JPS63241338A - Rice taste measuring apparatus - Google Patents

Rice taste measuring apparatus

Info

Publication number
JPS63241338A
JPS63241338A JP61210498A JP21049886A JPS63241338A JP S63241338 A JPS63241338 A JP S63241338A JP 61210498 A JP61210498 A JP 61210498A JP 21049886 A JP21049886 A JP 21049886A JP S63241338 A JPS63241338 A JP S63241338A
Authority
JP
Japan
Prior art keywords
taste
sample
rice
light
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61210498A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP61210498A priority Critical patent/JPS63241338A/en
Publication of JPS63241338A publication Critical patent/JPS63241338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a measured taste value accurately, by analyzing a component affecting taste of rice based on the quantity of reflected and transmission light from a sample when irradiated with near infrared rays to add a taste decision factor to the results. CONSTITUTION:Rice is crushed into fine particles passing through rollers 20-23 and a sample in a sample container 33 is irradiated with near infrared rays from a reflection mirror 5 after irradiation light from a light source 4 passes through a filter 6. The quantity of transmission light is detected with a quantity of transmission light detector 9C which the quantity of light reflected on an integrating sphere 7 from the sample is detected with quantity of reflected light detectors 9A and 9B and detection values thereof are fed to a controller 59. At the same time, the filter 6 is turned sequentially with the operation of a motor 10 to obtain characteristic of a near infrared ray wavelength area in a wavelength range of 1,200nm-2,400nm. The temperature of a sample within a sample container 33 is detected with a temperature detector 65 to be fed to the controller 59. An arithmetic unit 60 of the controller 59 determines content of magnesium or potassium as main component affecting taste of rice from the detection values to compute a measured taste value from a component analysis factor, a temperature correction value and a taste decision factor.

Description

【発明の詳細な説明】 産業上の利用分野 本出願は、米の食味を左右する主要成分の含有量を測定
すると共に、その測定値と食味判定係数値とを演算し、
米の食味測定値を表示する装置に関する。
[Detailed Description of the Invention] Industrial Application Field This application measures the content of the main components that affect the taste of rice, and calculates the measured value and the taste determination coefficient value.
This invention relates to a device for displaying rice taste measurement values.

従来技術とその問題点 米の食味は、品種の選択、生産地、栽培方法。Conventional technology and its problems The taste of rice depends on the selection of variety, production area, and cultivation method.

収穫方法等の生産段階で決定されるもの、あるいは、乾
燥、貯蔵、精米加工等の収穫後の加工処理段階で決定さ
れるもの、また炊飯加工時に影響を受けるものと多岐に
亘るものであるが、最も大きな影響を受けるのは生産段
階であり、次いで加工処理段階である。
There are a wide variety of factors, including those determined at the production stage such as the harvesting method, those determined at the post-harvest processing stage such as drying, storage, and rice milling, and those affected during the rice cooking process. , the production stage is the most affected, followed by the processing stage.

一般的に、日本人の米飯に対する食味感覚によると、硬
さ、粘り1弾力性、付着性等を適度に備えていることが
必要であり、囚に食味の良い銘柄として人気の高いのは
、コシヒカリ、ササニシキであるが、これ等の食味が良
いとする主要素は、他の一般銘柄米に比べて澱粉分子ど
うしの結合にかかわるとみられるマグネシウムの含有成
分が多いことと、カリウムの含有量が少ないことにある
。勿論、同一銘柄であれば各成分の含有量が同一である
というものではなく、栽培された産地の条件(土質、水
質)によっても、また気象条件(気温1日照時間、降雨
等)によっても各成分の含有量は変化するものであるか
ら、たとえ前年度の食味評価が高かったとしても、上記
気象条件にも左右されるので今年度収穫される米の食味
が前年度と同一であるという保証はなく、したがって過
去に調査した食味のデータを頼りとして米の買い付けあ
るいは配合を決定することは、必ずしも合理的な米の管
理ということができない。
Generally speaking, according to Japanese people's sense of taste when it comes to rice, it needs to have appropriate hardness, stickiness, elasticity, and adhesion, and the brands that are popular among prisoners as having good taste are: The main factors that make Koshihikari and Sasanishiki taste so good are that they contain more magnesium, which is thought to be involved in the bonding of starch molecules, than other common brands of rice, and that they have a lower potassium content. Less is more. Of course, the same brand does not necessarily have the same content of each component, and may vary depending on the conditions of the region where it was grown (soil quality, water quality) and weather conditions (temperature, hours of sunlight per day, rainfall, etc.). Since the content of ingredients changes, even if the taste rating of the previous year was high, there is no guarantee that the taste of the rice harvested this year will be the same as the previous year, as it will be affected by the weather conditions mentioned above. Therefore, relying on taste data from past surveys to determine rice purchasing or blending cannot necessarily be considered rational rice management.

そこで、特定の有名銘柄のみにとられれず、化学的に米
の成分を分析して食味の判定を行い、一般銘柄米から良
品質の米を見出すとともに、食味評価の低位ランク米の
食味をいかに向上させるかというテーマが生まれる。通
常、精米工場では単一銘柄米のみを確保することが難し
く、数種銘柄の米を配合して精米がなされており、この
食味評価の上位ランク米と低位ランク米とが適度に混合
されて食味の安定した精白米が流通しているものである
が、これ等は銘柄と産地との組合せを勘に頼って処理が
なされているのが実情であり、化学的な裏付けがないた
めに食味が一様でなく度々消費者から苦情が提起される
ところであった。
Therefore, rather than focusing only on specific famous brands, we chemically analyze the ingredients of rice to determine its taste, find high-quality rice from general brands, and find ways to improve the taste of rice that ranks low in taste evaluation. The theme of how to improve is born. Normally, it is difficult for rice milling factories to secure only a single brand of rice, and the rice is milled by blending several brands of rice, with a moderate mix of rice ranked high and low ranked in taste evaluation. Polished rice with a stable taste is on the market, but the reality is that the processing of this type of rice relies on intuition based on the combination of brand and production area, and because there is no chemical evidence to support it, the taste may vary. The situation was not uniform, and complaints were frequently raised by consumers.

従来、米飯の食味の判定方法として、実際に食して官能
的に評価する官能検査法、あるいは物理化学的測定によ
って粘性や硬さを判定する方法があり、装置としてはブ
ラベンダーアミノグラムやテクスチュロメータ−などが
ある。しかしながら、両者共測定にかなりの熟練を要し
、バラツキも大きく、測定に長時間を要するという問題
点があった。
Conventionally, methods for determining the taste of cooked rice include the sensory test method, in which the taste is evaluated by actually eating the rice, or the method of determining viscosity and hardness through physicochemical measurements. There are meters etc. However, both methods require considerable skill in measurement, have large variations, and have problems in that measurement takes a long time.

