16の下部に回転翼17を取付けたロータリーバル
ブ18を連結し、側壁にレベル計19を装着してある。
ホッパー15の下部に多数の鋭利な突部を有する一対の
ローラー20,21を対向回転自在に軸架し、さらにそ
の下方に表面を平滑面とした一対の細粉用ローラー2
2,23を対向回転自在に軸架し、粉砕室24内部の前
記ローラー20,21,22,23に対面して電磁弁を
備えた噴射ノズルとローラーに接触する弾性材とからな
る清掃装置25A〜25Dを設けてある。
The near-infrared spectroscopic analyzer 1 is further provided with reflected light quantity detectors 9A and 9B (light receivers) at symmetrical positions inside the integrating sphere 7, and the bottom of the integrating sphere 7 is opened to make a measurement part. 1
1, a transparent plate 12 is provided in the measuring unit 11, and a transmitted light amount detector 9C (light receiver) is provided below the transparent plate 12. A sample supply device 13 is arranged laterally inside the cabinet 2. The sample supply device 13 is provided with a supply hopper 15 which is opened at one side 14 of the upper wall of the cabinet 2 and which is connected to a rotary valve 18 having a rotary vane 17 attached to a lower portion of the opening 16 of the hopper 15 and has a side wall. A level meter 19 is attached.
In the lower part of the hopper 15, a pair of rollers 20 and 21 having a large number of sharp protrusions are axially rotatably mounted so as to face each other, and below the pair of rollers 2 for fine powder having a smooth surface.
A cleaning device 25A, which is composed of an injection nozzle provided with an electromagnetic valve and an elastic material that comes into contact with the rollers, which are rotatably opposed to each other and face the rollers 20, 21, 22, 23 inside the crushing chamber 24. .About.25D are provided.

【0013】粉砕室24の下方部に粉砕粒の選別装置2
6を配設してあり、選別装置26は、一側部に粗粒子排
出口27を固設した振動フレーム28を板バネ29によ
り支架し、振動フレーム28に多孔壁板30を装脱自在
に設け、振動フレーム28の側面31に近接して電磁石
32を固設してある。
At the lower part of the crushing chamber 24, a sorting device 2 for crushed particles is provided.
In the sorting device 26, a vibrating frame 28 having a coarse particle discharge port 27 fixed to one side is supported by a leaf spring 29 so that the perforated wall plate 30 can be attached to and detached from the vibrating frame 28. An electromagnet 32 is fixedly provided near the side surface 31 of the vibrating frame 28.

【0014】選別装置26の下方に粉砕試料を充填する
試料容器33を設ける(第3図参照)。試料容器33は
底壁面を透光材とし、試料容器移動体34に装着した容
器受台35に設けた案内溝36に装脱自在としてある。
試料容器33の移動機構として、一側部にラック37を
固設した試料容器移動体34を中空軸とし該移動体34
に断面丸状の軌道軸38を挿入し、軌道軸38の一側部
39を回動用ハンドル40に他側部41を軸受台42に
軸架し、キャビネット2の底壁に固設した受台43に支
点台44を装着し、試料容器移動体34のラック37に
モーター45に軸着した歯車46を噛み合わせ、モータ
ー台47にモーター45を装着したその端部を試料容器
移動体34に遊嵌すると共に、モーター台47と支点台
44とにロッドが伸縮する電磁石48を回動自在に連結
してある。
A sample container 33 for filling the ground sample is provided below the sorting device 26 (see FIG. 3). The bottom wall surface of the sample container 33 is made of a transparent material, and the sample container 33 can be freely inserted into and removed from a guide groove 36 provided in a container support 35 mounted on the sample container moving body 34.
As a moving mechanism of the sample container 33, a sample container moving body 34 having a rack 37 fixed to one side is used as a hollow shaft.
The pedestal fixed to the bottom wall of the cabinet 2 by inserting the orbital shaft 38 having a circular cross section into the above, the one side 39 of the orbital shaft 38 is pivotally mounted on the turning handle 40, and the other side 41 is mounted on the bearing base 42. 43, a fulcrum base 44 is mounted, a gear 46 axially mounted on a motor 45 is meshed with a rack 37 of the sample container moving body 34, and an end of the motor base 47 mounted with the motor 45 is free to move to the sample container moving body 34. When fitted, an electromagnet 48 having a rod extending and contracting is rotatably connected to the motor base 47 and the fulcrum base 44.

【0015】49は、試料容器33上の粉砕試料を圧縮
充填すると共に、過量試料を取除くための試料充填器と
なす回転ローラー、50は試料容器33の位置を充填部
に設定するための充填部位置センサー、51は試料容器
33の位置を測定部に設定するための測定部位置センサ
ーであり、センサー51と透過光量検出器9Cのそれぞ
れはモーター45に固着した支持杆に装着してある。6
3は、ローラー20,21,22,23および回転ロー
ラー49を回転駆動する電動機である。52は試料容器
33内から試料米を噴風により排除させると共に清掃を
行う噴射ノズル、53は不要試料を受取る受箱、54A
は透明板12に接離して清掃する試料容器移動体34に
固設した清掃器であり、54Bは透過光量検出器9Cの
表面を清掃する清掃器である。
Reference numeral 49 is a rotary roller which serves as a sample filling device for compressing and filling the crushed sample on the sample container 33 and removing an excessive amount of sample, and 50 is a filling roller for setting the position of the sample container 33 at the filling portion. A part position sensor 51 is a measuring part position sensor for setting the position of the sample container 33 to the measuring part, and the sensor 51 and the transmitted light amount detector 9C are mounted on a supporting rod fixed to the motor 45. 6
3 is an electric motor that rotationally drives the rollers 20, 21, 22, 23 and the rotating roller 49. 52 is an injection nozzle that removes the sample rice from the sample container 33 with a blast and cleans it; 53 is a receiving box for receiving unnecessary samples; 54A
Is a cleaner fixed to the sample container moving body 34 to be contacted with and separated from the transparent plate 12, and 54B is a cleaner for cleaning the surface of the transmitted light amount detector 9C.

