JP7531718B2 - 電子装置及び電動パワーステアリング装置 - Google Patents

電子装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
JP7531718B2
JP7531718B2 JP2023537755A JP2023537755A JP7531718B2 JP 7531718 B2 JP7531718 B2 JP 7531718B2 JP 2023537755 A JP2023537755 A JP 2023537755A JP 2023537755 A JP2023537755 A JP 2023537755A JP 7531718 B2 JP7531718 B2 JP 7531718B2
Authority
JP
Japan
Prior art keywords
metal plate
heat
thermally conductive
electronic device
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023537755A
Other languages
English (en)
Other versions
JPWO2023007546A1 (ja
Inventor
勝彦 大前
謙介 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2023007546A1 publication Critical patent/JPWO2023007546A1/ja
Application granted granted Critical
Publication of JP7531718B2 publication Critical patent/JP7531718B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/08146Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bonding area connecting to a via connection in the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08225Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本開示は、電子装置及び電動パワーステアリング装置に関する。
特許文献1には、従来の電動パワーステアリング装置が記載されている。
従来の電子装置は、例えば、回路パターンを有する基板と、ヒートスプレッダを備えるとともに基板に実装された発熱素子と、発熱素子から発生した熱を伝導する熱伝導絶縁体と、電子装置の外部に放熱するヒートシンクとを備える。
特許文献1に開示された従来の電子装置では、発熱素子から発生した熱を発熱素子の背面から放熱させることが提案されている。例えば、特許文献1の図12においては、発熱素子とヒートシンク(特許文献1ではフレームに相当)の間に放熱ゲルを充填する構造が示されている。
日本国第6160576号公報
ところで、半導体プロセスの進化に伴って、パワーMOS-FETに代表されるような発熱素子の小型化が進んでいる。このため、発熱素子を備えるパッケージの大きさが小さくなっている。その結果、発熱素子から発生した熱を放熱するヒートスプレッダの面積が小さくなる。放熱ゲルの熱伝導率を高めることは期待できず、発熱素子からヒートシンクまでの熱抵抗を下げるには限界がある。
基板に形成されたスルーホールを介して、基板の裏面に熱を放熱する構造では、複数のスルーホールを基板に設けても、スルーホールの内壁に形成されている銅膜の厚さが薄いため、熱抵抗を下げるには限界がある。
本開示は、上記のような課題を解決するためになされたもので、基板に実装された発熱素子から発生する熱を効率的に放熱し、発熱素子の小型化を阻害せず、低価格な電子装置と、この電子装置を備えた電動パワーステアリング装置を提供することを目的とする。
本開示に係る電子装置は、回路パターンを有する基板と、前記基板上に配置されて前記基板とは反対側に位置する上面放熱部と、半田付けにより前記回路パターンに接合されている電極とを有する発熱素子と、前記上面放熱部上に配置された熱伝導部材と、前記熱伝導部材上に配置された第1金属板と、前記熱伝導部材上に配置され、かつ、前記第1金属板から電気的に独立した第2金属板と、第3金属板と、前記第1金属板、前記第2金属板、及び前記第3金属板を絶縁する絶縁部材と、前記第1金属板、前記第2金属板、及び前記第3金属板上に配置された熱伝導絶縁体と、前記熱伝導絶縁体上に配置されたヒートシンクとを備える。前記第3金属板は、前記電極が前記回路パターンにより接合された位置と、前記熱伝導絶縁体との間に設けられている。前記第1金属板、前記第2金属板、前記第3金属板、及び前記絶縁部材によって、1つの部品が構成されている。
本開示に係る電子装置によれば、基板に実装された発熱素子から発生する熱を効率的に放熱し、かつ、発熱素子の小型化を阻害しない電子装置を低価格で提供することができる。
実施の形態1に係る電子装置の構成を示す断面図である。 実施の形態1に係る電子装置の構成を示す断面図であって、金属板の変形例を示す図である。 実施の形態1に係る電子装置の構成を示す断面図であって、金属板の変形例を示す図である。 実施の形態2に係る電子装置の構成を示す平面図である。 実施の形態2に係る電子装置の構成を示す断面図であって、図4Aに示すA-A線に沿う図である。 実施の形態2に係る電子装置の構成を示す断面図であって、図4Aに示すB-B線に沿う図である。 実施の形態2に係る電子装置の変形例を示す平面図である。 実施の形態2に係る電子装置の変形例を示す断面図であって、図4Dに示すC-C線に沿う図である。 実施の形態2に係る電子装置の変形例を示す断面図であって、図4Eの符号Dを示す拡大図である。 実施の形態2に係る電子装置の構成を示す斜視図である。 実施の形態2に係る電子装置の構成を示す断面図であって、図5Aに示すC-C線に沿う図である。 実施の形態3に係る電子装置を備える電動パワーステアリング装置の構成を示す回路ブロック図である。 実施の形態3に係る電子装置を備える電動パワーステアリング装置を構成する複数の部品を展開した展開図である。 実施の形態3に係る電子装置を備える電動パワーステアリング装置を構成する基板を示す斜視図である。 実施の形態3に係る電子装置を備える電動パワーステアリング装置を構成する基板を示す斜視図であって、図8Aの符号Dで示された部分を示す拡大図である。 実施の形態4に係る冗長電動パワーステアリング装置の展開図である。
(熱設計)
実施の形態を説明する前に、熱設計の基本的な事項について述べる。
半導体プロセスの進化に伴って、パワーMOS-FETに代表されるような発熱素子の小型化が進んでいる。現在の発熱素子が備える性能と同等以上の性能を有する発熱素子が小型化すると、発熱素子を備えた部品を使用した電子装置の実装密度が向上し、電子装置の小型化が図れる。
しかしながら、発熱素子を備えるパッケージ(例えば、FETパッケージ)が小型化されると、発熱素子から発生する熱を放熱するヒートスプレッダの面積も小さくなる。なお、発熱素子の性能が変わらない場合、発熱素子から発生する熱の発熱量は同じである。
一般的に、発熱部品(発熱素子)とヒートシンクとの間に熱伝導絶縁グリスを介在させた放熱構造が知られている。放熱構造における放熱性能は、発熱部品からヒートシンク及び外気までの熱抵抗で決まる。
一例として、ヒートスプレッダを上面に備えるFET(発熱素子、発熱部品)と、FETが実装された基板と、ヒートシンクと、FETとヒートシンクとの間に設けられた熱伝導絶縁部材とを備えた構造において、FETがヒートシンクに放熱する場合を考察する。
発熱部品であるFETからヒートシンクまでの熱抵抗RΘは、次式で表せる。
RΘ=t/(S×λ) [℃/W]
ここで、“t”は、熱伝導絶縁体の厚さ[m]を示す。
“S”は、熱伝導絶縁体の面積(ヒートスプレッダの面積)[m]を示す。
“λ”は、熱伝導絶縁体の熱伝導率[W/m・K]を示す。
なお、ここでは、ヒートスプレッダの熱抵抗は無視している。
ヒートスプレッダの熱抵抗を無視した理由は、下記のとおりである。
ヒートスプレッダは、通常、銅で形成されている。銅の熱伝導率は、およそ400W/m・Kである。熱伝導絶縁体の熱伝導率は、通常、数~10W/m・K程度である。このため、熱伝導絶縁体の熱伝導率は、銅の熱伝導率とは桁が異なる。この理由から、ヒートスプレッダの熱抵抗を無視しても、熱抵抗RΘへの影響は無視できる。
上式より、熱抵抗RΘを小さくするためには、以下の3つの手法がある。
(手法1)熱伝導絶縁体の厚さtを小さくする。
(手法2)熱伝導絶縁体の面積Sを大きくする。
(手法3)熱伝導絶縁体の熱伝導率λを大きくする。
次に、上記3つの手法の各々について検討する。
(手法1)
FETのヒートスプレッダは、通常、FETの内部電極と電気的に導通している。ヒートスプレッダは、ヒートシンクとは電気的に絶縁されている必要がある。従って、電気絶縁性を得るために、一般的に、熱伝導絶縁グリス、接着剤、シート等が使用される。電気絶縁性を確保しながら熱伝導絶縁体の厚さtを小さくするには、放熱系(放熱部材、放熱構造、放熱経路)を形成する構造物の加工及び組み立てにおいて、高い精度が要求される。さらに、熱伝導絶縁体の厚さtを小さくするには、限界があるだけでなく、高い加工精度が求められる。
(手法2)
熱伝導絶縁体の面積Sは、FETのヒートスプレッダの面積で決まる。このため、面積Sを大きくすることは不可能である。さらに、FETパッケージを大きくしてヒートスプレッダの面積も大きくすることは、FETパッケージの小型化に逆行することになり、非現実的である。
(手法3)
熱伝導絶縁グリス、接着剤およびシートの熱伝導率は、通常、数~10W/m・K程度である。この数値よりも高い熱伝導率を有する熱伝導絶縁体は存在するが、そのような熱伝導絶縁体は非常に高価であり、量産設計には向かない。
以下に、上述した3つの手法における制約を考慮し、発熱素子を備えるパッケージ(FETパッケージ)の小型化を阻害しないで放熱性能を向上する構造を提案する。
実施の形態1.