発明の目的 本発明は、米の食味を左右する主要成分の含有口を測定
すると共に、前記成分に対して別途実験値を基に食味判
定係数値を設け、前記成分の測定値と食味判定係数値と
を演算し、その演算値によって米の食味を評価するもの
で、その測定値により数品種の米を経済的に混合して食
味の安定化を計ること、あるいは米の買付管理を行う等
に活用するために、米の食味を正確に測定できる米の食
味測定装置を提供することを目的とするものである。
Purpose of the Invention The present invention measures the content of the main components that affect the taste of rice, sets a taste determination coefficient value for the component separately based on experimental values, and compares the measured value of the component with the taste determination coefficient value. It calculates numerical values and evaluates the taste of rice based on the calculated values.The measured values can be used to economically mix several varieties of rice to stabilize the taste, or to manage rice purchasing. It is an object of the present invention to provide a rice taste measuring device that can accurately measure the taste of rice for use in applications such as the following.

問題点を解決するための手段 上記目的を達成するために本発明は、光源の照射光のフ
ィルターを透過した近赤外線を試料に照射して得られる
反射光量または透過光量または反射光量と透過光量の組
み合わせによって米の成分の一部をなすマグネシウムま
たはカリウムの含有量またはマグネシウムおよびカリウ
ムのそれぞれの含有量を検出する受光素子を設け、該受
光素子を信号処理装置、記憶装置、演算装置等を備えた
制御装置に電気的に連絡し、かつ前記受光素子の検出値
に対して前記マグネシウムまたはカリウムのそれぞれの
含有量測定値に換算する換算係数値と前記マグネシウム
またはカリウムの含有♀測定1直から食味を判定するた
めの特定係数値または前記それぞれの含有量測定値の組
み合わせから食味を判定するための特定係数値を前記記
憶装置に設定し、前記マグネシウムまたはカリウムのそ
れぞれの含有量測定値または前記それぞれの含有量測定
値の組み合わせと前記特定係数値とを演算して算出した
食味値を表示する表示器を前記制御装置に電気的に連絡
したことにより、問題点を解決するための手段とした。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a method for determining the amount of reflected light or the amount of transmitted light, or the amount of reflected light and the amount of transmitted light obtained by irradiating a sample with near-infrared rays that have passed through a filter of the irradiated light from a light source. A light-receiving element is provided to detect the content of magnesium or potassium, or the content of each of magnesium and potassium, which is a part of the components of rice depending on the combination, and the light-receiving element is equipped with a signal processing device, a storage device, an arithmetic device, etc. A conversion coefficient value is electrically connected to a control device and is used to convert the detected value of the light receiving element into a measured value of each of the magnesium or potassium contents, and the taste is determined from the first measurement of the magnesium or potassium content. A specific coefficient value for determining taste or a specific coefficient value for determining taste from a combination of the respective content measurement values is set in the storage device, and the content measurement value for each of the magnesium or potassium content or the respective content measurement value is A display device that displays the taste value calculated by calculating the combination of the measured content values and the specific coefficient value is electrically connected to the control device, thereby providing a means for solving the problem.

作  用 食味測定しようとする米の試料を試料容器に充1眞して
測定部に装備する。フィルターを介して光源の照射光を
近赤外線として照射した試料から得られる反射光量また
は透過光量または両者それぞれを検出した先出検出器の
検出信号は制御装置に連絡される。制御装置において、
予め設定された成分分析係数値と前記検出値とを演算し
て成分分析値に算出され、さらに制御装置に設定された
食味判定係数値と成分分析性とが演算されて食味測定値
に算出される。算出された食味測定値の表示される数値
が高いものほど食味がよいと評価されるものである。
Effect: Fill a sample container with the rice sample whose taste is to be measured and install it in the measuring section. A detection signal from the preceding detector that detects the amount of reflected light, the amount of transmitted light, or both obtained from a sample irradiated with near-infrared light from a light source through a filter is communicated to a control device. In the control device,
A component analysis value is calculated by calculating a preset component analysis coefficient value and the detected value, and a taste measurement value is further calculated by calculating a taste determination coefficient value and component analysis property set in the control device. Ru. The higher the displayed numerical value of the calculated taste measurement value, the better the taste is evaluated.

実施例 本出願の実施例を第1図〜第7図により説明する。Example Embodiments of the present application will be described with reference to FIGS. 1 to 7.

符号1で示す食味測定装置のキャビネット2の内部に近
赤外線成分分析装置3を内股しく第1図、第2図参照)
、分析装置3の上部には光源4と反射鏡5を関連的に配
設し、また多角形状の反射鏡5の舵面には複数個の特定
波長のフィルター6・・・を設けて反射鏡5と一体的に
形成し、フィルター6・・・を電動機10に連結して回
転、傾斜角度自在に軸着し、積分球7の上部に特定波長
の近赤外線を取り入れる窓8を設けである。積分球7の
下方内部に反射光量検出器9A、9Bを対称な位置に設
け、積分球7の底部を開口して測定部11とし、測定部
11に透明板12を設け、その下方に透過先組検出器9
cを配設しである。キャビネット2内部の近赤外線成分
分析装置3の側方には試料供給装置13を配設する。試
料供給装置13は、キャビネット2の上壁−側部14を
開口して供給ホッパー15を装着し、ホッパー15の開
口部16を開閉するシャッター17をスライド自在に設
け、シャッター17に電磁石18を連結し、側壁にレベ
ル計19を装着しである。ホッパー15の下部に多数の
鋭利な突部を有する一対のローラー20.21を対向回
転自在に軸架し、さらにその下方に表面を平滑面とした
一対の細粉用ローラー22.23を対向回転自在に軸架
し、粉砕室24内部の前記ローラー20.21.22゜
23に対面して電磁弁を備えた噴射ノズルとローラーに
接触する弾性材とからなる清掃装置25A〜25Dを設
けである。
(See Figures 1 and 2)
A light source 4 and a reflecting mirror 5 are arranged in relation to each other on the upper part of the analyzer 3, and a plurality of filters 6 for specific wavelengths are provided on the control surface of the polygonal reflecting mirror 5. 5, filters 6 are connected to an electric motor 10 and are pivoted to rotate and tilt freely, and a window 8 is provided at the top of the integrating sphere 7 to take in near-infrared rays of a specific wavelength. Reflected light quantity detectors 9A and 9B are provided at symmetrical positions inside the lower part of the integrating sphere 7, the bottom of the integrating sphere 7 is opened to form a measuring section 11, a transparent plate 12 is provided in the measuring section 11, and a transmission target is provided below. Group detector 9
c is arranged. A sample supply device 13 is disposed on the side of the near-infrared component analyzer 3 inside the cabinet 2 . The sample supply device 13 opens the upper wall-side part 14 of the cabinet 2, attaches the supply hopper 15, provides a slidable shutter 17 for opening and closing the opening 16 of the hopper 15, and connects an electromagnet 18 to the shutter 17. A level meter 19 is attached to the side wall. A pair of rollers 20.21 having a large number of sharp protrusions are rotatably mounted on the lower part of the hopper 15, and a pair of fine powder rollers 22.23 with smooth surfaces are mounted below the rollers 20.21 to rotate oppositely. Cleaning devices 25A to 25D are freely mounted on the shaft and are provided facing the rollers 20, 21, 22, 23 inside the grinding chamber 24 and consisting of an injection nozzle equipped with an electromagnetic valve and an elastic material in contact with the rollers. .