【0016】試料容器33の凹部側壁には試料温度を検
出するサーミスタを埋設して温度検出器65とし、温度
検出器65に連結した端子66を試料容器33の外側壁
から突出させ、積分球7の外側部に温度検出器65の端
子66の圧着部67を設けてあり、圧着部67は後述す
る制御装置59に電気的に連結してある。キャビネット
2の前面部には表示器55Aよりなる表示装置55,操
作用ボタン56…,手動操作ボタン56A,自動操作ボ
タン56B,透過光量測定選択ボタン56C,反射・透
過併用選択ボタン56Dのそれぞれを設ける。58はプ
リンター、59は制御装置であり、米の食味を左右する
成分の含有値に演算する成分換算係数,温度設定値,温
度補正値を設定した記憶装置61と、演算装置60と、
信号処理装置62等を備えている。第4図において、5
7はキャビネット2の前面開口部に設けた試料米の外部
供給部である。
A thermistor for detecting the sample temperature is embedded in the side wall of the concave portion of the sample container 33 to form a temperature detector 65. A terminal 66 connected to the temperature detector 65 is projected from the outer side wall of the sample container 33 to form an integrating sphere 7. A crimp portion 67 of the terminal 66 of the temperature detector 65 is provided on the outer side of the crimp portion 67, and the crimp portion 67 is electrically connected to a control device 59 described later. A display device 55 including a display 55A, an operation button 56, a manual operation button 56A, an automatic operation button 56B, a transmitted light amount measurement selection button 56C, and a combined reflection / transmission selection button 56D are provided on the front surface of the cabinet 2. . Reference numeral 58 is a printer, and 59 is a control device, which includes a storage device 61 in which a component conversion coefficient, a temperature setting value, and a temperature correction value for calculating the content values of components that influence the taste of rice are set;
The signal processing device 62 and the like are provided. In FIG. 4, 5
Reference numeral 7 is an external supply unit for sample rice provided in the front opening of the cabinet 2.

【0017】次に、第5図により制御装置59の構成に
つき説明する。演算装置60,記憶装置61,信号処理
装置62等からなる制御装置59の入力側には、反射光
量検出器9A,9B,透過光量検出器9C,レベル計1
9,位置センサー50,51,自動操作ボタン56B,
反射・透過併用選択ボタン56D,温度検出器65,7
8,キーボード64のそれぞれを連結し、制御装置59
の出力側には表示装置55,プリンター58を連結し、
また、光源4,電動機10,63,電磁石18,32,
48,モーター45,清掃装置25A〜25D,噴射ノ
ズル52はそれぞれ駆動装置68〜76を介して制御装
置59の出力側に連結してある。
Next, the structure of the controller 59 will be described with reference to FIG. The reflected light amount detectors 9A and 9B, the transmitted light amount detector 9C, and the level meter 1 are provided on the input side of a control device 59 including an arithmetic device 60, a storage device 61, a signal processing device 62, and the like.
9, position sensor 50, 51, automatic operation button 56B,
Reflection / transmission combination selection button 56D, temperature detectors 65, 7
8, the keyboard 64 is connected to each other, and the control device 59
A display device 55 and a printer 58 are connected to the output side of
Also, the light source 4, the electric motors 10, 63, the electromagnets 18, 32,
48, the motor 45, the cleaning devices 25A to 25D, and the injection nozzle 52 are connected to the output side of the control device 59 via the drive devices 68 to 76, respectively.

【0018】以下に上記構成における作用を第1図〜第
8図により説明する。キーボード64から米の主要成分
の含有率に演算する成分換算係数,温度設定値、および
温度補正値を制御装置59の記憶装置61に設定する
か、あらかじめ前記記憶装置に入力してある。(ステッ
プS1 )。1例としてアミロースの成分含有率の測定方
法につき説明する。
The operation of the above structure will be described below with reference to FIGS. The component conversion coefficient for calculating the content rate of the main components of rice from the keyboard 64, the temperature set value, and the temperature correction value are set in the storage device 61 of the control device 59 or are input in advance in the storage device. (Step S1). As an example, a method for measuring the content rate of amylose will be described.

【0019】アミロースの成分換算係数は多数の試料米
を化学定量分析法、たとえばヨウ素呈色比色法やヨウ素
電流滴定法を用いて測定された含有率を基準とし、受光
素子からの任意の検出値を信号処理した値とを多重回帰
分析(あるいは多元回帰分析とも呼ばれる。)プログラ
ムを利用して求めてある。
The amylose component conversion coefficient is based on the content of a large number of sample rice measured by a chemical quantitative analysis method, for example, an iodine colorimetric colorimetric method or an iodine amperometric titration method. The values obtained by signal processing of the values are obtained using a multiple regression analysis (or also called multi-dimensional regression analysis) program.

【0020】ここで多重回帰分析の一例を示す。例えば
5個のフィルターF1 =2100nm,F2 =2150
nm,F3 =2250nm,F4 =2250nm,F5
=2370nmを使用した時に次の線型関係が成立する
ものとする。 Aa =F0 +F1 ・X1 a+F2 ・X2 a+F3 ・X3
a+F4 ・X4 a+F5 ・X5 a+C Aaは試料米aの化学定量分析法により測定したアミロ
ースの含有率パーセント。F0 〜F5 はこの多重回帰分
析で求める係数。X1 a〜X5 aはF1 〜F5 のフィル
ターの番号にそれぞれ対応し、試料米aを近赤外分光分
析装置で測定した吸光度(log I0 /I)。Cは誤差項
であり、ここではC= 0とする。
Here, an example of multiple regression analysis is shown. For example, five filters F1 = 2100 nm, F2 = 2150
nm, F3 = 2250 nm, F4 = 2250 nm, F5
= 2370 nm is used, the following linear relationship is established. Aa = F0 + F1.X1a + F2.X2a + F3.X3
a + F4.X4 a + F5.X5 a + C Aa is the percent amylose content measured by the chemical quantitative analysis method of the sample rice a. F0 to F5 are coefficients obtained by this multiple regression analysis. X1 a to X5 a correspond to the filter numbers of F1 to F5, respectively, and the absorbance (log I0 / I) of the sample rice a measured with a near infrared spectroscopic analyzer. C is an error term, and here C = 0.

【0021】試料米aの場合( 9図実線と仮定すれば)
はX1 a=0.61,X2 a=0.56,X3 a=0.
54,X4 a=0.66,X5 a=0.65であり、前
記多重回帰式はAa=F0 +0.61F1 +0.56F2 +0.54
F3 + 0.66 F4 +0.65F5 となる。同様にしてn個の
試料米までの多重回帰式に吸光度、すなわち、試料米に
よる近赤外光の吸収程度を代入して次に示す成分換算係
数を得ることができる。
In the case of sample rice a (assuming 9 solid lines)
Is X1 a = 0.61, X2 a = 0.56, X3 a = 0.
54, X4 a = 0.66, X5 a = 0.65, and the multiple regression equation is Aa = F0 +0.61 F1 +0.56 F2 +0.54
It becomes F3 + 0.66 F4 + 0.65 F5. Similarly, the absorbance, that is, the degree of absorption of near-infrared light by the sample rice can be substituted into the multiple regression equation up to n pieces of sample rice to obtain the following component conversion coefficient.

