JPH01105413A - Manufacture of oxide superconducting wire - Google Patents

Manufacture of oxide superconducting wire

Info

Publication number
JPH01105413A
JPH01105413A JP62261172A JP26117287A JPH01105413A JP H01105413 A JPH01105413 A JP H01105413A JP 62261172 A JP62261172 A JP 62261172A JP 26117287 A JP26117287 A JP 26117287A JP H01105413 A JPH01105413 A JP H01105413A
Authority
JP
Japan
Prior art keywords
superconductor
temperature
superconducting
oxide
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62261172A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Shinya Aoki
青木 伸哉
Mikio Nakagawa
中川 三紀夫
Atsushi Kume
篤 久米
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62261172A priority Critical patent/JPH01105413A/en
Priority to EP88302417A priority patent/EP0283313B1/en
Priority to DE3887910T priority patent/DE3887910T2/en
Priority to CN88101444.3A priority patent/CN1027937C/en
Priority to CA000561971A priority patent/CA1338753C/en
Publication of JPH01105413A publication Critical patent/JPH01105413A/en
Priority to US07/831,663 priority patent/US5168127A/en
Priority to US07/932,933 priority patent/US5283232A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the superconductivity characteristic such as the critical current density by specifying the temperature increasing speed and the temperature decreasing speed at the time of applying heat treatment. CONSTITUTION:A superconducting element wire filled with an oxide superconductor or its precursor in a metal tube is applied with heat treatment so that it is heated to the preset baking temperature area at 200 deg.C/hr or below and baked at the preset baking temperature area then cooled to the room temperature at 50 deg.C/hr or below. The thermal stress to the superconductor due to the difference in the thermal expansion coefficient between the superconductor and the metal tube at the time of the heat treatment is thereby mitigated, cracks generated on the superconductor can be reduced, and a superconducting wire excellent in the superconductivity characteristic such as the critical current density is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は超電導マグネットコイルや電力輸送用等に使用
される超電導線に係わり、超電導体として酸化物系超電
導体を用いたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application J] The present invention relates to superconducting wires used for superconducting magnet coils, power transport, etc., and relates to superconducting wires using oxide-based superconductors as superconductors.

「従来の技術」 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を超える値を示す酸化物
系超電導体が種々発見されている。この種の酸化物系超
電導体は、一般式A −B −Cu−0(ただし、Aは
Y、Sc、La、Yb、Er、Eu、Ho、Dy等の周
期律表■a族金属元素の1種以上を示し、BはB e、
Mg、 Ca、 S r、B a等の周期律表Ila族
元素の1種以上を示す)で示される酸化物であり、液体
ヘリウムで冷却することが必要であった従来の合金系あ
るいは金属間化合物系の超電導体と比較して格段に有利
な冷却条件で使用できることから、実用上極めて有望な
超電導材料として研究がなされている。
"Prior Art" Recently, various oxide-based superconductors have been discovered whose critical temperature (T c ) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide-based superconductor has the general formula A -B -Cu-0 (where A is a metal element in group a of the periodic table, such as Y, Sc, La, Yb, Er, Eu, Ho, Dy, etc.). Indicates one or more types, B is B e,
It is an oxide represented by one or more of Group Ila elements of the periodic table such as Mg, Ca, Sr, Ba, etc.), and is an oxide that is used for conventional alloy systems or intermetallic materials that require cooling with liquid helium. Since it can be used under much more advantageous cooling conditions than compound-based superconductors, it is being researched as an extremely promising superconducting material for practical use.

ところで従来、このような酸化物系超電導体を具備する
超電導線の製造方法の一例として以下の方法が知られて
いる。
By the way, the following method is conventionally known as an example of a method for manufacturing a superconducting wire including such an oxide-based superconductor.

