JPH02143147A - Quality evaluating device for coffee bean - Google Patents

Quality evaluating device for coffee bean

Info

Publication number
JPH02143147A
JPH02143147A JP63297870A JP29787088A JPH02143147A JP H02143147 A JPH02143147 A JP H02143147A JP 63297870 A JP63297870 A JP 63297870A JP 29787088 A JP29787088 A JP 29787088A JP H02143147 A JPH02143147 A JP H02143147A
Authority
JP
Japan
Prior art keywords
quality evaluation
coffee beans
component
coffee
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63297870A
Other languages
Japanese (ja)
Other versions
JP2745020B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Satoru Satake
佐竹 覚
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP29787088A priority Critical patent/JP2745020B2/en
Publication of JPH02143147A publication Critical patent/JPH02143147A/en
Application granted granted Critical
Publication of JP2745020B2 publication Critical patent/JP2745020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Abstract

PURPOSE:To facilitate evaluation without making the sensory inspection by the taste which has individual differences and chemical quantitative analysis by constituting the quality evaluating device of narrow band-pass filters, a near IR spectrochemical analysis apparatus, a device for storing the component conversion coefft. value of coffee beans and the specific coefft. for calculating quality evaluation, an arithmetic unit, a display device, etc. CONSTITUTION:The quality evaluating device 1 is operated to be turned on a light source 31 of the near IR spectrochemical analysis apparatus 3 and the entire part of the apparatus 3 is preheated until the near IR ray arriving at a measuring section 37 stabilizes. A sample container mounting box 5 is drawn out of a cabinet 2 of the device 1 upon lapse of the prescribed time. A ground beam sample 55 is packed therein and the container 5 is returned to the home position. The optimum filter among the narrow band-pass filters 33a to 33f is selected and the sample 55 is irradiated with the near IR ray and the reflected absorbancy is measured. The angle of inclination of a reflecting mirror 32 is changed at this time and the reflected light from an integrating sphere 34 is used as the reference quantity of irradiation. This light is made incident to detectors 35a, 35b and is compared with the quantity of the reflected light from the sample 55. The light is then inputted to the respective devices 4a to 4c, 5 for processing, storing, computing and displaying.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はコーヒー豆、特に焙煎前の生豆の品質評価方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a method for evaluating the quality of coffee beans, particularly green beans before roasting.

(従来の技術とその問題点) 一般に市販されるコーヒー豆は、完熟したコーヒー豆の
果実を乾燥、脱穀、精選して1qられた生豆を焙煎機に
投入しD−スト工程で用味と香りが与えられたものであ
る。つまり焙煎によりコーヒー豆は生豆の持つ成分が化
学変化し揮発性芳香やカルメラ色などを生じるものであ
り、酸味・苦味・甘味・香りというコーヒーの味は焙煎
の条件によって左右されることになるが、一方、コーヒ
ーの品種や栽培条件の違いによる生豆の性状の差は)4
学的分析によりその味に大きな差を生じることは明らか
で、前記焙煎条件が同一であればコーヒーの味は生豆の
品質によってほぼ決定されることになる。
(Conventional technology and its problems) Commercially available coffee beans are produced by drying, threshing, and selecting 1 q of ripe coffee beans, which are then put into a roasting machine and processed through the D-stir process. It is given a fragrance. In other words, roasting causes chemical changes in the components of green coffee beans, producing volatile aromas and carmela color, and the taste of coffee, including sourness, bitterness, sweetness, and aroma, is influenced by the roasting conditions. However, on the other hand, there are differences in the properties of green beans due to differences in coffee varieties and cultivation conditions)4
It is clear from scientific analysis that there is a large difference in taste, and if the roasting conditions are the same, the taste of coffee is almost determined by the quality of the green beans.

ところでこれらコーヒー豆の品質の判定は、前記ロース
ト工程で焙煎されたコーヒー豆を粉砕し、沸騰した熱温
を加え抽出したものを実際に味わってみて行う、いわゆ
る官能試験であり、公正を期するため複数の人員と長時
間とを要するものであった。しかもその判定は人的要因
に大きく左右される人間の味覚に基づいて行われるもの
であって、客観的にかつ普遍的な判定に成り得えず、そ
のため熟練者を必要としていた。
By the way, the quality of these coffee beans is judged by a so-called sensory test, in which the coffee beans roasted in the roasting process are crushed, heated to boiling temperature, and the extracted product is actually tasted. This required multiple personnel and a long time. Moreover, the judgment is made based on human taste, which is greatly influenced by human factors, and cannot be objectively and universally determined, and therefore requires a skilled person.

以上のことから人的要因に左右されず客観的にかつ簡便
に行えるコーヒー豆の判定装置の開発が望まれているこ
とはいうまでもない。
From the above, it goes without saying that there is a desire for the development of a coffee bean determination device that can objectively and easily perform coffee bean determination without being influenced by human factors.

〔発明の目的〕[Purpose of the invention]

イこで本発明は、コーヒーの生豆に含まれ、コーヒーの
味覚を決定する主成分、つまり蛋白質、脂質、クロロゲ
ン酸、カフェイン、水分、蔗糖等の含有率を短時間で測
定し、その測定値と前記成分に対応して設定した品質評
価のための特定係数とに基づき客観的にコーヒー豆の品
質評価値を演算・表示し生豆の状態で判定するコーヒー
豆の品質評価装置を提供することである。
Therefore, the present invention measures the content of the main components contained in green coffee beans and determines the taste of coffee, such as protein, lipid, chlorogenic acid, caffeine, water, and sucrose, in a short time. Provides a coffee bean quality evaluation device that objectively calculates and displays a coffee bean quality evaluation value based on measured values and specific coefficients for quality evaluation set corresponding to the components, and makes a judgment based on the state of the green beans. It is to be.

(問題を解決するための手段〕 本発明によれば、コーヒー豆に含まれる所定の成分の含
有率を測定し、その測定値に基づきコーヒー豆の品質評
価を行うコーヒー豆の品質評価装置であって、該装置は
、光源と該光源が発する光のうち前記コーヒー豆の被測
定成分の含有率測定に適する特定波長のみを通過させ、
測定部に照射される近赤外光を作る狭帯域フィルターと
、前記測定部に発揮されるコーヒー豆からの測定光を検
出する検出器とを有する近赤外分光分析装置と、前記被
測定成分に対応して設定された前記コーヒー豆の被測定
成分の含有率計算のための成分換算係数値と、前記被測
定成分に対応して設定された品質評価計算のための特定
係数とを記憶する記憶装置と、該記憶装置に記憶された
前記成分換算係数値並びに前記特定係数と前記検出器か
らの検出信号とに基づき、コーヒー豆の被測定成分の含
有率と品質評価値とを演算する演算装置とを有する制御
装置と、該制’le装置に接続され前記演算装置が演算
したコーヒー豆の品質評価値を可視表示または印字表示
する表示装置と、そして、前記近赤外分光分析装置の前
記測定部に前記コーヒー豆を提供する試料配置部とから
なるコーヒー豆の品質評(illi装置を提供すること
で問題解決の手段とする。
(Means for Solving the Problem) According to the present invention, there is provided a coffee bean quality evaluation device that measures the content rate of a predetermined component contained in coffee beans and evaluates the quality of the coffee beans based on the measured value. The device transmits only a light source and a specific wavelength of light emitted by the light source that is suitable for measuring the content of the component to be measured in the coffee beans,
A near-infrared spectrometer comprising a narrow band filter that generates near-infrared light that is irradiated onto a measurement section, a detector that detects measurement light from coffee beans that is exerted on the measurement section, and the component to be measured. A component conversion coefficient value for calculating the content of the measured component of the coffee beans, which is set corresponding to the measured component, and a specific coefficient for quality evaluation calculation, which is set corresponding to the measured component, are stored. a storage device, and an operation for calculating the content rate and quality evaluation value of the measured component of the coffee beans based on the component conversion coefficient value stored in the storage device, the specific coefficient, and the detection signal from the detector; a control device having a control device; a display device connected to the control device and displaying visually or printed the quality evaluation value of the coffee beans calculated by the arithmetic device; By providing a coffee bean quality evaluation (illi device) consisting of a measuring section and a sample placement section that provides the coffee beans, the problem can be solved.