【0022】A=33.3+2380X1 −2300X2 − 640X3
+1405X4 − 880X5 また、試料米に照射される近赤外光が試料米に吸収され
るのは分子を構成する原子の連鎖が熱エネルギーにより
振動するために起こる現象であり、原子の種類と連鎖状
態により固有振動数が異なるために近赤外光の波長域で
振動の大きさが変化し熱吸収を生じる。また試料米が初
期に持っている熱エネルギーが少ない場合(温度が低い
場合)には振動が小さいために分子構造の違いによる吸
収程度が正確に測定されないので温度の補正をする必要
が生じる。第7図に示すものは、一実験例として温度検
出器65の検出温度によりアミロースの測定値を補正す
る温度補正値を示すものである。20℃以上の場合は補
正を要しないが10℃の場合は1.0パーセント加算し
て真値となる。またその間は略直線的変化であった。
A = 33.3 + 2380X1-2300X2-640X3
+ 1405X4-880X5 Also, the fact that the sample rice absorbs the near-infrared light that irradiates the sample rice is a phenomenon that occurs because the chains of the atoms that make up the molecule vibrate due to thermal energy. Due to different natural frequencies, the magnitude of vibration changes in the wavelength range of near-infrared light and heat absorption occurs. When the sample rice initially has a small amount of heat energy (when the temperature is low), vibration is small, and the degree of absorption due to the difference in molecular structure cannot be accurately measured, so it is necessary to correct the temperature. As an experimental example, FIG. 7 shows a temperature correction value for correcting the measurement value of amylose by the temperature detected by the temperature detector 65. If the temperature is 20 ° C. or higher, no correction is required, but if the temperature is 10 ° C., 1.0% is added to obtain a true value. Also, during that time, the change was substantially linear.

【0023】温度設定値は近赤外分光分析装置を恒温に
調整するもので通常25℃に設定する。前記試料温度の
変化を防止するためと、電気回路、特に信号処理装置の
温度による誤差をなくする目的を有するものである。同
様な手法で必要とする米の主要成分についても成分換算
係数を設定して、含有率を測定する。
The temperature set value is for adjusting the temperature of the near-infrared spectroscopic analyzer to a constant temperature, and is usually set to 25 ° C. The purpose is to prevent the sample temperature from changing and to eliminate the error due to the temperature of the electric circuit, especially the signal processing device. Set the component conversion coefficient for the main components of rice required by the same method, and measure the content rate.

【0024】次に、反射・透過光量測定併用選択ボタン
56D,自動操作ボタン56Bを押すと(ステップS2
)、近赤外分光分析装置1に通電され、光源4をON
して、該装置1を恒温に保持するために温度調節器77
を作動させ、(ステップS3 )、温度検出器78の信号
で(ステップS4 )、電動機63がONしてローラー2
0,21,22,23および回転ローラー49それぞれ
を回転させ(ステップS4 )、次いで電磁石32に通電
して振動フレーム28を振動させる(ステップS6 )。
試料容器33が試料米の充填位置に所在していることを
充填部位置センサー50が検出し(ステップS7 )、次
に供給ホッパー15に試料米が供給されているかを、レ
ベル計19が検出し、(ステップS8 )、供給ホッパー
15の試料米は、ロータリーバルブ18の回転翼17の
回転により略連続的に一定流量で排出される。
Next, when the reflected / transmitted light amount combined use selection button 56D and the automatic operation button 56B are pressed (step S2
), The near-infrared spectroscopic analyzer 1 is energized and the light source 4 is turned on.
Then, in order to keep the apparatus 1 at a constant temperature, a temperature controller 77
Is operated (step S3), and the signal from the temperature detector 78 (step S4) turns on the motor 63 to turn the roller 2 on.
Each of 0, 21, 22, 23 and the rotating roller 49 is rotated (step S4), and then the electromagnet 32 is energized to vibrate the vibrating frame 28 (step S6).
The filling position sensor 50 detects that the sample container 33 is located at the filling position of the sample rice (step S7), and then the level meter 19 detects whether the sample rice is supplied to the supply hopper 15. , (Step S8), the sample rice in the supply hopper 15 is discharged substantially continuously at a constant flow rate by the rotation of the rotary blades 17 of the rotary valve 18.

【0025】なお、試料米が供給量過多となってローラ
20,21,22,23で充分粉砕されない場合があ
る。そこで、電動機63の負荷を検知してその負荷によ
りロータリーバルブ18の回転翼17の回転数を変更し
て、試料米の供給量を制御する。ローラー20,21間
を通過して粉砕した試料米をさらに細粉用ローラー2
2,23間に通過させて50ミクロン以下の微粒子に粉砕
し(ステップS10)、粉砕された試料米は振動する多孔
壁板30上に流下して粒選別作用を受ける(ステップS
11)。多孔壁板30の通孔を貫通した50ミクロン以下の
粒子は試料容器33上に流下し、試料容器33上に盛上
がって過量となった試料米は受箱53に流下し、多孔壁
板30上に残留する粗粒子は粗粒子排出口27を介して
受箱53に流出する(ステップS12)。
In some cases, the amount of sample rice supplied is too large to be sufficiently crushed by the rollers 20, 21, 22, 23. Therefore, the load of the electric motor 63 is detected, and the rotation speed of the rotary blade 17 of the rotary valve 18 is changed by the load to control the supply amount of the sample rice. The sample rice crushed by passing between the rollers 20 and 21 is further used for the fine powder roller 2
It is passed between No. 2 and No. 23 and crushed into fine particles of 50 microns or less (step S10), and the crushed sample rice flows down on the vibrating perforated wall plate 30 to be subjected to the grain selection function (step S).
11). Particles of 50 microns or less penetrating through the through holes of the perforated wall plate 30 flow down onto the sample container 33, and excess sample rice that rises above the sample container 33 flows down into the receiving box 53. The coarse particles remaining above flow out to the receiving box 53 through the coarse particle outlet 27 (step S12).