次に、実施の形態1に係る電子装置1について、図1を参照しながら説明する。
後述する実施の形態1~4及び変形例の説明では、電子装置1の厚さ方向(換言すると、基板100の厚さ方向)をZ方向と定義し、Z方向に直交する方向をX方向及びY方向と定義する。
また、後述する各部材の寸法に関し、「厚さ」とは、Z方向における距離を意味し、「面積」とは、X方向及びY方向に平行な面の面積を意味する。
また、「接触面積」とは、2つの部材が接触する面積を意味する。
図1に示すように、電子装置1は、基板100と、発熱素子200と、熱伝導部材300と、金属板400と、熱伝導絶縁体500と、ヒートシンク600とを備える。
<基板>
基板100は、例えば、公知のプリント基板である。基板100上には、回路パターン100Pが形成されている。図1に示す例では、基板100の一方の面100F(第1面、上面)上に、回路パターン100Pが形成されている。基板100の一方の面100Fには、上述した複数の部材200、300、400、500、600が順に積層された構造が示されている。以下の説明では、一方の面100Fを第1面100Fと称する。
基板100の第1面100F上には、回路パターン100Pの一部を形成する接続端子101が形成されている。接続端子101が第1面100F上に形成される位置は、電子装置1の設計に応じて適宜変更可能である。例えば、接続端子101は、発熱素子200の素子端子203の位置に応じた位置に形成されている。
なお、基板100上には、上述した複数の部材200、300、400、500、600以外の部材が配置されてもよい。例えば、発熱素子200の駆動を制御する制御部(制御回路やICチップ等)が基板100上に実装されてもよい。この場合、制御部は、基板100の回路パターン100Pに接続されてもよい。また、基板100の他方の面100S(第1面とは反対の第2面、裏面)にも回路パターンが形成されてもよい。以下の説明では、他方の面100Sを第2面100Sと称する。
<発熱素子>
発熱素子200は、基板100上に配置されている。発熱素子200は、基板100の第1面100Fに実装されている。発熱素子200は、例えば、パワーMOS-FETである。また、発熱素子200は、パワー素子と称することができる。パワーMOS-FETには、FETチップが内蔵されている。以下の説明においては、発熱素子をパワーMOS-FET、或いは、FETと称する場合がある。発熱素子200は、ドレイン電極、ソース電極、及びゲート電極(制御端子)を有する。
発熱素子200は、上面ヒートスプレッダ201(上面放熱部)、下面ヒートスプレッダ202(基板対向面)、及び素子端子203を備える。上面ヒートスプレッダ201は、金属板400に面している。
換言すると、上面ヒートスプレッダ201は、基板100の第1面100Fとは反対側に位置する。
下面ヒートスプレッダ202は、基板100の第1面100Fに面している。素子端子203は、発熱素子200の側面から延出したリード線の先端部に相当する。素子端子203の位置は、基板100の接続端子101の位置に対応している。素子端子203は、接続端子101に半田付けにより接合されている。
素子端子203は、発熱素子200を制御するための端子である。基板100の回路パターン100P、接続端子101、及び素子端子203に通じて、発熱素子200を制御する制御信号が発熱素子200に入力される。発熱素子200の全体は、樹脂で覆われている。すなわち、発熱素子200は、樹脂によってパッケージングされている。
図1に示す例では、発熱素子200が下面ヒートスプレッダ202を備える構造が示されているが、本実施の形態では、上面ヒートスプレッダ201から金属板400に向かう放熱について説明する。
<熱伝導部材>
熱伝導部材300は、上面ヒートスプレッダ201上に配置されている。熱伝導部材300は、上面ヒートスプレッダ201と金属板400との間に設けられている。熱伝導部材300は、上面ヒートスプレッダ201と金属板400とを熱的及び機械的に結合する。つまり、熱伝導部材300は、上面ヒートスプレッダ201と金属板400とを接合する熱結合部材である。熱伝導部材300の材料としては、熱伝導率が高い材料が採用され、例えば、半田、銀ペースト等の金属系材料が用いられる。また、熱伝導部材300の材料としては、電気伝導性を有する材料が用いられてもよい。
熱伝導部材300の熱伝導率は、熱伝導絶縁体500の熱伝導率より大きい。
例えば、熱伝導部材300として半田を用いる場合、半田の熱伝導率は、約50W/m・Kである。さらに、半田の厚さは自由に設定することが可能であり、半田の厚さを薄くすることができる。このため、半田の熱抵抗を小さくすることができる。
<金属板>
金属板400は、上面ヒートスプレッダ201上に配置されている。
金属板400を構成する材料としては、熱伝導性に優れた金属材料が用いられ、例えば、銅等が採用される。金属板400として銅を用いる場合、銅の熱伝導率は、約400W/m・Kである。金属板400の厚さは、例えば、0.5mm~1.0mmの範囲内であることが好ましい。金属板400の厚さは、この厚さの範囲に限定されない。
図1に示す例では、金属板400の形状は平板である。
金属板400は、第1金属面400Fと、第1金属面400Fとは反対の面である第2金属面400Sとを有する。第1金属面400Fは、熱伝導絶縁体500と接触している。第2金属面400Sは、熱伝導部材300と接触している。
金属板400の形状は平板であるため、第1金属面400F及び第2金属面400Sの各々は、平坦面である。
金属板400の厚さは、金属板400の熱伝導性を鑑みて設定される。
金属板400は、発熱素子200のドレイン電極又はソース電極のうち一方の電極と同じ電位を有する。このため、金属板400がヒートシンク600に電気的に接続されてしまうと、ヒートシンク600を介在したショートが生じてしまう。このようなショートを避けるために、ヒートシンク600から金属板400を電気的に絶縁する必要がある。
金属板400の面積は、自在に調整することができる。例えば、発熱素子200の面積(上面ヒートスプレッダ201の面積)よりも金属板400の面積を大きくすることが可能である。また、金属板400に対する熱伝導絶縁体500の接触面積を大きくすることも可能である。
<熱伝導絶縁体>
熱伝導絶縁体500は、金属板400上に配置されている。熱伝導絶縁体500は、金属板400とヒートシンク600との間に充填されている。
熱伝導絶縁体500は、金属板400からヒートシンク600への熱を伝導させる部材である。さらに、熱伝導絶縁体500は、金属板400とヒートシンク600とを電気的に絶縁する部材である。熱伝導絶縁体としては、公知の材料が用いられ、例えば、熱伝導グリス又は熱伝導接着剤が用いられる。熱伝導絶縁体500の熱伝導率は、一般的に、数~10W/m・K程度である。
