JPH01136366A - High breakdown-strength semiconductor device and manufacture thereof - Google Patents

High breakdown-strength semiconductor device and manufacture thereof

Info

Publication number
JPH01136366A
JPH01136366A JP29421887A JP29421887A JPH01136366A JP H01136366 A JPH01136366 A JP H01136366A JP 29421887 A JP29421887 A JP 29421887A JP 29421887 A JP29421887 A JP 29421887A JP H01136366 A JPH01136366 A JP H01136366A
Authority
JP
Japan
Prior art keywords
insulating film
film
section
stepped
stepped section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29421887A
Other languages
Japanese (ja)
Inventor
Mamoru Ishikiriyama
衛 石切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP29421887A priority Critical patent/JPH01136366A/en
Publication of JPH01136366A publication Critical patent/JPH01136366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To thin a metallic wiring, and to flatten an element surface by making an insulating film of a multilayer and forming a stepped section into a plurality of steps in a field plate structure and reducing stepped quantity per one step. CONSTITUTION:A P-type impurity diffusion layer 12 and a hot SiO2 film 13 while covering a junction section on the main surface of the P-N junction are formed on the main surface of an N-type single crystal Si substrate 11. A stepped section A is shaped by a CVD-SiO2 film 14 formed onto the hot SiO2 film 13 while being slightly separated from the upper section of the P-N junction section. A stopped section B is shaped onto the SiO2 film 14 and near the stepped section A by an intermediate insulating film 15 used for multilayer interconnections, etc. A metallic wiring 16 from an exposed section, from which the hot SiO2 film 13 is bored, in the P-type impurity diffusion layer 12 passes on the hot SiO2 film 13 and coats the stepped section A, passes on the SiO2 film 14 and coats the stepped section B, and is led out onto the intermediate insulating film 13, thus organizing MOS structure. That is, since a stepped section corresponding to a conventional one stepped section is composed of two steps of A and B, stepped quantity is reduced, and flattened. Accordingly, even when film thickness is thinned in the metallic wiring 16, the wiring 16 is not disconnected at the stepped section A and said stepped section B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置に関し、特にフィールド・グレート
構造を有する高耐圧半導体装置及びその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and particularly to a high voltage semiconductor device having a field-great structure and a method for manufacturing the same.

(従来の技術) 従来の高耐圧半導体装置は、例えば文献:ノヤ/#ニー
ズ Vヤーナル オツ アプライド フィゾックス(J
、J、A、P、 vol 23. F&i4. Apr
il 1984 PP、415〜419  「5tru
ctual Analysis and Experi
mentalcharacteristic of H
lgh Voltage Bipolar Trans
istorswith ahallw junctio
n J )等に開示されている。
(Prior art) Conventional high-voltage semiconductor devices include, for example, the literature:
, J, A, P, vol 23. F&i4. April
il 1984 PP, 415-419 “5tru
ctual analysis and experiment
mental characteristic of H
lgh Voltage Bipolar Trans
istors with ahallw junction
nJ) et al.

第3図は従来の高耐圧半導体装置の典型的な構造を示し
た断面図である。
FIG. 3 is a sectional view showing a typical structure of a conventional high voltage semiconductor device.

第3図(a) において、N−単結晶St基板1の主表
面側に、アノードとなるP中層2及び該N″″単結晶8
1基板1の電極取出用のいわゆるカンードとなるN+拡
散層3が形成されている。P+拡散層2からの金属配線
4は、高い逆バイアス印加時に於ける接合表面近傍の電
界集中を緩和するために、熱stow膜5 、 CVD
 −810,膜6を介しテN−単結晶81基板1上に張
出させた、いわゆるフィールド・グレート構造になって
いる。か\る構成により高耐圧化を実現している。この
フィールド・グレート構造に於いて、電界強度が高まり
易い所は、第3図(b) K示すように接合コーf″&
 、 81(%段差部7下島。
In FIG. 3(a), on the main surface side of the N-single-crystal St substrate 1, there is a P middle layer 2 that will become an anode and the N″″ single-crystal 8.
An N+ diffusion layer 3 serving as a so-called cand for taking out electrodes from one substrate 1 is formed. The metal wiring 4 from the P+ diffusion layer 2 is coated with a thermal stow film 5, CVD to alleviate electric field concentration near the bonding surface when a high reverse bias is applied.
It has a so-called field-grate structure in which the single crystal 81 is extended over the substrate 1 through the film 6. This configuration achieves high voltage resistance. In this field-great structure, the places where the electric field strength tends to increase are the junctions f''&
, 81 (% step part 7 Shimojima.