【0026】供給ホッパー15内に供給された試料米が
完全に排出されたことを検出したレベル計19の信号に
より(ステップS13)、モーター45を作動して試料容
器移動体34を移動させる。その移動過程中において、
試料容器33に盛上がった試料米を回転ローラー49に
より試料容器33に圧縮充填するとともに、上面を平坦
面として過量の試料米を受箱53に流出させ、試料容器
33が測定部11下部の所定位置に到達したことを測定
部位置センサー51が検知するとモーター45の作動を
停止し(ステップS14)、その停止信号によって近赤外
分光分析装置1の測定が開始される。
The motor 45 is operated to move the sample container moving body 34 in response to the signal from the level meter 19 which detects that the sample rice supplied into the supply hopper 15 has been completely discharged (step S13). During the movement process,
The swelling sample rice in the sample container 33 is compressed and filled in the sample container 33 by the rotating roller 49, and an excessive amount of the sample rice is allowed to flow into the receiving box 53 with the upper surface being a flat surface. When the measuring unit position sensor 51 detects that the position has been reached, the operation of the motor 45 is stopped (step S14), and the stop signal causes the measurement of the near-infrared spectroscopic analyzer 1 to start.

【0027】先ず、回折格子を利用したフィルタ−にお
ける分光素子79が回動され指定した任意の波長帯が選
定される。他の例として示すフィルターではフィルター
6が電動機10で回動され指定波長帯が選定される。す
なわち、光源4からの照射光を、フィルターを介した波
長域の近赤外光として試料容器33内の試料米に照射
し、試料米を透過した透過光量を検出する透過光量検出
器9Cの検出信号を制御装置59に連絡し、また、試料
米から積分球7に反射する反射光量を反射光量検出器9
A,9Bにより検出し、その検出値を制御装置59に連
絡する(ステップS15,16)。
First, the spectroscopic element 79 in the filter using the diffraction grating is rotated to select the designated arbitrary wavelength band. In the filter shown as another example, the filter 6 is rotated by the electric motor 10 to select the designated wavelength band. That is, the irradiation light from the light source 4 is irradiated onto the sample rice in the sample container 33 as near-infrared light in the wavelength range through the filter, and the transmitted light amount detector 9C for detecting the transmitted light amount transmitted through the sample rice is detected. The signal is transmitted to the control device 59, and the reflected light amount reflected from the sample rice to the integrating sphere 7 is detected by the reflected light amount detector 9
It is detected by A and 9B, and the detected value is notified to the control device 59 (steps S15 and S16).

【0028】また、複数の波長帯によって測定する場合
には、各検出器9A,9B,9Cの検出信号の連絡とと
もに分光素子79を回動し、あるいは電動機10を作動
させフィルター6…の回動を順次行い、フィルターによ
り得られる近赤外光波長帯の特性から得られる透過光量
と反射光量とを検出して制御装置59に連絡する(ステ
ップS17,18)なお、フィルターは上記の近赤外波長域
においてそれぞれ±10nmの波長範囲の半値幅を設け
てある。各フィルターによる検出が終了したかどうかを
確認し、所定回数でないなら所定回数に至るまで検出を
行う(ステップS19)。
Further, when the measurement is carried out in a plurality of wavelength bands, the spectroscopic element 79 is rotated together with the communication of the detection signals of the detectors 9A, 9B and 9C, or the electric motor 10 is operated to rotate the filters 6. Are sequentially performed to detect the amount of transmitted light and the amount of reflected light obtained from the characteristics of the near-infrared light wavelength band obtained by the filter and contact the control device 59 (steps S17, 18). In each wavelength range, a half width of ± 10 nm is provided. It is confirmed whether the detection by each filter has been completed, and if it is not the predetermined number of times, the detection is performed up to the predetermined number of times (step S19).

【0029】次に試料容器33内の試料温度を温度検出
器65により検出し、その検出値を端子66,圧着部6
7を介して制御装置59に連絡し、(ステップS20,S
21)その検出信号の入力終了により、モーター45と清
掃装置25A〜25Dを作動し、清掃装置25A〜25
Dにより各ローラー20,21,22,23の周面を高
圧空気の噴射により清掃し(ステップS22)、またモー
ター45により試料容器移動体33を粉砕室24方向に
移動させ、充填部位置センサー50が試料容器33が所
定位置に到達したことを検出するとモーター45の作動
を停止する(ステップS23)。
Next, the temperature of the sample in the sample container 33 is detected by the temperature detector 65, and the detected value is detected by the terminal 66 and the crimping portion 6.
7 to the control device 59 (steps S20, S
21) Upon completion of the input of the detection signal, the motor 45 and the cleaning devices 25A to 25D are activated, and the cleaning devices 25A to 25D are activated.
The peripheral surface of each roller 20, 21, 22, 23 is cleaned by jetting high-pressure air with D (step S22), and the sample container moving body 33 is moved by the motor 45 toward the crushing chamber 24, and the filling portion position sensor 50 Detects that the sample container 33 has reached the predetermined position, the operation of the motor 45 is stopped (step S23).

【0030】試料容器移動体34の移動過程において、
清掃器54Aが測定部11下部の透明板12を清掃す
る。タイマーT2の所定時間を経過すると清掃装置25
A〜25Dの作動を停止し(ステップS24,25)、ロー
タリーバルブ18の回転翼17の作動を停止する(ステ
ップS26)。試料容器33が充填部の所定位置に到達す
ると電磁石48を作動し、軌道軸38を中心としてモー
ター45ごと試料容器移動体34を90°反転させる。
このとき清掃器54Bが透過光量検出器9Cに接触して
清掃する(ステップS27)。試料容器33に噴射ノズル
52が高圧空気を噴射して試料米を排除するとともに試
料容器33を清掃する(ステップS28)。
In the process of moving the sample container moving body 34,
The cleaner 54A cleans the transparent plate 12 below the measuring unit 11. When the predetermined time of the timer T2 has passed, the cleaning device 25
The operation of A to 25D is stopped (steps S24 and 25), and the operation of the rotary blade 17 of the rotary valve 18 is stopped (step S26). When the sample container 33 reaches a predetermined position of the filling section, the electromagnet 48 is operated to reverse the sample container moving body 34 together with the motor 45 about the orbital shaft 38 by 90 °.
At this time, the cleaner 54B comes into contact with the transmitted light amount detector 9C for cleaning (step S27). The injection nozzle 52 injects high-pressure air into the sample container 33 to remove the sample rice and clean the sample container 33 (step S28).