更に本発明によれば、コーヒー豆に含まれる所定の成分
の含有率を測定し、その測定値に基づきコーヒー豆の品
質評価を行うコーヒー豆の品質評価装置であって、該装
置は、光源と、該光源が発する光のうち前記コーヒー豆
の被測定成分の含有率測定に適する特定波長のみを通過
させ、測定部に照射される近赤外光を作る狭帯域通過)
、イルターと、前記測定部に配置されるコーヒー豆から
の測定光を検出する検出器とを有する近赤外分光分析装
置と、前記被測定成分に対応して設定された前記コーヒ
ーまめの被測定成分の含有率計算のための成分換算係数
値と、前記被測定成分に対応して設定された品質評価値
計算のための特定係数とを記憶する装置と、該記憶装置
に記憶された前記成分換算係数値並びに前記特定係数と
前記検出器からの検出信号とに基づき、コーヒー豆の被
測定成分の含有率と品質評価値とを演算する演算装置と
を有づる制御装置と、該制御装置に接続され、前記演算
装置が演算したコーヒー豆の品質評価値を可視表示又は
印字表示する表示装置と、前記近赤外分光分析装置の前
記測定部に前記コーヒー豆を微細粒に粉砕して前記試料
容器に充填した後、該試料容器を前記近赤外分光分析装
置の前記測定部に搬送するための試料供給装置とからな
るコーヒー豆の品質評価装置を提供することにより問題
解決の手段とした。
Further, according to the present invention, there is provided a coffee bean quality evaluation device that measures the content of a predetermined component contained in coffee beans and evaluates the quality of the coffee beans based on the measured value, the device comprising a light source and a light source. , a narrow band pass that allows only a specific wavelength suitable for measuring the content of the component to be measured in the coffee beans to pass among the light emitted by the light source, and generates near-infrared light that is irradiated to the measuring section)
, a near-infrared spectrometer having a filter and a detector arranged in the measurement section to detect measurement light from coffee beans, and a measurement target of the coffee beans set corresponding to the component to be measured. A device for storing component conversion coefficient values for calculating content rates of components and specific coefficients for calculating quality evaluation values set corresponding to the measured components; and the components stored in the storage device. A control device having a calculation device that calculates a content rate of a measured component of coffee beans and a quality evaluation value based on a conversion coefficient value, the specific coefficient, and a detection signal from the detector; A display device is connected to display the quality evaluation value of the coffee beans calculated by the arithmetic device visually or in print; The problem was solved by providing a coffee bean quality evaluation device comprising a sample supply device for transporting the sample container to the measurement section of the near-infrared spectrometer after filling the container.

〔実施例〕〔Example〕

以下、本発明によるコーヒー豆の品質評価装置の最初の
実施例を、添付図面第1図ないし第3図を参照しながら
説明する。
Hereinafter, a first embodiment of the coffee bean quality evaluation apparatus according to the present invention will be described with reference to the accompanying drawings 1 to 3.

第1図は本発明によるコーヒー豆の品質評価装置1を正
面から見たときの概略図である。キャビネット2の内部
には、その詳細な構成は次の第2図を参照して説明する
近赤外分光分析装置3及び制御装置4が配設される。キ
ャビネット2の前面パネルには、被測定コーヒー豆を入
れる試料容器(試料配置部)を装着するための試料容器
装着箱5、装置の操作手順や演算結果等を可視表示する
発光ダイオード又はCRT形式の表示装置6、操作用ブ
ツシュボタン7及び演算結果のハードコピーを可能とす
るプリンター8が配設される。制御装置4は、近赤外分
光分析装置3の光源、検出器、表示装@6、操作用ブツ
シュボタン7、プリンター8等に接続され各種信号を処
理するための入出力信号処理装置4aと、各成分の含有
率を計算すたるための成分換算係数値、品質評価値を計
算するためにコーヒー豆の主成分ごとに個別に設定され
た特定係数、入力装置ei(キーボード)9を介入して
入力される各銘柄別あるいは品位別の豆価額、各種補正
及び各種制御手順等を記憶するための記憶装置4bと、
近赤外分光分析装置3により得られる測定値と前記特定
係数とに基づきコーヒー豆の品質評価値等を演算するた
めの演算装置4Cとから成る。なお、コーヒー豆の主要
成分ごとに個別に設定される特定係数や必要な補正値が
、記憶装置4b内の読み出し専用のメモリ(以下、RO
Mと言う)に予め記憶されている。また、プリンター8
は内蔵型に限られず、外部接続型であっても構わない。
FIG. 1 is a schematic diagram of a coffee bean quality evaluation apparatus 1 according to the present invention viewed from the front. Inside the cabinet 2, a near-infrared spectrometer 3 and a control device 4, the detailed configuration of which will be explained with reference to FIG. 2 below, are disposed. On the front panel of the cabinet 2, there is a sample container mounting box 5 for mounting a sample container (sample placement section) containing coffee beans to be measured, and a light emitting diode or CRT type display for visually displaying the operating procedures and calculation results of the device. A display device 6, operating buttons 7, and a printer 8 capable of making a hard copy of the calculation results are provided. The control device 4 includes an input/output signal processing device 4a that is connected to a light source, a detector, a display @ 6, an operation button 7, a printer 8, etc. of the near-infrared spectrometer 3 and processes various signals. , a component conversion coefficient value for calculating the content rate of each component, a specific coefficient individually set for each main component of coffee beans to calculate a quality evaluation value, and input device ei (keyboard) 9 is used to calculate the content. A storage device 4b for storing input bean prices for each brand or grade, various corrections, various control procedures, etc.;
It comprises a calculation device 4C for calculating a quality evaluation value of coffee beans based on the measurement value obtained by the near-infrared spectrometer 3 and the specific coefficient. Note that the specific coefficients and necessary correction values that are individually set for each main component of coffee beans are stored in a read-only memory (hereinafter referred to as RO) in the storage device 4b.
M) is stored in advance. Also, printer 8
is not limited to a built-in type, and may be an externally connected type.

第2図は、キャビネット2の内部に配設される近赤外分
光分析装置3の一実施例の要部断面図である。図示され
る近赤外分光分析装置3は反射式のものであり、主なる
構成部品として、光源31、反射鏡32、狭帯域通過フ
ィルター33、積分球34及び検出器35a、35bを
有する。光源31から発せられ、適当な光学系(図示せ
ず)を通って平行光線となった光は、狭帯域通過フィル
ター33を通過することにより特定波長の近赤外光とな
った後、傾斜角度を自由に変え得るように構成された反
射鏡32により、積分球34の上部を開口して設けられ
た採光窓36に向けて方向を変えられる。反射鏡32で
反射し、積分球34の採光窓36を介して積分球34の
内部に入った近赤外光は、積分球34の底部を開口して
設けられた測定部37、従って試料容器装着箱5の後方
所定位置に記載される試料容器52内のコーヒー豆55
に真上から照射される。コーヒー豆55からの拡散反射
光は、積分球34の内部に反射しながら、最終的には、
測定部37を中心に対象な位置に配設される一対の検出
器35a、35bに到達し、これにより反射光の強度が
測定される。なお、図示実施例では、光学的な対称性を
修正し、コーヒー豆55からの反射光を効率良く受光す
るために、検出器は一対即ち参照番号35aと35bで
示される二個が設けられているが、その数は二個に限ら
れることなく、−個であっても又は三個以上の検出器で
あっても構わない。
FIG. 2 is a sectional view of a main part of an embodiment of the near-infrared spectrometer 3 disposed inside the cabinet 2. As shown in FIG. The illustrated near-infrared spectrometer 3 is of a reflective type, and has a light source 31, a reflecting mirror 32, a narrow band pass filter 33, an integrating sphere 34, and detectors 35a and 35b as main components. The light emitted from the light source 31 passes through an appropriate optical system (not shown) and becomes parallel light. After passing through the narrow band pass filter 33, the light becomes near-infrared light of a specific wavelength. A reflecting mirror 32 configured to freely change the direction of the integrating sphere 34 can be used to change the direction toward a lighting window 36 provided by opening the top of the integrating sphere 34. The near-infrared light reflected by the reflecting mirror 32 and entering the interior of the integrating sphere 34 through the lighting window 36 of the integrating sphere 34 is transmitted to the measuring section 37 provided by opening the bottom of the integrating sphere 34, and thus to the sample container. Coffee beans 55 in the sample container 52 described at a predetermined position behind the mounting box 5
is irradiated from directly above. The diffusely reflected light from the coffee beans 55 is reflected inside the integrating sphere 34, and finally,
The reflected light reaches a pair of detectors 35a and 35b arranged at symmetrical positions with the measurement unit 37 as the center, and the intensity of the reflected light is measured. In the illustrated embodiment, in order to correct the optical symmetry and efficiently receive the reflected light from the coffee beans 55, a pair of detectors, ie, two detectors indicated by reference numbers 35a and 35b, are provided. However, the number is not limited to two, and may be - or three or more.

ここで、光源31と反射鏡32との間に設けられ、光源
31から出た光がこれを通過することにより特定波長の
近赤外光となる狭帯域通過フィルター33の構成及びこ
れに要求される物理的特性等を説明する。狭帯域通過フ
ィルター33は、それぞれが異なる主波長通過特性を有
する任意複数個のフィルター(例えば、6個のフィルタ
ー33a〜33f)からなり、これらを回転円盤に取り
付けこれを適当角度づつ回動させることにより、光源3
1と反射鏡32とを結ぶ線上に所望のフィルターが位置
するように順次選択・交換できる構成とする。なお、フ
ィルターの通過特性で主波長とは、フィルターの面に対
して入射光軸が直角の時は透過する近赤外線のうちの最
大透過波長のことである。狭帯域透過フィルター33の
他の具体的構成例としては、角柱状の反射鏡32を内部
に位置させ、その反射鏡の各面に対向する位置に複数個
のフィルター33a〜33fをそれぞれ位置させて角柱
状に構成しこれを回転可能とする構成もある。なお、狭
帯域通過フィルター33が円板状のものであるとき、入
射光軸に対するその回転面の傾斜角度を、電動機等の手
段により微細に且つ連続的に調整できるようにしておけ
ば、各フィルターが持つ通過特性の主波長からシフトし
た異なる波長の近赤外光を連続的に作り出すことができ
る。これは、−膜内に良く知られている現象であるが、
フィルターの面に対する入射光軸の角度を90°から変
化させると、その角度変化に応じて最大透過波長から数
十nmの範囲でシフトする現象による。
Here, the configuration of the narrow band pass filter 33, which is provided between the light source 31 and the reflecting mirror 32, and through which the light emitted from the light source 31 becomes near-infrared light of a specific wavelength, and the requirements for this filter are explained. Explain the physical characteristics etc. The narrow band pass filter 33 is composed of a plurality of arbitrary filters (for example, six filters 33a to 33f) each having a different dominant wavelength pass characteristic, and these are mounted on a rotating disk and rotated by an appropriate angle. Accordingly, light source 3
The configuration is such that a desired filter can be sequentially selected and replaced so that it is located on the line connecting the reflector 1 and the reflecting mirror 32. Note that in the transmission characteristics of a filter, the dominant wavelength refers to the maximum transmission wavelength of near-infrared rays that are transmitted when the incident optical axis is perpendicular to the filter surface. Another specific example of the structure of the narrowband transmission filter 33 is to place a prismatic reflecting mirror 32 inside and place a plurality of filters 33a to 33f at positions facing each surface of the reflecting mirror. There is also a configuration in which it is configured in a prismatic shape and is rotatable. In addition, when the narrow band pass filter 33 is disc-shaped, if the inclination angle of its rotating surface with respect to the incident optical axis can be finely and continuously adjusted by means such as an electric motor, each filter can be adjusted finely and continuously. It is possible to continuously produce near-infrared light of different wavelengths shifted from the main wavelength of the transmission characteristic possessed by This is a well-known phenomenon within membranes.
This is due to the phenomenon that when the angle of the incident optical axis with respect to the surface of the filter is changed from 90 degrees, the maximum transmission wavelength shifts within a range of several tens of nanometers in accordance with the change in angle.