フィールド肩下E、の3箇所が考えられ、高耐圧を得る
にはE+ 、 Et−Esでの最大電界強度を極力下げ
る必要がある。
Three locations are considered: E, below the field shoulder, and in order to obtain a high breakdown voltage, it is necessary to lower the maximum electric field strength at E+ and Et-Es as much as possible.

一般に& 、 Ex −Esの電界強度は、N−単結晶
Si基板1の濃度、P+拡散層2のxj、(接合曲率)
及び配線金属4下のSin、膜の膜厚(toxx 、 
toxx )等に依存する。図中、破線は電界により形
成される空乏層の境界である。
In general, the electric field strength of
and the thickness of the Sin film under the wiring metal 4 (toxx,
toxx) etc. In the figure, the broken line is the boundary of the depletion layer formed by the electric field.

耐圧シミュレーションにより求め九金属配線4下のS1
0.膜厚to!1 、 t(131’!に対するE、 
、 E、 、 E、部での最大電界依存性は例えば上記
文献にも記載されているように各部での最大電界値を下
げるためには% E、部ではsio、膜厚tO!1を薄
くし、龜部では5ift膜の段差量を小さくし、81部
ではSiO!#tox意を厚くする必要がある。この九
め第3図中に符号7で示すStO,膜設差部直下の電界
強度龜を考慮に入れながら、熱S10.膜5の膜厚は出
来るだけ薄く、CVD−8i偽膜6の膜厚は出来るだけ
厚くしている。例えば、アノードとしてのP+拡散層2
の接合深さ5Jm以下で接合耐圧400v以上を実現す
る場合、toxlC熱SkO@膜5厚〕は0.5〜0.
8μm。
S1 under 9 metal wiring 4 determined by withstand voltage simulation
0. Film thickness to! 1, E for t(131'!
, E, , E, The maximum electric field dependence at the section is, for example, as described in the above-mentioned literature, in order to lower the maximum electric field value at each section, %E, sio at the section, film thickness tO! 1 is made thinner, the step amount of the 5ift film is made smaller in the edge part, and SiO! is made thinner in the 81st part. #Tox needs to be strengthened. The heat S10. The thickness of the membrane 5 is made as thin as possible, and the thickness of the CVD-8i pseudo membrane 6 is made as thick as possible. For example, P+ diffusion layer 2 as an anode
To achieve a junction breakdown voltage of 400 V or more with a junction depth of 5 Jm or less, toxlC thermal SkO@film 5 thickness] should be 0.5 to 0.
8 μm.

toflC熱stow膜5厚+CVD−8iO,膜6厚
〕は2.0〜2.5μmとしていた。
toflC thermal stow film 5 thickness + CVD-8iO, film 6 thickness] was set to 2.0 to 2.5 μm.