【0031】噴射ノズル52が一定時間作動した後、噴
射ノズルの作動を停止し(ステップS29,30)、電磁石
48を停止して試料容器移動体34を正常位置に復帰さ
せて次回の試料測定に備える(ステップS31)。制御装
置59の演算装置60に連絡された透過光量検出器9
C,反射光量検出器9A,9Bのそれぞれの検出値から
得られた試料米による近赤外光の吸収程度と温度検出器
65の温度検出値により、米の主要成分の含有率が記憶
装置61に入力されたそれぞれの成分換算係数と、温度
補正値とで演算される。主要成分の含有率はキャビネッ
ト2前面の表示器55Aにデジタル表示されるととも
に、プリンター58により、自動的にプリントされて繰
出される(ステップS32〜S34)。
After the injection nozzle 52 has been operated for a certain period of time, the operation of the injection nozzle is stopped (steps S29 and S30), the electromagnet 48 is stopped, and the sample container moving body 34 is returned to the normal position for the next sample measurement. Prepare (step S31). Transmitted light amount detector 9 connected to the arithmetic unit 60 of the controller 59
C, the content of the main component of rice is determined by the degree of absorption of near-infrared light by the sample rice obtained from the respective detection values of the reflected light amount detectors 9A and 9B and the temperature detection value of the temperature detector 65. It is calculated by the respective component conversion coefficients input to and the temperature correction value. The content rates of the main components are digitally displayed on the display 55A on the front surface of the cabinet 2, and are automatically printed and delivered by the printer 58 (steps S32 to S34).

【0032】また、手動操作ボタン56Aを操作して外
部から試料米を試料容器33に充填して測定を行う場合
には、回動用ハンドル40を測定部11に向けて押込
み、試料容器33を外部供給部57から引出し、あらか
じめ別手段で粉砕した試料米を試料容器に充填し、上面
部を平坦面に加圧した後試料容器33を容器受台35の
案内溝36に挿入し、試料容器33を測定部11に装備
して測定を行う。
When the manual operation button 56A is operated to fill the sample rice 33 into the sample container 33 from the outside for measurement, the turning handle 40 is pushed toward the measuring section 11 to bring the sample container 33 to the outside. The sample rice is pulled out from the supply part 57 and crushed in advance by another means to fill the sample container, and the upper surface of the sample container is pressurized to a flat surface, and then the sample container 33 is inserted into the guide groove 36 of the container pedestal 35. Is attached to the measuring unit 11 to measure.

【0033】含有率の検出値を正確に得るためには、試
料容器に充填する試料米を小粒子に粉砕する必要がある
が、篩選別により選別された粗粒子を排除したものでは
部分的な測定となり測定誤差を招くから、粉砕作用を2
回繰返すことが望ましい。
In order to accurately obtain the detection value of the content rate, it is necessary to grind the sample rice to be filled in the sample container into small particles, but it is partial when the coarse particles selected by the sieve selection are excluded. Since the measurement results in measurement error, the crushing action should be 2
It is desirable to repeat it.

【0034】また、粒子の大きさと大きさのばらつきに
よって測定精度が異るので、粉砕粒の選別装置26に使
用する多孔壁板30の通孔は所望の粒子となるものを使
用しなければならない。また、近赤外分光分析装置1の
外で試料米を粉砕し、その試料米を外部供給部57から
測定部11に装備して測定する場合も同様に、粉砕した
粒子を篩選別して所望の大きさの粒子のみを試料容器3
3に充填すると測定精度が確保できる。前記理由は澱粉
分子の大きさは約10ミクロンであり、粉砕しない場合
澱粉分子が均一に表面に表れず分子の近赤外光による振
動が正確に表れないためである。
Further, since the measurement accuracy varies depending on the size of the particles and the variation in the size, the through holes of the porous wall plate 30 used in the crushed particle selection device 26 must be those which give desired particles. . Similarly, when the sample rice is crushed outside the near-infrared spectroscopic analyzer 1 and the sample rice is provided from the external supply unit 57 to the measuring unit 11 for measurement, the crushed particles are similarly sieved to obtain a desired size. Sample container 3
When 3 is filled, the measurement accuracy can be secured. The reason is that the size of the starch molecule is about 10 μm, and the starch molecule does not appear uniformly on the surface unless it is pulverized, and the vibration of the molecule due to near infrared light does not appear accurately.

【0035】なお、上記説明では、説明の都合上透過光
量検出器9Cと反射光量検出器9A,9Bとの検出値に
よって測定を行うようにしたが、反射光量または透過光
量のいずれかで測定を行う場合もある。また、温度検出
器をキャビネット内部あるいは外部に装着して気温を検
出することもある。
In the above description, for the sake of convenience of description, the measurement is performed by the detection values of the transmitted light amount detector 9C and the reflected light amount detectors 9A and 9B, but the measurement is performed by either the reflected light amount or the transmitted light amount. It may be done. In addition, a temperature detector may be installed inside or outside the cabinet to detect the temperature.

【0036】分光素子79の回動あるいは前記電動機1
0によるフィルター6および照射光軸の傾斜は任意の角
度に設定可能であり、それは制御装置59で制御され
る。フィルター6は照射光軸と直交した位置で使用する
のが基本であるが任意波長分だけスライドさせる場合に
フィルターへの入射角を制御する。照射光がフィルター
6を直交して入射する時と任意の角度で入射する時では
透過する波長が異なり、入射角が小さくなると短波長側
にスライドする。1900nm〜2500nmの近赤外
光では一般的に70nm主波長がスライドするので、連
続的波長帯での測定を可能とならしめるために、フィル
ター6を任意の角度で停止できるように構成してある。
なお、主波長とは透過する近赤外光のうちのほぼ最大透
過波長である。
Rotation of the spectroscopic element 79 or the motor 1
The inclination of the filter 6 and the irradiation optical axis by 0 can be set to an arbitrary angle, which is controlled by the controller 59. The filter 6 is basically used at a position orthogonal to the irradiation optical axis, but controls the incident angle to the filter when sliding by an arbitrary wavelength. The wavelength of the transmitted light is different between when the irradiation light is incident on the filter 6 at a right angle and when it is incident at an arbitrary angle, and when the incident angle becomes small, the irradiation light slides to the short wavelength side. Since the main wavelength of 70 nm generally slides in the near-infrared light of 1900 nm to 2500 nm, the filter 6 can be stopped at any angle in order to enable measurement in a continuous wavelength band. .
The dominant wavelength is almost the maximum transmission wavelength of near infrared light that is transmitted.