次に、狭帯域通過フィルター33に要求される物理的特
性を第3図に基づき説明する。第3図は、異なるコーヒ
ー豆に対して波長が連続的に変化する近赤外線光を照射
したときの、照射波長と吸光度との関係を示すグラフ(
吸光度曲線)である。吸光度1oo1o/Iは、基準照
射光口(全照射光ff1)Ioに対する試料米からの反
射光量Iの比の逆数の常用対数である。前記各成分の含
有ωの多少が吸光度差として顕著に現れていることが容
易に理解できる。本発明はこの現象を利用してコーヒー
豆に含まれる所定の成分の含有率を測定するものである
ため、測定のためにコーヒー豆に照射される近赤外光の
波長としては、波長領fa 1100〜2500rvの
うち、各成分に対して吸光度曲線上特異的なピークが見
られる(本実施例ではAn…、3n10l・・・Fnm
とする)。従って、狭帯域通過フィルター33が備える
各フィルター33a〜33fは、コーヒー豆に含まれる
各成分の測定に適した前記各波長の近赤外光を作るべく
、前記各波長を特定通過特性、即ち主波長として持つこ
とが要求される。
Next, the physical characteristics required of the narrow band pass filter 33 will be explained based on FIG. 3. Figure 3 is a graph showing the relationship between irradiation wavelength and absorbance when different coffee beans are irradiated with near-infrared light whose wavelength changes continuously (
absorbance curve). The absorbance 1oo1o/I is the common logarithm of the reciprocal of the ratio of the amount of reflected light I from the sample rice to the reference irradiation light aperture (total irradiation light ff1) Io. It can be easily understood that the amount of content ω of each of the above components is clearly expressed as a difference in absorbance. Since the present invention utilizes this phenomenon to measure the content of a predetermined component contained in coffee beans, the wavelength of near-infrared light irradiated onto coffee beans for measurement is within the wavelength range fa. Among 1100 to 2500 rv, specific peaks can be seen on the absorbance curve for each component (in this example, An..., 3n10l...Fnm
). Therefore, each of the filters 33a to 33f included in the narrow band pass filter 33 has a specific pass characteristic, that is, a main It is required to have it as a wavelength.

次に、上記構成を有する本発明のコーヒー豆の品質評価
装置の具体的動作を説明する。まず、操作用ブツシュボ
タン7の操作により光源31を点灯させ、光源31から
発せられた光に基づく測定部37に到達する特定波長の
近赤外光が安定するまで、近赤外分光分析装置3の全体
を予熱する。予熱のための所定時間が経過したら、試料
容器装着箱5を装置のキャビネット27’J11ろ−旦
引き出し、粉砕したコーヒー豆の試料55を充填した試
v1容器52を所定位置に載置させた後、キャビネット
2内に挿入することにより測定早漏を完了する。なお、
コーヒー豆55は、測定値に誤差が生じないようにする
ために、その粒子の大きさが約50ミクロン以下に粉砕
されていることが望ましいが、必ずしも粉砕しなければ
ならないものではない。また、乱反射による光のロスを
少なくする為に、粉砕されたコーヒー豆55は、その表
面が平坦面となるような状態で試料容器52に充填され
ること、さらに、透明ガラス板で多少圧力を加えながら
その表面を覆うことが好ましい。
Next, the specific operation of the coffee bean quality evaluation apparatus of the present invention having the above configuration will be explained. First, the light source 31 is turned on by operating the operating button 7, and the near-infrared spectrometer Preheat the entire 3. After a predetermined period of time for preheating has elapsed, the sample container mounting box 5 is pulled out from the apparatus cabinet 27'J11, and the test v1 container 52 filled with the ground coffee bean sample 55 is placed in a predetermined position. , complete the measurement of premature ejaculation by inserting it into the cabinet 2. In addition,
The coffee beans 55 are desirably ground to a particle size of about 50 microns or less in order to avoid errors in the measured values, but this is not necessarily the case. In addition, in order to reduce light loss due to diffused reflection, the ground coffee beans 55 are filled into the sample container 52 with the surface thereof being flat, and some pressure is applied using a transparent glass plate. It is preferable to cover the surface while adding it.

前記測定早漏作業が完了したら、次に、最初にAnIl
lを主波長として持つフィルター33Aが光it!31
と反射鏡32とを結ぶ線上に来るように選択され、波長
Anmの近赤外光をコーヒー豆55に対して照射したと
きの反射吸光度の測定作業に入る。反射吸光度の測定作
業は、コーヒー豆55に対して照射される全照射m、即
ち基準光量の測定と、コーヒー豆55に対して前記基準
照射光量を照射した時にコーヒー豆55で実際に反射さ
れる反射光量の測定との2つの測定からなる。1つのフ
ィルターについてこれから2つの測定のどちらかを先に
実施しても構わないが、以下の説明では、基準照射光口
の測定の方が先に実施されるものとして説明する。基準
照射光口の測定は、傾斜角度が可変に構成された反射鏡
32の傾斜角度を、これからの反射光が積分球34の内
壁に直接当たるような角度に、電動機等を用いた回動手
段(図示せず)により変えた状態で実施される。こうす
ることにより、積分球34の内壁に直接当てられた反射
鏡32からの光は、内壁を多方向に拡散反射しながら最
終的には検出器35a 、35bに到達し、基準照射光
量として検出される。一方コーヒー豆55からの反射光
mの測定は、反1 tJI 32の傾斜角度が第2図に
示す元の位置に戻された後、前述した原理により行われ
る。なお、測定準備完了後の最初のフィルターの選択、
基準照射光量の測定及び反射光量の測定までの各実行は
、制御i10装置4の記憶装置4b内のROMに手順プ
ログラムを記憶させ、そのプログラムに従って自動的に
行えるようにできることは言うまでもない。また、1つ
のフィルターについての前述基準照射光聞及び反射光量
の各測定をそれぞれ複数回実施し、測定値としてそれら
の平均を採れるようにすることも測定精度を上げるのに
役立つ。検出器35a 、35bによって検出された基
準照射光量及びコーヒー豆55からの反射光量に基づ(
各測定値は、コーヒー豆に含まれる蛋白質、脂質、水分
等の各含有率を計算するための実測データとして制御装
置4に連絡され、記憶装置4b内のよき込み可能なメモ
リ(以下、RAMと言う)に−旦記憶される。
After the measurement premature ejaculation work is completed, first
The filter 33A having l as its main wavelength is the light it! 31
and the reflecting mirror 32, and the process of measuring the reflected absorbance when the coffee beans 55 are irradiated with near-infrared light having a wavelength of Anm begins. The measurement work of reflection absorbance consists of measuring the total irradiation m irradiated onto the coffee beans 55, that is, the reference amount of light, and measuring the amount of light actually reflected by the coffee beans 55 when the coffee beans 55 are irradiated with the reference amount of irradiation light. It consists of two measurements: the measurement of the amount of reflected light. Although it is possible to carry out either of the two measurements on one filter first, in the following explanation, the measurement of the reference irradiation light aperture will be explained as being carried out first. Measurement of the reference irradiation light aperture is performed by rotating means using an electric motor or the like to adjust the inclination angle of the reflecting mirror 32, which is configured to have a variable inclination angle, to an angle such that the reflected light directly hits the inner wall of the integrating sphere 34. (not shown). By doing this, the light from the reflecting mirror 32 that is directly applied to the inner wall of the integrating sphere 34 is diffusely reflected on the inner wall in multiple directions, and finally reaches the detectors 35a and 35b, where it is detected as the reference irradiation light amount. be done. On the other hand, the measurement of the reflected light m from the coffee beans 55 is performed according to the above-described principle after the inclination angle of 1 tJI 32 is returned to the original position shown in FIG. In addition, the first filter selection after measurement preparation is completed,
It goes without saying that each execution up to the measurement of the reference irradiation light amount and the reflected light amount can be performed automatically according to a procedure program stored in the ROM in the storage device 4b of the control i10 device 4. Furthermore, it is also useful to increase measurement accuracy by measuring the reference irradiation light level and the amount of reflected light for one filter a plurality of times, and averaging them as the measured value. Based on the reference irradiation light amount detected by the detectors 35a and 35b and the reflected light amount from the coffee beans 55 (
Each measurement value is communicated to the control device 4 as actual measurement data for calculating each content rate of protein, lipid, moisture, etc. contained in the coffee beans, and is stored in a reloadable memory (hereinafter referred to as RAM) in the storage device 4b. (say) to be remembered.