酸化物系超電導線を製造するには、A −B −Cu−
0で示される酸化物系超電導体を構成する各元素を含む
複数の原料粉末を混合して混合粉末を作成し、次いでこ
、の混合粉末を仮焼して不要成分を除、去し、この仮焼
粉末を熱処理して超電導粉末とした後に金属管に充填し
、更に縮径して所望の直径の線材を得、この線材に熱処
理を施して、金属管の内部に超電導体が形成された゛酸
化物系超電導線を製造する方法である。
In order to manufacture oxide-based superconducting wire, A -B -Cu-
A mixed powder is created by mixing multiple raw material powders containing each element constituting the oxide superconductor represented by 0, and then this mixed powder is calcined to remove unnecessary components. The calcined powder was heat-treated to become superconducting powder, which was then filled into a metal tube, further reduced in diameter to obtain a wire with the desired diameter, and this wire was heat-treated to form a superconductor inside the metal tube. This is a method for manufacturing oxide-based superconducting wire.

[発明が解決しようとする問題点」 しかしながら、上記超電導体と金属管に使用される金属
との熱膨張率には格差があり、前述の従来方法において
、金属管内に粉末を充填して縮径加工を施した後、80
0〜1000℃程度(こ加熱する熱処理を施す際、超電
導体および金属管が急激な温度変化を受1才、超電導体
に応、力が加わり、この応力によって超電導体にクラッ
クを生じ、その超電導特性、特に臨界型流密□度が低下
してしまう問題があった。
[Problem to be solved by the invention] However, there is a difference in thermal expansion coefficient between the superconductor and the metal used for the metal tube, and in the conventional method described above, the metal tube is filled with powder to reduce its diameter. After processing, 80
0 to 1000 degrees Celsius (during heat treatment, the superconductor and metal tube undergo rapid temperature changes, force is applied to the superconductor, this stress causes cracks in the superconductor, and the superconductor There was a problem that the properties, especially the critical flow density, decreased.

本発明は、上記問題に鑑み云なされたもので、臨鼻電流
密度などの゛超電導特性の優れた酸化物系超電導線材の
製造方法の提供を目的とする。
The present invention has been made in view of the above problems, and aims to provide a method for manufacturing an oxide-based superconducting wire having excellent superconducting properties such as nasal current density.

「問題点を解決するための手段」 本発明は上記問題解決の手段として、酸化物超電導体を
具備してなる酸化物系超電導線の製造方法において、金
属管内に酸化物超電導体またはその前駆体を充填し、更
に縮径加工を施して超電導素線とし、次1・てこの超電
導素線に、所定の焼成温度域まで昇温させた後、所定の
焼成温度域で焼成し、この後室温まで降温させる熱処理
を施す場合に、昇温速度を200℃/時、降温速度を5
0℃/時以下にするものである。
"Means for Solving the Problems" The present invention provides a method for manufacturing an oxide superconducting wire comprising an oxide superconductor, as a means for solving the above problems. The superconducting strands are then filled with 1-lever and subjected to diameter reduction processing to obtain superconducting strands.Then, the superconducting strands of 1. Lever are heated to a predetermined firing temperature range, then fired at a predetermined calcination temperature range, and then heated to room temperature. When performing heat treatment to lower the temperature to
The temperature should be kept below 0°C/hour.

「作用J 金属管内に酸化物超電導体あるいはその前駆体を充填し
てなる超電導素線に、所定の焼成温度域まで200°C
/時以下で昇温させた後、所定の焼成温度域で焼成し、
この後室温まで50℃/時以下で降温させる熱処理を施
すことにより、熱処理時に超電導体上金属管との熱膨張
率の格差によって発生する超電導体への熱応〕Jを緩和
することができる。
``Action J: A superconducting wire made of a metal tube filled with an oxide superconductor or its precursor is heated to 200°C to a specified firing temperature range.
/ hour or less, then fired at a predetermined firing temperature range,
Thereafter, by performing heat treatment to lower the temperature to room temperature at a rate of 50° C./hour or less, it is possible to alleviate the thermal response J to the superconductor that occurs due to the difference in coefficient of thermal expansion between the superconductor and the metal tube during heat treatment.

以下、本発明の酸化物系超電導線の製造方法を更に詳細
に説明する。
Hereinafter, the method for manufacturing an oxide-based superconducting wire of the present invention will be explained in more detail.

