JP7485749B2 - ビデオベースの位置決め及びマッピングの方法及びシステム - Google Patents

ビデオベースの位置決め及びマッピングの方法及びシステム Download PDF

Info

Publication number
JP7485749B2
JP7485749B2 JP2022189460A JP2022189460A JP7485749B2 JP 7485749 B2 JP7485749 B2 JP 7485749B2 JP 2022189460 A JP2022189460 A JP 2022189460A JP 2022189460 A JP2022189460 A JP 2022189460A JP 7485749 B2 JP7485749 B2 JP 7485749B2
Authority
JP
Japan
Prior art keywords
images
image
landmark
vehicle
road network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022189460A
Other languages
English (en)
Other versions
JP2023022193A (ja
Inventor
ティノシュ ガンジネー,
フィリプ ホルツシュナイダー,
ディミトリ シャックマン,
セルゲイ マン,
セバスティアン イーレフェルド,
マイケル ホフマン,
オラフ ブーイジ,
ウェルネック, ニコラウ リール,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TomTom Location Technology Germany GmbH
Original Assignee
TomTom Location Technology Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1714381.9A external-priority patent/GB201714381D0/en
Application filed by TomTom Location Technology Germany GmbH filed Critical TomTom Location Technology Germany GmbH
Publication of JP2023022193A publication Critical patent/JP2023022193A/ja
Application granted granted Critical
Publication of JP7485749B2 publication Critical patent/JP7485749B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3859Differential updating map data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/587Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/582Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of traffic signs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30256Lane; Road marking

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Library & Information Science (AREA)
  • Multimedia (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本開示は、観察者、例えば道路網に沿って走行する車両の地理的位置および向きを判定するための方法およびシステムに関する。さらに、電子地図を生成および/または更新するための(すなわち、マッピングのための)方法およびシステムが提供される。実施形態では、視覚的な全地球測位およびマッピングシステムを提供することができる。
ナビゲーションおよび移動計画は、高度に自動化された自律的な運転の重要な構成要素である。自律車両は安全な動作方針を判定するために、世界において自身を自動的に位置特定することができる必要がある。一方では、全地球測位システムによって解決されるルート計画のためのグローバルスケールでの位置特定を可能にするために地図が必要とされる。他方では、レーン維持および交通標識への順守のような機能のために、直接的な環境の正確な幾何学的表現が必要とされる。従来、これは、単に、事前の地図なしの周囲のアドホックセンシングによって、または、高度に精密な事前構築地図のサポートによって解決される。アドホックセンシングは自律動作に必要な最小限の能力であり、最近のセンサデータからのオンザフライ地図生成によって拡張されることが多い。これは、同じエリアが直後に再訪される場合に特に有用である。しかし、環境のアドホックセンシングはエラーを起こしやすく、周囲に関する高品質の情報(すなわち、マップ)をすでに有することが非常に望ましく、このことは、それに対してマッチングすることによって直接センシングを検証し、サポートすることを可能にする。
任意選択で、理想的には、高品質の事前構築地図がすでに利用可能であり、これにより、センシングエラーがオンザフライ地図に入り込むことが防止され、したがって、移動計画および車両の安全性が改善される。しかし、事前構築地図は、実際の自律運転中に世界がどのようなものであるかとは対照的に、かつて世界がどのようなものであったかを反映している。このことは、事前構築地図が、安全なナビゲーションおよび移動計画を確実にするために最新の状態に維持される必要があることを意味する。
現在の領域の地図とは別に、車両内の計画システムは、その地図内のどこに位置しているかを知る必要がある。アドホックセンシングから作成されるオンザフライ地図の場合、これは自明であるが、事前構築地図への直接の接続はない。有用であるためには、事前構築地図の構造および含まれる情報が、その中の車両の正確な位置特定を可能にする必要がある。オンザフライで作成された地図を事前構築地図と比較して位置合わせする何らかの方法によって、事前構築地図内の車両の位置および向きを判定する必要がある。これは、アドホックセンサデータとの比較に適したデータ表現のような、事前構築地図の設計に特定の要件を課す。
自律運転のための地図は、用途の制限及び要件に適合する必要がある。自動車内の限られた資源は、計算時間、メモリ、および移動体帯域幅を経済的に使用するアルゴリズムおよびデータ構造を課す。これらの制約を尊重しながら、システムは、自律運転のための機能的要件を満たす必要がある。これらは、所与の地形の交通可能性、動的(例えば、他の自動車)および静的(例えば、道路建設、交通標識)オブジェクトの位置および動きなど、周囲に関するセマンティック情報を判定することを含む。
大規模な展開のために、地図は過剰な道路形状およびアーチファクトを組み込むのに十分に柔軟である必要があり、最新性および性能を犠牲にすることなく、グローバルサイズにスケーリングすることができる必要がある。データ構造は、追加の幾何学的層およびセマンティック層のために十分に拡張可能である必要がある。
自律運転は積極的な研究分野であり、毎年、自走車の充実に向けて大きな進展が見られる。しかし、完全な自律性のために必要とされる多くの課題は解決されておらず、研究コミュニティは安全な計画および運転のためのすべての前提条件をまだ決定していなかったが、明確な解決策が存在しない既知の問題さえ存在する。
自律運転プラットフォームには多くの提案および実施があるが、マッピングおよび位置特定の問題について受け入れられている標準的な解決策の状態は得られていない。また、アドホックデータをオンザフライ地図に集約するための標準的な解決策は存在せず、これは、即時の移動計画と、グローバルスケールで事前に構築された地図に対する追加の地図マッチング(すなわち、位置特定)とを同時に容易にする。
新しいオンザフライデータによる事前構築地図の更新も重要であり、一般的には解決されていない。これは、効率的な地図マッチング、自動オブジェクト検出(交通標識など)、ならびに手動データキュレーションのための人間のオペレータへの直感的な提示の問題を解決することを含む。
現在使用可能な地図
さらなる問題は、自律運転の要件に適合する事前に構築された地図データがないことである。ほとんどの地図データは頻繁でない間隔で収集され、したがって、しばしば古くなり、新しいデータを組み込むための容易な方法を提供しない。例として、地方自治体の従業員による航空写真および手動マッピングがある。また、利用可能な地図データの多くは、利用可能な構造データのない画素から構成される前述の航空写真のようなアルゴリズムアクセスのために構造化されていない。地図精度も十分ではないことが多く、自律運転に取り組む各研究グループによるカスタム地図作成が必要である。
自律運転のために明示的に作成された現在の最新技術の地図は、最適ではないことが最も多く、記録時と同じ時刻および気象条件を有する状況においてのみ適用可能である。さらに、頻繁に使用されるデータ構造は、真にグローバルな地図にとって非効率すぎることがしばしば証明される。これらの種類の地図は通常、構造化されていないセンサデータを含み、このセンサデータは、そのボリュームのためにセンサデータと位置合わせすることが困難である。さらに、GIS座標系への正確な接続がないことが多く、その地図を他の地図と相互運用できないようにする。最近の自律運転のための地図はしばしば、長期記憶装置に記憶されたオンザフライ地図である。必要とされるのは、信頼性のある車両の位置特定のために、最初から特殊化された地図である。
不均一センサセットアップ
さらなる課題は特に生のセンサデータだけを保存する地図がわずかに異なるセンサによる位置特定に適用できないので、異なるセンサからのデータ、さらにはセンサタイプ(例えば、モノカメラ、ステレオカメラ、ライダ、レーダなど)からのデータの処理である。したがって、一般的な地図は環境のセマンティック情報を提供する必要があり、これは、すべてのセンサタイプで見つけることができる。
非機能要件
マッピングおよび位置特定システムはまた、非機能的要件に直面し、従来技術の方法のいずれも、前述の機能的要件と共にこれらを満たすことを達成しない。システムの設計は、実験室環境での作業を必要とするだけでなく、汎用ハードウェア上で実行可能であること、およびモバイルデータ接続の適度な容量の制限内で実行可能であることを含む、グローバルスケールでの実現可能性および実装コストの影響を受ける。
本発明の第1の態様によれば、道路網を走行する車両の地理的位置及び向きを判定する方法であって、
前記道路網を走行する前記車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得することであって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得することと、