熱伝導絶縁体500の形状は、自由に設定することができる。さらに、熱伝導絶縁体500の面積も自在に調整することができる。例えば、金属板400とヒートシンク600との間の隙間の距離に応じて、熱伝導絶縁体500の厚さを薄くすることが可能である。
金属板400と熱伝導絶縁体500とが接する面積は、発熱素子200と熱伝導部材300とが接する面積よりも大きい。
<ヒートシンク>
ヒートシンク600は、熱伝導絶縁体500上に配置されている。ヒートシンク600の構造としては、例えば、複数のフィンを備えた公知の構造が採用される。ヒートシンク600を構成する材料としては、熱伝導性に優れた金属材料が用いられ、例えば、銅やアルミニウム等が採用される。
<作用効果>
次に、電子装置1における作用効果を説明する。
基板100から発熱素子200への制御信号の供給に伴って、発熱素子200は、発熱する。発熱素子200から発生する熱は、熱伝導部材300を通じて、上面ヒートスプレッダ201から金属板400に伝わる。金属板400は、高い熱伝導率を有するため、金属板400に伝わった熱は、まず、X方向及びY方向に拡散する。
金属板400の内部に拡散した熱は、熱伝導絶縁体500を介して、ヒートシンク600へ伝わる。上述したように、熱伝導絶縁体500の熱伝導率(数~10W/m・K程度)によって熱伝導絶縁体500の熱抵抗を下げることは期待できないが、金属板400の面積は、発熱素子200の上面ヒートスプレッダ201の面積より大きくすることが可能である。金属板400の面積を上面ヒートスプレッダ201の面積より大きくすることによって、放熱面積が拡大し、効率よく放熱することができる。このため、金属板400によって、電子装置1における熱抵抗を小さくすることができる。
特に、Z方向から見て、発熱素子200及び素子端子203を含む領域200Rと金属板400とが重なるように、金属板400の大きさ、つまり、金属板400の面積が設定される。これにより、電子装置1の全体における実装密度を変えることなく、電子装置1における熱抵抗を小さくすることができる。
なお、熱伝導絶縁体500の厚さを小さくすれば、さらに熱抵抗を下げることが可能となる。しかしながら、この点については、熱伝導絶縁体500によって得られる電気絶縁性を確保する必要があるため、熱伝導絶縁体500の構造を配慮する必要がある。
次に、図2及び図3を参照し、上述した実施の形態1の変形例について説明する。図2及び図3において、図1に示す電子装置1における同一部材には同一符号を付して、その説明は省略または簡略化する。
<実施の形態1の変形例1>
図2に示すように、金属板400は、凸部401を有する。
凸部401は、第2金属面400Sから発熱素子200に向けて突出した部位である。
凸部401の高さ、つまり、Z方向における第2金属面400Sから凸部401の端面400Tまでの距離は、適宜、調整可能である。第2金属面400Sと端面400Tとの間には、傾斜面400Iが形成されている。
この構成によれば、上述した実施の形態1に係る電子装置1と同様又は類似の効果が得られるだけでなく、例えば、基板100と金属板400の第2金属面400Sとの距離を大きくする場合に有効である。
熱伝導部材300として半田が用いられている。このため、上面ヒートスプレッダ201と金属板400との間における半田の形状を自由に調整することができる。変形例1では、凸部401の端面400Tと上面ヒートスプレッダ201との間、及び、傾斜面400Iと上面ヒートスプレッダ201との間に、半田が形成されている。金属板400と発熱素子200との間の空間に露出する半田の露出部分には、曲面が形成されている。つまり、フィレット形状を有するように半田が形成されている。半田がフィレット形状を有することで、上面ヒートスプレッダ201と金属板400との間における接合の信頼性を向上させることができる。
さらに、金属板の変形例1は、ヒートシンク600と金属板400との間に形成されている構造の点で、上述した実施の形態1とは異なる。
具体的に、ヒートシンク600と金属板400との間には、スペーサ501と、熱伝導絶縁体500とが配置されている。スペーサ501の材料としては、公知の絶縁材料が用いられる。スペーサ501は、ヒートシンク600と金属板400との間に形成される隙間を維持するために必要な強度を有する。
スペーサ501を用いる構造においては、まず、金属板400に対向するヒートシンク600に面に対し、スペーサ501を直接固定する。その後、スペーサ501を挟むようにヒートシンク600と金属板400とを接合する。これにより、金属板400とヒートシンク600との間の間隙がスペーサ501の厚さで決定される。さらに、金属板400とヒートシンク600との間において、スペーサ501によって形成された間隙に、熱伝導絶縁体500が充填される。
この構成によれば、スペーサ501によって、熱伝導絶縁体500が充填される隙間を確実に形成することができる。さらに、熱伝導絶縁体500の材料としてグリス等の柔らかい材料が採用された場合であっても、スペーサ501によって形成された間隙に熱伝導絶縁体500を充填することができる。
なお、スペーサ501が形成される位置は、例えば、熱伝導絶縁体500を囲む周囲領域であることが好ましい。これにより、X方向及びY方向においてスペーサ501で囲まれた隙間に熱伝導絶縁体500を充填することができる。
<実施の形態1の変形例2>
図3に示すように、金属板400は、凸部401と、凹部402と、傾斜面400Iとを有する。
凸部401は、図2に示す構造と同様に、第2金属面400Sから発熱素子200に向けて突出した部位である。傾斜面400Iは、図2に示す構造と同様に、第2金属面400Sと端面400Tとの間に形成されている。
凹部402は、第1金属面400Fから発熱素子200に向けて凹んだ部位である。凹部402の深さ、つまり、Z方向における第1金属面400Fから凹部402の底面400Rまでの距離は、適宜、調整可能である。
凹部402の形成方法としては、公知のプレス加工法等を用いて、図1に示す平板の金属板400に凹部402を形成する方法が挙げられる。
この構成によれば、上述した実施の形態1に係る電子装置1及び変形例1と同様又は類似の効果が得られるだけでなく、平板の金属板400から凸部401及び凹部402を容易に形成することが可能であり、加工コストを低減することができる。
さらに、凹部402に熱伝導絶縁体500を充填することができるため、金属板400とヒートシンク600との接続信頼性を向上させることができる。
実施の形態2.