粉砕室24の下方部に粉砕粒の選別装置26を配設して
あり、選別装置26は、−側部に粗粒子排出口27を固
設した振動フレーム28を板バネ29により支架し、振
動フレーム28に多孔壁板30を装脱自在に設け、振動
フレーム28の側面31に近接して電磁石32を固設し
である。
A pulverized particle sorting device 26 is disposed in the lower part of the pulverizing chamber 24, and the sorting device 26 supports a vibrating frame 28 with a coarse particle discharge port 27 fixedly installed on the negative side by a plate spring 29, and vibrates. A perforated wall plate 30 is removably provided on the frame 28, and an electromagnet 32 is fixedly provided adjacent to a side surface 31 of the vibrating frame 28.

選別装置26の下方に粉砕試料を充填する試料容器33
を設ける。試料容器33は底壁面を透光材としく第1図
、第3図参照)、試料容器移動体34に装着した容器受
台35に設けた案内溝36に装脱自在としである。試料
容器33の移動機構として、−側部にラック37を固設
した試料容器移動体34を中空軸とし該移動体34に断
面丸状の軌道軸38を挿入し、軌道軸38の一側部39
を回動用ハンドル40に他側部41を軸受台42に軸架
し、キャビネット2の底壁に固設した受台43に支点台
44を装着し、試料容器移動体34のラック37にモー
ター45に軸着した歯車46を係着し、モータ一台47
にモーター45を装着したその端部を試料容器移動体3
4に遊嵌すると共に、モータ一台47と支点台44とに
ロンドが伸縮する電磁石48を回動自在に連結しである
。49は、試料容器33上の粉砕試料を圧縮充填すると
共に、送置試料を取除くための試料充填器となす回転ロ
ーラー、50は試料容器33の位置を充填部に設定する
ための充填部位置センサー、51は試料容器33の位置
を測定部に設定するための測定部位置センサーであり、
センサー51と透過光量検出器9Cのそれぞれはモータ
45に固着した支持杆に装着しである。63は、ローラ
ー20.21.22.23および回転ローラー49を回
転駆動する電動機である。52は試料容器33内から試
料を噴風により排除させると共に清掃を行う噴射ノズル
、53は不要試料を受取る受箱、54 A G、を透明
板12に接離して清掃する試料容器移動体34に固設し
た清掃器であり、54Bは透過光m検出器9Cの表面を
清掃する清掃器である。試料容器33の凹部側壁には試
料温度を検出するサーミスタを埋設して温度検出器65
とし、温度検出器65に連結した端子66を試料容器3
3の外側壁から突出させ、積分球7の外側部に温度検出
器65の端子66の圧着部67を設けてあり、圧着部6
7は後述する制御装置59に電気的に連結しである。
Sample container 33 filled with crushed samples below the sorting device 26
will be established. The sample container 33 has a bottom wall made of a transparent material (see FIGS. 1 and 3), and can be freely inserted into and removed from a guide groove 36 provided in a container holder 35 mounted on a sample container moving body 34. As a moving mechanism for the sample container 33, a sample container moving body 34 with a rack 37 fixed to the negative side is used as a hollow shaft, and an orbital shaft 38 having a round cross section is inserted into the moving body 34, and one side of the orbital shaft 38 39
The other side 41 is mounted on a rotating handle 40 and the other side 41 is mounted on a bearing stand 42, a fulcrum stand 44 is attached to a support stand 43 fixed to the bottom wall of the cabinet 2, and a motor 45 is attached to the rack 37 of the sample container moving body 34. A gear 46 is attached to the shaft, and one motor 47
The end of the motor 45 attached to the sample container moving body 3
4, and an electromagnet 48, which extends and retracts, is rotatably connected to one motor 47 and a fulcrum 44. 49 is a rotating roller serving as a sample filling device for compressing and filling the crushed sample on the sample container 33 and removing the sent sample; 50 is a filling part position for setting the position of the sample container 33 in the filling part; A sensor 51 is a measuring part position sensor for setting the position of the sample container 33 in the measuring part,
The sensor 51 and the transmitted light amount detector 9C are each mounted on a support rod fixed to the motor 45. 63 is an electric motor that rotationally drives the rollers 20, 21, 22, 23 and the rotating roller 49. Reference numeral 52 denotes an injection nozzle for removing the sample from the inside of the sample container 33 with a blast of air and cleaning it, 53 a receiving box for receiving an unnecessary sample, and 54 A G for the sample container moving body 34 for cleaning by bringing it into contact with and separating from the transparent plate 12. This is a fixed cleaning device, and 54B is a cleaning device that cleans the surface of the transmitted light m detector 9C. A thermistor for detecting the sample temperature is embedded in the side wall of the concave portion of the sample container 33, and a temperature detector 65 is installed.
and connect the terminal 66 connected to the temperature detector 65 to the sample container 3.
A crimp portion 67 for a terminal 66 of a temperature sensor 65 is provided on the outside of the integrating sphere 7 and protrudes from the outer wall of the integrating sphere 7.
7 is electrically connected to a control device 59 which will be described later.

キャビネット2の前面部には表示器55A〜55Dより
なる表示装置55.操作用ボタン56・・・1手動操作
ボタン56A、自動操作ボタン56B、透過先口測定選
択ボタン56C2反射・透過併用選択ボタン56Dのそ
れぞれを設ける。
At the front of the cabinet 2, there is a display device 55. made up of displays 55A to 55D. Operation buttons 56...1 are provided with a manual operation button 56A, an automatic operation button 56B, a transmission tip measurement selection button 56C, and a reflection/transmission combination selection button 56D.