前記取得された画像及び前記関連するカメラ位置の少なくともいくつかを用いて、前記車両が走行している前記道路網のエリアを表すローカル地図表現を生成することと、
前記生成されたローカル地図表現を、前記車両が走行している前記道路網の前記エリアをカバーする基準地図のセクションと比較することと、
前記比較に基づいて、前記道路網内の前記車両の前記地理的位置及び向きを判定することと、
を含む方法が提供される。
本発明はまた、本発明のこの態様による方法、または本明細書に記載されるその実施形態のいずれかを実行するためのシステムにも及ぶ。
従って、別の態様からは、道路網を走行する車両の地理的位置および向きを判定するシステムであって、
前記道路網を走行する前記車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得する手段であって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得する手段と、
前記取得された画像及び前記関連するカメラ位置の少なくともいくつかを使用して、前記車両が走行している前記道路網のエリアを表すローカル地図表現を生成する手段と、
前記生成されたローカル地図表現を、地図レポジトリから抽出された基準地図のセクションと比較する手段であって、前記基準地図のセクションは、前記車両が走行している前記道路網の前記エリアをカバーする、前記比較する手段と、
前記比較に基づいて、前記道路網内の前記車両の前記地理的位置および向きを判定する手段と、
を備えるシステムが提供される。
本発明のこのさらなる態様は必要に応じて、本発明の任意の他の態様または実施形態に関して本明細書に記載される本発明の好ましい特徴および任意選択の特徴のうちの任意の1つまたは複数またはすべてを含むことができ、好ましくは含む。例えば、明示的に述べられていなくても、本明細書に記載の方法に関連して説明した任意のステップを、その態様または実施形態のいずれにおいても実施するための手段を含むことができ、その逆もまた同様である。該方法または装置に関連して説明したステップのいずれかを実行するための手段は、1つ以上のプロセッサおよび/または処理回路を含むことができる。したがって、本発明は好ましくはコンピュータによって実施される発明であり、本発明の態様または実施形態のいずれかに関して説明されるステップのいずれかは、1つまたは複数のプロセッサおよび/または処理回路のセットの制御下で実行され得る。
実施形態では、本発明が道路網を走行する車両の地理的位置および向きを判定するための、すなわち、道路網内で車両を「位置特定」するための技法に関する。判定された地理的位置および向きまたは位置特定結果は、例えば、自律車両のナビゲーションおよび移動計画の目的のために使用されてもよい。例えば、位置特定結果は例えば、車両が取るべき次の動作を判定するために、車両の自律運転モジュールへの入力として提供されてもよい。本明細書で説明するように、少なくともいくつかの態様では、道路網内を走行している車両の地理的位置および向きは、車両に関連する1つ以上のカメラによって記録された画像のシーケンス(一連の画像、たとえば、ビデオシーケンス)から判定することができる。画像は、車両が走行している道路網のローカル環境に関連する画像コンテンツ、すなわち、カメラまたはカメラの視野内に捕捉されるオブジェクトを含む。したがって、画像のシーケンスは、道路環境を通る車両の動きを反映することになる。すなわち、画像のシーケンスは一般に、車両が道路網を通って移動するときのローカル環境の変化を反映する。従って、画像の各々は一般に、異なる位置で記録されている。したがって、異なる画像からの情報を集約して、車両が走行しているエリアの一貫したローカル地図表現を生成するためには、画像の関連するカメラ位置を知る必要がある。取得された画像のカメラ位置は、(例えば、オンボードオドメトリシステムおよび/または全地球測位システム(GNSS)のデータから)取得されるときに、既知であってもよく、または画像と共に提供されてもよい。あるいは、好ましい実施形態では、異なる画像のカメラ位置は、例えば、(以下でより詳細に説明するように)ビジュアルオドメトリを使用して、画像から視覚的に決定されてもよい。したがって、複数の画像および関連するカメラ位置を処理して、道路網の環境に関する情報を抽出することができ、この情報を、車両が走行している道路網のエリアを表すローカル地図表現に組み込むことができる。したがって、複数の画像を処理することによって得られるローカル地図表現は一般に、車両の周りのエリアの道路網の環境を示す。次いで、生成されるローカル地図生成は、例えば、基準地図に対する車両の自身の動きを判定することによって、道路網内の車両の地理的位置および向きを判定するために、車両が走行している(少なくとも)おおよそのエリアをカバーする基準地図セクションと比較(例えば、マッチング)することができる。理解されるように、基準地図は本発明の目的のためのグランドトゥルース(ground truth)と考えられ、基準地図において表されるオブジェクトの位置および向きは現実世界におけるオブジェクトの位置および向きと一致する。このようにして、すなわち、記録された画像を処理して、対応する基準地図と比較(マッチング)することができるローカル地図表現を生成することによって、道路網内の車両の位置および向きを画像から正確に判定することができる。したがって、本発明の実施形態によれば、道路網内の車両の視覚的位置特定を得ることができる。次いで、位置特定結果は、所望に応じて、様々な方法で使用することができる。例えば、上述したように、位置特定結果は、入力として、自律車両の自律運転モジュールに、又は正確な位置特定が望まれる他の高度な運転者支援システムに提供されてもよい。
生成されるローカル地図表現はまた、順番に、基準地図セクションを更新する(または新しい基準地図セクションを生成する)ために使用されてもよい。例えば、ローカル地図表現が以前にコンパイルされた基準地図に含まれない、またはそうでなければ矛盾する特徴を含む場合、基準地図は、それに応じて更新されてもよい。したがって、少なくともいくつかの実施形態では、本明細書で提示する技法がオンザフライ(無線)で取得される新しいデータで事前構築基準地図を効率的に更新する方法も提供する。例えば、生成されたローカル地図表現を基準地図と比較することによって、基準地図内の1つ以上の誤差(エラー)を識別することができる。例えば、誤差は、基準地図から欠けている特徴、または基準地図から除去される必要があるか、または基準地図において修正される必要がある特徴のいずれかであり得る。そのような誤差(エラー)が識別されると、基準地図は、それに応じて更新されてもよい。例えば、そのようなエラーが識別されると、ローカル地図表現は、例えばローカル地図表現に基づいて基準地図に組み込まれるべき基準地図セクションを更新するか、または新しい基準地図セクションを生成することによって、基準地図を更新するために、リモートサーバに提供されてもよい。しかし、ローカル地図表現全体を必ずしもリモートサーバに提供する必要はなく、いくつかの実施形態では、ローカル地図表現を示すデータおよび/または識別された誤差を示すデータを、代わりにリモートサーバに提供して、基準地図セクションを更新(または新しい基準地図セクションを生成)することができることが理解されるだろう。例えば、ローカル地図表現からの1つ以上の特徴、または取得された画像の1つ以上をリモートサーバに提供し、それに応じて基準地図のセクションを更新(または生成)するために使用することができる。例えば、ローカル地図表現が車両に搭載されて生成される場合、これは、リモートサーバに送信される必要があるデータ量を低減することができる。
実施形態では、本技法が位置特定結果を出力することと、ローカル地図表現、またはそれを示すデータ、またはローカル地図表現との比較に基づいて識別された基準地図内の任意の誤差を示すデータを提供することとを含むことができる。場合によっては、位置特定結果は、基準地図セクションを更新する目的で、例えば、誤り訂正の目的で使用することもできる。しかし、少なくともいくつかの実施形態では、本技法が必ずしも位置特定結果を出力することなく、マッピング目的のために使用することもできると考えられる。すなわち、いくつかの実施形態によれば、1つ以上の車両から取得された画像データを使用して、電子地図を生成および/または更新することができる。
したがって、本発明の別の態様によれば、地図によって表される道路網を走行する車両によって得られるデータを使用して電子地図を更新及び/又は生成する方法であって、
前記道路網を走行する前記車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得することであって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得することと、
前記画像及び前記関連するカメラ位置の少なくともいくつかを用いて、前記車両が走行している前記道路網のエリアを表すローカル地図表現を生成することと、
前記生成されたローカル地図表現を基準地図のセクションと比較することと、
前記比較に基づいて、前記基準地図のセクション内の1つ以上のエラーを識別することと、
前記1つ以上のエラーが識別されると、前記ローカル地図表現、または前記ローカル地図表現を示すデータを、前記基準地図のセクションを更新するため、及び/又は新しい基準地図のセクションを生成するために、リモートサーバへ提供することと、
を含む方法が提供される。
本発明はまた、本発明のこの態様による方法、または本明細書に記載されるその実施形態のいずれかを実行するためのマッピングシステムにも及ぶ。
従って、別の態様からは、地図によって表される道路網を走行する車両によって得られるデータを使用して電子地図を生成及び/又は更新するシステムであって、
前記道路網を走行する前記車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得する手段であって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得する手段と、
前記画像及び前記関連するカメラ位置の少なくともいくつかを使用して、前記車両が走行している前記道路網のエリアを表すローカル地図表現を生成する手段と、
前記生成されたローカル地図表現を基準地図のセクションと比較する手段と、
前記比較に基づいて、前記基準地図のセクション内の1つ以上のエラーを識別する手段と、
1つ以上のエラーが識別されると、前記ローカル地図表現、又は前記ローカル地図表現を示すデータを、前記基準地図のセクションを更新するため、及び/又は新しい基準地図のセクションを生成するために、リモートサーバへ提供するための手段と、
を備えるシステムが提供される。