本発明方法により酸化物系超電導線を製造するには、ま
ず、金属管内に酸化物超電導体あるいはその前駆体を充
填する。
To manufacture an oxide superconducting wire by the method of the present invention, first, an oxide superconductor or its precursor is filled into a metal tube.

本発明方法に好適に使用される酸化物超電導体は、A 
−B −Cu−0系(ただし、AはY、Sc、La。
The oxide superconductor preferably used in the method of the present invention is A
-B -Cu-0 system (A is Y, Sc, La.

Ce、Pr、Nd、Pm、Eu、Gd、Tb、Sm、D
y、Ho、Er。
Ce, Pr, Nd, Pm, Eu, Gd, Tb, Sm, D
y, Ho, Er.

T m、 Y b、 L u等の周期律表■a族元素の
1種以上を示し、BはBa、S r、Mg、Ca、Ra
、Be等の周期律表11a族元素の1種以上を示す)な
どのものである。
Indicates one or more elements of group ■a of the periodic table such as Tm, Yb, Lu, etc., and B is Ba, Sr, Mg, Ca, Ra
, Be, and other elements of group 11a of the periodic table).

このような酸化物超電導体は、上記へ元素の化合物粉末
とB元素の化合物粉末とCuの化合物粉末とを所定の配
合比率となるように均一に混合して混合粉末を作成し、
次いてこの混合粉末を仮焼して不要成分を除去し、この
仮焼粉末を熱処理した超電導粉末が好適に使用される。
Such an oxide superconductor is produced by uniformly mixing a compound powder of the above elements, a compound powder of element B, and a compound powder of Cu at a predetermined mixing ratio to create a mixed powder,
Next, this mixed powder is calcined to remove unnecessary components, and a superconducting powder obtained by heat-treating this calcined powder is preferably used.

また、酸化物超電導体の前駆体としては、上記混合粉末
や仮焼粉末が好適に使用される。なお、上記各元素の化
合物としては、各元素の酸化物、炭酸化物、フ・ソ化物
、塩化物、臭化物、シ、−ウ酸塩、硝酸塩などを使用す
ることができる。例えば酸化物超電導体としてY −B
 a−Cu−0系超電導体を使用する場合、特に好適な
原料化合物としては、Y 203、BaOまたはB a
 CO3、CuOなどである。
Further, as the precursor of the oxide superconductor, the above-mentioned mixed powder and calcined powder are preferably used. In addition, as the compound of each of the above-mentioned elements, oxides, carbonates, fluorides, chlorides, bromides, oxalates, nitrates, etc. of each element can be used. For example, Y-B as an oxide superconductor
When using an a-Cu-0 based superconductor, particularly suitable raw material compounds include Y 203, BaO or Ba
These include CO3 and CuO.

また、上記金属管の材料としてはAg、Cu、AuXP
tXNi、Ti、Ta、Zr、Nb等の単体金属や、銀
合金、Cu−N i系合金、Cu−Al系合金、N i
−A i系合金、T i−V系合金、モネルメタル、ス
テンレスなどの融点800℃以上の単体金属あるいは合
金が好適に使用される。
In addition, the material of the metal tube is Ag, Cu, AuXP.
Single metals such as tXNi, Ti, Ta, Zr, Nb, silver alloys, Cu-Ni alloys, Cu-Al alloys, Ni
- Single metals or alloys having a melting point of 800° C. or higher, such as A i-based alloys, Ti-V-based alloys, monel metal, and stainless steel, are preferably used.

この金属管内に上記酸化物超電導体やその前駆体を充填
した後、この金属管を所定の線径に縮径して超電導素線
とする。この縮径は引抜き加工や圧延加工により行って
もよいが、ロータリースウエージング装置等の鍛造装置
を用い、所定線径となるまで必要に応じて複数回の鍛造
を繰り返す鍛造加工により縮径を行うと高い充填密度が
得られるので、特に好ましい。
After filling the metal tube with the oxide superconductor or its precursor, the metal tube is reduced to a predetermined wire diameter to form a superconducting strand. This diameter reduction may be done by drawing or rolling, but it is also done by forging using a forging device such as a rotary swaging device and repeating forging multiple times as necessary until a predetermined wire diameter is achieved. This is particularly preferable because a high packing density can be obtained.