58はプリンター、59は制御装置であり、米の食味を
左右するマグネシウム、カリウムの分析値に演算する成
分分析係数値1食味判定係数値、温度補正値、銘柄別の
米価額等を設定した記憶装置61と、演算装置6oと、
信号処理装置62等を備えている。第4図において、5
7は、キャビネット2の前面開口部に設けた試料の外部
供給部である。
58 is a printer, and 59 is a control device, which stores the component analysis coefficient value 1 which calculates the analysis value of magnesium and potassium, which affect the taste of rice, the taste judgment coefficient value, temperature correction value, rice price by brand, etc. A device 61, an arithmetic device 6o,
It is equipped with a signal processing device 62 and the like. In Figure 4, 5
Reference numeral 7 denotes an external sample supply section provided at the front opening of the cabinet 2.

次に、第5図により制御装置59の構成につき説明する
。演算装置60.記憶装置61.信号処理装置62等か
らなる制御装置59の入力側には、反射光量検出器9A
、9B、透過光量検出器9C,レベル計192位置セン
サー50゜51、自動操作ボタン56B1反射・透過併
用選択ボタン56D、温度検出器65.キーボード64
のそれぞれを連結し、制御装置59の出力側には表示装
置55.プリンター58を連結し、また、光源4.電動
機10,63.電磁石18.32.48.モーター45
.清掃装置25A〜25D、噴射ノズル52のそれぞれ
は駆動装置68〜76のそれぞれを介して制御装置59
の出力側に連結しである。
Next, the configuration of the control device 59 will be explained with reference to FIG. Arithmetic device 60. Storage device 61. On the input side of the control device 59, which includes a signal processing device 62, etc., there is a reflected light amount detector 9A.
, 9B, transmitted light amount detector 9C, level meter 192 position sensor 50° 51, automatic operation button 56B1 reflection/transmission combination selection button 56D, temperature detector 65. keyboard 64
are connected to each other, and a display device 55. is connected to the output side of the control device 59. A printer 58 is connected, and a light source 4. Electric motor 10, 63. Electromagnet 18.32.48. motor 45
.. Each of the cleaning devices 25A to 25D and the injection nozzle 52 is connected to a control device 59 via a drive device 68 to 76, respectively.
It is connected to the output side of.

なお、近赤外線成分分析装置3に内股した制御装置に成
分分析係数値を設定し、米の食味を左右する成分分析値
を算出し、別途設けた制御装置に米の食味判定係数値を
設定し、両制御装置を連結して米の食味測定値を演算し
て表示する場合もある。
In addition, a component analysis coefficient value is set in a control device attached to the near-infrared component analyzer 3, and a component analysis value that affects the taste of rice is calculated, and a rice taste determination coefficient value is set in a separately provided control device. In some cases, both control devices are connected to calculate and display the taste measurement value of the rice.

以下に上記構成における作用を第1図〜第5図、および
第6図の動作フロー図を併用して説明する。
The operation of the above configuration will be explained below using FIGS. 1 to 5 and the operation flow diagram of FIG. 6.

キーボード64から米の食味を左右する主要成分のマグ
ネシウム、カリウムのそれぞれを成分分析値に演算する
成分分析係数値2食味判定係数値、温度補正値および米
の銘柄2等級別の米価路を制御装置59の記憶装置61
に設定する(ステップS+)。
A device that controls the component analysis coefficient value (2) which calculates each of the main components (magnesium and potassium) that affect the taste of rice into component analysis values from the keyboard 64, the taste judgment coefficient value (2), the temperature correction value, and the rice price road by rice brand (2) grade. 59 storage devices 61
(Step S+).

次に、反射・透過光間測定併用選択ボタン56D、自動
操作ボタン56Bを押すとくステップS2)、近赤外線
成分分析装置3に通電され、光源4をONLで該装置3
を予熱するとともにタイマーT1を作動させ(ステップ
S3)、電動機63がONしTロー5−20.21,2
2゜23および回転ローラー49それぞれを回転させ(
ステップS4)、次いで電磁石32に通電して振動フレ
ーム28を振動させる(ステップSs)。試料容器33
が試料の充填位置に所在していることを充填部位置セン
サー50が検出すると(ステップS6)、次に供給ホッ
パー15に試料が供給されているか、また近赤外線成分
分析装置3の予熱時間が所定時間経過しているかを制御
装置59によりチェックし、レベル計19が試料のある
ことを検出し、タイマーT1の設定した所定時間を経過
している信号の入力により(ステップSy、a)、?を
磁石18がONしてシャッター17を開成して試料を流
出させる(ステップS9)。ローラー20.21間を通
過して粉砕した試料をざらに細粉用ローラー22.23
間に通過させて微粒子に粉砕しくステップSm)、粉砕
された試料は振動する多孔壁板30上に流下して粒選別
作用を受ける(ステップ8+1>。多孔壁板3oの通孔
を貫通した粒子は試料容器33上に流下し、試料容器3
3上に盛上がって過量となった試料は受箱53に流下し
、多孔壁板30上に残留する粗粒子は粗粒子排出口27
を介して受箱53に流出する(ステップ512)。
Next, when the selection button 56D for combined measurement of reflected and transmitted light and the automatic operation button 56B are pressed, the near-infrared component analyzer 3 is energized and the light source 4 is ONL.
At the same time, the timer T1 is activated (step S3), the electric motor 63 is turned on, and the T low 5-20, 21, 2
2° 23 and rotating roller 49 (
Step S4), then the electromagnet 32 is energized to vibrate the vibration frame 28 (step Ss). Sample container 33
When the filling part position sensor 50 detects that the sample is located at the sample filling position (step S6), it is next determined whether the sample is being supplied to the supply hopper 15 and whether the preheating time of the near-infrared component analyzer 3 has been determined. The control device 59 checks whether the time has elapsed, the level meter 19 detects the presence of the sample, and by inputting a signal indicating that the predetermined time set by the timer T1 has elapsed (step Sy, a), ? The magnet 18 is turned on and the shutter 17 is opened to allow the sample to flow out (step S9). The fine powder rollers 22 and 23 roughen the pulverized sample by passing between the rollers 20 and 21.
The pulverized sample flows down onto the vibrating porous wall plate 30 and undergoes a particle sorting action (step 8+1>. The particles passing through the holes in the porous wall plate 3o flows down onto the sample container 33, and the sample container 3
3, the excess sample flows down into the receiving box 53, and the coarse particles remaining on the porous wall plate 30 are discharged through the coarse particle outlet 27.
It flows out to the receiving box 53 via (step 512).