本発明のこのさらなる態様は必要に応じて、本発明の任意の他の態様または実施形態に関して本明細書に記載される本発明の好ましい特徴および任意選択の特徴のうちの任意の1つまたは複数またはすべてを含むことができ、好ましくは含む。例えば、明示的に述べられていなくても、本明細書に記載の方法に関連して説明した任意のステップを、その態様または実施形態のいずれにおいても実施するための手段を含むことができ、その逆もまた同様である。該方法または装置に関連して説明したステップのいずれかを実行するための手段は、1つ以上のプロセッサおよび/または処理回路を含むことができる。したがって、本発明は好ましくはコンピュータによって実施される発明であり、本発明の態様または実施形態のいずれかに関して説明されるステップのいずれかは、1つまたは複数のプロセッサおよび/または処理回路のセットの制御下で実行され得る。
本発明の実施形態によれば、ローカル地図表現、または少なくともそれを示すデータは、好ましくは(ローカル地図表現から使用して)基準地図内の1つ以上の識別された誤差を示すデータと共に、リモートサーバに提供され、上述のように、電子基準地図を更新または生成する目的で使用されてもよい。したがって、そのような情報がリモートサーバに提供されると、リモートサーバは提供されたローカル地図表現、またはそれを示すデータを使用して、新しい基準地図セクションを生成し、および/またはリモートサーバに格納された基準地図を更新することができる。更新された(または新しい)地図はその後、例えば第1の態様に関して説明したように、車両(ユーザ)による使用のためにダウンロードすることができる。すなわち、更新された、または生成された電子地図は、その後の位置特定プロセスのための基準地図として使用されてもよい。したがって、本発明は、様々な態様によれば、概して、以下でさらに説明するように、視覚的位置特定技法、ならびに関連する視覚的マッピング技法に関する。
本明細書で提示する技法は一般に、道路網内の車両の正確な位置特定を提供すること、および/または道路網のローカル環境に関する情報を含む正確な地図を生成することが望ましい任意の状況で使用することができる。しかし、実施形態は特に、自律車両、例えば、最小限の運転者対話を必要とする(または全く必要としない)車両を位置特定するための技法に関する。例えば、実施形態では、位置特定の結果がナビゲーションおよび移動計画、すなわち自動運転の目的のために、車両の自律運転モジュールに提供されてもよい。したがって、車両は自律車両、例えば、道路網を通って走行している自律自動車またはトラックなどを含むことができる。しかし、本技法は例えば、非自律車両または半自律車両に関連する様々な他の状況においても有用性を見出すことができることが理解されるのであろう。例えば、位置特定は一般に、例えば地図内の車両の正確な位置特定が望ましい任意の適切な高度運転者支援システムの一部として使用されてもよいことも企図される。また、マッピング結果は自律運転を容易にする目的のために使用される必要はなく(しかし、好ましくは、使用される)、例えば、従来のナビゲーション案内システムの一部として、任意の車両によって所望されるように使用されるナビゲーションのための改善された地図を生成するために使用されてもよいことが理解されるだろう。
道路網は一般に、車両によってナビゲート可能な複数の相互接続された道路を含むネットワークである。道路網は一般に、デジタル地図、または電子地図(または数学的グラフ)によって表されてもよい。その最も単純な形態では、電子地図は、事実上、ノードを表すデータ、最も一般的には道路交差点を表すデータ、およびそれらの交差点間の道路を表すそれらのノード間の線を含むデータベースである。より詳細なデジタル地図では、線が開始ノードおよび終了ノードによって定義されるセグメント(区分)に分割されてもよい。これらのノードは最低でも3つの線またはセグメントが交差する道路交差点を表す点で「リアル(実)」であってもよく、または、これらは実ノードによって一方または両方の端部で定義されていないセグメントのアンカとして提供され、とりわけ、特定の道路の区間の形状情報、またはその道路の何らかの特性、たとえば速度制限が変化する道路に沿った位置を識別する手段を提供する点で「人工的」であってもよい。実際には全ての現代のデジタル地図において、ノード及びセグメントはデータベース内のデータによって再び表される様々な属性によってさらに定義される。例えば、各ノードは典型的にはその実世界の位置、例えば、緯度及び経度を定義するための地理的座標を有する。ノードはまた、典型的には、交差点において、ある道路から別の道路に移動することが可能であるかどうかを示す、それに関連付けられた操作データを有する。従来のナビゲーション案内の目的のために、例えば、既知のポータブルナビゲーションデバイスによって提供され得るように、電子地図のセグメントは道路中心線に関する情報のみを含む必要がある(そして、典型的にはそれだけである)が、各道路セグメントは許容される最大速度、レーンサイズ、レーンの数、中間に仕切りがあるかどうかなどの属性で補足され得る。しかし、本発明の実施形態によれば、以下でさらに説明するように、レーン中心線およびレーン接続性(すなわち、レーンマーキング)、ならびに他の重要な要素、たとえば、地図に望ましく組み込むことができるランドマークオブジェクトなどの道路網の3次元幾何形状などを含む、道路プロファイルのより正確かつ現実的な表現を提供する電子地図を生成(または使用)することができる。このタイプの電子地図は、(レーン中心線ではなく道路中心線を含む従来の「SD」地図と比較して)「HD」地図と呼ぶことができる。HD地図に含まれる付加的な情報、および少なくともレーンマーキングは一般に、自律運転のために必要とされる。しかしながら、これらのHD地図の使用は自律車両に限定されず、これらの地図は様々な高度運転者支援システム用途を含むが、これらに限定されない、道路プロファイルの改善されたより正確な表現を提供することが望ましい他の用途においても、適切な用途を見いだすことができる。したがって、HD地図は、ユーザに、または自律運転システム、または他の高度運転者支援システム(ADAS)に、適切かつ望ましく提示することができる任意の他の特徴を表すデータも含むことができる。
本発明の実施形態は、道路網を走行する車両と関連付けられた1つ以上のカメラから一連の画像を取得(および処理)することを含む。1つまたは複数のカメラによって記録される画像のシーケンス(一連の画像)は少なくとも1つのカメラから直接取得されてもよく、例えば、カメラから、ローカル地図表現を生成するように動作する車両のオンボードプロセッサへ直接ストリーミングされてもよい。しかし、他の実施形態では、画像が、受信された画像(または画像データ)を使用してローカル地図表現を生成するリモートプロセッサに送信されてもよい。実際、一般に、本明細書で説明する様々なプロセッサおよび処理ステップは、1つ以上のオンボードプロセッサとリモートサーバとの間で、必要に応じて分散させることができることが理解されるだろう。
1つ以上のカメラは一般に、道路網を通って走行している車両と関連付けられる。例えば、1つ以上のカメラが、車両上または車両内に適切に配置されてもよい。一般に、1つ又は複数のカメラは、本明細書に提示される技術に従って適切に処理され得る画像を得るために、車両上または車両内の任意の適切な所望の場所に配置され得る。例えば、典型的には、少なくとも1つのカメラが車両の前方の風景及び道路幾何形状の画像を取得する。しかし、1つ以上のカメラを使用して、車両を取り囲む風景の画像を取得することもできる。一般に、取得された画像は、ローカル地図表現に含めるために道路網の環境を示す情報を抽出するために適切に処理され得る、車両の周囲および前方のエリアにおける道路網のローカル環境に関連する画像コンテンツを含む。例えば、画像コンテンツは、典型的には画像が記録された地点で1つ又は複数のカメラの視野内に含まれる任意のオブジェクトを含み、その結果、画像は、道路及びレーンの幾何形状に関する情報だけでなく、例えば、建物、交通標識、交通信号、広告板等のようなローカル環境に関連するランドマークに関する情報、並びに道路網の現在の状態(及び交通可能性)に関する情報を含む、車両が走行しているエリア内の一般的な風景又は環境に関する情報も捕捉する。したがって、画像コンテンツは一般に、車両が走行している領域内の道路網の環境に関する情報(道路網自体に関する情報だけではなく)を含むことが理解されるだろう。ローカル地図表現を生成するために使用されるのは、基準地図を(グローバルに)更新または生成するために使用することができる画像コンテンツであるので、本明細書で提示する技法に従って生成された地図は、従来の電子地図、例えば、道路中心線に基づいて道路幾何形状を単に示すものよりもはるかに豊富であり、より有用な情報を含むことができることが理解されるだろう。
画像のシーケンスは、道路網を通る車両の動きを反映する。すなわち、シーケンス内の各画像は、特定の時点および特定のカメラ位置における道路網の環境を表す。好ましくは、画像のシーケンスはビデオシーケンスを含む。したがって、画像は、ビデオシーケンスのそれぞれのフレームに対応することができる。したがって、1つ以上のカメラは1つ以上のビデオカメラを含むことができ、好ましい実施形態では含む。
実施形態では、1つ以上のステレオカメラを使用して、複数の画像(のうちの少なくともいくつか)を取得することができる。しかし、ステレオカメラの使用は必要ではなく、いくつかの実施形態では、画像が(単に)1つ以上の単眼カメラまたは単一のカメラを使用して取得されてもよい。いくつかの好ましい実施形態では、1つ以上のカメラが1つ以上のステレオカメラおよび1つ以上の単一(単眼)カメラを含むことができる。例えば、実施形態では、以下に説明するように、ステレオカメラを使用して得られた複数のステレオ画像を、ビジュアルオドメトリの目的に有利に使用することができる。しかし、画像内のオブジェクトを識別し分類する目的のために、単一の(単眼)カメラから得られた画像を使用することが好ましい場合がある。
画像データは、所望に応じて、様々な他のセンサからのデータによって補足されてもよい。例えば、GNSSデータなどの位置データを使用して、車両の粗い位置特定および画像の各々のタイムスタンプを提供することができる。
画像シーケンス内の画像は一般に、(例えば、道路網を通る車両、したがって、関連する1つまたは複数のカメラの動き(移動)を反映して)異なる位置で取得されるので、画像を一緒に処理して、車両が走行しているエリアの一貫したローカル地図表現を生成するために、画像のそれぞれに関連するカメラ位置を知る(または少なくとも判定することができる)ことが必要である。すなわち、各画像は、エリアのある部分の2次元ビューを表す。したがって、エリア全体の一貫したビューを生成するためには、異なる画像からの異なるビューを一緒に集約する必要がある。これは、画像が記録された位置の知識に基づいて行うことができる。例えば、オブジェクトは一般に、2次元点のセットとして任意の所与の画像に現れることが理解されるだろう。一連の画像が記録されると、同じオブジェクトが複数の画像に現れるが、異なる視点から見ることができる。これは、例えば、三角測量を使用して、オブジェクトを位置特定することを可能にするものである。しかし、一貫したローカル地図表現を生成するために、例えば道路網内のオブジェクトの相対的な位置および向きを示すために、オブジェクトを画像から所望の3次元座標フレームにマッピングすることができるように、異なる画像を取得するために使用されるカメラの位置および向き(一緒に、「ポーズ」)を考慮に入れなければならない。すなわち、異なる位置で記録された一連の画像から一貫したローカル地図表現を生成するためには、異なる画像のカメラ位置を知るか、または判定する必要がある。