照射波長、A、nmにおける吸光度の測定が終了したら
、次の照射波長、即ち本実施例の場合BnIllでの吸
光度の測定に移行する。ここでも、基準照射光量の測定
及び反射光量の測定が、前述Anlでのときと同じ方法
及び手順で実施される。
After the measurement of the absorbance at the irradiation wavelength, A, nm is completed, the process moves on to the measurement of the absorbance at the next irradiation wavelength, that is, BnIll in this example. Also here, the measurement of the reference irradiation light amount and the measurement of the reflected light amount are performed using the same method and procedure as in Anl described above.

各測定値は、前回と同様に、各成分の含有率計算のため
の実測データとして制御装置4に連絡され、記憶装置4
b内のRAMに一時記憶される。以下同様に、残りの各
吸光度測定、即ち、波長Cnm、 D nm、 E n
m、 F nmでの吸光度測定が順次行われ、各測定値
は、実測データとして制御装置4に連絡され、RAMに
記憶される。なお、ある特定波長での吸光度測定が終わ
り次の特定波長での吸光度測定への移行に伴う狭帯域通
過フィルター33の各フィルター33a〜33fの交換
・選択動作は、通常、制御装置4の記憶装置4b内のR
OMに予め書き込まれている手順プログラムに従い自動
的に行われるが、本実施例の場合でも、必ずしも上記6
波長全てについて吸光度測定を行わなければならない訳
ではなく、測定の対象となる波長は、求める品質評価値
に要求される精度或いは測定に係る所要時間等を考慮し
て任意に選択することができ、その選択は、操作用ブツ
シュボタン7内の測定波長選択ボタンにより行うことが
できる。
As in the previous case, each measurement value is communicated to the control device 4 as actual measurement data for calculating the content rate of each component, and is sent to the storage device 4.
It is temporarily stored in RAM in b. Similarly, each of the remaining absorbance measurements, that is, wavelengths C nm, D nm, E n
Absorbance measurements at m and F nm are sequentially performed, and each measured value is communicated to the control device 4 as actual measurement data and stored in the RAM. Note that the operation of replacing and selecting each of the filters 33a to 33f of the narrow band pass filter 33 when the absorbance measurement at a specific wavelength is completed and the transition to the absorbance measurement at the next specific wavelength is normally performed by the storage device of the control device 4. R in 4b
This is automatically performed according to the procedure program written in advance in the OM, but even in the case of this embodiment, the above 6.
It is not necessary to perform absorbance measurement for all wavelengths, and the wavelengths to be measured can be arbitrarily selected in consideration of the accuracy required for the desired quality evaluation value, the time required for measurement, etc. The selection can be made using the measurement wavelength selection button in the operating button 7.

これまで説明した吸光度の測定は、単に狭帯域通過フィ
ルター33に設定された6個のフィルター33a〜33
rを順次交換することにより、各タイルター33a〜3
3fが持つ各主波長でのスポット的吸光度の測定方法で
あったが、前述した通りフィルターの面に対する入射光
の入射角度を基準となる90゛から変化させると、最大
透過波長が主波長から数+nmの範囲でシフトするとい
う現象を利用して、成分含有量の差が吸光度差に顕著に
現れる波長領域1l100n〜2500口mでの連続的
な吸光度測定も可能である。図示第1実施例の場合、円
板状に構成された狭帯域通過フィルター33への入射光
軸の角度を、υJiIt装置4からの指令信号に基づき
電動機等の適当な調節手段(図示せず)によりylmに
且つ連続的に変化させることによりこれが可能である。
The absorbance measurement described so far is performed simply by using the six filters 33a to 33 set in the narrow band pass filter 33.
By sequentially exchanging r, each of the tiles 33a to 3
The method used was to measure the spot absorbance at each dominant wavelength of 3F, but as mentioned above, when the angle of incidence of the incident light on the filter surface is changed from the standard 90°, the maximum transmission wavelength changes from the dominant wavelength by several degrees. By utilizing the phenomenon of shift in the range of +nm, it is also possible to continuously measure absorbance in the wavelength range 11100n to 2500m, in which the difference in component content is noticeable in the difference in absorbance. In the case of the first embodiment shown in the drawings, the angle of the optical axis of incidence on the narrow band pass filter 33 configured in the shape of a disk is controlled by an appropriate adjusting means such as an electric motor (not shown) based on a command signal from the υJiIt device 4. This is possible by continuously varying ylm by .

次に、制御装置4の演算装置4cは、記憶装置4bのR
AMに記憶されている吸光度測定で得られた多数の実測
データ、即ち各測定波長における基準照射光量及び反射
光量の測定値と、記憶装置4bのROMに予め記憶され
ている各成分の含有率計算のための成分1!i!!算係
数値とに基づき、コーヒー豆の品質を評価する上で重要
な成分である蛋白質、脂質、水分等の各含有率を計算す
る。なあ、各成分に関して記tI装置4bのROMに予
め書き込まれるこの成分換紳係数値は、多数のコーヒー
豆に対して例えば化学定量分析法を用いて測定された各
成分の含有率を基準に、検出器からの吸光度測定値を信
号処理し、多重回帰分析法により求められた定数である
Next, the arithmetic unit 4c of the control device 4 executes R of the storage device 4b.
A large amount of actual measurement data obtained by absorbance measurement stored in the AM, that is, measured values of the reference irradiation light amount and reflected light amount at each measurement wavelength, and content calculations of each component stored in advance in the ROM of the storage device 4b. Ingredient 1 for! i! ! Based on the calculation coefficient value, each content rate of protein, lipid, water, etc., which are important components in evaluating the quality of coffee beans, is calculated. The component conversion coefficient value, which is written in advance in the ROM of the device 4b for each component, is based on the content of each component measured using, for example, a chemical quantitative analysis method for a large number of coffee beans. This is a constant obtained by signal processing the absorbance measurement value from the detector and using multiple regression analysis.

演算装置4Cは次に、上述の如くして求められた蛋白質
、脂質、水分等の各含有率に基づき、計算式により品質
評価値を計算する。
Next, the arithmetic unit 4C calculates a quality evaluation value using a formula based on each content rate of protein, lipid, water, etc. determined as described above.

計算された品質評価値は、演算装置4cでの計算終了と
同時に、表示装置6に可視表示されると共に、自動的に
又は操作用プッシュボクン7への指令に基づきプリンタ
ー8からハードコピーとして繰り出される。また、品質
評価値を求める途中の過程で求められた蛋白質、脂質。
The calculated quality evaluation value is visually displayed on the display device 6 at the same time as the calculation is completed in the calculation device 4c, and is also output as a hard copy from the printer 8 automatically or based on a command to the operating push button 7. It will be done. Also, proteins and lipids determined during the process of determining quality evaluation values.

水分等の各成分の各含有率を、品質評価値と共に表示装
置6に同時に可視表示させてもよい。
The content of each component such as moisture may be visually displayed on the display device 6 at the same time as the quality evaluation value.

本品質評1iIi装置により計算された各コーヒー豆の
成分含有率及び品質評価値は、フロッピーディスク等の
磁気媒体を用いた外部記憶装置にデータとして記憶して
おくことができ、また、上記複数種類のコーヒー豆のブ
レンド比率の計算時等では、外部記憶装置からデータを
本装置内の記憶装置4bのRAMI、P’み込んで、こ
れに基づき必要な計算を行うことも可能である。
The component content and quality evaluation value of each coffee bean calculated by this quality evaluation 1iIi device can be stored as data in an external storage device using a magnetic medium such as a floppy disk. When calculating the coffee bean blend ratio, etc., it is also possible to load data from an external storage device into the RAMI, P' of the storage device 4b in this device and perform the necessary calculations based on this data.

なお、上記の説明では、コーヒー豆を粉砕したものを用
いたが、必ずしも粉砕したものでなくても構わない。し
かし、この場合、(qられる品質評価値の精度がある程
度低下することは言うまでもない。
In the above description, ground coffee beans were used, but the coffee beans do not necessarily have to be ground. However, in this case, it goes without saying that the accuracy of the quality evaluation value (q) decreases to some extent.

次に、第4図乃至第7図を参照しながら、本発明による
コーヒー豆の品質評価装置の第2実施例を説明する。前
述第1実施例のものと同−又は同等の構成要素或いは部
品には、同一の参照番号を付しである。
Next, a second embodiment of the coffee bean quality evaluation apparatus according to the present invention will be described with reference to FIGS. 4 to 7. Components or parts that are the same or equivalent to those of the first embodiment described above are given the same reference numerals.