供給ホッパー15内に供給された試料が完全に排出され
たことを検出したレベル計19の信号により(ステップ
S 13 ) 、モーター45を作動して試料容器移動
体34を移動させる。その移動過程中において、試料容
器33に盛上がった試料を回転ローラー49により試料
容器33に圧縮充填するとともに、上面を平坦面として
過量の試料を受箱53に流出させ、試料容器33が測定
部11下部の所定位置に到達したことを測定部位置セン
サー51が検知するとモーター45の作動を停止しくス
テップ514)、その停止信号によって近赤外線成分分
析装置3の測定が開始される。
In response to a signal from the level meter 19 that detects that the sample supplied into the supply hopper 15 has been completely discharged (step S 13 ), the motor 45 is activated to move the sample container moving body 34 . During the moving process, the rotating roller 49 compresses and fills the sample that has risen in the sample container 33 into the sample container 33, and the upper surface is made flat to allow excess sample to flow out into the receiving box 53. When the measuring part position sensor 51 detects that the measuring part position sensor 51 has reached a predetermined position below the motor 45, the operation of the motor 45 is stopped (step 514), and the near-infrared component analyzer 3 starts measurement in response to the stop signal.

先ず光源4からの照射光をフィルター6を介して反射鏡
5から近赤外線を試料容器33内の試料に照射し、試料
を透過した透過光量を検出する透過光量検出器9Cの検
出信号を制m装置59に連絡し、また、試料から積分球
7に反射する反射光量を反射光量検出器9A、9Bによ
り検出し、その検出値を制御装置59に連絡する(ステ
ップS15.16)。各検出器9A、9B。
First, near infrared rays are irradiated from the reflector 5 from the light source 4 through the filter 6 onto the sample in the sample container 33, and the detection signal of the transmitted light amount detector 9C which detects the amount of transmitted light transmitted through the sample is controlled. The amount of reflected light reflected from the sample to the integrating sphere 7 is detected by the reflected light amount detectors 9A and 9B, and the detected value is communicated to the control device 59 (step S15.16). Each detector 9A, 9B.

9Cの検出信号の連絡とともに電動機10を作動させフ
ィルター6・・・の回動を順次行い、波長1200nm
、 〜2400nm、の範囲のフィルターにおけるそれ
ぞれの近赤外波長域の特性から得られる透過光量と反射
光量を検出して制御装置59に連絡する(ステップST
7.+8)。なお、フィルター6・・・は上記の近赤外
波長域においてそれぞれ±10nlll、の許容範囲を
設けである。各フィルター6・・・による検出が終了し
たかどうかを確認し、所定回数でないなら所定回数に至
るまで検出を行う(ステップ519)。
When the detection signal of 9C is communicated, the electric motor 10 is activated to rotate the filters 6 sequentially, and the wavelength is 1200 nm.
, ~2400 nm, the amount of transmitted light and the amount of reflected light obtained from the characteristics of each near-infrared wavelength region of the filter are detected and communicated to the control device 59 (step ST
7. +8). Note that the filters 6... are each provided with a tolerance range of ±10 nllll in the above-mentioned near-infrared wavelength range. It is checked whether the detection by each filter 6 has been completed, and if it is not a predetermined number of times, detection is continued until the predetermined number of times is reached (step 519).

次に試料容器33内の試料温度を温度検出器65により
検出し、その検出値を端子66、圧着部67を介して制
御装置59に連絡し、(ステップ820.521)その
検出信号の入力終了により、モーター45と清掃装置2
5A〜25Dを作動し、清掃装置25A〜25Dにより
各ローラー20.21,22.23の周面を高圧空気の
噴射により清掃しくステップ522)、またモーター4
5により試料容器移動体33を粉砕室24方向に移動さ
せ、充填部位置センサー50が試料容器33が所定位置
に到達することを検出するとモーター45の作動を停止
する(ステップ5Z3)。試料容器移動体34の移動過
程において、清掃器54が測定部11下部の透明板12
を清掃する。タイマーT2の所定時間を経過すると清掃
装置25A〜25Dの作動を停止しくステップS24.
25)、電磁石18の作動を停止して供給ホッパー15
のシャッター17を閉成する(ステップ528)。試料
容器33が充填部の所定位置に到達すると電磁石48を
作動し、軌道軸38を中心としてモーター45ごと試料
容器移動体34を90°反転させる。このとき清掃器5
4Bが透過光量検出器9Cに接触して清掃する(ステッ
プ577)。試料容器33に噴射ノズル52が高圧空気
を噴射して試料を排除するとともに試料容器33を清掃
する(ステップ528)。噴射ノズル52が一定時間作
動した後、噴射ノズルの作動を停止しくステップS29
.II)、電磁石48を停止して試料容器移動体34を
正常位置に復帰させて次回の試料測定に備える(ステッ
プ531)。制御装置59の演算装置60に連絡された
透過光消検出器9G、反射光量検出器9A、9Bのそれ
ぞれの検出値と温度検出器65の温度検出値により、米
の食味を左右する主要成分のマグネシウムまたはカリウ
ムのそれぞれは、記憶装置61に入力したそれぞれの成
分分析係数値と、温度補正値と、食味判定係数1直が演
算され、演算された各種成分を基にした食味測定値は、
キャビネット2前面の表示器55A〜55Dにデジタル
表示されるとともに、プリンター58により、成分分析
値と食味測定値とが自動的にプリントされて繰出される
(ステップ332〜534)。
Next, the temperature of the sample inside the sample container 33 is detected by the temperature detector 65, and the detected value is communicated to the control device 59 via the terminal 66 and the crimping part 67 (steps 820 and 521), and the input of the detection signal is completed. Accordingly, the motor 45 and the cleaning device 2
5A to 25D, and the cleaning devices 25A to 25D clean the peripheral surfaces of the respective rollers 20.21, 22.23 by jetting high pressure air (step 522), and the motor 4
5, the sample container moving body 33 is moved toward the crushing chamber 24, and when the filling part position sensor 50 detects that the sample container 33 has reached a predetermined position, the operation of the motor 45 is stopped (step 5Z3). During the movement process of the sample container moving body 34, the cleaning device 54 touches the transparent plate 12 at the bottom of the measuring section 11.
Clean. Step S24. The operation of the cleaning devices 25A to 25D is stopped when the predetermined time of the timer T2 has elapsed.
25), the operation of the electromagnet 18 is stopped and the supply hopper 15
shutter 17 is closed (step 528). When the sample container 33 reaches a predetermined position in the filling section, the electromagnet 48 is activated to rotate the sample container moving body 34 together with the motor 45 by 90° about the orbital axis 38. At this time, the cleaner 5
4B contacts and cleans the transmitted light amount detector 9C (step 577). The injection nozzle 52 injects high-pressure air into the sample container 33 to remove the sample and clean the sample container 33 (step 528). After the injection nozzle 52 operates for a certain period of time, the operation of the injection nozzle is stopped in step S29.
.. II) The electromagnet 48 is stopped and the sample container moving body 34 is returned to its normal position in preparation for the next sample measurement (step 531). Based on the detected values of the transmitted light quenching detector 9G, reflected light amount detectors 9A and 9B, and the temperature detected value of the temperature detector 65, which are connected to the arithmetic unit 60 of the control device 59, the main components that affect the taste of rice are detected. For each of magnesium or potassium, the respective component analysis coefficient values input into the storage device 61, temperature correction values, and taste judgment coefficients are calculated, and the taste measurement values based on the calculated various components are as follows.
The component analysis values and taste measurement values are digitally displayed on the displays 55A to 55D on the front of the cabinet 2, and are automatically printed out by the printer 58 (steps 332 to 534).