【0037】なお、本実施例では、ロータリーバルブ1
8をキャビネット2内に内蔵することによりし試料米を
一定の流量で供給して微粉砕しているが、穀粒粉砕機で
試料米を微粉砕して試料容器33に供給する方法もあ
る。それを第10図により説明する。符号85は穀粒粉
砕機であり、基台86の上部に蓋体87を載置し、基台
86と蓋体87とは止め具88により締着しいる。粉砕
室89に金網90を周設し、金網90内に電動機91の
電動機軸92に直結した翼車93を回転自在に軸架し、
翼車93の略中心上方に供給口94を設ける。符号95
は振動供給装置であり、試料米タンク96は支柱97に
より支持している。試料米タンク96の排出口98を振
動供給路99に接近して連絡し、振動供給路99の給穀
端を供給口94に臨ませ、また符号100は振動装置で
あり、符号101は貯留室である。
In this embodiment, the rotary valve 1
The sample rice is supplied at a constant flow rate and finely pulverized by incorporating 8 in the cabinet 2. However, there is also a method in which the sample rice is finely pulverized by the grain crusher and supplied to the sample container 33. This will be described with reference to FIG. Reference numeral 85 is a grain crusher, and a lid 87 is placed on an upper portion of a base 86, and the base 86 and the lid 87 are fastened to each other by a stopper 88. A wire net 90 is provided around the crushing chamber 89, and an impeller 93 directly connected to an electric motor shaft 92 of an electric motor 91 is rotatably mounted in the wire net 90.
A supply port 94 is provided substantially above the center of the impeller 93. Code 95
Is a vibration supply device, and the sample rice tank 96 is supported by a column 97. The discharge port 98 of the sample rice tank 96 is brought close to and connected to the vibration supply path 99 so that the grain feeding end of the vibration supply path 99 faces the supply port 94. Further, reference numeral 100 is a vibration device, and reference numeral 101 is a storage chamber. Is.

【0038】次に上記構成における作用を説明する。試
料米タンク96の試料米は排出口98から振動供給路9
9へ供給され、振動装置100を作動すると試料米は振
動供給路99の給穀端から順次供給口94へ定量的に送
られる。供給口94から粉砕室89へ落下した試料米
は、粉砕室89において高速で回転する翼車93により
金網90にたたきつけられ、そこで粉々に粉砕(50ミ
クロン以下の粒子に粉砕)される。粉砕された試料米は
金網90の通孔から排出され、貯留室101において貯
留される。そして、止め具88を緩めて蓋体87と基台
86との締着状態を開放し、蓋体87を取外して粉砕さ
れた試料米を取出す。粉砕された試料米を試料容器33
に供給し、近赤外光を試料米に照射して米の食味を左右
する成分の含有率を測定する。なお、本発明の方法を利
用して得た米の成分含有率で米の食味評価値の目安をあ
らわし、より正確に米の食味を表現することができる。
Next, the operation of the above configuration will be described. The sample rice in the sample rice tank 96 is fed from the outlet 98 to the vibration supply path 9
When the vibration device 100 is operated, the sample rice is quantitatively sent from the grain end of the vibration supply path 99 to the supply port 94 sequentially. The sample rice dropped from the supply port 94 into the crushing chamber 89 is struck by the impeller 93 rotating at high speed in the crushing chamber 89 against the wire net 90, and crushed into pieces (crushed into particles of 50 microns or less) there. The crushed sample rice is discharged from the through hole of the wire net 90 and stored in the storage chamber 101. Then, the stopper 88 is loosened to release the tightened state of the lid 87 and the base 86, the lid 87 is removed, and the crushed sample rice is taken out. Sample container 33 for crushed sample rice
And irradiate the sample rice with near-infrared light to measure the content of components that influence the taste of rice. The taste of rice can be expressed more accurately by expressing the evaluation value of the taste of rice by the content ratio of rice obtained by using the method of the present invention.

【0039】[0039]

【発明の効果】本発明の利点とするところは次のとおり
である。すなわち、従来、一部の専門家によって行われ
ていた煩わしく、長時間を要する米の成分の含有率の化
学定量分析法は、高精度かつ短時間に測定することは困
難であったが、本発明は、試料米に近赤外光を照射し、
その反射光量、若しくは透過光量、若しくは反射光量と
透過光量との組み合わせから得られる試料米による近赤
外光の吸収程度と、成分換算係数とを演算することによ
って米の成分を算出することを可能としたため、その測
定値が正確であると共に誰でもが容易にまた迅速に測定
できるので、旧来の勘に頼った食味予想や食味評価のた
めの官能試験等の時間ロスが省け、各種の次行程作業や
米の買い付け管理等を合理化することができる。
The advantages of the present invention are as follows. That is, it has been difficult to measure with high precision and in a short time by the chemical quantitative analysis method of the content rate of rice components, which has been conventionally performed by some experts, which is cumbersome and takes a long time. The invention irradiates sample rice with near infrared light,
The component of rice can be calculated by calculating the component conversion coefficient and the absorption degree of near infrared light by the sample rice obtained from the reflected light amount, the transmitted light amount, or the combination of the reflected light amount and the transmitted light amount. Therefore, since the measured value is accurate and anyone can easily and quickly measure it, time loss such as sensory test for taste estimation and taste evaluation that relies on traditional intuition can be omitted, and various next steps It is possible to rationalize work and rice purchase management.

【0040】回折格子によるフィルターによって近赤外
光を得、この近赤外光を用いて試料米による近赤外光の
吸収程度を検出しているので、試料米に対し連続した近
赤外光の走査が可能であり、吸収程度に差が現れる適切
な波長域を多数選択することができる。このため米の成
分含有率をより正確に測定することができる。
Near infrared light is obtained by a filter using a diffraction grating, and the degree of absorption of near infrared light by the sample rice is detected using this near infrared light. Scanning is possible, and it is possible to select a large number of suitable wavelength ranges in which a difference in absorption appears. Therefore, the content rate of rice components can be measured more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】食味測定装置の正断面図。FIG. 1 is a front sectional view of a taste measuring device.

【図2】要部の拡大断面図。FIG. 2 is an enlarged cross-sectional view of a main part.

【図3】要部の斜視図。FIG. 3 is a perspective view of a main part.

【図4】本装置の正面図。FIG. 4 is a front view of the device.

【図5】制御装置の構成を示すブロック図。FIG. 5 is a block diagram showing the configuration of a control device.

【図6】制御装置の動作フロー図。FIG. 6 is an operation flowchart of the control device.

【図7】アミロースの測定値を補正する温度補正値を示
した図。
FIG. 7 is a diagram showing a temperature correction value for correcting the measurement value of amylose.