(発明が解決しようとする問題点) しかしながら、上記構成の装置では、装置を高耐圧性に
するために中間絶、縁膜としてのSi0g膜に段差を設
はフィールドグレード電極下の最大電界値を下げていた
が、Sin、膜による大きな段差により表面の平担度が
著るしく損なわれ、その為その段差部上に設ける金属配
線は段切れが生じ易く、又、逆に段切れを考慮してSt
O,膜の段差量を小さくするとStO,膜厚の低下によ
シ最大電界値が大きくなり電界集中が生じるために耐圧
が低下すると云う問題点があったら又、段切れ防止の為
に金属配af、必要以上に厚膜化するとよル平担度が損
なわれ、多層配線化する場合に於いて、多層配線化の妨
げとなると云う問題点があった。
(Problem to be Solved by the Invention) However, in the device with the above configuration, in order to make the device high withstand voltage, steps are provided in the SiOg film as an intermediate insulation and edge film to reduce the maximum electric field value under the field grade electrode. However, the flatness of the surface is significantly impaired due to the large step difference caused by the Sin and film, and as a result, the metal wiring installed on the step part is prone to step breakage, and conversely, the step breakage has to be taken into account. TeSt
If the amount of step difference in the O, film is reduced, the maximum electric field value increases due to the decrease in the StO film thickness, and electric field concentration occurs, resulting in a decrease in breakdown voltage. af, there is a problem in that if the film is made thicker than necessary, the levelness of the wall is impaired, which hinders multilayer wiring.

本発明は、以上述べたSin、膜段差による金属配線の
段切れ及び素子表面の平担度が損なわれる問題点を除去
し、素子耐圧の低下を招くことなく素子表面の平担性を
向上させることができ、高耐圧ICに好適な素子構造を
有する半導体装置及びその製造方法を提供することを目
的とする。
The present invention eliminates the above-mentioned problem of breakage of metal wiring due to the difference in film level and loss of flatness of the element surface, and improves the flatness of the element surface without causing a decrease in element breakdown voltage. An object of the present invention is to provide a semiconductor device having an element structure suitable for a high voltage IC, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明に係る高耐圧半導体装置は、フィールドグレード
構造の半導体装置において、上部に電極が形成されてい
る絶縁膜を多層化して段差を複数段にしたものである。
(Means for Solving the Problems) A high voltage semiconductor device according to the present invention is a semiconductor device with a field grade structure, in which an insulating film on which an electrode is formed is multilayered to form a plurality of steps. be.

本発明に係る高耐圧半導体装置の製造方法は、フィール
ドグレード構造の半導体装置の製造方法において、半導
体基板上の第iの絶縁膜上の所望の位置に第2の絶縁膜
を形成して第1の段差を形成し、次に第1の段差を覆う
ように第1の配線電極を設け、次に第2の絶縁膜上に第
3の絶縁膜を形成し、第1の配線電極の端部近、傍上の
部分を除去して第2の段差を形成し、第1の配線電極に
接続されて第2の段差を覆う第2の配線電極を設けるよ
うにしたものである。
A method for manufacturing a high voltage semiconductor device according to the present invention is a method for manufacturing a semiconductor device having a field grade structure, in which a second insulating film is formed at a desired position on an i-th insulating film on a semiconductor substrate, and a first A step is formed, a first wiring electrode is provided to cover the first step, a third insulating film is formed on the second insulating film, and an end portion of the first wiring electrode is formed. A second step is formed by removing a portion near and above the step, and a second wiring electrode is provided which is connected to the first wiring electrode and covers the second step.

(作用) 本発明における高耐圧半導体装置及びその製造方法は、
フィールドグレード構造にし、配線電極下の絶縁膜の段
差を複数段にし、−段当りの段差量を低減することによ
りフィールドグレード電極である配線電極が薄膜化でき
、素子表面の平担化が可能になり、且つ従来構造よりも
高耐圧化できる。
(Function) The high voltage semiconductor device and the manufacturing method thereof according to the present invention include:
By creating a field-grade structure with multiple steps in the insulating film under the wiring electrode and reducing the amount of steps per step, the wiring electrode, which is a field-grade electrode, can be made thinner, making it possible to flatten the element surface. Moreover, the voltage resistance can be increased higher than that of the conventional structure.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
。第1図は本発明の一実施例に係る半導体装置の要部を
示し、特に第3図に示し九従来の半導体装置の改良部分
を示し他の部分を図示省略した要部断面図である。同図
において、N型の単結晶81基板11の主表面側にP型
不純物拡散層12及びこのPN接合のうちで上記主表面
に露出している接合部を覆うようにして熱Sin、膜1
3が形成されている。又、そのPN接合部上から少し離
れて熱S10.!II:l:に形成されテイルCVD−
8IO。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to an embodiment of the present invention, particularly showing an improved part of the conventional semiconductor device shown in FIG. 3, with other parts omitted. In the same figure, a P-type impurity diffusion layer 12 is formed on the main surface side of an N-type single crystal 81 substrate 11, and a thermal Sin film 1 is applied to cover the bonding portion of the PN junction that is exposed on the main surface.
3 is formed. Also, heat S10. ! II: l: formed tail CVD-
8IO.