第2実施例の品質評価装置が先の第1実施例のものと最
も大きく異なる点は、以下詳細な構成を説明する第2実
施例の品質評価装置が、第1実施例に具備していない、
コーヒー豆を測定に必要な微砕粒の粉砕粒とするコーヒ
ー豆粉砕装置と、粉砕されたコーヒー豆を収容した試料
容器を近赤外分光分析装置3の測定部に自動的に移動・
提供する試料搬送装置とを主なる構成装置として有する
試料供給装置を具備している点である。
The biggest difference between the quality evaluation device of the second embodiment and that of the first embodiment is that the quality evaluation device of the second embodiment, the detailed configuration of which will be explained below, is not included in the first embodiment. ,
A coffee bean pulverizer that converts coffee beans into pulverized particles necessary for measurement and a sample container containing the pulverized coffee beans are automatically moved to the measurement section of the near-infrared spectrometer 3.
It is equipped with a sample supply device having the provided sample transport device as a main component device.

第4図において、参照番号1は、コーヒー豆粉砕装置に
よって粉砕されたコーヒー豆が試料容器に必要聞充填さ
れた後の不要試料や、測定が終了して排出された試料を
受は取るための受は箱を示し、キャビネット2の前面パ
ネルから出し入れできる。参照番号12は、外部から単
独にコーヒー豆を測定部に供給するときの外部供給部で
ある。参照番号20及び40はそれぞれ、コーヒー豆粉
砕装置及び試料搬送H置を示し、双方共にキャビネット
2の内部に配設される。
In Fig. 4, reference number 1 is for receiving and receiving unnecessary samples after the coffee beans ground by the coffee bean grinding device are filled into the sample container as long as necessary, and samples discharged after the measurement is completed. The receiver indicates a box, which can be put in and taken out from the front panel of the cabinet 2. Reference number 12 is an external supply section for supplying coffee beans to the measurement section from outside. Reference numbers 20 and 40 indicate a coffee bean grinding device and a sample transport station, respectively, both of which are arranged inside the cabinet 2.

第5図は第2実施例の装置に用いられる近赤外分光分析
装置3の要部断面図である。第1実施例で用いられた近
赤外分光分析装置3との違いは、複数個のフィルター3
3a〜33fからなる狭帯域通過フィルター33が、円
盤状ではなく角柱状に構成されていることである。狭帯
域通過フィルター33は、それぞれのフィルターに対向
して角柱状に構成された複数個の反射鏡32を内側に有
し、電動機等による調節手段(図示せず)が連結される
ことにより、角柱の軸Pを中心に回動自在な構成となっ
ている。積分球34の測定部37は石英製透明ガラス板
39で密封される。第1実施例での近赤外分光分析賃@
3では、コーヒー豆の粉砕・充填作業が装置の外部で行
われるので、測定部37を密封する透明ガラス板39は
必ずしも必要でなかったが、本第2実施例の装置では、
装置内で試料の粉砕及び試料容器への充填作業等を行う
ため、飛散粉が積分球34の内部に侵入するのを防止す
る上で透明ガラス板39の測定部37への装着は槍要で
ある。
FIG. 5 is a sectional view of essential parts of the near-infrared spectroscopic analyzer 3 used in the apparatus of the second embodiment. The difference from the near-infrared spectrometer 3 used in the first embodiment is that a plurality of filters 3
The narrow band pass filter 33 consisting of 3a to 33f is configured not in a disk shape but in a prismatic shape. The narrow band pass filter 33 has a plurality of reflecting mirrors 32 formed in a prismatic shape inside, facing each filter, and is connected to an adjusting means (not shown) such as an electric motor to form a prismatic shape. It is configured to be freely rotatable around an axis P. The measuring section 37 of the integrating sphere 34 is sealed with a transparent glass plate 39 made of quartz. Near-infrared spectroscopy analysis rate in the first example
In Embodiment 3, the grinding and filling work of coffee beans is carried out outside the apparatus, so the transparent glass plate 39 for sealing the measuring section 37 was not necessarily required, but in the apparatus of the second embodiment,
Since the work of crushing the sample and filling the sample container in the apparatus is performed, it is necessary to attach the transparent glass plate 39 to the measuring part 37 in order to prevent scattered powder from entering the integrating sphere 34. be.

次に、第6図及び第7図を参照して、コーヒー豆供給装
置の詳細を説明する。第6図は近赤外分光分析装置及び
試料供給装置の要部断面図、第7図は試料搬送装置40
の要部斜視図である。
Next, details of the coffee bean supply device will be explained with reference to FIGS. 6 and 7. FIG. 6 is a cross-sectional view of the main parts of the near-infrared spectrometer and sample supply device, and FIG. 7 is the sample transport device 40.
FIG.

先ず、試料供給装置の試料粉砕装置20の構成から説明
する。キャビネット2の右上面部を開口し、ここにホッ
パー202を装着する。ホッパー202の下部開口部2
04には1手動レバー206又は電磁ソレノイド(図示
せず)により作動されるシャッター208が設けられる
First, the configuration of the sample crushing device 20 of the sample supply device will be explained. The upper right side of the cabinet 2 is opened, and the hopper 202 is installed there. Lower opening 2 of hopper 202
04 is provided with a shutter 208 operated by a manual lever 206 or an electromagnetic solenoid (not shown).

ホッパー202の間口部204の下方には、周囲面に多
数の鋭利な突起を有する一対の粉砕用ローラー210a
、210bが対向して軸着される。そしてさらにその下
方には、表面を平滑面とした一対の粉砕用ローラー21
28.212bが対向して軸着される。そしてざらにそ
の下方には、表面を平滑面とした一対の粉砕用ローラー
212a、212bが対向して軸着される。これら粉砕
用ローラー210a、210b及び粉砕用ローラー21
2a、212bの各軸は、電動l51(図示せず)によ
って駆動される。
Below the frontage 204 of the hopper 202, there is a pair of crushing rollers 210a having a large number of sharp protrusions on the peripheral surface.
, 210b are pivoted to face each other. Further below, there is a pair of crushing rollers 21 with smooth surfaces.
28.212b are oppositely pivoted. A pair of crushing rollers 212a and 212b with smooth surfaces are pivotally mounted to face each other roughly below the crushing rollers 212a and 212b. These crushing rollers 210a, 210b and crushing roller 21
Each axis 2a and 212b is driven by an electric motor 151 (not shown).

粉砕用ローラー210a、210b及び粉砕用ローラー
212a、212bの表面に付着したコーヒー豆は、角
ローラーの表面に向けられて設けられた噴射ノズル及び
ローラーの表面に軽く接触するように設けられた弾性ブ
レードから成る清掃装置214a〜214dにより除去
される。上記各構成部品は、下方部が次に説明する試料
搬送装置40に臨むように開口されたケース部材216
で包囲される。
Coffee beans adhering to the surfaces of the grinding rollers 210a, 210b and the grinding rollers 212a, 212b are removed by spray nozzles provided facing the surfaces of the square rollers and elastic blades provided to lightly contact the surfaces of the rollers. It is removed by cleaning devices 214a to 214d consisting of. Each of the above components includes a case member 216 whose lower part is opened so as to face a sample transport device 40, which will be described next.
surrounded by.

次に、舶記粉砕装置20で微細粒に粉砕された試料を、
試料容器52に吸光度測定可能な状態で充填し、そして
こ試料容器52を近赤外分光分析装置3の測定部37の
直下位置迄移動させる試料搬送装置40について説明す
る。試料容器52は、試料容器移動ガイド402に固着
した容器ホルダー404に設けられた案内溝406に対
して装脱自在になっている。試料容器移動ガイド4.0
2の中空軸には断面丸状の支持軸408を挿入し、該支
持軸408に一方側は回動用ハンドル410に挿着し、
また他方側は軸受台412が軸支する。試料容器移動ガ
イド402の外周囲部長さ方向にはうツク414が固設
されており、このラック414には、試料容器移動ガイ
ド402に遊嵌されたモーター台416に装着された電
動機418のビニオンギア420が噛合する。モーター
台416は、伸縮ロッド422を備える電磁石424に
よって支点台426に連結される。この支点台426は
、キャビネット2の底壁部に固設された受台428に固
着される。参照番号4.30は、試料容器52上の粉砕
試料を圧縮充填すると共に、過1試料を取り除き表面を
平坦面とするための回転ローラー、番号432は測定が
終わった試料を試料容器52内から噴用により排除する
と共に清掃を行うための噴射ノズル、番号434は試料
容器52の移動時、透明ガラス板39に接してこれを清
掃する清掃器である。
Next, the sample pulverized into fine particles by the ship pulverizer 20 is
The sample transport device 40 that fills the sample container 52 in a state where the absorbance can be measured and moves the sample container 52 to a position directly below the measurement section 37 of the near-infrared spectrometer 3 will be described. The sample container 52 can be freely inserted into and removed from a guide groove 406 provided in a container holder 404 fixed to the sample container movement guide 402. Sample container movement guide 4.0
A support shaft 408 having a round cross section is inserted into the hollow shaft of No. 2, and one side of the support shaft 408 is inserted into a rotating handle 410,
Further, the other side is pivotally supported by a bearing stand 412. A rack 414 is fixedly installed along the length of the outer circumference of the sample container moving guide 402, and a pinion gear of an electric motor 418 mounted on a motor stand 416 loosely fitted to the sample container moving guide 402 is attached to this rack 414. 420 meshes. Motor pedestal 416 is coupled to fulcrum mount 426 by electromagnet 424 with telescoping rod 422 . This fulcrum stand 426 is fixed to a pedestal 428 fixed to the bottom wall of the cabinet 2. Reference number 4.30 is a rotary roller for compressing and filling the crushed sample on the sample container 52 and removing excess sample to make the surface flat; number 432 is a rotating roller for removing the sample after measurement from inside the sample container 52 A spray nozzle 434 for discharging and cleaning the sample container 52 is a cleaning device that contacts the transparent glass plate 39 and cleans it when the sample container 52 is moved.