なお、複数回の試料測定の後、任意の食味とJる米粒の
配合において、米の食味測定を行ったそれぞれの測定値
は記憶装置61に記憶されているので、キーボード64
から制御装置59に信号を入力すると、それぞれの測定
した米粒をそれぞれどのような比率で配合すると最も経
済的であるか等を知ることができる。
It should be noted that after multiple sample measurements, the measured values of each rice taste measurement for an arbitrary taste and combination of rice grains are stored in the storage device 61, so the keyboard 64
By inputting a signal to the control device 59 from the control unit 59, it is possible to know the most economical ratio of the rice grains to be mixed.

また、手動操作ボタン56Aを投入すれば、操作用押ボ
タン56により電動1filOを電動させて反射鏡5.
フィルター6・・・を任意に回動させることができ、電
動態63を起動して試料の粉砕も行える。そして、外部
から試料を試料容器33に充填して測定を行う場合には
、回動用ハンドル40を測定部11に向けて押込み、試
料容器33を外部供給部57から引出し、試料を試料容
器に充填し、上面部を平坦面に加圧した後試料容器33
を容器受台35の案内溝36′ に挿入し、試料容器3
3を測定部11に装備して測定を行う。
Further, when the manual operation button 56A is turned on, the electric 1filO is operated by the operation push button 56, and the reflector 5.
The filters 6... can be rotated arbitrarily, and the electrolytic force 63 can be activated to crush the sample. When performing measurement by filling the sample container 33 with a sample from the outside, push the rotating handle 40 toward the measurement section 11, pull out the sample container 33 from the external supply section 57, and fill the sample container with the sample. After pressurizing the upper surface to a flat surface, the sample container 33
Insert the sample container 3 into the guide groove 36' of the container holder 35.
3 is installed in the measuring section 11 to perform measurements.

食味判定の各成分の測定値を正確に得るためには、試料
容器に充填する試料を小粒子に粉砕する必要があり、そ
の粒子は500ミクロン以下とすべきであるが、131
別により選別された粗粒子を排除したものでは部分的な
測定となり測定誤差を招くから、粉砕作用を2回繰返す
ことが望ましい。以下に示す表は、各成分の真値を10
0%としたときの試料を粉砕した粒子の大小と測定値の
精度を示すものである。
In order to accurately obtain measured values for each component for taste evaluation, it is necessary to crush the sample to be filled into the sample container into small particles, and the particles should be 500 microns or less, but 131
If the separately selected coarse particles are excluded, the measurement will be partial and will lead to measurement errors, so it is desirable to repeat the crushing action twice. The table below shows the true value of each component as 10
This shows the size of the particles obtained by crushing the sample and the accuracy of the measured value when the sample is set to 0%.

粒子の大きさと測定精度との関係 +1XI中の小数点を有する数値は精度・・・±粒子の
大きさの単位・・・ミクロン 上記の表からも判断できるように、粒子の大きさによっ
て測定精度が異るので、食味判定の上から測定精度は±
0.5以外でないと食味判定の正確さに欠ける。したが
って、粉砕粒の選別装置26に使用する多孔壁板30の
通孔は500ミクロン以下の粒子となるものを使用しな
【ノればならない。また、食味測定装置1の外で試料を
粉砕し、その試料を外部供給部57から測定部11に装
備して測定する場合も同様に、粉砕した粒子を篩選別し
て500ミクロン以下の粒子のみを試料容器33に充填
すると測定精度が確保できる。
Relationship between particle size and measurement accuracy + The number with a decimal point in 1 Because of the difference in taste, the measurement accuracy is ±
If it is other than 0.5, the accuracy of taste judgment will be lacking. Therefore, the holes in the porous wall plate 30 used in the pulverized grain sorting device 26 must be made so that they produce particles of 500 microns or less. Furthermore, when a sample is crushed outside the taste measuring device 1 and the sample is supplied from the external supply section 57 to the measuring section 11 for measurement, the crushed particles are similarly sorted through a sieve and only particles of 500 microns or less are sampled. Filling the container 33 ensures measurement accuracy.

なお、上記説明では、説明の都合上透過光D検出器9C
と反射光量検出器9A、9Bのそれぞれの検出値によっ
て各成分分析を行うようにしたが、特定成分の測定を行
うときには反射光量検出器9A、9Bまたは透過光重検
出器9Cのみで成分分析を行い食味測定値を求めるもの
である。また、マグネシウムまたはカリウム検出値は必
ずしも100%の純度を要するものでないことは言うま
でもなく、マグネシウム、力1ノウム以外の他の成分を
補助的に付加して測定する場合もある。加えて、温度検
出器をキャビネット内部あるいは外部に装着して気温を
検出することもあり、第7図に示すように、反射鏡を設
けず光源4の照射光を直接フィルター6を介して試料に
近赤外線を照射することもある。さらに、光源の照射光
に対して順次交換自在に可動支持体に装設した一組の分
光特性を異にしたフィルターを順次種類別に透過した前
記光源の照射光の近赤外線を試料に照射する際に、前記
フィルターのうち任意の単一のフィルターが前記光源の
照射光と交わる角度が前記支持体の動きによって可変と
なる方式のものを用いる場合もある。
In the above description, for convenience of explanation, the transmitted light D detector 9C
However, when measuring a specific component, component analysis is performed using only the reflected light amount detectors 9A, 9B or the transmitted light detector 9C. This is to obtain the taste measurement value. Further, it goes without saying that the detected value of magnesium or potassium does not necessarily require 100% purity, and may be measured by supplementarily adding other components other than magnesium and potassium. In addition, a temperature detector may be installed inside or outside the cabinet to detect the air temperature, and as shown in FIG. Near-infrared rays may also be emitted. Furthermore, when the sample is irradiated with the near-infrared rays of the irradiated light from the light source, which have passed through a set of filters with different spectral characteristics that are replaceably mounted on a movable support. Furthermore, a filter may be used in which the angle at which any single filter intersects the irradiation light from the light source is variable according to the movement of the support.