膜14によシ段差部Aが形成されている。さらに、CC
VD−8to膜14上に形成され、多層配線等に用いる
中間絶縁膜15により段差部Aの近くに段差部Bが形成
されている。熱Sin、膜13が開孔されたP型不純物
拡散層12の露出部分から金属配線16が熱S1へ膜1
3上を通って段差部Aを覆い、さらK CVD −Si
 Ot膜14上全通って段革部Bを覆い、中間絶縁膜1
5上に位置するように引出され、MO8構造を構成して
いる。すなわち、本実施例では従来の1段分の段差が段
差部人と同Bの2段で構成されているために各段差部A
、Hの段差量が従来に比べて十分に小さくされ(例えば
、従来2〜2.5μm→本実施例さ0.8μm)、平担
化されている。従って、金属配線16i膜厚が薄膜化(
例えばユ0.1μm)されても段差部Aや同Bで段切れ
しない。
A stepped portion A is formed in the membrane 14. Furthermore, C.C.
A stepped portion B is formed near the stepped portion A by an intermediate insulating film 15 formed on the VD-8to film 14 and used for multilayer wiring, etc. The metal wiring 16 is transferred from the exposed part of the P-type impurity diffusion layer 12 where the film 13 is opened to the heat S1 to the film 1
3 to cover the stepped part A, and further cover the CVD-Si
The intermediate insulating film 1 is completely passed over the Ot film 14 and covers the stepped leather part B.
5, forming an MO8 structure. That is, in this embodiment, since the conventional one-step step is composed of two steps, the step portion and the step B, each step portion A
, H are made sufficiently smaller than conventional ones (for example, from 2 to 2.5 μm in the conventional case to 0.8 μm in this example), and are flattened. Therefore, the thickness of the metal wiring 16i becomes thinner (
For example, even if the thickness is 0.1 μm), there will be no breakage at the stepped portions A and B.

金属間a16を介してP中型不純物拡散層12を負にパ
イプ”ス化すればP十屋不純物拡散層12の周りに形成
された空乏層は段差部A、Bで階段状に浅くなる。又、
金属配線16の引出し端部直下の酸化膜の厚さが耐圧に
大きく効いてくるが、段差部A、Bと2段にシテ熱5l
ot膜13の膜厚+CVD−8ift膜14の膜厚中中
間絶縁膜15の膜厚にして十分な厚さに形成されている
。このため、この半導体装置は高耐圧性を有する。
If the P medium-sized impurity diffusion layer 12 is made into a negative pipe through the intermetal a16, the depletion layer formed around the P-type impurity diffusion layer 12 becomes shallow in a stepwise manner at the stepped portions A and B. ,
The thickness of the oxide film directly under the lead-out end of the metal wiring 16 has a large effect on the withstand voltage, but there is heat 5L at the two steps A and B.
The thickness of the intermediate insulating film 15 is determined to be a sufficient thickness between the thickness of the OT film 13 and the thickness of the CVD-8ift film 14 . Therefore, this semiconductor device has high voltage resistance.

次に高耐圧半導体装置の製造方法を第2図の工程図を参
照して説明する。
Next, a method for manufacturing a high voltage semiconductor device will be explained with reference to the process diagram of FIG.