次に、上記構成を有する本発明による第2実施例のコー
ヒー豆の品質評価装置の具体的動作を説明する。なお、
近赤外分光分析装置3による各波長での吸光度の測定方
法は、前述の第1実tM例装置と同じであるのでその説
明は省略し、ここでは、本第2実施例装置の特徴的装置
である試料供給装置の作用並びに動作を中心に説明する
Next, the specific operation of the coffee bean quality evaluation apparatus according to the second embodiment of the present invention having the above configuration will be explained. In addition,
The method for measuring absorbance at each wavelength using the near-infrared spectrometer 3 is the same as that of the first practical tM example device described above, so its explanation will be omitted, and here, the characteristic device of the second example device will be explained. The function and operation of the sample supply device will be mainly explained.

コーヒー豆をホッパー202内に投入しここに一時貯留
し、次に電amを起動し粉砕用ローラー210a、21
0b及び粉砕用ローラー212a、212bを回動させ
る。操作用ブツシュボタン7の操作により電動機418
を回動させ、その駆動力により試料容器52を、コーヒ
ー豆粉砕装置20の直下所定位置に移動させる。
Coffee beans are put into the hopper 202 and temporarily stored there, and then the electric am is started and the grinding rollers 210a, 21
0b and the crushing rollers 212a and 212b are rotated. The electric motor 418 is activated by operating the operating button 7.
is rotated, and the sample container 52 is moved to a predetermined position directly below the coffee bean grinding device 20 by its driving force.

試料容器52の所定位置への移動が完了し、電動機41
8の作動が停止したら、シャッター208を手動レバー
206又は電磁ソレノイド(図示せず)により開成し、
ホッパー202内のコーヒー豆を開口部204を介して
放出する。
The movement of the sample container 52 to the predetermined position is completed, and the electric motor 41
8 has stopped, the shutter 208 is opened using the manual lever 206 or an electromagnetic solenoid (not shown),
Coffee beans in hopper 202 are discharged through opening 204.

ホッパー202から流下したコーヒー豆は、先ず粉砕用
ローラー210a、210bにより粉砕され、さらにそ
の下方に位置する細粉砕用ローラー212a 、212
bによッテ、吸光度の測定に要求される、粒子の大ぎさ
が50ミクロン以下のW10lな粉砕試料とされる。こ
うして出来た細粉試料は、下方に位置している試料容器
52に受は入れられ、その受容量を超え容器52上に盛
り上がって過量となった試料は、受は箱10に落下する
。次に、操作用ブツシュボタン7の操作により、雷g機
418を再作動させ、試料が収容された試料容器52を
、近赤外分光分析装置3の測定部37の直下所定位置ま
で搬送する作動に移る。この搬送過程においては、試料
容器52に盛り上がった状態の試料は、回転ローラー4
30により圧縮状に充填されると共に、過量試料が除去
され試料の表面が平坦面に整形される。試料容器52が
所定位置に配置されると、電動g9418は自動的にそ
の作動を停止する。
The coffee beans flowing down from the hopper 202 are first crushed by crushing rollers 210a and 210b, and then by fine crushing rollers 212a and 212 located below them.
In b, a pulverized sample with a particle size of 50 microns or less, which is required for absorbance measurement, is used. The fine powder sample thus produced is received in a sample container 52 located below, and if the sample exceeds the received amount and bulges on the container 52, resulting in an excessive amount, the sample falls into the box 10. Next, by operating the operating button 7, the lightning g machine 418 is reactivated, and the sample container 52 containing the sample is transported to a predetermined position directly below the measurement section 37 of the near-infrared spectrometer 3. Move to operation. During this conveyance process, the sample bulging in the sample container 52 is transferred to the rotating roller 4.
30, the sample is compressed and filled, excess sample is removed, and the surface of the sample is shaped into a flat surface. Once the sample container 52 is in place, the motorized g9418 automatically stops its operation.

近赤外分光分析装置3の測定部37へ試料搬送装置40
によって搬送されていた試料55は、既述第1実施例の
装置で説明したのと同じ原理。
Sample transport device 40 to measurement section 37 of near-infrared spectrometer 3
The sample 55 was transported by the same principle as explained in the apparatus of the first embodiment.

方法でその吸光度が測定され、その各構成成分の各含有
率及び品質評価値が計算される。
The method measures its absorbance and calculates the respective content and quality evaluation value of each of its constituent components.

試料55の吸光度測定が全て終了すると、電#H!41
8が再作動し、測定が終わった試料の排出処理のために
、試料容器52をコーヒー豆粉砕装置20の下方所定位
置に移動させる。その際、清掃器434が透明ガラス仮
39に接触し、面上を摺動することにより付着物を除去
する。試料容器52が]−ヒー豆粉砕装置20の下方所
定位置に到達し電動機418が作動を停止すると同時に
、コーヒー豆粉砕装置20内の清掃装置214a〜21
4dから高圧空気が噴出し、各ローラー210a 、2
10b 、212a、21.2bの表面を清掃する。次
に、電磁石424を作動させることにより、試料容器移
動ガイド402を90°回動させ、試料容器52内の試
料を下方に位置する受は箱10に向けて排出する。同時
に、噴射ノズル432を作動させ、これから出る高圧空
気により試料容器52内を次の測定に備えて清W4づ゛
る。なお、電動tR418の作動によって試料容器52
が自動的に往復移動する場合を説明してきたが、その移
動は、回動用ハンドル410を押すこと及び引くことに
よる手動操作でも行え、また、試料容器52からの試料
の排出は、この回動用ハンドル410を適宜回動して行
える。また、試料供給装置を用いず、外部で準備したに
’f4を単独に近赤外分光分析装置3の測定部37に排
泄させるには、回動用ハンドル410を押ツことにより
一旦試料容器52を測定部37下部に移動させた後、こ
の試料容器52を外部供給部12から引き出し、試料を
これに充填してから容器ホルダー404の案内溝406
に挿入して行う。
When the absorbance measurement of sample 55 is completed, the signal #H! 41
8 is reactivated, and the sample container 52 is moved to a predetermined position below the coffee bean grinding device 20 in order to discharge the sample after measurement. At this time, the cleaner 434 comes into contact with the temporary transparent glass 39 and removes the deposits by sliding on the surface. At the same time that the sample container 52 reaches a predetermined position below the coffee bean grinding device 20 and the electric motor 418 stops operating, the cleaning devices 214a to 21 in the coffee bean grinding device 20
High pressure air blows out from 4d, and each roller 210a, 2
Clean the surfaces of 10b, 212a, and 21.2b. Next, by activating the electromagnet 424, the sample container moving guide 402 is rotated by 90 degrees, and the sample in the sample container 52 is discharged toward the box 10 located below. At the same time, the injection nozzle 432 is operated, and the high pressure air emitted from it cleans the inside of the sample container 52 in preparation for the next measurement. Note that the sample container 52 is opened by the operation of the electric tR418.
Although the case has been described in which the sample container 52 automatically reciprocates, the movement can also be performed manually by pushing and pulling the rotating handle 410, and the sample can be discharged from the sample container 52 using this rotating handle. This can be done by rotating 410 as appropriate. In addition, in order to discharge the externally prepared 'f4 independently into the measurement section 37 of the near-infrared spectrometer 3 without using a sample supply device, the sample container 52 is temporarily opened by pressing the rotating handle 410. After moving the sample container 52 to the lower part of the measurement section 37, the sample container 52 is pulled out from the external supply section 12, filled with a sample, and then inserted into the guide groove 406 of the container holder 404.
This is done by inserting it into

上述第1実施例及び第2実施例の品質評価装置では、コ
ーヒー豆に特定波長の近赤外光を照射したときの吸光度
の測定を、コーヒー豆からの反射光の強邸を測定するこ
とにより行う反射式の近赤外分光分析装置を用いたが、
コーヒー豆を透過してきた透過光の強度を測定すること
により行う透過式の近赤外分光分析装置を用いることも
でき、さらには、反射光及び透過光の両方に基づき吸光
度の測定を行う、より精密な近赤外分光分析装置を用い
ることもできる。
In the quality evaluation apparatus of the first and second embodiments described above, the absorbance when coffee beans are irradiated with near-infrared light of a specific wavelength is measured by measuring the intensity of reflected light from the coffee beans. We used a reflection-type near-infrared spectrometer,
It is also possible to use a transmission type near-infrared spectrometer that measures the intensity of the transmitted light that has passed through the coffee beans.Furthermore, it is possible to use a near-infrared spectrometer that measures the absorbance based on both reflected light and transmitted light. A precise near-infrared spectrometer can also be used.

(発明の効果) 以上詳述したように、本発明によるコーヒー豆の品質評
価装置によれば、個人差のある味覚に基づく官能試験、
あるいは時間がかかり、熟練を要する化学定量分析等の
方法によることなく、誰でもが容易にHつ短時間で正確
なコーヒー豆の品質評価値を(qることができる。
(Effects of the Invention) As detailed above, according to the coffee bean quality evaluation apparatus according to the present invention, sensory tests based on individual differences in taste,
Alternatively, anyone can easily obtain an accurate quality evaluation value of coffee beans in a short time without using methods such as chemical quantitative analysis that are time-consuming and require skill.