次にこの超電導素線に所定の焼成温度域まで毎時100
〜200℃で昇温させた後、所定の焼成温度域で焼成し
、この後室温まで毎時20〜100℃で降温させる熱処
理を施す。この焼成温度および熱処理時間は酸化物超電
導体の種類によって適宜設定されるが、例えばY −B
 a−Cu−0系の酸化物超電導体の場合には、焼成温
度を800〜1000℃程度とし、この温度に1〜数十
時間保持するように設定するのが望ましい。この熱処理
において、昇温時に200℃/時間を越える昇温を行う
と超電導体と金属管との熱膨張率の格差により超電導体
に加わる熱応力が大きくなり、超電導体のクラック防止
効果が充分に得られず、50℃/時間以下の昇温ては所
定の焼成温度に達するまでに時間がかかり実用的でない
。また、降温時に、100℃/時間を越える降温を行う
と昇温時と同様に超電導体と金属管との熱膨張率の格差
により超電導体に加わる熱応力が大きくなり、超電導体
のクラック防止効果が充分に得られず、50℃/時間以
内の降温では室温までの徐冷に時間がかかり実用的でな
い。また、上記の昇温および降温は、連続的に昇温また
は降温させる必要はなく、昇温または降温の途中て温度
を一定としたまま任意の時間保持し、その後再び昇温ま
たは降温を行うようにしてム良い。
Next, this superconducting strand is heated at 100 per hour to a predetermined firing temperature range.
After raising the temperature to ~200°C, it is fired in a predetermined firing temperature range, and then a heat treatment is performed in which the temperature is lowered to room temperature at a rate of 20~100°C per hour. The firing temperature and heat treatment time are appropriately set depending on the type of oxide superconductor, but for example, Y-B
In the case of an a-Cu-0 based oxide superconductor, it is desirable to set the firing temperature to about 800 to 1000°C and maintain this temperature for 1 to several tens of hours. In this heat treatment, if the temperature is increased by more than 200℃/hour, the thermal stress applied to the superconductor will increase due to the difference in thermal expansion coefficient between the superconductor and the metal tube, and the crack prevention effect of the superconductor will not be sufficient. However, raising the temperature at a rate of 50° C./hour or less is not practical because it takes time to reach the predetermined firing temperature. In addition, if the temperature is lowered by more than 100°C/hour when the temperature is lowered, the thermal stress applied to the superconductor increases due to the difference in thermal expansion coefficient between the superconductor and the metal tube, similar to when the temperature is raised, and the effect of preventing cracks in the superconductor is increased. is not obtained sufficiently, and if the temperature is lowered within 50° C./hour, slow cooling to room temperature takes time and is not practical. In addition, the temperature rise and fall described above do not need to be raised or lowered continuously; instead, the temperature may be held constant for an arbitrary period of time during the temperature rise or fall, and then the temperature may be raised or lowered again. It's so good.

なお、この熱処理時の雰囲気は純酸素雰囲気や、酸素と
アルゴン、窒素なとの不活性ガスとの混合ガス雰囲気や
、酸素と不活性ガスとフッ素ガス、塩素ガスなどのハロ
ゲンガスとの混合ガス雰囲気等の酸化性雰囲気とするの
が好ましい。
The atmosphere during this heat treatment may be a pure oxygen atmosphere, a mixed gas atmosphere of oxygen and an inert gas such as argon or nitrogen, or a mixed gas atmosphere of oxygen, an inert gas, and a halogen gas such as fluorine gas or chlorine gas. It is preferable to use an oxidizing atmosphere such as an atmosphere.

このような熱処理を施すことにより、金属管内の粉末が
焼結されて酸化物超電導体が生成し、酸化物系超電導線
が得られる。
By performing such heat treatment, the powder in the metal tube is sintered to produce an oxide superconductor, and an oxide superconducting wire is obtained.