先ず、第2図(a) において、Nmの単結晶St基板
21の主表面側に熱SlOよ膜等の絶縁膜22を形成後
、通常のホトリンエツチングによシ絶縁膜22を部分的
に開口し、該開口部よシP盤の不純物を拡散し、ペース
拡散領域23を形成する。
First, in FIG. 2(a), after forming an insulating film 22 such as a thermal SlO film on the main surface side of a Nm single-crystal St substrate 21, the insulating film 22 is partially etched by normal photo-etching. An opening is opened, and impurities in the P disk are diffused through the opening to form a pace diffusion region 23.

次に第2図(b) K示すように、絶縁膜22を除去し
た後、単結晶81基板21の主表面側に第1の絶縁膜と
して再び例えば5oooλ厚の熱8101膜等の絶縁膜
24を形成し、通常のホトエツチングによシ絶縁膜24
を部分的に開口し、ペース拡散領域23表面を部分的に
露出させ、又、ペース拡散領域23から所定距離隔九っ
た単結晶St基板21表面を部分的に露出させる。これ
らの開口部よシN屋不純物を拡散し、ペース拡散領域2
3に囲まれた二ピック拡散領域25とコレクタ拡散領域
26を形成する。
Next, as shown in FIG. 2(b) K, after removing the insulating film 22, an insulating film 24 such as a thermal 8101 film having a thickness of 500λ is again formed on the main surface side of the single crystal 81 substrate 21 as a first insulating film. The insulating film 24 is then formed by normal photoetching.
is partially opened to partially expose the surface of the pace diffusion region 23, and also partially expose the surface of the single crystal St substrate 21 spaced a predetermined distance from the pace diffusion region 23. Diffuse the impurities through these openings and fill the diffusion area 2.
3, a two-pick diffusion region 25 and a collector diffusion region 26 are formed.

次に第2図(c)に示すように、絶縁膜24上に化学気
相成長法CCVD法)Kよシ第2の絶縁膜としてcvn
−sto、膜27を生成し、その後通常のホトリンエツ
チング工程によF) CVD−810,I[27を/々
ターニングし、フィールド上所望の位置に段差部Aを形
成する。この段差部Aはペース拡散領域23と単結晶S
t基板21との接合部上から少し離れた単結晶St基板
21上方の位置く形成されている。なお、cvD−st
o!膜27の膜厚は第1層金属配線28の段差部Aでの
カパレツゾを考慮して、ヮえば、。ooAヮTよすう。
Next, as shown in FIG. 2(c), a second insulating film (CVN) is deposited on the insulating film 24 using a chemical vapor deposition method (CCVD method).
-sto, a film 27 is formed, and then F) CVD-810, I [27 is turned by a normal photolithography process to form a stepped portion A at a desired position on the field. This stepped portion A is located between the pace diffusion region 23 and the single crystal S.
It is formed at a position above the single-crystal St substrate 21 and a little away from the junction with the T-substrate 21 . In addition, cvD-st
o! The film thickness of the film 27 is determined by taking into account the capacitance at the stepped portion A of the first layer metal wiring 28. ooAヮTyosu.

次に第2図(d)に示すように、ベース拡散領域23゜
エミッタ拡散領域25及びコレクタ拡散領域26上にホ
トリソエツチング工程によシコンタクト孔を形成した後
、絶縁膜24及びcvn−sio、膜27上の基板主表
面側全面に第1配線用金属を蒸着し、その後・譬ターニ
ングして第1の配線電極としての第1の金属配線28t
−形成する。このとき第1の金属間82Bは素子表面の
平担性を考慮して、例えば10,000λ以下とする。
Next, as shown in FIG. 2(d), after forming contact holes on the base diffusion region 23, emitter diffusion region 25, and collector diffusion region 26 by a photolithography process, the insulating film 24 and the CVN-SIO , a first wiring metal is deposited on the entire surface of the main surface of the substrate on the film 27, and then turned to form a first metal wiring 28t as a first wiring electrode.
- form. At this time, the first metal gap 82B is set to, for example, 10,000λ or less in consideration of the flatness of the element surface.