上述した実施の形態1では、電子装置1が1つの発熱素子200を備える場合について説明した。実施の形態2では、図4A~図4Cを参照し、電子装置が複数の発熱素子を備える場合について説明する。
図4A~図4Cにおいて、図1~図3に示す電子装置1における同一部材には同一符号を付して、その説明は省略または簡略化する。
図4A~図4Cに示すように、電子装置2は、パワーMOS-FETとして機能する8つの発熱素子200と、3つのシャント抵抗器204(発熱部品)とを備える。8つの発熱素子200及び3つのシャント抵抗器204は、基板100上に設けられている。シャント抵抗器は、発熱する発熱部品である。
電子装置2においては、X方向に沿うように4つの発熱素子200が配列されている。Y方向に沿うように2つの発熱素子200が配列されている。
8つの発熱素子200の各々の上面ヒートスプレッダ201は、ドレイン電極として機能する。
X方向に配列する4つの発熱素子200は、1つの素子グループを構成している。つまり、図4Aに示す例では、電子装置2は、2つの素子グループ(第1素子グループ200G1、第2素子グループ200G2)を備えている。第1素子グループ200G1は、4つの第1金属板400Aに繋がれている。第2素子グループ200G2は、1つの第2金属板400Bに繋がれている。第1金属板400A及び第2金属板400Bは、Y方向に並んでおり、互いに別々の配線として機能する。Y方向において、第2素子グループ200G2は、第1素子グループ200G1とシャント抵抗器204との間に配置されている。
<第1素子グループと第1金属板との接続構造>
第1素子グループ200G1を構成する4つの発熱素子200(複数の第1発熱素子、複数の発熱素子)は、熱伝導部材300を介して、4つの第1金属板400Aに接続されている。4つの発熱素子200各々は、基板100とは反対側に位置する上面ヒートスプレッダ201(第1上面放熱部、上面放熱部)を有する。4つの第1金属板400Aは、熱伝導部材300上に配置され、4つの発熱素子200の配列方向(X方向)に沿って配置されている。4つの第1金属板400Aは、互いに分離している。
第1素子グループ200G1において、上面ヒートスプレッダ201は、熱伝導部材300を介して、4つの第1金属板400Aの各々に接続されている。つまり、1つの発熱素子200の上面ヒートスプレッダ201は、熱伝導部材300を介して、1つの第1金属板400Aと電気的に接続されている。4つの第1金属板400Aは、互いに電気的に独立しているため、4つの発熱素子200の上面ヒートスプレッダ201は、互いに導通していない。したがって、4つの発熱素子200の4つの上面ヒートスプレッダ201の電位は、互いに異なる。つまり、第1素子グループ200G1においては、上面ヒートスプレッダ201(ドレイン電極)は、電位的に互いに独立している。
<第2素子グループと第2金属板との接続構造>
第2素子グループ200G2を構成する4つの発熱素子200(複数の第2発熱素子、複数の発熱素子)は、熱伝導部材300を介して、1つの第2金属板400Bに接続されている。4つの発熱素子200各々は、基板100とは反対側に位置する上面ヒートスプレッダ201(第2上面放熱部、上面放熱部)を有する。第2金属板400Bは、熱伝導部材300上に配置され、4つ発熱素子200の配列方向(X方向)に沿って延在している。第2金属板400Bは、4つ発熱素子200を互いに導通させている。第2金属板400Bは、第1金属板400Aから電気的に独立している。
第2素子グループ200G2において、上面ヒートスプレッダ201は、熱伝導部材300を介して、1つの第2金属板400Bに接続されている。つまり、4つの発熱素子200の4つの上面ヒートスプレッダ201は、熱伝導部材300を介して、1つの第2金属板400Bと電気的に接続されている。したがって、4つの上面ヒートスプレッダ201の電位は、互いに同じになる。
図4Aに示す第2金属板400Bは、例えば、後述する図6に示す回路ブロック図に示す符号400aに相当する配線である。
<シャント抵抗器と第3金属板との接続構造>
シャント抵抗器204は、電極204Eを有する。シャント抵抗器204の電極204Eは、半田付けにより基板100の回路パターン100Pに接合されている。電極204Eが回路パターン100Pに接合された位置204Rと、熱伝導絶縁体500との間には、第3金属板400Cが設けられている。
図4Aに示すように、3つのシャント抵抗器204に電気的に接続されている第3金属板400Cは、互いに独立している。つまり、互いに隣り合う2つのシャント抵抗器204の間において、2つの第3金属板400Cは、電気的に接続されていない。
なお、以下の説明では、第1素子グループ200G1及び第2素子グループ200G2を単に「素子グループ200G」と称する場合がある。また、第1金属板400A、第2金属板400B、及び第3金属板400Cを単に「金属板400」と称する場合がある。また、第1素子グループ200G1を「上段素子グループ200G1」と称する場合がある。第2素子グループ200G2を「下段素子グループ200G2」と称する場合がある。
8つの発熱素子200をインバータとして使用する場合、第1素子グループ200G1を構成する複数の発熱素子200を複数の第1金属板400Aに繋ぐ。さらに、第2素子グループ200G2を構成する複数の発熱素子200を1つの第2金属板400Bに繋ぐ。これにより、第1金属板400A及び第2金属板400Bを電気配線材としての機能させることができる。この結果、配線密度を向上させることができる。
図4A~図4Cに示す例では、Y方向に配列する素子グループ(第1素子グループ200G1、第2素子グループ200G2)の数は2つであるが、素子グループの数は、2つ以上であってもよい。
換言すると、X方向に沿って配置された複数の第1金属板400Aの列の数は、2つ以上であってもよい(複数の金属板400)。また、X方向に延在する第2金属板400Bの列の数も、2つ以上であってもよい(複数の金属板400)。金属板の列の数が3つ以上である場合、選択される2つの金属板の列が、複数の第1金属板400Aの列、及び、第2金属板400Bの列に対応する。
金属板400(第1金属板400A、第2金属板400B、第3金属板400C)の平面パターンは、基板100に形成された回路パターン100Pより広くかつ厚くなるように設計することが可能である。このため、金属板400には、大電流を通電することが可能となる。図4A~図4Cに示す金属板400の構成は、上述した図1~図3に示す実施の形態にて説明した構成と同様である。
金属板400に大電流を供給すると、金属板400を構成する材料が有する電気抵抗によって金属板400も発熱する。しかしながら、金属板400は、熱伝導絶縁体500を介してヒートシンク600に熱的に接続されているため、金属板400から発生する熱は、ヒートシンク600から十分に放熱される。このため、金属板400からの発熱を考慮することなく、金属板400に大電流を供給することが可能となる。
逆に言うと、金属板400に供給される電流量が変わらない場合、金属板400は、細くかつ薄くなるように設計することが可能である。この場合、電子装置2を小型化することができ、電子装置2の製造コストを低減することができる。
図4Aに示す第1素子グループ200G1(上段素子グループ)を構成する4つの発熱素子200は、例えば、後述する図6に示す回路ブロック図に示す符号400c(u)、400c(v)、400c(w)、400dに各々に対応している。また、第1素子グループ200G1を構成する4つの発熱素子200の各々の上面ヒートスプレッダ201(ドレイン電極)は、電位的に互いに独立している。さらに、第1素子グループ200G1に配置される複数の金属板400(複数の第1金属板400A)は、他の金属板400(第2金属板400B)とは電気的に接続することはできない。このため、互いに独立した2つの金属板400を別々に配置する場合、電子装置2を組立てる工程が複雑になる。
そこで、本実施の形態では、絶縁部材800は、互いに独立した複数の第1金属板400A、第2金属板400B、及び第3金属板400Cを絶縁しつつ、1つの部品にまとめる。つまり、複数の第1金属板400A、第2金属板400B、第3金属板400C、及び絶縁部材800によって、1つの部品が構成されている。これにより、電子装置2を組立てる工程が容易になる。絶縁部材800を構成する絶縁材料としては、公知の材料が用いられる。
図4Bに示すように、絶縁部材800の厚さによって、熱伝導絶縁体500の厚さが決定されている。これにより、絶縁部材800はスペーサとして機能することができる。つまり、金属板400とヒートシンク600との間に熱伝導絶縁体500を配置する前に、絶縁部材800によって金属板400とヒートシンク600との間の間隔を決定する。スペーサの構造、材料、形状は、例えば、図2に示すスペーサ501と同様である。
絶縁部材800によって形成された隙間には、熱伝導絶縁体500が充填されている。これによって、金属板400とヒートシンク600との間に確実に熱伝導絶縁体500を配置することができる。換言すると、絶縁部材800によって、熱伝導絶縁体500の厚さを決定することができる。