画像が記録された位置(または「カメラ位置」)は、絶対位置として提供されてもよく、画像が配置された地点における道路網内のカメラの絶対位置および向き(姿勢)を表す。したがって、実施形態では、本技法は画像の絶対カメラ位置を取得することを含む。しかし、これは、常に利用可能であるとは限らない非常に高精度のセンサを必要とする場合がある。例えば、画像の各々は、例えば、GNSS又は他の位置データを使用して取得されるときに位置スタンプされてもよく、従って、絶対位置は例えば、高精度オドメータ及び/又はGNSSデータを使用することによって、そのような位置データを使用して直接取得されてもよい。多くの場合、そのようなGNSSまたは他の位置データの精度は、(特に、車両が非常に正確に位置特定されることが不可欠である自律運転のために)位置特定の十分に高度な判定を、位置特定のために信頼性を持って使用することを可能にしないことがある。したがって、(各)画像のカメラ位置がシーケンス内の1つ以上の他の画像に対して提供されるように、カメラ位置を相対位置として提供することができ、次いで、相対カメラ位置を使用して、画像を一緒に集約して、エリアのローカル地図表現を生成する。1つの画像から次の画像へのカメラ位置の相対変化は一般に、車両のオドメトリを使用して(すなわち、車両に関連する1つ以上のオドメトリセンサを使用して)判定することができる。例えば、シーケンス内の第1の画像に対する初期カメラ位置は、例えばGNSS又は他の位置データから(比較的高い精度で)知ることができる。次いで、第1の画像と比較されたシーケンス内の後続の画像の相対位置は、車両のオドメトリに基づいて、すなわち、道路網を通る車両の移動の知識に基づいて判定され得る。したがって、実施形態では、本技法は、シーケンス内の第1の画像などの基準画像に対する画像のうちの少なくともいくつかの相対カメラ位置を判定することを含む。
異なる画像の(相対的な)カメラ位置は、任意の適切な所望の技法を使用して判定することができる。例えば、ステレオ画像が得られる場合、様々な既知のステレオ画像位置合わせ技術を用いて、例えば、連続する奥行き画像を位置合わせすることによって、画像の相対的なカメラ位置を導出することができる。しかし、好ましくは、画像の(相対的な)カメラ位置は、ビジュアルオドメトリのプロセスによって判定される。すなわち、画像の相対的なカメラ位置は、画像の処理から(例えば、純粋に)視覚的に判定されてもよい。例えば、ビジュアルオドメトリは、基準画像に対する画像の回転および位置(すなわち、画像またはカメラ「ポーズ」)を判定するために使用されてもよく、基準画像は、典型的にはカメラの初期位置が一般に知られていてもよい画像シーケンスの最初の画像である。したがって、実施形態では、シーケンス内の画像の画像ポーズが、第1(基準)画像を記録するために使用されるカメラの初期位置に対して判定される。ポーズは、一連の画像内の記録された画像毎に判定されてもよい。しかし、一般に、ポーズを判定するだけでよく、ポーズは、実施形態では、「キーフレーム」と呼ばれる画像(またはフレーム)のサブセット、すなわち、以前に取得された画像に対して著しいカメラの動きおよび/または画像内容の変化を示す画像、についてのみ判定される。したがって、各画像(またはキーフレーム)について、第1(基準)画像に対する画像の回転および位置を表す相対姿勢が生成される。(「キーフレーム」という概念は一般的に、例えばビデオ符号化において十分理解される。一般に、画像のシーケンスを処理するための本明細書の任意の基準は、画像のすべて、または画像のいくつかのみ、例えばキーフレームのみを処理することを含んでもよい。あるいは、画像のシーケンスがキーフレームのシーケンスを含んでもよい。)
GNSSまたは他の位置データはビジュアルオドメトリを補足するために使用されてもよい。例えば、各画像(またはキーフレーム)について、粗いカメラ位置がGNSSまたは他の位置データから推定されてもよく、次いで、これはシーケンス内の他の画像に基づいてビジュアルオドメトリを使用して洗練されてもよい。
ビジュアルオドメトリの原理は十分に確立されており、一般に、任意の適切かつ所望のビジュアルオドメトリ技術を本発明と共に使用することができる。典型的なビジュアルオドメトリ技術は「動きからの構造」の仮定に基づいているが、他の構成、例えば、各種ステレオグラフィ技術も可能である。ビジュアルオドメトリは単一のカメラ(または単眼)画像データを使用して実行することができるが、好ましくはビジュアルオドメトリに使用される画像は1つ以上のステレオカメラを使用して取得され、その結果、例えば、画像の画像深度が既知であり、ビジュアルオドメトリアルゴリズムへの入力として提供することができる(そうでなければ、これらを何らかの形で推定または判定しなければならないことになり、これは、移動車両からオンザフライ(無線)で画像が生成されるときは困難かもしれない。したがって、実施形態では、任意の適切かつ所望のステレオビジュアルオドメトリ技法を使用することができる。
ビジュアルオドメトリは例えば、既知のバンドル調整技術を用いて間接的に実行されてもよい。しかしながら、好ましくは、ステレオダイレクトスパースオドメトリ(DSO)技術が画像ポーズを得るために使用される。DSOはカメラ上へのオブジェクトの投射間の測光誤差の直接最小化に基づく既知の技法であり、オブジェクトは、基準フレーム内のキーポイントのセットおよび奥行きによって暗黙的に定義される。したがって、基準フレームから次のフレームにオブジェクトを投影または追跡するために、キーポイントは次のフレームに投影され、複数のキーポイントの測光誤差は基準フレームから次のフレームに移動するための適切な変換を判定するために最小化される。したがって、変換はフレーム間の位置および回転の変化を示し、すなわち、カメラまたは画像ポーズを決定することができる。オリジナルのDSO技術は、単眼画像に基づいていた。DSOプロセスの詳細は、参照arXiv:1607.02565でarXiv.org上で入手可能なEngelらによる「Direct Sparse Odometry」に見出すことができ、その全内容は参照により本明細書に組み込まれる。しかし、好ましい実施形態はステレオ画像に基づくステレオDSO技法を使用し、その結果、画像深度をDSOアルゴリズムへの入力として提供して、(一般に、(DSOの場合)既に正しい深度推定値を有する既存の画像を必要とする)トラッキングプロセスを改善することができる。したがって、ステレオDSOプロセスの出力は、第1(基準)画像と比較した各画像に対する相対姿勢(ポーズ)である。ステレオDSOプロセスのさらなる詳細は、参照arXiv:1708.07878でarXiv.org上で入手可能なWangらによる「Stereo DSO: Large-Scale Direct Sparse Visual Odometry with stereo Cameras」に見出すことができ、その全内容は参照により本明細書に組み込まれる。
ステレオDSOプロセスの出力はまた、一般に、処理されているフレームの各々についての「キーポイントクラウド(キー点群)」(本明細書では「スパースポイントクラウド(疎点群)」とも呼ばれる)を含む。疎点群は、各画像内の各種キーポイントの位置を表す。上述したように、キーポイントは、カメラ画像上へのオブジェクトの2次元投影を含む。疎点群はまた、画像内の画素の各々について推定された深さ(デプス)を含む。
画像をより良好に処理することができるようにするために、また、例えば、画像に現れるオブジェクトを自動的に検出または抽出するために、複数の異なる「オブジェクトクラス」のうちの1つ以上に従って画像の要素を分類するために、セマンティックセグメンテーションのステップを実行することができる。他の構成も可能であるが、典型的には画像内の個々の画素の各々が分類されるように、画像は画素単位でセグメント化される。したがって、実施形態では、画像内の各画素に対してオブジェクトクラスまたはクラスのリスト(および関連する確率)を割り当てるために、画像の少なくともいくつか(たとえば、少なくともキーフレーム)を処理することができる。一般に、画像データを処理し分類するために、任意の適切かつ所望のセマンティックセグメンテーションプロセスを使用することができる。好ましい実施形態では、画像のセマンティックセグメンテーションは機械学習アルゴリズムを使用して実行される。例えば、いわゆる「SegNet」または「PSPNet」システムなどの訓練された畳み込みニューラルネットワーク、またはその修正を、画像データのセグメント化および分類のために適切に使用することができる。オブジェクトクラスは一般に、セマンティックセグメンテーションアルゴリズム内で定義され、例えば、「道路」、「空」、「車両」、「交通標識」、「交通信号」、「交通信号灯」、「レーンマーキング」などのオブジェクトクラスを含むことができる。SegNetおよびPSPNetは、両方とも、特に道路網の画像を分類するために開発された既知のアルゴリズムである。したがって、上述のような適切なオブジェクトクラスは、これらのアルゴリズムにおいて既に定義されている。SegNetアーキテクチャのさらなる詳細は、参照arXiv:1511.00561でarXiv.org上で入手可能な、Badrinarayananらによる「SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation」に見出すことができ、その全内容は、参照により本明細書に組み込まれる。PSPNetアーキテクチャのさらなる詳細は、参照arXiv:1612.01105でarXiv.org上で入手可能な、Zhaoらによる「Pyramid Scene Parsing Network」に見出すことができ、その全内容は、参照により本明細書に組み込まれる。
各画素には、セマンティックセグメンテーションに基づいて(単一の)オブジェクトクラスを割り当てることができる。しかし、実施形態では、各画素にはオブジェクトクラスベクトルが割り当てられ、ベクトル要素は複数の異なるオブジェクトクラスのそれぞれに属するその画素の尤度(または確率)を表す。
このセマンティックセグメンテーションのステップは、画像が複数の一般的な車両環境オブジェクトクラスに従って分類されるので、「車両環境」セマンティックセグメンテーションと呼ぶことができる。
一般に、セマンティックセグメンテーションのこのステップは、上述のビジュアルオドメトリのステップの前または後に、またはそれと並行して実行されてもよい。