発明の効果 上記に説明した如く本発明によれば、近赤外線を試料に
照射して得られる反射先日または透過光量または両者そ
れぞれを検出して米の食味を左右する成分の分析を行い
、その成分分析値に対して予め実験値より求めた食味判
定係数値を付加し、その演算により食味測定値を算出す
るものであるから、従来、一部の専門家によって行われ
ていた官能試験や化学分析法による煩わしい測定に対し
、その測定値が正確であると共に誰でもが容易にまた迅
速に米の食味の測定を行うことができ、銘柄別あるいは
産地別の旧来の評価方法を改善し、各種の次行程作業を
合理化することができる。
Effects of the Invention As explained above, according to the present invention, the components that influence the taste of rice are analyzed by detecting the amount of reflected or transmitted light obtained by irradiating a sample with near-infrared rays, or the amount of transmitted light, or both. Since the taste determination coefficient value determined in advance from experimental values is added to the analytical value, and the taste measurement value is calculated by the calculation, it is no longer possible to perform sensory tests and chemical analyzes that were conventionally performed by some experts. In contrast to the cumbersome measurements required by the law, the measured values are accurate and anyone can easily and quickly measure the taste of rice. Next process work can be streamlined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の実施例図である。 第1図は食味測定装置の正断面図、第2図は要部の拡大
断面図、第3図は要部の斜視図、第4図は装置の正面図
、第5図は制御装置の構成を示すブロック図、第6図は
制御装置の動作フロー図、第7図はアミロースの測定値
を補正する温度補正値を示した図、第8図は反!lFI
鏡を設けずフィルターを介して光源から試料に直接照射
する実施例図である。 1・・・食味測定装置、2・−・キャビネット、3・・
・近赤外線成分分析装置、4・・・光源、5・・・反射
鏡、6・・・フィルター、7・・・積分球、8・・・窓
、9△。 9B・・・反射光量検出器、9C・・・透過光準検出器
、10・・・電動機、11・・・測定部、12・・・透
明板、13・・・試料供給装置、14・・・−側部、1
5・・・供給ホッパー、16・・・開口部、17・・・
シャッター、18・・・電磁石、19・・・レベル計、
20.21・・・ローラー、22.23・・・細粉用ロ
ーラー、24・・・粉砕室、25A〜25D・・・清掃
装置、26・・・選別装置、27・・・粗粒子排出口、
28・・・振動フレーム、29・・・板バネ、30・・
・多孔壁板、31・・・側面、32・・・電磁石、33
・・・試料容器、34・・・試料容器移動体、35・・
・容器受台、36・・・案内溝、37・・・ラック、3
8・・・軌道軸、3つ・・・−側部、40・・・回転用
ハンドル、41・・・他側部、42・・・軸受台、43
・・・受台、44・・・支点台、45・・・モーター、
46・・・歯車、47・・・モータ一台、48・・・電
磁石、4つ・・・回転ローラー、50・・・充填部位置
センサー、51・・・測定部位置センサー、52・・・
噴射ノズル、53・・・受箱、54.54B・・・清掃
器、55・・・表示装置、55A〜55D・・・表示器
、56・・・操作用押ボタン、56A・・・手動操作ボ
タン、56B・・・自動操作ボタン、56C・・・透過
光量測定選択ボタン、56D・・・反射・透過併用選択
ボタン、57・・・外部供給部、58・・・プリンター
、59・・・制御装置、60・・・演算装置、61・・
・記憶装置、62・・・信号処理装置、63・・・N動
機、64・・・キーボード、65・・・温度検出器、6
6・・・端子、67・・・圧着部、68〜76・・・駆
動装置。
FIGS. 1 to 8 are illustrations of embodiments of the present invention. Fig. 1 is a front sectional view of the taste measuring device, Fig. 2 is an enlarged sectional view of the main parts, Fig. 3 is a perspective view of the main parts, Fig. 4 is a front view of the device, and Fig. 5 is the configuration of the control device. FIG. 6 is a block diagram showing the operation flow of the control device, FIG. 7 is a diagram showing the temperature correction value for correcting the measured value of amylose, and FIG. 8 is the reverse! lFI
FIG. 2 is an example diagram in which a sample is directly irradiated from a light source through a filter without providing a mirror. 1...Taste measuring device, 2...Cabinet, 3...
- Near-infrared component analyzer, 4... Light source, 5... Reflector, 6... Filter, 7... Integrating sphere, 8... Window, 9△. 9B... Reflected light amount detector, 9C... Transmitted light quasi-detector, 10... Electric motor, 11... Measuring section, 12... Transparent plate, 13... Sample supply device, 14...・-side, 1
5... Supply hopper, 16... Opening, 17...
Shutter, 18...electromagnet, 19...level meter,
20.21... Roller, 22.23... Fine powder roller, 24... Grinding chamber, 25A to 25D... Cleaning device, 26... Sorting device, 27... Coarse particle discharge port ,
28... Vibration frame, 29... Leaf spring, 30...
・Porous wall plate, 31...Side surface, 32...Electromagnet, 33
...Sample container, 34...Sample container moving body, 35...
・Container holder, 36... Guide groove, 37... Rack, 3
8... Orbital shaft, 3...-side part, 40... Rotation handle, 41... Other side part, 42... Bearing stand, 43
... pedestal, 44... fulcrum, 45... motor,
46... Gear, 47... One motor, 48... Electromagnet, 4... Rotating rollers, 50... Filling part position sensor, 51... Measuring part position sensor, 52...
Spray nozzle, 53... Receiving box, 54.54B... Cleaner, 55... Display device, 55A to 55D... Display device, 56... Operation push button, 56A... Manual operation button, 56B... automatic operation button, 56C... transmitted light amount measurement selection button, 56D... reflection/transmission combination selection button, 57... external supply section, 58... printer, 59... control Device, 60... Arithmetic device, 61...
-Storage device, 62...Signal processing device, 63...N motive, 64...Keyboard, 65...Temperature detector, 6
6... Terminal, 67... Crimp part, 68-76... Drive device.