第1の金属配線28の内でベース拡散領域23とコンタ
クトしているフィールドグレード電極は、絶縁膜24上
から段差部Aを丁度覆ったC V D −S i Ox
膜27部分上迄形成される。
The field grade electrode in contact with the base diffusion region 23 in the first metal wiring 28 is a C V D -S i Ox that just covers the stepped portion A from above the insulating film 24 .
It is formed up to the membrane 27 portion.

次に第2図(e) K示すように、配線金属間を絶縁す
るために第3の絶縁膜として中間絶縁膜29t−CVD
法により全面に生成する。このとき、中間絶縁膜29の
膜厚は、十分な配線間耐圧(例えば400v以上)が得
られるように、例えばs 、 ooo〜10.000λ
とする・その後ベース電極取出しの第1の金属配線28
の上記フィールドグレード電極端部からその近傍迄をホ
トエツチングにより中間絶縁膜29部分を除去して開口
する。これにより、段差部Aの近くに段差部Bが形成さ
れる。
Next, as shown in FIG. 2(e) K, an intermediate insulating film 29t-CVD is formed as a third insulating film in order to insulate between wiring metals.
Generates over the entire surface by law. At this time, the thickness of the intermediate insulating film 29 is set to, for example, s, ooo to 10.000λ so as to obtain a sufficient breakdown voltage between wirings (for example, 400V or more).
・Then, the first metal wiring 28 for taking out the base electrode
A portion of the intermediate insulating film 29 is removed by photoetching from the end of the field grade electrode to the vicinity thereof to form an opening. As a result, a stepped portion B is formed near the stepped portion A.

次に第2図(f)に示すようK、中間絶縁膜29側全面
に第2配線用金属を蒸着してパターニングすることによ
り上記フィールドグレード電極端の延長部分として第1
の金属配線に接続された第2の金属配線30を形成し、
この第2の配線電極としての第2の金属配線30t−ベ
ース電極取出し用の第1の金属配線28のフィールドグ
レード電極端部に接続し、段差部Bを覆ってその近くの
中間絶縁膜29上に位置させる。その後、全面にパッシ
ベーション膜31f:生成することにより本発明に係る
高耐圧NPN型トランジスタが完成される。
Next, as shown in FIG. 2(f), a second wiring metal is deposited on the entire surface of the intermediate insulating film 29 and patterned to form the first wiring as an extension of the field grade electrode end.
forming a second metal wiring 30 connected to the metal wiring;
The second metal wiring 30t serving as the second wiring electrode is connected to the field grade electrode end of the first metal wiring 28 for taking out the base electrode, and covers the stepped portion B to cover the intermediate insulating film 29 near it. to be located. Thereafter, a passivation film 31f is formed on the entire surface, thereby completing a high breakdown voltage NPN transistor according to the present invention.

以上の説明では、 sio、膜に段差を有するフィール
ドグレード構造について述べたが、段差のない通常のフ
ィールドグレード金属配線の段切れ対策としても有効で
ある。
In the above description, a field grade structure having a step in the sio film has been described, but it is also effective as a countermeasure against step breaks in ordinary field grade metal wiring without a step.

また、本実施例ではNPN型トランソスタ素子を例に挙
げたが、この他フィニルドグレート構造を有する他の高
耐圧半導体装置にも本発明は全て適用可能であシ、上記
実施例と同様の効果を奏する。
Furthermore, in this embodiment, an NPN type transistor element is taken as an example, but the present invention can also be applied to any other high voltage semiconductor device having a finild-grate structure, and the same effect as in the above embodiment can be obtained. play.