さらに、本発明による品質評価装置が試料供給装置を具
備するものにあっては、コーヒー豆の所定成分の含有率
を測定し、これに基づきコーヒー豆の品質評tiii値
を得るに際して、コーヒー豆の微細粒への粉砕作業及び
試料容器への充填作業等が全て自動化され、その測定が
より簡単且つ確実なものとなる。
Furthermore, when the quality evaluation device according to the present invention is equipped with a sample supply device, when measuring the content rate of a predetermined component of coffee beans and obtaining a quality evaluation value tiii of the coffee beans based on this, The grinding work into fine particles and the filling work into sample containers are all automated, making the measurement easier and more reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1実施例のコーヒー豆の品質評
価装置の正面概略図、第2図は第1図の品質評価装置に
用いられる近赤外分光分析装置の要部側断面図、第3図
は銘柄の異なるコーヒー豆に対する近赤外線照射波長と
吸光度との関係を示すグラフ(吸光度曲線)、第4図は
本発明による第2実施例のコーヒー豆の品質評(ill
i装置の正面概略図、第5図の品質評価装置に用いられ
る近赤外分光分析装置の要部側断面図、第6図は第4図
の品質ii’FIilli装置に用いられる試料供給装
置の要部断面図、そして、第7図は第6図に示される試
料供給装置のうち試料搬送装置の要部斜視図である。 図において、1・・・コーヒー豆の品質評価装置、2・
・・キャビネツ、3・・・近赤外分光分析装置、4・・
・制御装置、4a・・・入出力信号処理装置、4b・・
・記憶装置(ROM、RAM)、4C・・・演算装置、
5・・・試料容器装着箱、6・・・表示装置、7・・・
操作用ブツシュボタン、8・・・プリンター 9・・・
入力装@(キーボード)、10・・・受は箱、12・・
・外部供給部、20・・・コーヒー豆粉砕装置、40・
・・試料搬送装置、31・・・光源、32・・・反射鏡
、33・・・狭帯域通過フィルター、33a〜33f・
・・フィルター、34・・・積分球、35a、35b・
・・検出器、36・・・採光窓、37・・・測定部、3
9・・・透明ガラス板、52・・・試料容器、55・・
・試料(コーヒー豆>、202・・・ホッパー、204
・・・開口部、206・・・電動レバー 208・・・
シャッター、210a、210b・・・・・・粉砕用ロ
ーラー214a〜d・・・清掃装置、216・・・ケー
ス部材、402・・・試料容器移動ガイド、404・・
・容器ホルダー、406・・・案内溝、408・・・支
持軸、410・・・回動用ハンドル、412・・・軸受
台、414・・・ラック、416・・・モーター台、4
18・・・電動機、420・・・ビニオンギア、422
・・・伸縮ロッド、424・・・N磁石、426・・・
支点台、428・・・受は台、430・・・回転ローラ
ー 432・・・噴射ノズル、434・・・清hs器。
FIG. 1 is a schematic front view of a coffee bean quality evaluation apparatus according to a first embodiment of the present invention, and FIG. 2 is a side sectional view of essential parts of a near-infrared spectrometer used in the quality evaluation apparatus of FIG. 1. FIG. 3 is a graph (absorbance curve) showing the relationship between near-infrared irradiation wavelength and absorbance for coffee beans of different brands, and FIG.
A front schematic view of the i device, a side sectional view of the main part of the near-infrared spectrometer used in the quality evaluation device shown in FIG. 7 is a sectional view of a main part, and FIG. 7 is a perspective view of a main part of a sample transport device of the sample supply device shown in FIG. 6. In the figure, 1... coffee bean quality evaluation device, 2...
...Cabinet, 3...Near-infrared spectrometer, 4...
・Control device, 4a... Input/output signal processing device, 4b...
・Storage device (ROM, RAM), 4C... arithmetic device,
5... Sample container mounting box, 6... Display device, 7...
Operation button, 8...Printer 9...
Input device @ (keyboard), 10...The receiver is a box, 12...
・External supply unit, 20...coffee bean grinding device, 40・
...Sample transport device, 31...Light source, 32...Reflector, 33...Narrow band pass filter, 33a to 33f.
...filter, 34...integrating sphere, 35a, 35b...
...detector, 36...lighting window, 37...measuring section, 3
9...Transparent glass plate, 52...Sample container, 55...
・Sample (coffee beans>, 202...hopper, 204
...Opening, 206...Electric lever 208...
Shutter, 210a, 210b...Crushing rollers 214a-d...Cleaning device, 216...Case member, 402...Sample container movement guide, 404...
- Container holder, 406... Guide groove, 408... Support shaft, 410... Rotating handle, 412... Bearing stand, 414... Rack, 416... Motor stand, 4
18... Electric motor, 420... Binion gear, 422
...Telescopic rod, 424...N magnet, 426...
Fulcrum stand, 428... Support is stand, 430... Rotating roller 432... Injection nozzle, 434... Cleaner.

Claims (12)