【図8】近赤外線の連続的分光を行う別実施例の概念
図。
FIG. 8 is a conceptual diagram of another embodiment for performing continuous spectroscopy of near infrared rays.

【図9】波長と吸光度との関係を表わす特性図。FIG. 9 is a characteristic diagram showing the relationship between wavelength and absorbance.

【図10】穀粒粉砕機の一部破断側面図。FIG. 10 is a partially cutaway side view of the grain crusher.

【符号の説明】[Explanation of symbols]

1 近赤外線成分分析装置 2 キャビネット 3 スリット 4 光源 5 反射鏡 6 フィルター 7 積分球 8 窓 9A,9B 反射光量検出器 9C 透過光量検出器 10 電動機 11 測定部 12 透明板 13 試料供給装置 14 一側部 15 供給ホッパー 16 開口部 17 回転翼 18 ロータリーバルブ 19 レベル計 20,21 ローラー 22,23 細粉用ローラー 24 粉砕室 25A〜25D 清掃装置 26 選別装置 27 粗粒子排出口 28 振動フレーム 29 板バネ 30 多孔壁板 31 側面 32 電磁石 33 試料容器 34 試料容器移動体 35 容器受台 36 案内溝 37 ラック 38 軌道軸 39 一側部 40 回転用ハンドル 41 他側部 42 軸受台 43 受台 44 支点台 45 モーター 46 歯車 47 モーター台 48 電磁石 49 回転ローラー 50 充填部位置センサー 51 測定部位置センサー 52 噴射ノズル 53 受箱 54,54B 清掃器 55 表示装置 55A〜55D 表示器 56 操作用押ボタン 56A 手動操作ボタン 56B 自動操作ボタン 56C 透過光量測定選択ボタン 56D 反射・透過併用選択ボタン 57 外部供給部 58 プリンター 59 制御装置 60 演算装置 61 記憶装置 62 信号処理装置 63 電動機 64 キーボード 65 温度検出器 66 端子 67 圧着部 68〜76 駆動装置 77 温度調節器 78 温度検出器 79 分光素子 80 集糠レンズ 81 スリット 82 入光ミラー 83 反射鏡 84 受光ミラー 85 穀粒粉砕機 86 基台 87 蓋体 88 止め具 89 粉砕室 90 金網 91 電動機 92 電動機軸 93 翼車 94 供給口 95 振動供給装置 96 試料タンク 97 支柱 98 排出口 99 振動供給路 100 振動装置 101 貯留室 1 near-infrared component analyzer 2 cabinet 3 slit 4 light source 5 reflecting mirror 6 filter 7 integrating sphere 8 window 9A, 9B reflected light amount detector 9C transmitted light amount detector 10 electric motor 11 measuring part 12 transparent plate 13 sample supply device 14 one side part 15 Supply Hopper 16 Opening 17 Rotating Blade 18 Rotary Valve 19 Level Meter 20,21 Roller 22,23 Fine Powder Roller 24 Grinding Chamber 25A-25D Cleaning Device 26 Sorting Device 27 Coarse Particle Discharge Port 28 Vibratory Frame 29 Leaf Spring 30 Perforated Wall plate 31 Side surface 32 Electromagnet 33 Sample container 34 Sample container moving body 35 Container cradle 36 Guide groove 37 Rack 38 Orbital axis 39 One side 40 Rotation handle 41 Other side 42 Bearing pedestal 43 Support fulcrum 45 Motor 46 Gear 47 Motor stand 48 Electromagnet 49 Rotation low -50 filling position sensor 51 measuring position sensor 52 jet nozzle 53 receiving box 54, 54B cleaner 55 display 55A to 55D display 56 operation push button 56A manual operation button 56B automatic operation button 56C transmitted light intensity measurement selection button 56D Reflection / transmission combination selection button 57 External supply unit 58 Printer 59 Control device 60 Computing device 61 Storage device 62 Signal processing device 63 Electric motor 64 Keyboard 65 Temperature detector 66 Terminal 67 Crimping part 68 to 76 Driving device 77 Temperature controller 78 Temperature detection Device 79 Spectroscopic element 80 Bran collecting lens 81 Slit 82 Input mirror 83 Reflecting mirror 84 Light receiving mirror 85 Grain crusher 86 Base 87 Cover 88 Stopper 89 Grinding chamber 90 Wire net 91 Electric motor 92 Electric motor shaft 93 Wing wheel 94 Supply port 95 Vibration Supply Device 9 6 sample tank 97 pillar 98 discharge port 99 vibration supply path 100 vibration device 101 storage chamber