(発明の効果) 以上、詳細に説明したように本発明によればフィールド
グレード構造において絶縁膜を多層化して段差を複数段
にし、1つ当シの段差量を低減するようKしたので、従
来段差部でのステツブ力パレツノを良くするために厚膜
化していた金属配線を薄膜化でき、素子表面の平担化が
可能になる。
(Effects of the Invention) As described above in detail, according to the present invention, the insulating film is multilayered in the field grade structure to have multiple steps, and the amount of each step is reduced. The metal wiring, which had been made thick to improve the stepping force at stepped portions, can now be made thinner, making it possible to flatten the surface of the element.

又、1段幽りの段差tが少なくかつフィールドグレード
の金属配線端部下の膜厚が中間絶縁膜の利用によシ厚膜
化できるので段差部及びフィールドグレード熾直下の電
界強度が緩和でき、従来構造の半導体装置よりも高耐圧
化が期待できる。このことを換言すれば、従来と同等の
耐圧を得る場合に於いて、フィールドグレード長を従来
より短かくできるので素子寸法の縮小も期待できる。
In addition, since the step t at the bottom of one step is small and the film thickness under the edge of the field-grade metal wiring can be increased by using an intermediate insulating film, the electric field strength directly under the step and the field-grade edge can be reduced. It is expected that the voltage resistance will be higher than that of semiconductor devices with conventional structures. In other words, when obtaining the same breakdown voltage as the conventional one, the field grade length can be made shorter than the conventional one, so it is expected that the element size will be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による高耐圧半導体装置の要
部断面図、第2図は本発明の一実施例による高耐圧半導
体装置の工程図、第3図は従来装置の断面図である。 図中、11・・・N型単結晶81基板、12・・・P塁
不純物拡散層、13 ・・・熱SiO,膜、14 ・・
・CVD −St O!膜、15・・・中間絶縁膜、1
6・・・金属配線、21・・・単結晶81基板、22・
・・絶縁膜、23・・・ベース拡散領域、24・・・絶
縁膜、25・・・エミッタ拡散領域、26・・・コレク
タ拡散領域、27・・・CVD−8lO*膜、28・・
・第1の金属配線、29・・・中間絶縁膜、30・・・
第2の金IR配m、3 t・・・ノ臂ツシペーション膜
、A、B・・・段差部。 0              シコ        
      リ\−−1′−
FIG. 1 is a cross-sectional view of essential parts of a high-voltage semiconductor device according to an embodiment of the present invention, FIG. 2 is a process diagram of a high-voltage semiconductor device according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of a conventional device. be. In the figure, 11...N-type single crystal 81 substrate, 12...P base impurity diffusion layer, 13...thermal SiO, film, 14...
・CVD-St O! Film, 15... Intermediate insulating film, 1
6... Metal wiring, 21... Single crystal 81 substrate, 22...
... Insulating film, 23... Base diffusion region, 24... Insulating film, 25... Emitter diffusion region, 26... Collector diffusion region, 27... CVD-8lO* film, 28...
- First metal wiring, 29... intermediate insulating film, 30...
2nd gold IR arrangement, 3T... armpitation film, A, B... step portion. 0 Shiko
li\--1'-