機械学習技術はセマンティックセグメンテーションを実行するために使用される必要はなく、他の実施形態では、画像は、代替的に、または追加的に、例えばステレオカメラを使用するときに利用可能な画像深度データを使用して、例えば、画像内のそれらの相対的な深度に基づいて画素を分類するために処理されてもよいことが理解されるだろう。例えば、このようにして、例えば、ステレオ点群を使用して、画像は、グランド(地面)レベル画素、壁/ハウジング、交通標識ポールなどにセグメント化されてもよい。別の例として、画像セグメンテーションは、上述のDSO点群などの疎特徴点群データを使用することができ、これを使用して、例えば、「グランド(地面)レベル」点(のみ)を含む粗グランド(地面)マスクを生成することができる。
例えば、上述のアルゴリズムを使用して、一旦、画像がこのように分類されると(、セマンティックセグメンテーションから判定された1つまたは複数のオブジェクトクラスは、オブジェクトクラスの特定のサブセットのみを使用し得る、任意の後続の処理ステップのために利用可能にされ得る。例えば、あるオブジェクトクラスに対応する画像内の任意の要素が抽出され、または一緒にグループ化され、その後、他の要素とは別個に処理されてもよい。例えば、ランドマーク観察特徴を作成するために、以下でさらに説明するように、システムは一般に、「ランドマーク」タイプのオブジェクトクラスが割り当てられた画素または画素のグループを考慮するだけでよい。(セマンティックセグメンテーションは、一般的な「ランドマーク」クラスを含まないことができ、一般的には含まず、むしろ、それぞれが一般的に異なるタイプの「ランドマーク」を示す「建物」クラス、「交通標識」クラスなどのいくつかのクラスを含むことができることを理解されたい。したがって、本明細書のランドマーククラスへの参照は、複数のランドマークタイプクラスの何れか1つを意味するものとして理解すべきである。)
したがって、同じオブジェクトクラス内の任意の画素を一緒に抽出または処理して、オブジェクト「フィルタリングされた」画像を生成することができる。同様に、同じクラス内の隣接画素のグループは、特徴または「オブジェクト」として一緒に関連付けることができ、次いで、それらを互いに独立して抽出し、後続の処理ステップで使用することができる。
実施形態では、画像のうちの少なくともいくつかは、ローカル地図表現に含めるための1つ以上のランドマークオブジェクト特徴を検出(および抽出)するために処理される。一般に、ランドマークオブジェクト特徴は、道路網の環境を示し、または道路網の環境に特徴的である任意の特徴であって、例えば、ローカル地図表現の基準地図セクションとのマッチングおよび/または位置合わせを容易にするために、ローカル地図表現に適切かつ望ましく組み込まれ得る任意の特徴を含み得る。例えば、画像コンテンツは一般に、画像を得るために使用される1つ又は複数のカメラの視野内にある何らかのオブジェクトを含み、これらのオブジェクトの何れも、原則として、所望により、画像から抽出することができる。しかし、適切に抽出され、ローカル地図表現に組み込まれ得る典型的なランドマークオブジェクトは、建物、交通標識、交通信号、広告板などの特徴を含み得る。
一般に、ランドマークオブジェクトは例えば、各種の自動視覚的特徴検出技術を使用して、任意の適切かつ所望の方法で画像内で検出することができる。しかしながら、実施形態において、ランドマークオブジェクト特徴は、上述の車両環境セマンティックセグメンテーションによって割り当てられた1つ又は複数のオブジェクトクラスを使用して検出されてもよい。例えば、ランドマークに対応するオブジェクトクラスが割り当てられた画像内の任意の画素、または画素のグループは関心領域、すなわち、(潜在的に)ランドマークを含み得る領域であるとして、そのベースに基づいて識別され得る。このようにして、セマンティックセグメンテーションを直接使用して、画像内の各種ランドマークオブジェクトを検出し、識別することができる。例えば、セマンティックセグメンテーション中に判定されたオブジェクトクラス(またはクラスベクトル)を使用して、例えばランドマークオブジェクトクラスが割り当てられた画像内の関心のある任意の領域(または画素)を画像から抽出することができる。次いで、1つ又は複数の関心領域は、画像または各画像における1つ以上のランドマークの境界を検出するために、さらに処理されてもよい。例えば、処理されている各画像について、検出された1つ以上のランドマークを含む1つ以上の境界エリアのリストを生成することができる。
上述のように、車両環境セマンティックセグメンテーションの第1のステップが画像に対して実行され、1つ以上の関心領域が第1のセマンティックセグメンテーションに基づいてランドマークオブジェクトを潜在的に含むものとして判定された後、セマンティックセグメンテーションの第2のまたはさらなるステップ(またはオブジェクト検出および分類)が、判定された関心領域に対して特に実行されてもよい。すなわち、さらなる特定の分類ステップが、ランドマーク分類をさらに洗練するために、ランドマークを含むと判定された任意の関心領域に対して実行されてもよい。すなわち、1つ以上のランドマークが画像内で検出されると、ランドマーク認識のさらなる特定のステップを実行することができる。換言すれば、元の画像データからの画素は、まず、車両環境セマンティックセグメンテーションからの複数の一般的なオブジェクトクラスに従って分類されてもよい。元の画像データから検出された任意のランドマークについて、さらなる特定のランドマーク認識分類を実行して、ランドマーク検出を洗練することができる。例えば、ランドマーク認識は、検出されたランドマークの各々に関連する境界を洗練するために使用されてもよい。
さらなるセマンティックセグメンテーションを構成することができるランドマーク認識は、(必ずしも必要ではないが)第1の(車両環境)セマンティックセグメンテーションとほぼ同様の方法で実行することができる。典型的には、機械学習アルゴリズムが使用される。例えば、実施形態では、サポートベクターマシンまたはニューラルネットワークなどの教師付き学習方法を使用して、ランドマーク認識セマンティックセグメンテーションを実行することができる。しかし、ランドマーク認識の目的のために、アルゴリズムは例えば、一般的な車両環境セマンティックセグメンテーションを使用して達成されるよりも、より特定的で正確なランドマーク分類を提供するように、特定のランドマークデータを使用して訓練されてもよい。
検出される(しかし、画像のうちの1つ以上においてこれは行われる)任意のランドマークオブジェクトについて、次いで、ローカル地図表現内に含めるために、ランドマーク観察特徴を作成することができる。すなわち、ローカル地図表現が生成されると、検出されたランドマークを表す特徴が、ローカル地図表現に含まれてもよい。ランドマーク観察特徴は、典型的には、ランドマーク位置と、ランドマーク方向(向き)と、ランドマーク形状とを含む。したがって、実施形態では、本技法は、画像のシーケンスを処理して、画像のうちの1つ以上に現れる1つ以上のランドマークオブジェクトを検出することと、検出されたランドマークオブジェクトごとに、ローカル地図表現に含めるためのランドマーク観察を生成することとを含むことができ、ランドマーク観察は検出されたランドマークの位置および向きを示す情報を含む。検出されたランドマークの位置および向きを示す情報は一般に、ランドマークの相対位置および向きを含むことができる。例えば、検出されたランドマークの位置および向きは、一般に、例えばビジュアルオドメトリから判定されるような、例えば車両の動きフレームに基づいて、道路網自体、または車両に対する(いずれかの)相対的な位置および向きを含むことができる。例えば、実施形態では、2次元ランドマーク形状、例えば、ポリラインを、2次元ランドマーク形状をローカル地図表現に組み込むのに適した3次元空間に変換するための配向行列と共に、各ランドマークについて生成することができる。したがって、コンテンツを記述する画像ファイルを生成して、ローカル地図表現に含めることができる。
一般に、先に述べたように、同じオブジェクト(例えば、ランドマーク)は画像のシーケンスにおいて複数回現れるが、多くの異なる視点から見られる。したがって、例えば、道路網内(または車両に対する)のランドマークの位置および向きを判定することができるように、複数の画像からの情報を一緒に集約するために、ランドマークをローカル地図表現に組み込むことができるように、一般に、(例えば、ビジュアルオドメトリを使用して判定することができるように)ランドマークが検出された画像の各々についてのカメラ姿勢(ポーズ)を知ることが必要である。したがって、ランドマーク観察は、典型的には一連の画像(少なくともいくつか)、ならびにランドマーク認識(これが実行される場合)から生じる境界エリアおよびオブジェクトクラス、ならびにランドマークが検出された画像についてのカメラ姿勢(ポーズ)を使用して生成される。次いで、ランドマークの位置および向きは、例えば、オブジェクト姿勢推定のための既知のビジュアルオドメトリ技法を使用して、カメラ姿勢に基づいて任意の適切な方法で判定され得る。例えば、一般に、ランドマークの位置および向きは、複数の画像および当該画像が取得された関連するカメラ位置を使用して三角測量に基づいて判定されてもよい。したがって、実施形態では、本技法は、画像のうちの少なくともいくつかを処理して、画像に現れる1つ以上のランドマークオブジェクトを検出することと、検出されたランドマークごとに、ローカル地図表現に含めるためのランドマーク観察を生成することとを含み、ランドマーク観察は検出されたランドマークの位置および向きを示す情報を含み、検出されたランドマークの位置および向きはランドマークが検出された複数の画像およびそれに関連するカメラ位置を使用して三角測量によって判定される。
いくつかの実施形態では、車両のオドメトリ(移動量)を判定する目的のため、およびランドマークおよびレーンマーキングなどの特徴を検出するために、異なるカメラを使用することができる。例えば、実施形態では、1つ以上のステレオカメラがビジュアルオドメトリのために使用されてもよく、一方、1つ以上の単一(モノ)カメラが特徴検出のために使用される。この場合、オドメトリ転送のステップは、ビジュアルオドメトリの結果に基づいて、例えば、これらの画像をビジュアルオドメトリプロセスに使用される画像の回転および/または平行移動として扱うことによって、ランドマーク検出に使用される画像の姿勢(ポーズ)を判定するために実行されてもよい。異なるカメラがビジュアルオドメトリおよび特徴検出のために使用される実施形態では、第1のカメラはモノクロカメラであってもよく、第2のカメラはマルチクロム(またはカラー)カメラであってもよい。例えば、1つ以上のモノクロカメラはビジュアルオドメトリのための(モノクロ)画像を取得するために使用されてもよく、一方、1つ以上のマルチクロムカメラは特徴検出のための(カラー)画像を取得するために使用されてもよい。