この発明による酸化物系超電導線の製造方法は、金属管
内に酸化物超電導体あるいはその前駆体を充填してなる
超電導素線に、所定の焼成温度域まで200℃/時以下
で昇温させた後、所定の焼成温度域で焼成し、この後室
温まで50℃/時以下て降温させる熱処理を施すことに
より、熱処理時に超電導体と金属管との熱膨張率の格差
による超電導体への熱応力が緩和され、超電導体に生じ
るクラックを減少させることができ、臨界電流密度など
の超電導特性の優れた超電導線を製造するこ一8= とがてきる。
The method for producing an oxide superconducting wire according to the present invention involves heating a superconducting wire formed by filling a metal tube with an oxide superconductor or its precursor at a rate of 200°C/hour or less to a predetermined firing temperature range. After that, the superconductor is fired at a predetermined firing temperature range, and then subjected to a heat treatment in which the temperature is lowered to room temperature at a rate of 50°C/hour or less, thereby reducing thermal stress on the superconductor due to the difference in thermal expansion coefficient between the superconductor and the metal tube during heat treatment. This makes it possible to reduce cracks that occur in the superconductor, and to manufacture superconducting wires with excellent superconducting properties such as critical current density.

〔実施例 〕〔Example 〕

本発明方法に基づいて、Y −B a−Cu−0系超電
導体を具備してなる酸化物系超電導線の製造を実施した
Based on the method of the present invention, an oxide superconducting wire comprising a Y-B a-Cu-0 superconductor was manufactured.

まず、Y2O3と、BaOと、CuOとをY:Ba:C
u= ] :2:3の割合で均一に混合して混合粉末と
し、この混合粉末を酸素雰囲気中700℃で24時間仮
焼して仮焼粉末とし、更にこの仮焼粉末を酸素雰囲気中
、900℃で24時間熱処理して超電導粉末を得た。次
に、この超電導粉末を、外径10mm、内径7mmの銀
製の管体内に充填し、更にロータリースウェージング装
置を用いて外径1mmまで複数回の鍛造加工を施して縮
径し、超電導素線とした。
First, Y2O3, BaO, and CuO are Y:Ba:C
u= ]: Mixed uniformly at a ratio of 2:3 to obtain a mixed powder, this mixed powder was calcined in an oxygen atmosphere at 700°C for 24 hours to obtain a calcined powder, and this calcined powder was further calcined in an oxygen atmosphere, A superconducting powder was obtained by heat treatment at 900° C. for 24 hours. Next, this superconducting powder was filled into a silver tube with an outer diameter of 10 mm and an inner diameter of 7 mm, and further reduced by forging several times to an outer diameter of 1 mm using a rotary swaging device. And so.

次に、この超電導素線を酸素雰囲気中、950℃まで2
00℃/時間の条件で連続的に昇温し、950℃に12
時間保持した後、室温まで50℃/時間の条件で連続的
に降温させる熱処理を施した。
Next, this superconducting wire was heated to 950°C for 2 hours in an oxygen atmosphere.
Continuously raise the temperature at 00℃/hour to 950℃ for 12
After holding for a period of time, heat treatment was performed to continuously lower the temperature to room temperature at a rate of 50° C./hour.

この熱処理により銀のシース内に緻密に焼結されたY 
−B a−Cu−0系超電導体が形成された酸化物超電
導線が得られた。この超電導線の臨界温度(T c)お
よび臨界電流密度(Jc)を側定した結果、Tc=9]
K、、Jc=10000 A/Cm’(77Kにおいて
)と優れた超電導特性を示した。
Through this heat treatment, Y is densely sintered inside the silver sheath.
An oxide superconducting wire in which a -Ba-Cu-0 based superconductor was formed was obtained. As a result of determining the critical temperature (Tc) and critical current density (Jc) of this superconducting wire, Tc=9]
It exhibited excellent superconducting properties with K,, Jc=10000 A/Cm' (at 77K).