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板表面に形成された拡散層に接続された
電極が、上記半導体基板上に形成されている絶縁膜上に
配線されるフィールドグレード構造の高耐圧半導体装置
において、 上記絶縁膜を多層化して段差を複数段にしたことを特徴
とする高耐圧半導体装置。
(1) In a high voltage semiconductor device with a field grade structure in which an electrode connected to a diffusion layer formed on the surface of a semiconductor substrate is wired on an insulating film formed on the semiconductor substrate, the above insulating film is multilayered. A high-voltage semiconductor device characterized by having multiple steps.
(2)拡散層が主表面に形成された半導体基板の主表面
側に第1の絶縁膜を形成する第1工程と、上記第1の絶
縁膜上の所望の位置に第2の絶縁膜を形成することによ
り上記拡散層上から離れた位置に第1の段差を形成する
第2工程と、 上記拡散層にコンタクトし且つ上記第1の段差を覆う第
1の配線電極を形成する第3工程と、上記第1の配線電
極及び第2の絶縁膜上に第3の絶縁膜を形成する第4工
程と、 上記第2の絶縁膜上の第1の配線電極の端部近傍上の第
3の絶縁膜部分を除去して第2の段差を形成する第5工
程と、 上記第1の配線電極に接続され且つ上記第2の段差を覆
う第2の配線電極を形成する第6工程とを備えた高耐圧
半導体装置の製造方法。
(2) A first step of forming a first insulating film on the main surface side of the semiconductor substrate on which the diffusion layer is formed, and forming a second insulating film at a desired position on the first insulating film. a second step of forming a first step at a position away from above the diffusion layer; and a third step of forming a first wiring electrode that contacts the diffusion layer and covers the first step. a fourth step of forming a third insulating film on the first wiring electrode and the second insulating film; a third insulating film near the end of the first wiring electrode on the second insulating film; a fifth step of removing an insulating film portion to form a second step; and a sixth step of forming a second wiring electrode connected to the first wiring electrode and covering the second step. A method for manufacturing a high voltage semiconductor device.
JP29421887A 1987-11-24 1987-11-24 High breakdown-strength semiconductor device and manufacture thereof Pending JPH01136366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29421887A JPH01136366A (en) 1987-11-24 1987-11-24 High breakdown-strength semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29421887A JPH01136366A (en) 1987-11-24 1987-11-24 High breakdown-strength semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01136366A true JPH01136366A (en) 1989-05-29

Family

ID=17804864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29421887A Pending JPH01136366A (en) 1987-11-24 1987-11-24 High breakdown-strength semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01136366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239468A (en) * 1988-07-28 1990-02-08 Mitsubishi Electric Corp Semiconductor device
JPH03116976A (en) * 1989-09-29 1991-05-17 Fuji Electric Co Ltd Planar type semiconductor device
US5541426A (en) * 1994-03-07 1996-07-30 Honda Giken Kogyo Kabushiki Kaisha Semiconductor device with surface-inactivated layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239468A (en) * 1988-07-28 1990-02-08 Mitsubishi Electric Corp Semiconductor device
JPH03116976A (en) * 1989-09-29 1991-05-17 Fuji Electric Co Ltd Planar type semiconductor device
US5541426A (en) * 1994-03-07 1996-07-30 Honda Giken Kogyo Kabushiki Kaisha Semiconductor device with surface-inactivated layer

Similar Documents

Publication Publication Date Title
US4536784A (en) Semiconductor device having a junction capacitance, an integrated injection logic circuit and a transistor in a semiconductor body
US5395782A (en) Process for fabricating a semiconductor integrated circuit
JPH01136366A (en) High breakdown-strength semiconductor device and manufacture thereof
JPS5852347B2 (en) High voltage semiconductor device
JPS61201456A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JPH02135770A (en) Semiconductor integrated circuit
JPH0254662B2 (en)
JPS60224229A (en) Semiconductor device
JPS58107645A (en) Manufacture of semiconductor device
JPS61108162A (en) Semiconductor device and manufacture thereof
JPS5810834A (en) Semiconductor device
JPH0645620A (en) Semiconductor device
JPS5914650A (en) Semiconductor integrated circuit device
JPH05299587A (en) Semiconductor integrated circuit and manufacture thereof
JPH0583192B2 (en)
JPH0376023B2 (en)
JPH0287527A (en) Manufacture of semiconductor integrated circuit device
JPS5968961A (en) Semiconductor integrated circuit device and manufacture thereof
JPS618940A (en) Manufacture of semiconductor device
JPH01293660A (en) Semiconductor integrated circuit
JPS63232350A (en) Semiconductor device
JPH02137257A (en) Semiconductor integrated circuit
JPS6022828B2 (en) Manufacturing method of semiconductor device
JPS5931061A (en) Semiconductor device of high withstand voltage