ランドマークを検出することができ、且つランドマーク観察を生成することができる精度を向上させるために、検出されたランドマークオブジェクトは、画像のシーケンス内で注意深く追跡され、次いで、あらゆる誤検出を識別(およびフィルタ除去)しようと試みるために、異なる画像からの他の検出(すなわち、同じランドマークオブジェクトの)と比較され得る。例えば、ランドマークオブジェクト(交通標識など)が1つのフレームに現れる場合、ランドマークは隣接する画像、すなわち、ランドマークが検出された画像の両側にも現れることが予想される。他方、不正確な又は偽陽性検出の場合、これは当てはまらない。したがって、各画像内の各ランドマークオブジェクト検出について、検出されたランドマークは、隣接する画像の範囲内(シーケンス内で前方および後方)で、その透視歪みに関して注意深く追跡することができる。トラッキング(追跡)は一般に、異なる画像の(以前に決定された、または既知の)相対位置および姿勢(ポーズ)に基づいて、任意の適切な動きモデルを使用して実行されてもよい。例えば、実施形態では、Kanade-Lucas-Tomasi(KLT)特徴トラッカを使用することができる。実施形態では、従来のアフィン変換KLTトラッカを使用する代わりに、KLTトラッカのホモグラフィ拡張(HKLT)を使用することができる。追跡の結果はランドマークが検出された画像から、画像の相対姿勢に基づく画像の範囲への、検出されたランドマークの理想的なマッピングを記述する透視変換のセットからなる。したがって、このマッピングは、現実世界(3次元)空間内の検出されたランドマークの表現を、シーケンス内の画像の範囲を通って延びる「トラック(軌跡)」の形で与える。次に、これは、検出されたランドマークを三次元空間で三角測量することを可能にし、例えば、車両のオドメトリの座標系におけるランドマークの三角測量された輪郭を与える。これらのステップは、各フレームにおいて検出された各ランドマークについて実行されてもよい。したがって、これは、検出された各ランドマーク(すなわち、ランドマークが検出された各フレームに対して1つ)に対して多くの三角測量された輪郭をもたらし、これらの輪郭は(追跡品質に応じて)大まかに重なる。次いで、3次元(3D)表現をグループ化し、任意の外れ値を除去することができる。したがって、このグループ化は、偽陽性検出、または他の不正確なランドマーク検出が、3次元空間に散乱する傾向があるのに対して、真のランドマークはフレームごとに3次元空間に並ぶ傾向があるので、偽陽性フィルタを提供する。したがって、実施形態では、本技法は、画像内の1つ以上のランドマークオブジェクトを検出するために画像の少なくとも一部を処理することと、画像シーケンスの各画像で検出された各ランドマークオブジェクトについて、それが検出された画像から検出されたランドマークを画像シーケンスの1つ以上の隣接する画像にマッピングするための変換のセットを、画像の関連するカメラ位置を使用して判定することと、画像シーケンスの各画像で検出された各ランドマークオブジェクトについて、3次元座標空間におけるランドマークの表現を、マッピングに基づいて生成することと、各グループが同じ物理的ランドマークに対応するが異なる画像に記録された3次元表現のセットを含むように、3次元表現を一緒にグループ化することとを含むことができる。
ランドマークを識別するためのこの方法は新規であり、それ自体が有利であると考えられる。
したがって、本発明の更なる態様によれば、道路網の環境内の1つ以上のランドマークを識別する方法であって、
前記道路網を走行する車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の前記環境を反映する一連の画像を取得することであって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得することと、
前記画像内の1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理することであって、前記ランドマークオブジェクトは、前記道路網の前記環境におけるランドマークを表す、前記処理することと、
前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、前記画像の前記関連するカメラ位置を使用して、前記検出されたランドマークオブジェクトを、当該ランドマークオブジェクトが検出された前記画像から前記一連の画像の1つ以上の隣接する画像にマッピングするための変換のセットを判定することと、
前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、3次元座標空間における前記ランドマークオブジェクトの表現を生成することと、
前記環境内の同じランドマークに対応する異なる画像から生成された3次元表現のセットを判定することと、
3次元表現の前記判定されたセットから、3次元表現の前記セットによって表される前記環境内の前記ランドマークを示すデータを生成することと、
を含む方法が提供される。
この態様による方法は、本発明の他の態様および実施形態に関連して上述した特徴のいずれかを含むことができる。例えば、トラッキングは一般に、KLTトラッカ、または同様のものを使用して、上述のように実行され得る。
本発明はまた、本発明のこの態様による方法、または本明細書に記載されるその実施形態のいずれかを実行するためのシステムにも及ぶ。
従って、別の態様からは、道路網の環境内の1つ以上のランドマークを識別するシステムであって、
前記道路網を走行する車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の前記環境を反映する一連の画像を取得する手段であって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得する手段と、
前記画像内の1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理する手段であって、前記ランドマークオブジェクトは、前記道路網の前記環境内のランドマークを表す、前記処理する手段と、
前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、前記画像の前記関連するカメラ位置を使用して、前記検出されたランドマークオブジェクトを、当該ランドマークオブジェクトが検出された前記画像から前記一連の画像の1つ以上の隣接する画像にマッピングするための変換のセットを判定する手段と、
前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、3次元座標空間における前記ランドマークオブジェクトの表現を生成する手段と、
前記環境内の同じランドマークに対応する異なる画像から生成された3次元表現のセットを判定する手段と、
3次元表現の前記判定されたセットから、3次元表現の前記セットによって表される前記環境内の前記ランドマークを示すデータを生成する手段と、
を備えるシステムが提供される。
本発明のこのさらなる態様は必要に応じて、本発明の任意の他の態様または実施形態に関して本明細書に記載される本発明の好ましい特徴および任意選択の特徴のうちの任意の1つまたは複数またはすべてを含むことができ、好ましくは含む。例えば、明示的に述べられていなくても、本明細書に記載の方法に関連して説明した任意のステップを、その態様または実施形態のいずれにおいても実施するための手段を含むことができ、その逆もまた同様である。該方法または装置に関連して説明したステップのいずれかを実行するための手段は、1つ以上のプロセッサおよび/または処理回路を含むことができる。したがって、本発明は好ましくはコンピュータによって実施される発明であり、本発明の態様または実施形態のいずれかに関して説明されるステップのいずれかは、1つまたは複数のプロセッサおよび/または処理回路のセットの制御下で実行され得る。
異なる画像から3次元表現をグループ化した結果、グループの各々は実質的に重複する表現のセットを含み、これにより、複数の異なるフレームで検出された同じ物理的ランドマークに関連付けることができる。すなわち、同じ物理的ランドマークに関連する任意の3次元表現は一般に、座標空間内で並ぶことが予想され、したがって、これに基づいて一緒にグループ化することができる。しかし、不正確な検出に基づく任意の3次元表現は、座標空間内に散乱して現れ、したがって、外れ値として破棄され得る(グループには含まれない)。したがって、グループ化はランドマークのより正確な識別を提供するために、任意の偽陽性または他の不正確なランドマーク検出が除去されることを可能にする。
次いで、各グループ内の3次元表現を融合して、ランドマークの単一の2次元輪郭を判定し、かつ/または座標空間内のランドマークの再構成を生成することができる。融合された3次元輪郭はランドマークをより正確に位置決めし、各画像(フレーム)から切り出すことを可能にすることができる。カットアウト(切り抜き)を重ねることによって、標識の融合画像を生成することができる。このようにして、オクルージョンまたは鏡面ハイライトのような欠陥をランドマークの画像から除去することができ、例えば、カットアウト(切り抜き)間の高い色分散を有する画素をマスキングすることによって、ランドマークの境界をより確実に検出することも可能である。マスクされたカットアウト(切り抜き)の画素輪郭は、車両のオドメトリに対するランドマーク形状、画素内容、および位置のより正確な3次元表現を提供するようにベクトル化することができる。次いで、この正確な表現は例えば、画像から得られた表現を基準地図内の基準ランドマーク形状と関連付けることによって、位置特定のために使用することができる。
本方法によって生成された環境中のランドマークを示すデータは本明細書では「ランドマーク観察」とも呼ばれ、好ましくは、環境中のランドマークの位置、環境中のランドマークの向き、ランドマークの形状を表す2次元(2D)ポリライン、2Dポリラインに適用されたときにポリラインを3D座標空間(環境を表す)に変換する姿勢行列、および2Dポリラインに含まれるコンテンツを記述する画像のうちの少なくとも1つ、いくつか、またはすべてである。
実施形態では、「グランド(地面)メッシュ」が画像のシーケンスから生成される。例えば、「グランド(地面)メッシュ」画像は、車両が走行しているエリア内のグランド(地面)レベルの特徴(のみ)を含むように生成されてもよい。グランド(地面)メッシュは例えば、グランド(地面)レベルオブジェクトクラス(「道路」、「道路マーキング」、「レーンマーキング」など)が割り当てられた任意の画素を抽出するか、または使用することによって、車両環境セマンティックセグメンテーションから取得されたオブジェクトクラスを使用して生成され得る。しかし、セマンティックセグメンテーションは完全ではなく、場合によっては、セマンティックセグメンテーションがいくつかの誤った値を与えることがあり、すなわち、いくつかの点を、それらがグランド(地面)上にない場合であっても、グランド(地面)レベル点として選択することがある。したがって、実施形態では、グランド(地面)メッシュ生成の精度を向上させるために、点群を使用して、地点をさらにフィルタリングまたは選択することができる。点群は、単独で、または好ましくは車両環境セマンティックセグメンテーションからのオブジェクトクラスと組み合わせて使用することができる。例えば、グランド(地面)メッシュは、上述のDSOプロセスからの出力として疎点群を使用して生成されてもよい。しかし、代替的に、または追加的に、グランド(地面)メッシュは、画素深度を使用してステレオ画像から直接得られるステレオ点群を使用して生成されてもよい。例えば、DSO点群の疎性のために、DSO点群を補うためにステレオ点群を使用することが有益であり得る。例えば、ステレオ点群は、DSO点群内に不十分なデータが存在する高度を補間するために使用されてもよく、そうでなければDSO点群を使用してもよい。あるいは、DSO点群が疎すぎる場合、DSO点群の代わりにステレオ点群を使用することができる。一般に、グランド(地面)メッシュを生成するために、様々な適切な技術が考えられる。