発熱素子200の上面には、ヒートスプレッダを有しない部品、例えば、シャント抵抗器のといった部品も存在する。図4Cに示す断面図においては、シャント抵抗器204が電子装置2に実装された状態が示されている。シャント抵抗器204は、基板100の第1面100Fに実装されている。
シャント抵抗器204は、表面実装型の抵抗素子(発熱部品)である。シャント抵抗器204は、シャント抵抗器204の両側に設けられた電極204Eを有する。シャント抵抗器204の電極204Eは、基板100の回路パターン100Pに半田付けにより接合されている。シャント抵抗器204を通電することにより発生した熱は、主に電極204Eから回路パターン100Pを通して放熱される。しかしながら、回路パターン100Pや基板100を構成する材料の熱伝導率は、小さく放熱効率は悪い。
そこで、図4Cに示すように、シャント抵抗器204の電極204Eが基板100の回路パターン100Pに半田付けにより接合された位置204Rには、第3金属板400Cが半田付けにより接合されている。
具体的に、位置204Rに配置された第3金属板400Cの部分は、断面視においてS字形状を形成するように折り曲げられている。折り曲げられた第3金属板400Cは、位置204Rにおいて回路パターン100Pに接合されている。これにより、シャント抵抗器204や回路パターン100Pから発生した熱は、電極204Eの位置204R、第3金属板400C、及び熱伝導絶縁体500を介して、ヒートシンク600から放熱される。
上述したように、電子装置2は、第1金属板400A、第2金属板400B、及び第3金属板400Cを有する。ヒートシンク600と向い合う熱伝導絶縁体500の面積及び金属板400A、400B、400Cの面積を広くすることで熱抵抗を低減することができる。
図4A~図4Cには示されていないが、発熱素子200の2つの素子端子203が回路パターン100Pで繋がっている構造において2つの素子端子203の間に大電流が流れるような場合は、回路パターン100Pに第3金属板400Cを半田付けしてもよい。これにより、第3金属板400C及び熱伝導絶縁体500を介して、ヒートシンク600から放熱することができ、熱抵抗を低減することができる。
次に、図5A及び図5Bを参照し、熱抵抗を低減する構造について説明する。
なお、図5A及び図5Bでは、基板100及び発熱素子は省略されている。
絶縁部材800は、金属板400A、400B、400Cを互いに絶縁し、固定している。金属板400A、400B、400C、及び絶縁部材800によって、1つの部品が構成されている。図5Bに示す寸法Aは、熱伝導絶縁体500の厚さを示している。上述したとおり、この厚さ(寸法A)が薄いほど、熱抵抗を小さくすることができ、放熱性能を向上させることができる。
電子装置2を製造する実際の工程においては、電子装置2を構成する部品の寸法公差や組付け公差を考慮して熱伝導絶縁体500の厚さ(寸法A)を決める必要がある。しかしながら、むやみに寸法公差や組付け公差を小さくすると、電子装置2の製造コストの増加を招くことになる。
絶縁部材800と、金属板400A、400B、400Cとを、例えば、インサート成型によって形成する場合、1つの金型を用いて、金属板400A、400B、400C及び絶縁部材800を一体化することができる。このため、絶縁部材800の厚さ(寸法B)の公差を小さくすることは低価格で比較的容易に達成できる。
さらに、ヒートシンク600に対する絶縁部材800の固定構造について、絶縁部材800をヒートシンク600に直接押し当てるように固定することで、例えば、ネジ900を用いる固定構造を採用することで、熱伝導絶縁体500の厚さを抑えることができる。この結果、熱抵抗が小さく、低価格で、高い放熱性能を有する電子装置2を設計し、製造することができる。
なお、絶縁部材800の厚さ(寸法B)が小さくなって金属板400A、400B、400Cを固定する強度が下がる場合には、絶縁部材800にリブ801を設けてもよい。リブ801は、ヒートシンク600に面する絶縁部材800の端面800Fに設けられている。
リブ801を備える絶縁部材800を用いる構造においては、リブ801に対応する位置に、ヒートシンク600に溝600Gが設けられている。
溝600Gには、リブ801が挿入され、これによって、絶縁部材800とヒートシンク600とが固定される。したがって、絶縁部材800の厚さ(寸法B)が小さい場合でも、溝600Gにリブ801が嵌合された構造を採用することで、Z方向における電子装置2のサイズが大きくならず、かつ、ヒートシンク600に絶縁部材800を組付ける際における位置決め機能を実現することができる。
<作用効果>
次に、電子装置2における作用効果を説明する。
電子装置2によれば、上述した実施の形態1に係る電子装置1と同様又は類似の作用効果を得ることができる。さらに、電子装置2が複数の発熱素子200を備えた場合でも、第1金属板400A、第2金属板400B、及び第3金属板400Cを一体化することができる。さらに、複数の金属板400A、400B、400Cを絶縁部材800で固定することで、熱伝導絶縁体500の厚さを絶縁部材800の厚さで決まるように薄く設定することができる。これにより、高放熱構造を達成することができる。基板100の第2面100S上に他の制御回路等の部品を配置することで、小型かつ低価格な電子装置2を実現することができる。
また、回路パターン100Pから発生する熱も金属板400Cを介して放熱されるため、大電流を通電することが可能な大きな厚さを有する銅基板を使用する必要がなく、電子装置2の価格をさらに低減することが可能である。
<実施の形態2の変形例>
次に、図4D~図4Fを参照し、上述した実施の形態2の変形例について説明する。実施の形態2の変形例は、第3金属板300Cの接続構造の点で、実施の形態2と相違している。図4D~図4Fにおいて、図1~図3に示す電子装置1及び図4A~図4Cに示す電子装置2における同一部材には同一符号を付して、その説明は省略または簡略化する。
図4D~図4Fに示すように、実施の形態2の変形例に係る電子装置2Aは、図4Aに示す電子装置2の構造に加えて、パワーMOS-FETとして機能する発熱素子250を備える。
<発熱素子>
発熱素子250は、図1に示す発熱素子200と同様の構造を有しており、下面ヒートスプレッダ202を備えている。下面ヒートスプレッダ202は、発熱素子250のドレイン電極又はソース電極である。発熱素子250は、X方向において、3つのシャント抵抗器204のうちの最も右側に位置する右側シャント抵抗器304の隣に配置されている。
<第3金属板の変形例>
第3金属板400Cは、回路パターン100Pを介して、右側シャント抵抗器304の一方の電極304Eと発熱素子250の下面ヒートスプレッダ202とを接続している。図4E及び図4Fに示すように、第3金属板400Cは、熱伝導絶縁体500を介して、ヒートシンク600に接続されている。第3金属板400Cは、上述した金属板400と同様の材料で形成されている。
次に、電極304Eと第3金属板400Cとの接続構造、及び、下面ヒートスプレッダ202と第3金属板400Cとの接続構造について、以下に具体的に説明する。
右側シャント抵抗器304の電極304Eは、位置304Rにおいて基板100の回路パターン100Pに半田付けにより接合されている。第3金属板400Cは、この位置304Rに半田付けにより接合されている。位置304Rに配置された第3金属板400Cの部分は、断面視においてS字形状を形成するように折り曲げられている。折り曲げられた第3金属板400Cは、位置304Rにおいて回路パターン100Pに接合されている。これによって、位置304Rを介して、電極304Eと第3金属板400Cとが接続されている。
発熱素子250の下面ヒートスプレッダ202は、位置304Sにおいて基板100の回路パターン100Pに半田付けにより接合されている。第3金属板400Cは、この位置304Sに半田付けにより接合されている。位置304Sに配置された第3金属板400Cの部分は、断面視においてS字形状を形成するように折り曲げられている。折り曲げられた第3金属板400Cは、位置304Sにおいて回路パターン100Pに接合されている。これによって、位置304Sを介して、下面ヒートスプレッダ202と第3金属板400Cとが接続されている。
上述した接続構造においては、回路パターン100P及び第3金属板400Cを介して、右側シャント抵抗器304の一方の電極304Eと、発熱素子250の下面ヒートスプレッダ202とが電気的に接続されている。このため、電極304E及び下面ヒートスプレッダ202は、同じ電位を有する。
さらに、右側シャント抵抗器304及び発熱素子250の両部品は、発熱部品であり、これらの部品から発生した熱は、第3金属板400C及び熱伝導絶縁体500を介して、ヒートシンク600に放熱される。また、回路パターン100Pから発生する熱も第3金属板400C及び熱伝導絶縁体500を介して、ヒートシンク600に放熱される。
したがって、電子装置2Aによれば、上述した実施の形態2に係る電子装置2と同様又は類似の作用効果を得ることができる。特に、第3金属板400Cによって右側シャント抵抗器304、発熱素子250、及び回路パターン100Pから発生する熱をヒートシンク600に放熱することができる。このため、大電流を通電することが可能な大きな厚さを有する銅基板を使用する必要がなく、電子装置2Aの価格をさらに低減することが可能である。
実施の形態3.
実施の形態1及び2では、電子装置1が1つの発熱素子200を備える場合、及び、電子装置2、2Aが複数の発熱素子200を備える場合について説明した。実施の形態3では、複数の発熱素子を備えた電子装置が電動パワーステアリング装置に適用された場合について説明する。
図6~図8Bにおいて、図1~図5Bに示す構成における同一部材には同一符号を付して、その説明は省略または簡略化する。
図6において、太線で示された配線(符号400a、400b、400c、400d)は、大電流が流れる配線に相当する。この配線400a、400b、400c、400dで示されている配線経路内に含まれる部品は、発熱部品(発熱素子200)である。
図7に示すように、電動パワーステアリング装置3は、電動パワーステアリング装置3を構成するモータ及びコントローラの展開図である。図8A及び図8Bは、電動パワーステアリング装置3を構成する基板部を示す斜視図である。
電動パワーステアリング装置3は、制御装置3C、図示しない減速装置、電動モータ5、トルクセンサ8、及びバッテリ9を備える。さらに、電動パワーステアリング装置3は、パワーコネクタ16と車両側信号用コネクタ17とを備えている。
制御装置3Cは、電動モータ5の駆動を制御する。図示しない減速装置は、電動モータ5の回転速度を減速させる。電動モータ5は、車両のハンドルに対して補助トルクを出力する。電動モータ5は、3相ブラシレスモータである。電動モータ5は、回転子18とUVWの電機子巻線を備えた固定子19を備えている。トルクセンサ8は、ハンドルの操舵トルクを検出する。バッテリ9は、電動モータ5を駆動するための電流を電動モータ5に供給する。パワーコネクタ16は、バッテリ9と制御装置3Cとを電気的に接続する。車両側信号用コネクタ17は、トルクセンサ8及びその他の制御端子と制御装置3Cとを電気的に接続する。
制御装置3Cは、コンデンサ15a、15bと、シャント抵抗器208U、208V、208Wと、半導体スイッチング素子206U、206V、206W、207U、207V、207Wと、半導体スイッチング素子209U、209V、209Wと、コイル14aと、半導体スイッチング素子205a、205bと、を備えている。
さらに、制御装置3Cは、回転センサ6と、マイクロコンピュータ10と、駆動回路11と、基板100とを備えている。
<コンデンサ>
コンデンサ15a、15bは、電動モータ5に流れるモータ電流IMのリップル成分を吸収するための大容量のコンデンサである。コンデンサ15a、15bは、例えば、リップルコンデンサである。
<シャント抵抗器>
シャント抵抗器208U、208V、208Wは、モータ電流IMを検出する。
なお、以下の説明では、シャント抵抗器208U、208V、208Wをシャント抵抗器208と称する場合がある。
<半導体スイッチング素子>
制御装置3Cを構成する半導体スイッチング素子は、上述した発熱素子200(例えば、FET)である。
半導体スイッチング素子206U、206V、206W、207U、207V、207Wは、3相のブリッジ回路を構成する。この半導体スイッチング素子は、補助トルクの大きさ及び方向に応じてモータ電流IMを切り替える。
なお、以下の説明では、半導体スイッチング素子206U、206V、206Wを半導体スイッチング素子206と称する場合がある。半導体スイッチング素子207U、207V、207Wを半導体スイッチング素子207と称する場合がある。
半導体スイッチング素子209U、209V、209Wは、モータリレーを構成する。このモータリレーは、ブリッジ回路から電動モータ5に供給されるモータ電流IMを通電・遮断するスイッチである。
半導体スイッチング素子205a、205bは、電源リレーを構成する。この電源リレーは、バッテリ9からブリッジ回路に供給されるバッテリ電流IBを通電・遮断するスイッチとして機能する。
なお、以下の説明では、半導体スイッチング素子209U、209V、209Wを半導体スイッチング素子209と称する場合がある。
<コイル>
コイル14aは、半導体スイッチング素子206、207のスイッチング動作時に発生する電磁ノイズが外部へ流出してラジオノイズになることを防止する。
<回転センサ>
回転センサ6は、回転子18の回転位置を検出する回転位置センサである。
<マイクロコンピュータ>
マイクロコンピュータ10は、トルクセンサ8から出力される操舵トルク信号に基づいて、補助トルクを演算する。マイクロコンピュータ10は、電動モータ5に流れるモータ電流IM及び回転センサ6で検出された電動モータ5の回転子の回転位置に基づいてフィードバック制御を行う。マイクロコンピュータ10は、補助トルクに相当する電流を演算する。
マイクロコンピュータ10は、AD変換器やPWMタイマ回路等の機能を有する。さらに、マイクロコンピュータ10は、周知の自己診断機能を有し、電動パワーステアリング装置3のシステムが正常に動作しているか否かを常に自己診断する。マイクロコンピュータ10が異常を検知すると、マイクロコンピュータ10は、モータ電流IMの供給を遮断する。
マイクロコンピュータ10には、トルクセンサ8から出力された操舵トルクが入力される。さらに、マイクロコンピュータ10には、回転センサ6から電動モータ5の回転子の回転位置の情報が入力される。また、マイクロコンピュータ10には、車両側信号の一つである走行速度信号が車両側信号用コネクタ17から入力される。マイクロコンピュータ10には、モータ電流IMがシャント抵抗器208を通じてフィードバック入力される。マイクロコンピュータ10では、これらの情報、信号から、パワーステアリングの回転方向指令、及び補助トルクに相当する電流制御量が生成される。駆動信号は、駆動回路11に入力される。
<駆動回路>
駆動回路11は、マイクロコンピュータ10から出力された指令に基づき、半導体スイッチング素子206、207の作動を制御する駆動信号を出力する。
駆動回路11に回転方向指令及び電流制御量が入力されると、駆動回路11は、PWM駆動信号を生成する。駆動回路11は、PWM駆動信号を半導体スイッチング素子206、207に印加する。これにより、電動モータ5には、バッテリ9から供給される電流が、パワーコネクタ16、コイル14a、及び半導体スイッチング素子205a、205bを通じて流れる。この結果、所要の方向に所要の量の補助トルクが出力される。
このとき、マイクロコンピュータ10には、シャント抵抗器208及び電流検出手段を通じて検出されたモータ電流IMがフィードバックされる。これにより、マイクロコンピュータ10から駆動回路11に送られるモータ電流IMとモータ電流IMとが一致するよう制御が行われる。モータ電流IMは、半導体スイッチング素子206、207のPWM駆動時のスイッチング動作によりリップル成分を含むが、大容量のコンデンサ15a、15bによりモータ電流IMは平滑されるように制御される。
<基板>
実施の形態1、2で述べたように、基板100上には複数の発熱素子200が実装されている。さらに、基板100は、シャント抵抗器208、マイクロコンピュータ10、及び駆動回路11を搭載する。
基板100には、図6に示すパワー部3Pが搭載される。
具体的に、図8A及び図8Bに示すように、基板100上には、図6に示すコイル14a(EMIノイズフィルタ)、電源リレー205a、205b、インバータ部の半導体スイッチング素子206、207、電流検出用のシャント抵抗器208、コンデンサ15a、15b、及び半導体スイッチング素子209で構成されている部分が実装されている。
このような構成を有する基板100は、実施の形態1、2で説明したように、金属板400(400A、400B、400C)から熱伝導絶縁体500を介してヒートシンク600に放熱する構造を有する。なお、図8A及び図8Bでは、熱伝導絶縁体500及びヒートシンク600の図示を省略している。図8A及び図8Bに示す構造において採用されている半導体スイッチング素子(FET、発熱素子200)は、上面ヒートスプレッダ201を有している。半導体スイッチング素子の上面電極は、ドレイン電極である。