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 近赤外分光分析装置および制御装置を備
え、近赤外分光分析装置は回折格子によるフィルターに
よって近赤外光を得、この近赤外光を用いて試料米によ
る近赤外光の吸収程度を検出し、その検出値を出力する
手段を有し、制御装置は米の主要成分の含有率と米に近
赤外光を照射した際のその吸収程度との関連から定めた
成分換算係数を記憶した手段と前記の検出値と成分換算
係数から成分の含有率を演算し出力する演算手段を有す
ることを特徴とした米の成分含有率測定装置。
1. A near-infrared spectroscopic analysis device and a control device are provided, and the near-infrared spectroscopic analysis device obtains near-infrared light by a filter using a diffraction grating, and uses this near-infrared light to sample the near-infrared light. It has a means to detect the degree of light absorption and output the detected value, and the control device was determined from the relation between the content rate of the main components of rice and the degree of absorption when rice was irradiated with near infrared light. An apparatus for measuring a component content rate of rice, comprising: a unit that stores a component conversion coefficient; and a calculation unit that calculates and outputs a content rate of a component from the detected value and the component conversion coefficient.
【請求項2】 近赤外分光分析装置は試料米から反射し
た光を受光する受光器を備えていることを特徴とした特
許請求の範囲第1項に記載する米の成分含有率測定装
置。
2. The rice component content measuring device according to claim 1, wherein the near-infrared spectroscopic analysis device is equipped with a light receiver for receiving light reflected from the sample rice.
【請求項3】 近赤外分光分析装置は試料米を透過した
光を受光する受光器を備えていることを特徴とした特許
請求の範囲第1項に記載する米の成分含有率測定装置。
3. The rice component content measuring apparatus according to claim 1, wherein the near-infrared spectroscopic analyzer is equipped with a light receiver for receiving the light transmitted through the sample rice.
【請求項4】 近赤外光分光分析装置は試料米を透過し
た光および試料米から反射した光を受光する受光器を備
えていることを特徴とした特許請求の範囲第1項に記載
する米の成分含有率測定装置。
4. The near-infrared spectroscopic analyzer is provided with a light receiver for receiving the light transmitted through the sample rice and the light reflected from the sample rice, according to claim 1. Equipment for measuring the ingredient content of rice.
【請求項5】 フィルターは近赤外波長領域を連続的に
分光できるものであることを特徴とした特許請求の範囲
第1項〜同第4項のいずれか一つに記載する米の成分含
有率測定装置。
5. The rice component-containing material according to any one of claims 1 to 4, wherein the filter is capable of continuously spectrally analyzing a near infrared wavelength region. Rate measuring device.
【請求項6】 フィルターにより設定される任意波長の
波長許容範囲を±10nmとされていることを特徴とした
特許請求の範囲第1項〜同第5項のいずれか一つに記載
する米の成分含有率測定装置。
6. The rice according to any one of claims 1 to 5, characterized in that an allowable wavelength range of an arbitrary wavelength set by a filter is ± 10 nm. Component content rate measuring device.
【請求項7】 試料米を充填した容器またはその近傍に
温度検出器が配置され、温度検出値によって成分含有率
を補正する手段を備えていることを特徴とした特許請求
の範囲第1項〜同第6項のいずれか一つに記載する米の
成分含有率測定装置。
7. A temperature detector is arranged in a container filled with sample rice or in the vicinity thereof, and means for correcting the component content rate according to the detected temperature value is provided. Item 6. The rice component content measuring apparatus as described in any one of 6 above.
【請求項8】 試料米を微砕粒に粉砕する粉砕装置を有
することを特徴とした特許請求の範囲第1項〜同第7項
のいずれか一つに記載する米の成分含有率測定装置。
8. The device for measuring the content rate of rice components according to any one of claims 1 to 7, further comprising a crushing device for crushing the sample rice into finely crushed grains.
【請求項9】 測定装置を恒温に維持するための加温装
置と温度設定器を備えていることを特徴とした特許請求
の範囲第1項〜同第8項のいずれか一つに記載する米の
成分含有率測定装置。
9. The method according to claim 1, further comprising a heating device and a temperature setting device for maintaining the measuring device at a constant temperature. Equipment for measuring the ingredient content of rice.
JP6117388A 1994-05-09 1994-05-09 Apparatus for measuring content of component of rice Pending JPH07140134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6117388A JPH07140134A (en) 1994-05-09 1994-05-09 Apparatus for measuring content of component of rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117388A JPH07140134A (en) 1994-05-09 1994-05-09 Apparatus for measuring content of component of rice

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3081487A Division JPH07104276B2 (en) 1987-02-12 1987-02-12 Rice component content rate measuring device

Publications (1)

Publication Number Publication Date
JPH07140134A true JPH07140134A (en) 1995-06-02

Family

ID=14710421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117388A Pending JPH07140134A (en) 1994-05-09 1994-05-09 Apparatus for measuring content of component of rice

Country Status (1)

Country Link
JP (1) JPH07140134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019740A (en) * 1996-07-01 1998-01-23 Satake Eng Co Ltd Sample-filling device in spectrochemical analyzing apparatus
JP2001330556A (en) * 2000-05-24 2001-11-30 Shizuoka Seiki Co Ltd Sample cell with built-in function of measuring temperature and measuring method by grain analyser using it
AU2006200712B1 (en) * 2006-02-21 2006-09-28 Rosewood Research Pty Ltd Spectographic sample monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147795A (en) * 1974-05-17 1975-11-27
JPS57153249A (en) * 1981-03-18 1982-09-21 Ketsuto Kagaku Kenkyusho:Kk Discriminating method for grain quality of unpolished rice
JPS59145951A (en) * 1983-02-08 1984-08-21 Satake Eng Co Ltd Measuring device for damaged grain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147795A (en) * 1974-05-17 1975-11-27
JPS57153249A (en) * 1981-03-18 1982-09-21 Ketsuto Kagaku Kenkyusho:Kk Discriminating method for grain quality of unpolished rice
JPS59145951A (en) * 1983-02-08 1984-08-21 Satake Eng Co Ltd Measuring device for damaged grain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019740A (en) * 1996-07-01 1998-01-23 Satake Eng Co Ltd Sample-filling device in spectrochemical analyzing apparatus
JP2001330556A (en) * 2000-05-24 2001-11-30 Shizuoka Seiki Co Ltd Sample cell with built-in function of measuring temperature and measuring method by grain analyser using it
AU2006200712B1 (en) * 2006-02-21 2006-09-28 Rosewood Research Pty Ltd Spectographic sample monitoring

Similar Documents

Publication Publication Date Title
US5034609A (en) Method for evaluating quality of raw coffee beans
KR910004140B1 (en) Rise quality valuation device
KR920004535B1 (en) Measuring apparatus for amylose and/or amylopection content in rice
JPH07140134A (en) Apparatus for measuring content of component of rice
JPH07104276B2 (en) Rice component content rate measuring device
JPS63304141A (en) Method and device for evaluating quality of rice
JPH07104275B2 (en) Method and apparatus for measuring the taste of rice
JPS63246640A (en) Method and apparatus for measuring content of amylose or amylopectin of rice
JPH07104274B2 (en) Method and apparatus for measuring the taste of rice
JP2745020B2 (en) Coffee bean quality evaluation device
JPS63167243A (en) Method for measuring component content of rice
JP2892084B2 (en) Rice quality evaluation method and rice quality evaluation device
JPS6367547A (en) Taste measuring instrument for rice
JPH06288907A (en) Evaluation of quality of unhulled rice
JPS63167244A (en) Instrument for measuring content of amylose or amylopectin of rice
JPS62291546A (en) Method and apparatus for measuring taste of rice
JPS63313039A (en) Method and instrument for measuring content of amylose or amylopectin of rice
JP2739220B2 (en) Quality evaluation method and apparatus for green coffee beans
JPS6375643A (en) Method for measuring content of amylose or amylopectin of rice
JPS62299743A (en) Measuring instrument for taste of rice
JP2745024B2 (en) Method and apparatus for evaluating the quality of coffee beans
JPS63210750A (en) Method and apparatus for evaluating quality of rice
JPH07104280B2 (en) Evaluation method of rice taste
JPS63241338A (en) Rice taste measuring apparatus
JPS63175747A (en) Instrument for measuring content of amylose or amylopectin of rice