次に、グランド(地面)メッシュを使用して、道路網のグランド(地面)レベル特徴のオルソ補正画像を生成することができる。一般的に言えば、オルソ補正された画像は「スケール補正された」画像であり、それらの正確なグランド(地面)位置において上方から見たグランド(地面)特徴を描写し、好ましくは、カメラおよび飛行特性および起伏(レリーフ)変位によって引き起こされる歪みが写真測量技術を使用して除去されている。オルソ補正された画像は、写真のスケールが均一であるように幾何学的に補正された(「オルソ補正された」)一種の航空写真であり、これは、写真が地図と同等であると考えることができることを意味する。オルソ補正された画像は、地形起伏、レンズ歪み、およびカメラ傾斜に対して調整された、地球の表面の正確な表現であるので、真の距離を測定するために使用することができる。オルソ補正されたビューは基準平面に対して直角に投影され、一方、パースペクティブビューは、単一の固定位置から基準平面上に表面から投影されるので、オルソ補正されたビューはパースペクティブビューとは異なる。オルソ補正された画像は、任意の適切な地図投影によって得ることができる。地図投影は、円筒形、擬似円筒形、ハイブリッド、円錐形、擬似円錐形、または方位角などの表面による投影とすることができる。投影は、メトリック特性の保存による投影であってもよい。地図投影はそれらが直交投影であることが一般的であり、それは、全ての画素がその表面に垂直な線に沿って見られる基準平面(地球の形に近似する楕円)の表面上の点を表すことを意味する。したがって、地球表面のオルソ補正画像のすべての画素は、地球の形状に近似する楕円体に垂直な線に沿って見た地球表面のビューに実質的に対応する。オルソ補正された画像は、アルゴリズムがオルソ補正された画像の任意の画素を地理的座標基準システム内の点に対して参照することを可能にするメタデータを含む。各画素の地球の形状に近似する楕円体上の正確な位置が分かっているので、グランド(地面)特徴、例えば水平道路情報の位置およびサイズをオルソ補正画像から導出することができる。
実施形態では、オルソ補正された道路画像は、画像から抽出された特徴がグランド(地面)メッシュ上に投影されて一緒にブレンドされる、車両が走行しているエリアのトップダウンビューを含む鳥瞰モザイクを含むことができる。例えば、記録された画像の各々をグランド(地面)に投影して戻すことができる。したがって、画像に関連するカメラ姿勢の知識を使用して、多くの異なる視点からグランド(地面)に画像を投影することが可能である。これは、複数の異なる画像に対して行うことができ、次いで、様々な異なる視点から得られる投影を重ね合わせ、一緒にブレンドすることができる。したがって、投影画像のすべてをグランド(地面)上に重ね合わせることによって、グランド(地面)の外観を再生成する画像が生成され、この画像は所望の任意の視点から見ることができる(例えば、鳥瞰図)。代替的に、または追加的に、オルソ補正された道路画像は、例えば鳥瞰モザイクから判定されるような、真っ直ぐにされた移動のビューを含む直線的に変換(位置合わせ)された画像を含むことができる。直線的に変換された画像(LRI)の生成は、典型的にはカメラの軌道(すなわち、車両の自身の動き)に垂直な当該軌道に沿った等間隔のスライスを生成することを含むことができる。LRIの生成に関するさらなる詳細は「Method of capturing linear features and a reference-line across a surface for a map database」と題する国際公開第 2009/045096 号に見出すことができ、その全内容は参照により本明細書に組み込まれる。次いで、任意の点で高さをサンプリングすることができるように、グランド(地面)メッシュの高さ地図を生成することができる。次いで、線形位置合わせ画像は、上述したのと同様の方法で、スライスに沿ってサンプル高さ地図を生成し、サンプル点を見るカメラ画像上に各サンプル点を投影し、次いで画素値を適切に平均してブレンド画像を生成することによって、グランド(地面)上にカメラ画像を投影することによってレンダリングすることができる。オルソ補正された道路画像を生成する際に、車両環境セマンティックセグメンテーションから判定され得る、任意の異質のまたは望ましくない特徴(例えば、車両のボンネット)を除去するために、画像マスクが使用され得る。
実施形態では、オルソ補正された道路画像が生成され、画像内の各画素の画素値は、道路画像を生成するために使用される画像から検出される環境内の位置の色を表す。従って、各画素値は好ましくは複数の値、例えば、赤-緑-青(RGB)色空間を使用する場合には3つの値を有するベクトルを含む。
さらに、または代替として、オルソ補正された道路画像が生成され、画像内の各画素の画素値は、車両環境セマンティックセグメンテーションからの出力として、環境内の位置がレーンマーキングオブジェクトである確率を表す。例えば、グレースケール色空間を使用する場合、レーンマーキングオブジェクトである100%の確率が割り当てられた任意の画素は「白」であってもよく、0%の確率を有する任意の画素は「黒」であってもよく、他の画素値はそれぞれの確率に基づいて適切に選択される。このようにして、レーンマーキングオブジェクトを強調表示し、レーンマーキングセマンティックセグメンテーションを実行するためのより明瞭な画像を提供する、「フィルタリングされた」グレースケール正投影道路画像を生成することができる。次いで、この画像は特定のレーンマーキングタイプクラスに従って画素を分類するためにレーンマーキングセマンティックセグメンテーションの特定のステップを受けることができ、または、例えば、訓練された畳み込みニュートラルネットを使用して、レーンマーキングオブジェクト検出および認識を受けることができ、画像内のオブジェクトを特定のタイプのレーンマーキングとして識別および分類することができる。レーンマーキングクラスの例は、単一の実線、単一の短い破線、単一の長い破線、二重の実線、二重の破線、アイランド境界などのうちの1つ以上を含むことができる。
レーン幾何形状を識別するこの方法は新規であり、それ自体有利であると考えられる。
したがって、本発明の更なる態様によれば、道路網の1つ以上の道路上のレーンマーキングの位置および幾何形状を判定する方法であって、
前記道路網を走行する車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得することであって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得することと、
処理された画像の各画素が少なくとも、前記画素が前記環境内のレーンマーキングを表す確率値を割り当てられるように、セマンティックセグメンテーションを実行するために前記画像の少なくともいくつかを処理することと、
前記車両が走行している前記道路網のエリアを表す道路画像を生成するために前記一連の画像のうち少なくともいくつかの画像を処理することであって、前記道路画像内の各画素の画素値は、前記道路画像を生成するために使用される前記画像内の対応する画素の前記割り当てられた確率値に基づくものである、前記処理することと、
前記画像内の1つ以上のレーンマーキングオブジェクトを検出および分類するために前記道路画像を処理することであって、前記レーンマーキングオブジェクトは、前記道路画像に描かれた前記1つ以上の道路上のレーンマーキングを表す、前記処理することと、
前記検出及び分類されたレーンマーキングオブジェクトを使用して、前記レーンマーキングオブジェクトによって表される前記レーンマーキングの前記位置および幾何形状を判定するために前記道路画像を処理することと、
を含む方法が提供される。
この態様による方法は一般に、少なくとも相互に排他的ではない範囲で、本発明の他の態様および実施形態に関して上述した特徴のいずれかを含むことができることが理解されるだろう。
本発明はまた、本発明のこの態様による方法、または本明細書に記載されるその実施形態のいずれかを実行するためのシステムにも及ぶ。
従って、さらなる態様からは、道路網の1つ以上の道路上のレーンマーキングの位置及び幾何形状を判定するシステムであって、
前記道路網を走行する車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得する手段であって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得する手段と、
処理された画像の各画素が少なくとも、前記画素が前記環境内のレーンマーキングを表す確率値を割り当てられるように、セマンティックセグメンテーションを実行するために前記画像の少なくともいくつかを処理する手段と、
前記車両が走行している前記道路網のエリアを表す道路画像を生成するために前記一連の画像の前記画像のうち少なくともいくつかの画像を処理する手段であって、前記道路画像内の画素毎の画素値は、前記道路画像を生成するために使用される前記画像内の対応する画素の前記割り当てられた確率値に基づくものである、前記処理する手段と、
前記画像内の1つ以上のレーンマーキングオブジェクトを検出及び分類するために前記道路画像を処理する手段であって、前記レーンマーキングオブジェクトは、前記道路画像に描かれた前記1つ以上の道路上のレーンマーキングを表す、前記処理する手段と、
前記検出及び分類されたレーンマーキングオブジェクトを使用して、前記レーンマーキングオブジェクトによって表される前記レーンマーキングの前記位置及び幾何形状を判定するために前記道路画像を処理する手段と、
を備えるシステムが提供される。
本発明のこのさらなる態様は必要に応じて、本発明の任意の他の態様または実施形態に関して本明細書に記載される本発明の好ましい特徴および任意選択の特徴のうちの任意の1つまたは複数またはすべてを含むことができ、好ましくは含む。例えば、明示的に述べられていなくても、本明細書に記載の方法に関連して説明した任意のステップを、その態様または実施形態のいずれにおいても実施するための手段を含むことができ、その逆もまた同様である。該方法または装置に関連して説明したステップのいずれかを実行するための手段は、1つ以上のプロセッサおよび/または処理回路を含むことができる。したがって、本発明は好ましくはコンピュータによって実施される発明であり、本発明の態様または実施形態のいずれかに関して説明されるステップのいずれかは、1つまたは複数のプロセッサおよび/または処理回路のセットの制御下で実行され得る。