図8Aに示すように、基板100の第1面100Fにおける右上部に位置する領域100Rには、部材が配置されていない。同様に、基板100の第2面100Sとも、部材が配置されていない。つまり、領域100R及び第2面100Sは、空きスペースである。
このため、領域100R及び第2面100Sには、図6に示す回路ブロックにおけるパワー部3Pを構成する部品以外の部品を実装することが可能である。具体的に、電源回路13、マイクロコンピュータ10、駆動回路11、入力回路12、回転センサ6、及び制御回路に付随する各種インターフェース等が実装可能である。
<作用効果>
次に、電動パワーステアリング装置3における作用効果を説明する。
電動パワーステアリング装置3によれば、上述した電子装置1、2、2Aと同様又は類似の作用効果を得ることができる。電動パワーステアリング装置3は、発熱素子である複数の半導体スイッチング素子を備えるが、金属板400(400A、400B、400C)、熱伝導絶縁体500、及びヒートシンク600を介して、半導体スイッチング素子から発生する熱を電動パワーステアリング装置3の外部に放熱することができる。
実施の形態4.
図9は、完全2重系を想定した冗長電動パワーステアリング装置3Aを構成するモータ及びコントローラの展開図である。
近年、電動パワーステアリング装置は安全設計要求の高まりに伴って、冗長設計を求められる場合がある。図9は、冗長電動パワーステアリング装置の一例を示している。図9において、図1~図8Bに示す構成における同一部材には同一符号を付して、その説明は省略または簡略化する。
図9に示す冗長電動パワーステアリング装置3Aには、複数の発熱素子(半導体スイッチング素子)を備えた電子装置が適用されている。冗長電動パワーステアリング装置3Aは、図6に示す回路ブロック図を2つ備えた回路構成を有する。つまり、冗長電動パワーステアリング装置3Aは、2系統の回路を備える。冗長電動パワーステアリング装置3Aにおいては、上述した実施の形態3に係る電動パワーステアリング装置3を構成するほぼ全ての部品が2系統必要になる。このため、基板100に部品が実装される実装エリアが拡大する。
<作用効果>
これに対し、冗長電動パワーステアリング装置3Aにおいて、半導体スイッチング素子から発生する熱は、金属板400(400A、400B、400C)、熱伝導絶縁体500、及びヒートシンク600を介して、冗長電動パワーステアリング装置3Aの外部に放熱することができる。これによって、部品点数の増加に伴う基板100の面積あるいは体積の増大を最小限に止めることができる。さらに、放熱性能を犠牲にせず、冗長電動パワーステアリング装置3Aを小型化することができ、かつ、低価格な冗長電動パワーステアリング装置3Aを達成できる。
1、2、2A…電子装置 3…電動パワーステアリング装置 3A…冗長電動パワーステアリング装置 3C…制御装置 3P…パワー部 5…電動モータ 6…回転センサ 8…トルクセンサ 9…バッテリ 10…マイクロコンピュータ 11…駆動回路 12…入力回路 13…電源回路 14a…コイル(EMIノイズフィルタ) 15a、15b…コンデンサ 16…パワーコネクタ 17…車両側信号用コネクタ 18…回転子 19…固定子 100…基板 100F…第1面 100P…回路パターン 100R…領域 100S…第2面 101…接続端子 200、250…発熱素子 200G1…第1素子グループ(上段素子グループ) 200G2…第2素子グループ(下段素子グループ) 200R…領域 201…上面ヒートスプレッダ(上面放熱部) 202…下面ヒートスプレッダ(基板対向面) 203…素子端子 204…シャント抵抗器 204E、304E…電極 204R、304R、304S…位置 205a、205b…電源リレー(半導体スイッチング素子) 206、206U、206V、206W…半導体スイッチング素子 207、207U、207V、207W…半導体スイッチング素子 208、208U、208V、208W…シャント抵抗器 209、209U、209V、209W…半導体スイッチング素子 300…熱伝導部材 304…右側シャント抵抗器 400…金属板 400a…配線 400A…第1金属板 400b…配線 400B…第2金属板 400C…第3金属板 400c、400d…配線 400F…第1金属面 400R…底面 400S…第2金属面 400I…傾斜面 400T…端面 401…凸部 402…凹部 500…熱伝導絶縁体 501…スペーサ 600…ヒートシンク 600G…溝 800…絶縁部材 801…リブ 800F…端面 900…ネジ

Claims (12)

  1. 回路パターンを有する基板と、
    前記基板上に配置され、前記基板とは反対側に位置する上面放熱部と、半田付けにより前記回路パターンに接合されている電極とを有する発熱素子と、
    前記上面放熱部上に配置された熱伝導部材と、
    前記熱伝導部材上に配置された第1金属板と、
    前記熱伝導部材上に配置され、かつ、前記第1金属板から電気的に独立した第2金属板と、
    第3金属板と、
    前記第1金属板、前記第2金属板、及び前記第3金属板を絶縁する絶縁部材と、
    前記第1金属板、前記第2金属板、及び前記第3金属板上に配置された熱伝導絶縁体と、
    前記熱伝導絶縁体上に配置されたヒートシンクと、
    を備え
    前記第3金属板は、前記電極が前記回路パターンにより接合された位置と、前記熱伝導絶縁体との間に設けられ、
    前記第1金属板、前記第2金属板、前記第3金属板、及び前記絶縁部材によって、1つの部品が構成されてい
    電子装置。
  2. 前記熱伝導部材の熱伝導率は、前記熱伝導絶縁体の熱伝導率より大きい、
    請求項1に記載の電子装置。
  3. 前記第1金属板と前記熱伝導絶縁体が接する面積は、前記発熱素子と前記熱伝導部材が接する面積より大きい、
    請求項1に記載の電子装置。
  4. 前記熱伝導部材は、前記上面放熱部と前記第1金属板との間に設けられており、
    前記熱伝導部材の材料は、半田である、
    請求項1に記載の電子装置。
  5. 前記熱伝導絶縁体は、前記第1金属板と前記ヒートシンクとの間に設けられており、
    前記熱伝導絶縁体の材料は、熱伝導グリス又は熱伝導接着剤である、
    請求項1に記載の電子装置。
  6. 前記第1金属板と前記ヒートシンクとの間の隙間を決定するスペーサを備え、
    前記スペーサで決定された前記第1金属板と前記ヒートシンクとの間の隙間に、前記熱伝導絶縁体が充填されている、
    請求項1に記載の電子装置。
  7. 各々が、前記基板とは反対側に位置する上面放熱部を有し、かつ、前記発熱素子に対応する、複数の発熱素子と、
    各々が、前記第1金属板に対応する複数の第1金属板と、
    を備え、
    前記複数の第1金属板は、前記熱伝導部材上に配置され、前記複数の発熱素子の配列方向に沿って配置され、互いに分離しており
    前記上面放熱部は、前記熱伝導部材を介して、前記複数の第1金属板の各々に接続されている、
    請求項1に記載の電子装置。
  8. 各々が、前記基板とは反対側に位置する上面放熱部を有し、かつ、前記発熱素子に対応する、複数の発熱素子と、
    を備え、
    前記第2金属板は、前記熱伝導部材上に配置され、前記複数の発熱素子の配列方向に沿って延在し、前記複数の発熱素子を互いに導通させ、
    前記上面放熱部は、前記熱伝導部材を介して、前記第2金属板に接続されている、
    請求項1に記載の電子装置。
  9. 前記第3金属板は、半田付けにより前記回路パターンに接合されている、
    請求項1に記載の電子装置。
  10. 前記絶縁部材の厚さによって、前記熱伝導絶縁体の厚さが決定されている、
    請求項1に記載の電子装置。
  11. 前記絶縁部材は、前記ヒートシンクに面する端面に設けられたリブを備え、
    前記ヒートシンクは、前記リブに対応する位置に設けられた溝を備え、
    前記溝に前記リブが挿入されている、
    請求項1に記載の電子装置。
  12. 回路パターンを有する基板と、