【特許請求の範囲】[Claims] (1)、イ、光源と該光源が発生する光のうちコーヒー
豆の被測定成分の含有率測定に適する特定波長のみを通
過させ、測定部に照射される近赤外光を作る狭帯域通過
フィルターと、前記測定部に配置されるコーヒー豆から
の測定光を検出する検出器とを有する近赤外分光分析装
置と、ロ、前記被測定成分に対応して設定された前記コ
ーヒー豆の被測定成分の含有率計算のための成分換算係
数値と、前記被測定成分に対応して設定された品質評価
値計算のための特定係数とを記憶する記憶装置と、該記
憶装置に記憶された前記成分換算係数値並びに前記特定
係数と前記検出器からの検出信号とに基づきコーヒー豆
の被測定成分の含有率と品質評価値とを演算する演算装
置とを有する制御装置と、 ハ、該制御装置に接続され、前記演算装置が演算したコ
ーヒー豆の品質評価値を可視または印字表示する表示装
置および、 ニ、前記近赤外分光分析装置の前記測定部に前記コーヒ
ー豆を提供する試料配置部と、 を有し、コーヒー豆に含まれる所定の成分の含有率を測
定し、その測定値に基づきコーヒー豆の品質評価を行う
コーヒー豆の品質評価装置。
(1), B. A light source and a narrow band pass that allows only a specific wavelength of the light generated by the light source to pass through, which is suitable for measuring the content of the component to be measured in coffee beans, and creates near-infrared light that is irradiated to the measuring section. a near-infrared spectrometer having a filter and a detector arranged in the measuring section to detect measurement light from coffee beans; a storage device for storing a component conversion coefficient value for calculating the content of the measured component and a specific coefficient for calculating the quality evaluation value set corresponding to the measured component; a control device having a calculation device that calculates the content rate and quality evaluation value of the measured component of coffee beans based on the component conversion coefficient value, the specific coefficient, and the detection signal from the detector; c. a display device that is connected to the device and displays visually or in print the quality evaluation value of the coffee beans calculated by the arithmetic device; and (d) a sample placement unit that provides the coffee beans to the measurement unit of the near-infrared spectrometer. What is claimed is: 1. A coffee bean quality evaluation device that measures the content of a predetermined component contained in coffee beans and evaluates the quality of the coffee beans based on the measured value.
(2)、近赤外分光分析装置が有する狭帯域通過フィル
ターは、コーヒー豆の味覚を形成する成分のうち、蛋白
質、脂質、クロロゲン酸、カフエイン、水分及び蔗糖の
含有率の測定に適した特定波長通過特性を有するもので
ある請求項(1)記載のコーヒー豆の品質評価装置。
(2) The narrow band pass filter of the near-infrared spectrometer is suitable for measuring the content of proteins, lipids, chlorogenic acid, caffeine, water, and sucrose among the components that form the taste of coffee beans. The coffee bean quality evaluation device according to claim 1, which has wavelength-passing characteristics.
(3)、近赤外分光分析装置の光源と測定部との間に配
設される前記狭帯域フィルターは、該フィルターの面に
対する入射光軸の入射角度を変えられるべく、その傾斜
角度が可変となつたものである請求項(1)または(2
)記載のコーヒー豆の品質評価装置。
(3) The narrow band filter disposed between the light source and the measuring section of the near-infrared spectrometer has a variable inclination angle so that the angle of incidence of the incident optical axis with respect to the surface of the filter can be changed. Claim (1) or (2)
) The coffee bean quality evaluation device described in ).
(4)、近赤外分光分析装置が有する狭帯域通過フィル
ターは、波長領域1100nm〜2500nmのうち任
意複数波長をそれぞれが特定波長通過特性として有する
複数個のフィルターから成り、該フィルターが円盤状に
構成されている請求項(1)記載のコーヒー豆の品質評
価装置。
(4) The narrow band pass filter possessed by the near-infrared spectrometer consists of a plurality of filters each having a specific wavelength pass characteristic for any plurality of wavelengths in the wavelength range of 1100 nm to 2500 nm, and the filter is arranged in a disc shape. A coffee bean quality evaluation device according to claim 1, comprising:
(5)、品質評価装置の記憶装置に情報を記憶させる入
力装置を有するものである請求項(1)記載のコーヒー
豆の品質評価装置。
(5) The coffee bean quality evaluation device according to claim (1), further comprising an input device for storing information in a storage device of the quality evaluation device.
(6)、品質評価装置の表示装置は、コーヒー豆の品質
評価値に加え、被測定成分の含有率を表示するものであ
る請求項(1)記載のコーヒー豆の品質評価装置。
(6) The coffee bean quality evaluation device according to claim (1), wherein the display device of the quality evaluation device displays the content rate of the component to be measured in addition to the quality evaluation value of the coffee beans.
(7)、イ、光源と該光源が発する光のうちコーヒー豆
の被測定成分の含有率測定に適する特定波長のみを通過
させ、測定部に照射される近赤外光を作る狭帯域通過フ
ィルターと、前記測定部に配置されるコーヒー豆からの
測定光を検出する検出器とを有する近赤外分光分析装置
と、 ロ、前記被測定成分に対応して設定された前記コーヒー
豆の被測定成分の含有率計算のための成分換算係数値と
前記被測定成分に対応して設定された品質評価値計算の
ための特定係数とを記憶する記憶装置と、該記憶装置に
記載された前記成分換算係数並びに前記特定係数と前記
検出器からの検出信号とに基づきコーヒー豆の被測定成
分の含有率と品質評価値を演算する演算装置とから成る
制御装置と ハ、該制御装置に接続され、前記演算装置が演算したコ
ーヒー豆の品質評価値を可視または印字表示する表示装
置と ニ、前記近赤外分光分析装置の前記測定部に前記コーヒ
ー豆を提供する試料容器および ホ、前記コーヒー豆を微砕粒に粉砕して前記試料容器に
充填した後、該試料容器を前記近赤外分光分析装置の測
定部に移動、配置させるための試料供給装置 とを有し、コーヒー豆に含まれる所定の成分の含有率を
測定し、その測定値に基づきコーヒー豆の品質評価を行
うコーヒー豆の品質評価装置。
(7), A. A light source and a narrow band pass filter that allows only a specific wavelength of light emitted by the light source to pass through that is suitable for measuring the content of the component to be measured in coffee beans, and creates near-infrared light that is irradiated to the measuring section. and a near-infrared spectrometer having a detector arranged in the measuring section to detect measurement light from coffee beans, and (b) a measurement target of the coffee beans set corresponding to the measurement target component. a storage device that stores a component conversion coefficient value for calculating a content rate of a component and a specific coefficient for calculating a quality evaluation value set corresponding to the component to be measured; and the component described in the storage device. a control device comprising a conversion factor, an arithmetic device that calculates the content rate and quality evaluation value of the measured component of coffee beans based on the specific coefficient and the detection signal from the detector; c. connected to the control device; a display device that visually or prints out the quality evaluation value of the coffee beans calculated by the arithmetic device; d. a sample container for providing the coffee beans to the measuring section of the near-infrared spectrometer; and e. and a sample supply device for moving and placing the sample container in the measurement section of the near-infrared spectrometer after pulverizing it into fine particles and filling it in the sample container. A coffee bean quality evaluation device that measures the content of ingredients and evaluates the quality of coffee beans based on the measured values.
(8)、近赤外分光分析装置が有する狭帯域通過フィル
ターは、コーヒー豆の味覚を形成する成分のうち少なく
とも蛋白質、脂質、クロロゲン酸、カフエイン、水分及
び蔗糖等の含有率の測定に適した特定波長通過特性を有
するものである請求項(7)記載のコーヒー豆の品質評
価装置。
(8) The narrow band pass filter of the near-infrared spectrometer is suitable for measuring the content of at least proteins, lipids, chlorogenic acid, caffeine, water, and sucrose among the components that form the taste of coffee beans. The coffee bean quality evaluation device according to claim 7, wherein the coffee bean quality evaluation device has specific wavelength transmission characteristics.
(9)、近赤外分光分析装置の光源と測定部との間に配
設される前記狭帯域フィルターは、該フィルターの面に
対する入射光軸の入射角度を変えられるべく、その傾斜
角度が可変となつたものである請求項(7)または(8
)記載のコーヒー豆の品質評価装置。
(9) The narrow band filter disposed between the light source and the measuring section of the near-infrared spectrometer has a variable inclination angle so that the angle of incidence of the incident optical axis with respect to the surface of the filter can be changed. Claim (7) or (8)
) The coffee bean quality evaluation device described in ).
(10)、近赤外分光分析装置が有する狭帯域通過フィ
ルターは、波長領域1100mm〜2500mmのうち
任意複数波長をそれぞれが特定波長通過特性として有す
る複数個のフィルターから成り、該フィルターが角柱体
状に構成されている請求項(7)記載のコーヒー豆の品
質評価装置。
(10) The narrow band pass filter included in the near-infrared spectrometer is composed of a plurality of filters, each having a specific wavelength pass characteristic of a plurality of arbitrary wavelengths in the wavelength range of 1100 mm to 2500 mm, and the filter has a prismatic shape. The coffee bean quality evaluation device according to claim 7, wherein the coffee bean quality evaluation device is configured as follows.
(11)、品質評価装置の記憶装置に情報を記憶させる
入力装置を有するものである請求項(7)記載のコーヒ
ー豆の品質評価装置。
(11) The coffee bean quality evaluation device according to claim (7), further comprising an input device for storing information in a storage device of the quality evaluation device.
(12)、品質評価装置の表示装置は、コーヒー豆の品
質評価値に加え、被測定成分の含有率を表示するもので
ある請求項(7)記載のコーヒー豆の品質評価装置。
(12) The coffee bean quality evaluation device according to claim (7), wherein the display device of the quality evaluation device displays the content rate of the component to be measured in addition to the quality evaluation value of the coffee beans.
JP29787088A 1988-11-24 1988-11-24 Coffee bean quality evaluation device Expired - Fee Related JP2745020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29787088A JP2745020B2 (en) 1988-11-24 1988-11-24 Coffee bean quality evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29787088A JP2745020B2 (en) 1988-11-24 1988-11-24 Coffee bean quality evaluation device

Publications (2)

Publication Number Publication Date
JPH02143147A true JPH02143147A (en) 1990-06-01
JP2745020B2 JP2745020B2 (en) 1998-04-28

Family

ID=17852194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29787088A Expired - Fee Related JP2745020B2 (en) 1988-11-24 1988-11-24 Coffee bean quality evaluation device

Country Status (1)

Country Link
JP (1) JP2745020B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203941A1 (en) * 2000-04-13 2002-05-08 Mitsui Mining & Smelting Co., Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
WO2010029390A1 (en) * 2008-09-15 2010-03-18 Perten Instruments, Inc. A spectrometric device
JP2016167993A (en) * 2015-03-11 2016-09-23 サントリーホールディングス株式会社 Selection method of coffee raw beans
JP2019148607A (en) * 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996568B1 (en) * 2017-10-24 2019-07-04 최영호 Apparatus for caffeine detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186951A (en) * 1986-02-14 1987-08-15 高橋 正二 Crusher
JPS6333644A (en) * 1986-07-28 1988-02-13 Satake Eng Co Ltd Taste measuring apparatus for rice
JPS63198850A (en) * 1987-02-12 1988-08-17 Satake Eng Co Ltd Method for measuring component content of rice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186951A (en) * 1986-02-14 1987-08-15 高橋 正二 Crusher
JPS6333644A (en) * 1986-07-28 1988-02-13 Satake Eng Co Ltd Taste measuring apparatus for rice
JPS63198850A (en) * 1987-02-12 1988-08-17 Satake Eng Co Ltd Method for measuring component content of rice

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203941A1 (en) * 2000-04-13 2002-05-08 Mitsui Mining & Smelting Co., Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
EP1203941A4 (en) * 2000-04-13 2006-01-04 Mitsui Mining & Smelting Co Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
WO2010029390A1 (en) * 2008-09-15 2010-03-18 Perten Instruments, Inc. A spectrometric device
JP2016167993A (en) * 2015-03-11 2016-09-23 サントリーホールディングス株式会社 Selection method of coffee raw beans
JP2019148607A (en) * 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Also Published As

Publication number Publication date
JP2745020B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JPH0149890B2 (en)
CA2000473C (en) Apparatus for evaluating quality of raw coffee beans
KR920004535B1 (en) Measuring apparatus for amylose and/or amylopection content in rice
JPH02143147A (en) Quality evaluating device for coffee bean
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
JP2745021B2 (en) Quality evaluation method and apparatus for roasted coffee beans
JP2757005B2 (en) Quality evaluation method of coffee beans
JPS6367547A (en) Taste measuring instrument for rice
JP2739220B2 (en) Quality evaluation method and apparatus for green coffee beans
JPH05232017A (en) Rice taste evaluating device
JPS63304141A (en) Method and device for evaluating quality of rice
JP2892084B2 (en) Rice quality evaluation method and rice quality evaluation device
JPS63210750A (en) Method and apparatus for evaluating quality of rice
JP2756993B2 (en) Method and apparatus for evaluating the quality of coffee beans
JPH02173552A (en) Method and device for evaluating quality of coffee beans
JPS63198850A (en) Method for measuring component content of rice
JPS6333644A (en) Taste measuring apparatus for rice
JPS62291546A (en) Method and apparatus for measuring taste of rice
JPS63167243A (en) Method for measuring component content of rice
JPH07140134A (en) Apparatus for measuring content of component of rice
JPS63246640A (en) Method and apparatus for measuring content of amylose or amylopectin of rice
JPS6375643A (en) Method for measuring content of amylose or amylopectin of rice
JPS62299743A (en) Measuring instrument for taste of rice
JPS6321538A (en) Rice taste measuring apparatus
JPS63217254A (en) Method for measuring taste of rice

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees