JPH01293660A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH01293660A
JPH01293660A JP12657188A JP12657188A JPH01293660A JP H01293660 A JPH01293660 A JP H01293660A JP 12657188 A JP12657188 A JP 12657188A JP 12657188 A JP12657188 A JP 12657188A JP H01293660 A JPH01293660 A JP H01293660A
Authority
JP
Japan
Prior art keywords
regions
region
collector
metal wiring
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12657188A
Other languages
Japanese (ja)
Inventor
Tetsuji Yuasa
湯浅 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12657188A priority Critical patent/JPH01293660A/en
Publication of JPH01293660A publication Critical patent/JPH01293660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To satisfactorily match a transistor characteristic by a method wherein a first opening part of a base and a first opening part of a collector are formed individually on first separate metal wiring parts, they are connected by second metal wiring parts and individual electrodes of a transistor are constituted separately. CONSTITUTION:Base regions 25 are formed in island regions, then, emitter regions 26 and collector-electrode extraction regions 27 are formed. Then, insulating films 28 are formed; one part of the insulating films 28 on the island regions is removed; first opening parts 29 are formed. Then, first metal wiring parts 30 are formed so as to cover the first opening parts 29. Then, one part of a plasma nitride film of an interlayer film formed on the whole surface is removed selectively; second opening parts 33 are formed. Then, the second opening parts 33 on the first metal wiring parts 30 which are connected to the two or more emitter regions 26, the two or more base regions 25 and the two or more collector-electrode extraction regions 27 are connected individually by second metal wiring parts 32; individual emitter, base and collector electrodes are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路に関し、特に複数エミッタ構
造で多層配線を有する半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit having a multi-emitter structure and multilayer wiring.

〔従来の技術〕[Conventional technology]

近年、10〜50V程度の電源にリニア回路半導体装置
において、層間膜にプラズマ窒化膜を用いることによっ
て多層配線の量産化が可能になった。一般的なリニア回
路では、出力段のドライバー用トランジスタに数十mA
のコレクタ電流を流す設計が行われている。その駆動用
トランジスタがNPN)ランジスタの時、エミッタ電流
集中効果(コレクタ電流が大きいとき、ベース抵抗によ
る電圧降下が大きくなり、ベース領域のコンタクトに近
いエミッタ領域のみ電流が流れる現象)を防ぐ為にエミ
ッタ領域を複数に分割してその間にベースのコンタクト
を設けた構造にしている。
In recent years, mass production of multilayer wiring has become possible by using a plasma nitride film as an interlayer film in linear circuit semiconductor devices for power supplies of about 10 to 50 V. In a typical linear circuit, the driver transistor in the output stage requires several tens of mA.
A design has been made that allows collector current to flow. When the driving transistor is an NPN (NPN) transistor, the emitter The structure is such that the region is divided into a plurality of regions and base contacts are provided between them.

第4図(a)、(b)は従来の複数エミッタ構造のNP
Nトランジスタの一例の平面図及びc−c’線断面図で
ある。
Figures 4(a) and 4(b) show conventional NPs with multiple emitter structures.
FIG. 2 is a plan view and a sectional view taken along line cc' of an example of an N transistor.

P型半導体基板1の上にN+型埋込み領域2を゛設け、
その主平面上にN−型エピタキシャル層3を数Ω・lの
比抵抗で数μm乃至数十μmの厚さに設ける0次に、ホ
トリソグラフィ工程によってP型絶縁分離領域4を設け
、ホトリソグラフィ工程を経てP型ベース領域5、N+
型エミッタ領域6とN+型コレクタ電極取出し領域7を
拡散と酸化工程を行って設け、同時に絶縁膜8も設ける
An N+ type buried region 2 is provided on a P type semiconductor substrate 1,
An N-type epitaxial layer 3 is formed on the main plane with a resistivity of several Ω·l and a thickness of several μm to several tens of μm.Next, a P-type insulating isolation region 4 is formed by a photolithography process. After the process, P type base region 5, N+
A type emitter region 6 and an N+ type collector electrode extraction region 7 are provided by performing a diffusion and oxidation process, and an insulating film 8 is also provided at the same time.

次に、電極取出し用にそれぞれの領域の絶縁膜8を除去
して第1開口部9を設ける0次に、アルミニウムなどを
用いて第1金属配線10をスパッタ又は蒸着してホトリ
ソグラフィ工程を経て設ける。このとき、各エミッタ領
域6を第1金属配線10で接続し、各ベース領域5も第
1金属配線10で接続し、各コレクタ電極取出し領域7
を第1金属配線10で接続した後に全面に層間をプラズ
マ窒化膜などを用いて設けた後に、第1金属配線10と
第2金属配線12とを接続するため第2開口部13をそ
れぞれの電極に設けて接続してエミッタ電極、ベース電
極、コレクタ電極がそれぞれ形成される。
Next, the insulating film 8 in each region is removed to provide a first opening 9 for taking out the electrode.Next, a first metal wiring 10 is sputtered or vapor deposited using aluminum or the like and subjected to a photolithography process. establish. At this time, each emitter region 6 is connected by a first metal wiring 10, each base region 5 is also connected by a first metal wiring 10, and each collector electrode extraction region 7
are connected by the first metal wiring 10 and then an interlayer is provided on the entire surface using a plasma nitride film or the like, and then a second opening 13 is formed between the respective electrodes in order to connect the first metal wiring 10 and the second metal wiring 12. An emitter electrode, a base electrode, and a collector electrode are formed by providing and connecting to the electrodes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の複数エミッタ構造でなるNPNトランジ
スタは、第1金属配線10にて各N+型エミッタ領域6
、各P型ベース領域5、及び各N+型コレクタ電極取出
し領域7をそれぞれ接続し、それに層間スルーホールの
第2開口部13を設けた後に、第2金属配線12を設け
た構造となっている。その為、次に述べる欠点がある6
第1に、複数エミッタ構造でなるNPNトランジスタで
は、エミッタ、コレクタ電流が数十mA程度流すのでエ
レクトロマイグレーション及び電流密度の関係から第1
金属配線10を必要に応じて太くする必要がある結果、
素子専有面積を増すことになる。
In the above-described conventional NPN transistor having a multiple emitter structure, each N+ type emitter region 6 is connected to the first metal wiring 10.
, each P type base region 5 and each N+ type collector electrode extraction region 7 are connected to each other, and a second metal wiring 12 is provided after a second opening 13 of an interlayer through hole is provided therein. . Therefore, there are the following drawbacks6.
First, in an NPN transistor with a multiple emitter structure, the emitter and collector currents flow on the order of several tens of milliamps, so from the relationship between electromigration and current density, the first
As a result of the need to thicken the metal wiring 10 as necessary,
This increases the area occupied by the element.

第2に、第2図(a)に示すように、第1金属配aio
にてベース電極のコンタクトを全て接続しているので、
N型コレクタ電極取出し領域7とP型ベース領域5間に
第1金属配線10を設ける必要がある。これはコレクタ
面積を大きくすることが必要となり、コレクタ領域と接
地領域間容量を大きくなることにつながり、トランジス
タの周波数特性の劣化を招く、つまり、電流ミラー回路
で構成するトランジスタの構成をエミッタ面積を変えて
行う場合、例えば1:2などの比を求めるとき、コレク
タ面積比も同様に1:2の比に変えることが必要で、比
が1のトランジスタもコレクタ領域を余分に必要になる
為、寄生容量の増大につながり周波数特性の関係から欠
点となる。
Second, as shown in FIG. 2(a), the first metal
Since all contacts of the base electrode are connected at
It is necessary to provide the first metal wiring 10 between the N-type collector electrode extraction region 7 and the P-type base region 5. This requires increasing the collector area, leading to an increase in the capacitance between the collector area and the ground area, which leads to deterioration of the frequency characteristics of the transistor. For example, when calculating a ratio of 1:2, it is necessary to change the collector area ratio to 1:2 as well, and a transistor with a ratio of 1 also requires an extra collector area. This leads to an increase in parasitic capacitance, which is a drawback in terms of frequency characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路は、半導体基板の一主平面に絶
縁分離された一つの島領域に複数のエミッタ領域と一つ
または複数のベース領域と一つまたは複数のコレクタ領
域とを有し、該主平面に絶縁膜を設け、それぞれ領域の
該絶縁膜に複数の第1開口部を設け、該複数の第1開口
部にそれぞれ第1配線層を設け、該第1配線層上の含ん
で層間絶縁膜を設け、該層間絶縁膜に第2開口部を設け
、前記複数のエミッタ領域と前記−つまたは複数のベー
ス領域と、前記−つまたは複数のコレクタ領域とをそれ
ぞれ別々に接続してなる第2配線層を設けてなるトラン
ジスタを含んで構成される。
The semiconductor integrated circuit of the present invention has a plurality of emitter regions, one or more base regions, and one or more collector regions in one island region insulated and isolated on one main plane of a semiconductor substrate. An insulating film is provided on the main plane, a plurality of first openings are provided in the insulating film in each region, a first wiring layer is provided in each of the plurality of first openings, and an interlayer including a layer on the first wiring layer is provided. an insulating film is provided, a second opening is provided in the interlayer insulating film, and the plurality of emitter regions, the one or more base regions, and the one or more collector regions are respectively connected separately. The structure includes a transistor provided with a second wiring layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)、(b)は本発明の第1の実施例の平面図
及びA−A’線断面図である。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line AA' of a first embodiment of the present invention.

不純物濃度がI Q 15〜l Q 17コ/ Cal
 ’のP型半導体基板21上にシート抵抗が数十Ω/口
のN+型埋込み領域22を設け、その主平面に比抵抗が
数Ω・口のN−型エピタキシャル層23を設け、ホトリ
ソグラフィ技術を用いて絶縁分離領域24を拡散及び酸
化により形成する0次に、前工程で得られたN−型エピ
タキシャル層23でできた一つの島領域にP型ベース領
域25をシート抵抗数百Ω/口で設け、次にN+型エミ
ッタ領域26及びN+型コレクタ電極取出し領域27を
数十Ω/口で設ける0次に、酸化工程によりできな5i
02による絶縁膜28を数百nmの厚さに設け、それぞ
れ領域上の絶縁82Bの一部を除去して第1開口部29
を設ける。
Impurity concentration is IQ 15~1Q 17/Cal
An N+ type buried region 22 with a sheet resistance of several tens of Ω/hole is provided on a P-type semiconductor substrate 21 of Next, a P-type base region 25 is formed in one island region made of the N-type epitaxial layer 23 obtained in the previous step with a sheet resistance of several hundred Ω/. Next, an N+ type emitter region 26 and an N+ type collector electrode extraction region 27 are provided at several tens of Ω/hole.
02 is provided to a thickness of several hundred nm, and a portion of the insulation 82B on each region is removed to form the first opening 29.
will be established.

次に、第1開口部29を覆うように、スパッタなどによ
り約1.0μmの厚さのA1などによる第1金属配線3
0をホトリソグラフィ技術により形成する0次に、全面
に層間膜としてプラズマ窒化膜を1μmの厚さに形成す
る(図示せず)、全面に設けた層間膜のプラズマ窒化膜
の一部をホトリソグラフィ技術により選択除去し第2開
口部33を設ける0次に、複数のN+型エミッタ領域2
6、複数のP型ベース領域25、複数のN+型コレクタ
t!取出し領域7に接続している第1金属配置130上
の第2の開口部33をそれぞれ別々に約2.0μmの厚
さにアルミニウムなどによる第2金属配線32で接続し
てエミッタ、ベース。
Next, a first metal wiring 3 made of A1 or the like with a thickness of about 1.0 μm is formed by sputtering or the like so as to cover the first opening 29.
Next, a plasma nitride film with a thickness of 1 μm is formed as an interlayer film on the entire surface (not shown). A part of the plasma nitride film, which is an interlayer film provided on the entire surface, is formed using photolithography. A plurality of N+ type emitter regions 2 are selectively removed using a technique to form second openings 33.
6. A plurality of P type base regions 25, a plurality of N+ type collectors t! The second openings 33 on the first metal arrangement 130 connected to the extraction region 7 are connected separately with second metal wiring 32 made of aluminum or the like with a thickness of about 2.0 μm to form emitters and bases.

コレクタのそれぞれの電極を形成する。Form each electrode of the collector.

本実施例では、P型ベース領域25を第1金属配線で設
けているので、余分なコレクタ領域を必要とせず、NP
Nトランジスタとして必要最小限の面積で設けることが
でき、かつ隣の素子と最小寸法で絶縁分離領域を設ける
ことができるので、CADなどの自動マスク設計にも適
した構成になる。
In this embodiment, since the P-type base region 25 is provided by the first metal wiring, an extra collector region is not required, and the N-type base region 25 is
Since it can be provided as an N transistor with the minimum required area, and an insulating isolation region can be provided with the minimum size from adjacent elements, the structure is suitable for automatic mask design such as CAD.

第2図(a)、(b)は本発明の第2の実施例の平面図
及びB−B’線断面図、第3図は第2図(a)、(b)
に示す横型PNP)ランジスタの等価回路図である。
FIGS. 2(a) and (b) are a plan view and a sectional view taken along the line B-B' of the second embodiment of the present invention, and FIG.
FIG. 2 is an equivalent circuit diagram of a horizontal PNP transistor shown in FIG.

絶縁分離領域44を設けるところまでは、本発明の第1
の実施例と同様なので省略する。絶縁分離領域44を設
けることによってN−型エピタキシャル層43の島領域
ができ、その一つの領域にP型エミッタ領域45とP型
コレクタ領域46をホトリソグラフィ技術を用いて数百
Ω/口のシート抵抗で設ける0次に、N+型ベース取出
し領域47を数十Ω/口のシート抵抗で設け、その上に
絶縁膜48を数百nmの厚さに設け、その絶縁膜48の
一部分を除去して第1開口部49を設ける0次に、アル
ミニウムを用いて第1金属配線50をその第1開口部4
9をおおって設ける。次に、全面に層間膜51としてプ
ラズマ窒化膜51を1.0μmの厚さに設け、ホトリソ
グラフィ技術を用いて一部のプラズマ窒化膜を除去して
第2開口部53を設け、次に第2金属配&152をホト
リソグラフィ技術を用いて形成する。
The first aspect of the present invention up to the point where the insulating isolation region 44 is provided is as follows.
Since this is the same as the embodiment, the explanation will be omitted. By providing the insulating isolation region 44, an island region of the N-type epitaxial layer 43 is created, and in one region, a P-type emitter region 45 and a P-type collector region 46 are formed using a photolithography technique to form a sheet with a thickness of several hundred Ω/hole. Next, an N+ type base extraction region 47 is provided with a sheet resistance of several tens of Ω/hole, an insulating film 48 with a thickness of several hundred nm is provided thereon, and a portion of the insulating film 48 is removed. Then, using aluminum, the first metal wiring 50 is formed in the first opening 4.
9. Cover and set. Next, a plasma nitride film 51 with a thickness of 1.0 μm is provided as an interlayer film 51 on the entire surface, and a part of the plasma nitride film is removed using photolithography technology to form a second opening 53. Two metal interconnects &152 are formed using photolithography technology.

第2図(a>に示しているように、第2の実施例では、
P型エミッタ領域45、P型コレクタ領域46、N+型
ベース取出し領域47をそれぞれが第2金属配線52に
接続して形成しているので素子専有面積を増すことなく
、かつトランジスタ特性比を正確になった構成になる。
As shown in FIG. 2 (a), in the second embodiment,
Since the P-type emitter region 45, P-type collector region 46, and N+-type base extraction region 47 are each connected to the second metal wiring 52, it is possible to accurately maintain the transistor characteristic ratio without increasing the device exclusive area. The configuration will be as follows.

しかしながら、従来法で配線形成し場合、エミッタ電極
とコレクタ電極間にN+型ベース取出し領域47と接続
してなる第1金属配線50を設けることになり、本発明
の効果を得ることができない6本発明の第2の実施例に
おいては、特にN+型ベース取出し領域47とP型コレ
クタ領域46とP型エミッタ領域45が一対で構成され
ているので、ベース抵抗の比などが精度良く出るので、
ベース・エミッタ電圧に対するコレクタ電流特性比も素
子専有面積を増すことなく達成できる。つまり、第3図
で示す通りコレクタ電流比が4:1の割合にするとき数
%以下の誤差のコレクタ電流の相対比精度が可能なる。
However, when wiring is formed by the conventional method, the first metal wiring 50 connected to the N+ type base extraction region 47 is provided between the emitter electrode and the collector electrode, and the effect of the present invention cannot be obtained. In the second embodiment of the invention, in particular, since the N+ type base extraction region 47, the P type collector region 46, and the P type emitter region 45 are configured as a pair, the base resistance ratio etc. can be determined with high accuracy.
The characteristic ratio of collector current to base-emitter voltage can also be achieved without increasing the area occupied by the device. In other words, when the collector current ratio is set to a ratio of 4:1 as shown in FIG. 3, the relative ratio accuracy of the collector current with an error of several percent or less is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、複数エミッタ領域をも
ち、1つ又は複数のベースの第1開口部と一つ又は複数
のコレクタ第1開口部とをそれぞれ別々の第1金属配線
を設け、それを第2金属配線により接続し、それぞれ別
々にトランジスタの電極を構成するようにしたので、ト
ランジスタ特性のマツチラグが良く、周波数特性に優れ
、CADなどの自動設計に適し、かつ素子専有面積を小
さくできるなどの効果がある。
As explained above, the present invention has a plurality of emitter regions, and provides separate first metal wiring for one or more base first openings and one or more collector first openings, Since these are connected by a second metal wiring and the electrodes of each transistor are configured separately, the transistor characteristics have good match lag, excellent frequency characteristics, are suitable for automatic design such as CAD, and the area occupied by the element is small. There are effects such as being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の第1の実施例の平面図
及びA−A’線断面図、第2図(a)。 (b)は本発明の第2の実施例の平面図及びB〜B′線
断面図、第3図は第2図(a)、(b)に示す第2の実
施例の等価回路図、第4図(a)。 示す第2の実施例の等価回路図、第4図(a)。 (b)は従来の複数エミッタ構造のNPNトランジスタ
の一例の平面図およびc−c’線断面図である。 1.21.41・・・P型半導体基板、2,22゜42
・・・N+型埋込み領域、3.23.43・・・N−型
エピタキシャル層、4,24.44・・・絶縁分離領域
、5.25・・・P型ベース領域、6,26・・・N+
型エミッタ領域、7,27・・・N′″型コレクタ電極
取り出し領域、8,28・・・絶縁膜、9゜29.49
・・・第1開口部、10,30.50・・・第1金属配
線、13,33.53・・・第2開口部、12.32.
52・・・第2金属配線、51・・・層間膜、45・・
・P型エミッタ領域、46・・・P型コレクタ領域。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line A-A' of the first embodiment of the present invention, and FIG. 2(a). (b) is a plan view and a sectional view taken along line B-B' of the second embodiment of the present invention, and FIG. 3 is an equivalent circuit diagram of the second embodiment shown in FIGS. 2(a) and (b). Figure 4(a). An equivalent circuit diagram of the second embodiment shown in FIG. 4(a). (b) is a plan view and a sectional view taken along line cc' of an example of a conventional NPN transistor having a multiple emitter structure. 1.21.41...P-type semiconductor substrate, 2,22°42
...N+ type buried region, 3.23.43...N- type epitaxial layer, 4,24.44...Insulation isolation region, 5.25...P type base region, 6,26...・N+
type emitter region, 7, 27...N''' type collector electrode extraction area, 8, 28... insulating film, 9°29.49
...First opening, 10,30.50...First metal wiring, 13,33.53...Second opening, 12.32.
52... Second metal wiring, 51... Interlayer film, 45...
- P-type emitter region, 46...P-type collector region.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の一主平面に絶縁分離された一つの島領域
に複数のエミッタ領域と一つまたは複数のベース領域と
一つまたは複数のコレクタ領域とを有し、該主平面に絶
縁膜を設け、それぞれ領域の該絶縁膜に複数の第1開口
部を設け、該複数の第1開口部にそれぞれ第1配線層を
設け、該第1配線層上の含んで層間絶縁膜を設け、該層
間絶縁膜に第2開口部を設け、前記複数のエミッタ領域
と前記一つまたは複数のベース領域と、前記一つまたは
複数のコレクタ領域とをそれぞれ別々に接続してなる第
2配線層を設けてなるトランジスタを含むことを特徴と
する半導体集積回路。
A semiconductor substrate has a plurality of emitter regions, one or more base regions, and one or more collector regions in one island region insulated and isolated on one main plane of the semiconductor substrate, and an insulating film is provided on the main plane, A plurality of first openings are provided in the insulating film in each region, a first wiring layer is provided in each of the plurality of first openings, an interlayer insulating film is provided on the first wiring layer, and the interlayer insulating film is provided in the first wiring layer. A second opening is provided in the film, and a second wiring layer is provided in which the plurality of emitter regions, the one or more base regions, and the one or more collector regions are respectively connected separately. A semiconductor integrated circuit characterized by including a transistor.
JP12657188A 1988-05-23 1988-05-23 Semiconductor integrated circuit Pending JPH01293660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12657188A JPH01293660A (en) 1988-05-23 1988-05-23 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12657188A JPH01293660A (en) 1988-05-23 1988-05-23 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01293660A true JPH01293660A (en) 1989-11-27

Family

ID=14938460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12657188A Pending JPH01293660A (en) 1988-05-23 1988-05-23 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01293660A (en)

Similar Documents

Publication Publication Date Title
KR890004495B1 (en) Semiconductor device
US6815798B2 (en) Integrated capacitor for sensing the voltage applied to a terminal of an integrated or discrete power device on a semiconductor substrate
US5068702A (en) Programmable transistor
JPH01293660A (en) Semiconductor integrated circuit
JPH0214549A (en) Integrated circuit die having resistive substrate isolation of a plurality of circuits
JPS60187055A (en) Semiconductor integrated circuit device
JP2504529B2 (en) Bipolar thin film semiconductor device
JPS6120141B2 (en)
JPS5925249A (en) Semiconductor device
JP2953623B2 (en) Planar thyristor
JPH11283990A (en) Semiconductor device
JPH0126194B2 (en)
JPS6366947A (en) Programmable transistor
JPS5812343A (en) Semiconductor device
JPS59149045A (en) Semiconductor device
JPS5810834A (en) Semiconductor device
JPH02114645A (en) Bipolar transistor
JPH0380564A (en) Semiconductor integrated circuit device and its manufacture
JPH0420263B2 (en)
JP2005026392A (en) Semiconductor device and its fabricating process
JPS61129867A (en) Semiconductor device
JP3753498B2 (en) Semiconductor device
JPS61108162A (en) Semiconductor device and manufacture thereof
JPS5929458A (en) Semiconductor device
JPH0585054U (en) Multi-conductor layer structure for monolithic semiconductor integrated circuit devices