    前記基板上に配置され、前記基板とは反対側に位置する上面放熱部と、半田付けにより前記回路パターンに接合されている電極とを有する発熱素子と、
    前記上面放熱部上に配置された熱伝導部材と、
    前記熱伝導部材上に配置された第1金属板と、
    前記熱伝導部材上に配置され、かつ、前記第1金属板から電気的に独立した第2金属板と、
    第3金属板と、
    前記第1金属板、前記第2金属板、及び前記第3金属板を絶縁する絶縁部材と、
    前記第1金属板、前記第2金属板、及び前記第3金属板上に配置された熱伝導絶縁体と、
    前記熱伝導絶縁体上に配置されたヒートシンクと、
    を備え
    前記第3金属板は、前記電極が前記回路パターンにより接合された位置と、前記熱伝導絶縁体との間に設けられ、
    前記第1金属板、前記第2金属板、前記第3金属板、及び前記絶縁部材によって、1つの部品が構成されてい
    電動パワーステアリング装置。
JP2023537755A 2021-07-26 2021-07-26 電子装置及び電動パワーステアリング装置 Active JP7531718B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027530 WO2023007546A1 (ja) 2021-07-26 2021-07-26 電子装置及び電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JPWO2023007546A1 JPWO2023007546A1 (ja) 2023-02-02
JP7531718B2 true JP7531718B2 (ja) 2024-08-09

Family

ID=85086364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023537755A Active JP7531718B2 (ja) 2021-07-26 2021-07-26 電子装置及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20240243030A1 (ja)
EP (1) EP4379792A4 (ja)
JP (1) JP7531718B2 (ja)
CN (1) CN117693811A (ja)
WO (1) WO2023007546A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130879A (ja) 2006-11-22 2008-06-05 Denso Corp 電子装置
JP2008277330A (ja) 2007-04-25 2008-11-13 Mitsubishi Electric Corp 放熱装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000509A (en) * 1975-03-31 1976-12-28 International Business Machines Corporation High density air cooled wafer package having improved thermal dissipation
US7119433B2 (en) * 2004-06-16 2006-10-10 International Business Machines Corporation Packaging for enhanced thermal and structural performance of electronic chip modules
US8987876B2 (en) * 2013-03-14 2015-03-24 General Electric Company Power overlay structure and method of making same
US9089051B2 (en) * 2013-06-27 2015-07-21 International Business Machines Corporation Multichip module with stiffening frame and associated covers
JP6160576B2 (ja) 2014-07-31 2017-07-12 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
US11031319B2 (en) * 2016-10-06 2021-06-08 Hewlett-Packard Development Company, L.P. Thermal interface materials with adhesive selant for electronic components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130879A (ja) 2006-11-22 2008-06-05 Denso Corp 電子装置
JP2008277330A (ja) 2007-04-25 2008-11-13 Mitsubishi Electric Corp 放熱装置

Also Published As

Publication number Publication date
EP4379792A1 (en) 2024-06-05
WO2023007546A1 (ja) 2023-02-02
EP4379792A4 (en) 2024-10-09
JPWO2023007546A1 (ja) 2023-02-02
US20240243030A1 (en) 2024-07-18
CN117693811A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6508400B2 (ja) 電子部品搭載用放熱基板
JP5946962B2 (ja) 電力変換装置
JP4564937B2 (ja) 電気回路装置及び電気回路モジュール並びに電力変換装置
KR0119573B1 (ko) 전동식 파워스티어링 회로장치
JP6658858B2 (ja) 電子部品搭載用放熱基板
WO2017154075A1 (ja) 電子制御装置
JP4538474B2 (ja) インバータ装置
JP3556121B2 (ja) 電動式パワーステアリング回路装置
JP4055643B2 (ja) インバータ装置
JP4064741B2 (ja) 半導体装置
JP2000043740A (ja) 電動式パワーステアリング回路装置
JP5991605B1 (ja) モータ及びモータの製造方法
JP7531718B2 (ja) 電子装置及び電動パワーステアリング装置
JP4479522B2 (ja) 電子装置
JP3600560B2 (ja) 電動式パワーステアリング回路装置
JP2002127920A (ja) 電動パワーステアリング装置のコントロールユニット
JP4203035B2 (ja) 電動式パワーステアリング制御装置
JP4189666B2 (ja) パワーモジュール
JP2004345643A (ja) 電動式パワーステアリング回路装置
WO2018150449A1 (ja) 半導体モジュールおよびその製造方法と、これを備えた駆動装置、電動パワーステアリング装置
JP2004063682A (ja) 半導体装置
JP2017076663A (ja) 電子部品実装基板
JP3927806B2 (ja) インテリジェントパワーモジュール
JP6021047B1 (ja) モータ
JP2000253626A (ja) 電気アクチュエータの駆動・制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240730

R150 Certificate of patent or registration of utility model

Ref document number: 7531718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150