Claims (6)

【特許請求の範囲】[Claims] (1)、光源の照射光のフィルターを透過した近赤外線
を試料に照射して得られる反射光量または透過光量また
は反射光量と透過光量の組み合わせによつて米の成分の
一部をなすマグネシウムまたはカリウムの含有量または
マグネシウムおよびカリウムのそれぞれの含有量を検出
する受光素子を設け、該受光素子を信号処理装置、記憶
装置、演算装置等を備えた制御装置に電気的に連絡し、
かつ前記受光素子の検出値に対して前記マグネシウムま
たはカリウムのそれぞれの含有量測定値に換算する換算
係数値と前記マグネシウムまたはカリウムの含有量測定
値から食味を判定するための特定係数値または前記それ
ぞれの含有量測定値の組み合わせから食味を判定するた
めの特定係数値を前記記憶装置に設定し、前記マグネシ
ウムまたはカリウムのそれぞれの含有量測定値または前
記それぞれの含有量測定値の組み合わせと前記特定係数
値とを演算して算出した食味値を表示する表示器を前記
制御装置に電気的に連絡したことを特徴とする米の食味
測定装置。
(1) Magnesium or potassium, which is part of the components of rice, is determined by the amount of reflected light, the amount of transmitted light, or the combination of the amount of reflected light and transmitted light obtained by irradiating the sample with near-infrared rays that have passed through the filter of the irradiated light from the light source. A light-receiving element is provided to detect the content of magnesium and potassium, and the light-receiving element is electrically connected to a control device equipped with a signal processing device, a storage device, an arithmetic device, etc.,
and a conversion coefficient value for converting the detected value of the light-receiving element into a measured content value of each of the magnesium or potassium, and a specific coefficient value for determining taste from the measured content value of the magnesium or potassium, or each of the above. A specific coefficient value for determining taste from a combination of measured content values of magnesium or potassium is set in the storage device, or a combination of the measured content values of each of the magnesium or potassium content and the specific coefficient value are set in the storage device. A rice taste measuring device characterized in that a display device that displays a taste value calculated by calculating a numerical value is electrically connected to the control device.
(2)、前記マグネシウムおよびカリウムのそれぞれの
含有量測定値の組み合わせは前記それぞれの含有量測定
値の比である特許請求の範囲第(1)項記載の米の食味
測定装置。
(2) The rice taste measuring device according to claim (1), wherein the combination of the respective measured content values of magnesium and potassium is a ratio of the respective content measured values.
(3)、前記フィルターを1200nm〜2400nm
の波長領域においてそれぞれ波長を異にした複数種のフ
ィルターとなし、前記光源の照射光が前記フィルターを
個別に透過した近赤外線を同一の前記試料に対して照射
するように前記フィルターを種類別に順次交換自在に装
設した特許請求の範囲第(1)項または第(2)項記載
の米の食味測定装置。
(3), the filter is 1200nm to 2400nm
A plurality of types of filters each having different wavelengths in the wavelength range are provided, and the filters are sequentially arranged according to type so that the same sample is irradiated with near-infrared rays that are transmitted through the filters individually by the irradiation light from the light source. A rice taste measuring device according to claim 1 or 2, which is replaceably installed.
(4)、前記フィルターは1200nm〜2400nm
の波長領域のうち米の含有水分に対し特に吸収率の顕著
な波長領域を除外した残余の波長領域における複数種の
波長のフィルターを前記光源の照射光が種類別に個々に
透過した近赤外線を同一の前記試料に照射するように前
記フィルターを種類別に順次交換自在に装設した特許請
求の範囲第(1)項または第(2)項記載の米の食味測
定装置。
(4), the filter has a wavelength of 1200nm to 2400nm
The near-infrared rays that the irradiated light from the light source passes through filters of multiple types of wavelengths in the remaining wavelength range excluding the wavelength range where the absorption rate is particularly remarkable for the moisture content of rice are the same. The rice taste measuring device according to claim 1 or 2, wherein the filters are installed so as to be replaceable in sequence according to type so as to irradiate the sample.
(5)、前記複数種のフィルターの各波長の許容範囲を
±10nmとした特許請求の範囲第(1)項〜第(4)
項のいずれかに記載の米の食味測定装置。
(5) Claims (1) to (4) in which the allowable range of each wavelength of the plurality of types of filters is ±10 nm.
The rice taste measuring device according to any one of paragraphs.
(6)、前記試料を500ミクロン以下の粒子の粉末に
粉砕してから測定するようにした特許請求の範囲第(1
)項〜第(5)項のいずれかに記載の米の食味測定装置
(6) Claim No. 1 in which the measurement is performed after the sample is ground into powder with particles of 500 microns or less.
The rice taste measuring device according to any one of items ) to item (5).
JP61210498A 1986-09-05 1986-09-05 Rice taste measuring apparatus Pending JPS63241338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210498A JPS63241338A (en) 1986-09-05 1986-09-05 Rice taste measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210498A JPS63241338A (en) 1986-09-05 1986-09-05 Rice taste measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63241338A true JPS63241338A (en) 1988-10-06

Family

ID=16590353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210498A Pending JPS63241338A (en) 1986-09-05 1986-09-05 Rice taste measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63241338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290537A (en) * 1989-04-30 1990-11-30 Nireco Corp Method for estimating eating taste value by near infrared ray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290537A (en) * 1989-04-30 1990-11-30 Nireco Corp Method for estimating eating taste value by near infrared ray

Similar Documents

Publication Publication Date Title
JPS6311841A (en) Device for evaluation of rice quality
EP0365205B1 (en) Apparatus for evaluating quality of raw coffee beans
KR920004535B1 (en) Measuring apparatus for amylose and/or amylopection content in rice
US20080121023A1 (en) Masticatory Efficiency Measuring Apparatus and Masticatory Efficiency Measuring Method Using the Same
JPS63241338A (en) Rice taste measuring apparatus
JPS6367547A (en) Taste measuring instrument for rice
JPS6333644A (en) Taste measuring apparatus for rice
JP2745020B2 (en) Coffee bean quality evaluation device
JPS62291546A (en) Method and apparatus for measuring taste of rice
JPS6321538A (en) Rice taste measuring apparatus
JPS63246640A (en) Method and apparatus for measuring content of amylose or amylopectin of rice
JPS63198850A (en) Method for measuring component content of rice
JPS63304141A (en) Method and device for evaluating quality of rice
JPS62299743A (en) Measuring instrument for taste of rice
JPH07140134A (en) Apparatus for measuring content of component of rice
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
JPS6375643A (en) Method for measuring content of amylose or amylopectin of rice
JPS63167243A (en) Method for measuring component content of rice
JPH06288907A (en) Evaluation of quality of unhulled rice
JPS63313039A (en) Method and instrument for measuring content of amylose or amylopectin of rice
JP2739220B2 (en) Quality evaluation method and apparatus for green coffee beans
JPS63167244A (en) Instrument for measuring content of amylose or amylopectin of rice
JP2745021B2 (en) Quality evaluation method and apparatus for roasted coffee beans
JPS63210750A (en) Method and apparatus for evaluating quality of rice
JPH0815140A (en) Grain evaluation system