「発明の効果」 以」−説明したように、本発明は、金属管内に酸化物超
電導体またはその前駆体を充填してなる超電導素線に、
所定の焼成温度域まで200℃/時以下で昇温させた後
、所定の焼成温度域に保持し、この後室温まて50℃/
時以下で降温させる熱処理を施すことにより、熱処理時
に超電導体と金属管との熱膨張率の格差による超電導体
への熱応力が緩和され、超電導体に生じるクラックを減
少させることができ、臨界電流密度などの超電導特性の
優れた超電導線を製造できる効果がある。
"Effects of the Invention" - As explained above, the present invention provides a superconducting wire formed by filling a metal tube with an oxide superconductor or its precursor.
After increasing the temperature to a specified firing temperature range at a rate of 200°C/hour or less, the temperature is maintained within the specified firing temperature range, and then the room temperature is increased to 50°C/hour.
By performing heat treatment that lowers the temperature at a temperature below This has the effect of producing superconducting wires with excellent superconducting properties such as density.

Claims (1)

【特許請求の範囲】 酸化物超電導体を具備してなる酸化物系超電導線の製造
方法において、 金属管内に酸化物超電導体またはその前駆体を充填し、
更に縮径加工を施して超電導素線とし、次いでこの超電
導素線に、所定の焼成温度域まで昇温させた後、所定の
焼成温度域に保持し、この後室温まで降温させる熱処理
を施す場合に、昇温速度を200℃/時以下、降温速度
を50℃/時以下にすることを特徴とする酸化物系超電
導線の製造方法。
[Claims] A method for manufacturing an oxide superconducting wire comprising an oxide superconductor, comprising: filling a metal tube with the oxide superconductor or its precursor;
When the superconducting strand is further subjected to diameter reduction processing to become a superconducting strand, and then this superconducting strand is subjected to heat treatment in which the temperature is raised to a predetermined sintering temperature range, then held in the sintered temperature range, and then cooled to room temperature. A method for producing an oxide-based superconducting wire, characterized in that the temperature increase rate is 200°C/hour or less and the temperature fall rate is 50°C/hour or less.
JP62261172A 1987-03-20 1987-10-16 Manufacture of oxide superconducting wire Pending JPH01105413A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62261172A JPH01105413A (en) 1987-10-16 1987-10-16 Manufacture of oxide superconducting wire
EP88302417A EP0283313B1 (en) 1987-03-20 1988-03-18 Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
DE3887910T DE3887910T2 (en) 1987-03-20 1988-03-18 Method for producing a wire made of superconducting oxide and wire produced therewith.
CN88101444.3A CN1027937C (en) 1987-03-20 1988-03-19 Method of producting oxide superconducting wire and oxide superconducting wire produced by this method
CA000561971A CA1338753C (en) 1987-03-20 1988-03-21 Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
US07/831,663 US5168127A (en) 1987-03-20 1992-02-06 Oxide superconducting wire
US07/932,933 US5283232A (en) 1987-03-20 1992-08-20 Method for producing oxide superconducting composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261172A JPH01105413A (en) 1987-10-16 1987-10-16 Manufacture of oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH01105413A true JPH01105413A (en) 1989-04-21

Family

ID=17358124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261172A Pending JPH01105413A (en) 1987-03-20 1987-10-16 Manufacture of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH01105413A (en)

Similar Documents

Publication Publication Date Title
EP0305820A2 (en) Method of manufacturing a superconductor
JPH10510943A (en) Method for producing long superconductor having bismuth phase at high critical temperature and superconductor produced by this method
US6265354B1 (en) Method of preparing bismuth oxide superconductor
JPH01105413A (en) Manufacture of oxide superconducting wire
RU2031463C1 (en) Process of manufacture of superconducting conductor
CA1338460C (en) Method for making superconductive electric wire
KR910009198B1 (en) Method of manufacturing superconductive products
JP6814007B2 (en) Mixed anion compound Iron-based superconducting wire and its manufacturing method
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JP2549669B2 (en) Oxide superconducting wire
JP2557498B2 (en) Manufacturing method of linear superconducting material
JP2509642B2 (en) Superconducting power lead manufacturing method
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP2593520B2 (en) Method for producing oxide-based superconducting wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPS63279525A (en) Manufacture of superconductive wire rod
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH07141940A (en) Manufacture of superconductive wire of bismuth oxide
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JP2565930B2 (en) Method for manufacturing ceramic superconducting compact
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH02158012A (en) Manufacture of oxide superconductive liner body