したがって、さらなるセマンティックセグメンテーションステップを含むことができる、レーンマーキング検出および分類から得られる識別されたレーンマーキングを使用して、ローカル地図表現に組み込むためのレーンマーキング観察(観測)を作成することができる。例えば、レーンマーキング観察は、車両が走行している道路網のエリア内の検出されたレーンマーキングオブジェクトを含むことができる。したがって、レーン幾何形状は、ローカル地図表現(および/またはそれに基づいて更新する場合には基準地図)に組み込むことができる。
上述したように、グランド(地面)メッシュおよびオルソ補正された道路画像は、レーン観察を生成するために使用される。しかし、グランド(地面)メッシュおよび/またはオルソ補正された道路画像は、単に視覚化の目的のために生成されてもよく、必ずしもレーン観察特徴生成の後続のステップで使用される必要はないことが理解されるだろう。
本発明によれば、ローカル地図表現は、取得された画像の少なくともいくつかおよび関連するカメラ位置を使用する。ローカル地図表現は一般に、車両が走行している道路網のエリアを表す。実施形態では、ローカル地図表現は道路網のエリアのオルソ補正画像を含むことができ、これは実質的に上述のように生成することができる。好ましくは、ローカル地図表現は、上述したように、グランド(地面)メッシュおよび/またはオルソ補正された道路画像を含む。原則として、ローカル地図表現は、グランド(地面)メッシュおよび/またはオルソ補正された道路画像のみを含むことができる。しかし、好ましくは、ローカル地図表現は、上述したように、レーン観察およびランドマーク観察の一方または両方も含む。例えば、レーンマーキングオブジェクト及び/又はランドマークは、グランド(地面)メッシュ及び/又はオルソ補正された道路画像に適切に埋め込まれて、ローカル地図表現を構築することができる。あるいは、ローカル地図表現は、例えば、グランド(地面)メッシュおよび/またはオルソ補正された道路画像なしで、レーン観察およびランドマーク観察の一方または両方を含む。
したがって、生成されるローカル地図表現は一般に、車両が走行しているエリア内の道路網および道路網の環境の画像を含む。ローカル地図表現は、そのエリア内の道路網の環境を示すトップダウン2次元画像を含むことができる。しかし、ローカル地図表現は、そのエリア内の道路網の環境を示す3次元画像を含むこともできる。ローカル地図表現はまた、画像に埋め込まれた、または画像の上にある1つ以上の特徴を含むことができる。場合によっては、ローカル地図表現は、1つ以上の「キー」画像(またはフレーム)を含むこともできる。例えば、ローカル地図表現は、車両に関連付けられたカメラから取得された複数の画像のうちの1つ以上を含むことができる。
ローカル地図表現は、生成されると、次に、基準地図セクションと比較されるか、またはマッチングされる。基準地図セクションは、少なくとも、車両が走行している道路網のエリア、すなわち、画像が取得されたエリアをカバーする区間である。原則として、比較は、内部地図レポジトリ内の(グローバル)全体地図に基づいて行うことができる。しかし、実際には、基準地図セクションは、例えば、GNSSまたは他の位置データを使用して得ることができるような、車両の位置の近似または粗い知識に基づいて、または以前の位置特定結果から、選択することができる。したがって、基準地図セクションのエリアは、車両が(現在)走行している道路網のエリアに実質的にまたはおおよそ対応することができる。
例えば、ローカル地図表現は、対応する基準地図セクションと位置合わせされてもよい。上述のランドマーク観察及び道路/レーン幾何形状のような、ローカル地図表現に含まれる任意の特徴は一般に、このマッチングを実行するために使用されてもよい。一般に、位置合わせは、任意の適切かつ所望の方法で実行されてもよい。例えば、ローカル地図表現が道路網の画像を含む場合、所望のマッチングを実行するために、画像は例えば画素(またはブロック)単位で基準地図画像と比較されてもよい。あるいは、ローカル地図表現は、車両に関連付けられたカメラから取得された複数の画像のうちの1つ以上を含む。次いで、これらのキー画像は例えば、基準地図内の画像と位置合わせされるように画像を適切に変換することによって、基準地図内に格納された画像と比較されてもよい。しかしながら、好ましくは、比較は、ローカル地図表現の1つ以上の特徴、例えば、ランドマーク及び/又はレーンマーキングの位置を、基準地図セクション内の対応する特徴の位置とマッチング及び/又は位置合わせすることを含む。このようにして、車両の基準フレームから基準地図フレームに移動するのに必要な変換を判定することができる。このマッチングに基づいて、道路網内の車両の正確な地理的位置および向きを判定することができる。
代替的に、または追加的に、上述のように、マッチングは、地図の生成および/または地図の更新の目的のために使用されてもよい。例えば、基準地図セクションが古いことを示すか、または1つ以上の誤差を含むことをマッチングが示す場合、例えば、ローカル地図表現が基準地図セクションに存在しない1つ以上の特徴を含む場合、またはローカル地図表現が1つ以上の特徴が変化したことを示すか、または道路網の環境にもはや存在しないことを示す場合、基準地図は、それに応じて更新され得る。
基準地図セクションは、地図レポジトリから抽出することができる。地図レポジトリは一般に、プロセッサによってアクセス可能なメモリに格納されてもよく、車両が走行しているエリアを(少なくとも)一般にカバーする、事前にコンパイルされた、またはダウンロードされた電子地図を含んでもよい。すなわち、地図レポジトリは、車両に対してローカルであってもよい。しかし、実施形態では、基準地図はグローバル(サードパーティ)地図レポジトリ上に格納されて維持され、例えばクラウド内に配置され、その結果、基準地図は車両のユーザによって(または車両自体によって自動的に)ダウンロードすることができる。この場合、道路網内を移動する複数の異なる車両によって生成されるデータは例えば本明細書で説明するように、グローバル地図レポジトリを更新するために使用することができる。
実施形態では、本明細書で提示する技法が実質的にリアルタイムで、すなわち、例えば自律ナビゲーションまたは運転の目的のために、車両が道路網を横断するときに車両を位置特定するために実行することができる。したがって、エリアは、車両が現在走行している道路網のエリアであってもよい。しかしながら、原則として、本技術は、例えば較正又は地図生成の目的のために、オフライン又は履歴データに適用することができ、この場合、エリアは、複数の画像が得られた時点で車両が走行していたエリアを表すことができる。ローカル地図表現は、画像が取得された道路網の環境の「地理的参照」観察とみなすことができる。すなわち、画像は一般に既知の位置(すなわち、既知の粗く定義されたエリア内)で取得することができ、したがって、ローカル地図表現を使用して、既知の位置での環境の観察を構築することができる。
本明細書で説明する位置特定およびマッピング技法は、オフボードプロセッサによって(すなわち、車両から離れて)完全に実行することができる。例えば、車両に関連付けられた1つ以上のカメラによって取得された画像データは、オフボードプロセッサに送信されてもよく、オフボードプロセッサは画像データを受信すると、道路網内の車両の地理的位置および向きを判定する(例えば、所望に応じて、この情報を車両に返す)ように進む。処理の少なくとも一部は、クラウド内で実行されてもよい。しかし、実施形態では、ステップの少なくともいくつかは車両に搭載されたプロセッサによって実行されてもよい。一般に、本明細書で説明される様々な処理ステップは、所望に応じて、様々な適切な方法で、車両のオンボードプロセッサとオフボードプロセッサとの間で分散され得ることが企図される。例えば、いくつかの例では、1つ以上のカメラと、オンボードプロセッサと、リモートサーバおよび/またはプロセッサと通信するためのワイヤレス通信モジュールとを備える自律車両を含むシステムが提供される。カメラによって得られた画像データは、その後、オンボードプロセッサによって部分的に処理されるか、または処理のためにリモートサーバおよび/またはプロセッサに送信されてもよい。内部地図レポジトリは、ローカルまたはリモートに格納することができる。いずれの場合も、内部地図レポジトリは、本明細書で提示される技法に従った車両から、ならびに道路網内の他の車両から取得されるデータ、および/または地図レポジトリ所有者によって提供される中央更新のいずれかを使用して、定期的に更新することができる。
本発明の別の態様によれば、観察者の地理的位置および向きを判定する方法であって、測位システムにおいて、既知の位置で記録された複数の画像を提供することと、前記複数の画像を前記既知の位置における風景の一貫したローカル地図表現に集約することと、以前にコンパイルされた内部地図レポジトリから基準地図セクションを抽出することであって、前記基準地図セクションの範囲は、前記複数の画像によって潜在的にカバーされる近似エリアに対応する、前記抽出することと、前記風景の前記ローカル地図表現を前記基準地図セクションに対してマッチングおよび位置合わせすることと、地図作成および/または前記内部地図レポジトリへの更新目的のために、画像シーケンスキーフレームおよび認識されたオブジェクト情報などの選択されたソースデータを提供することと、前記マッチングから地理的位置および方向を判定することとを含む方法が提供される。
実施形態では、複数の画像の集約は、複数の画像からのすべての画像が異なる視点(動きの仮定からの構造)からの1つの同じ風景を描写しているという仮定の下で、3D再構成を実行するために特徴の第1のセットを使用することをさらに含む。
この方法は、特徴の第2のセットを抽出するためにローカル地図表現を使用することと、マッチングおよび位置合わせのために特徴の第2のセットを使用することとをさらに含むことができる。実施形態では、特徴の第2のセットは以下のうちの少なくとも1つから構成される。
・風景の特徴の3D表現(疎点群)
・レーンマーキング、交通信号(信号機)、交通標識、木、下水道などのグランドタイプ又はオブジェクトなどの、検出されたランドマーク及び高レベル特徴の2Dトップビュー地図(オルソマップ)
・合成航空写真(オルソフォト)などの2Dトップビュー高密度再構成。
上述の方法は、電子地図を生成するために使用されてもよい。したがって、本発明のさらなる態様は、電子地図を生成するための上述の方法の使用に関する。
本発明のさらに別の態様から、カメラと、オンボード処理ユニットとを備える測位システムが提供され、システムは、前述の請求項のうちの少なくとも1つによる方法によって、観察者の地理的位置および向きを判定するように構成される。
本明細書で説明する技術の様々な機能は、任意の所望の適切な方法で実行することができる。例えば、本明細書で説明される技術のステップおよび機能は、必要に応じて、ハードウェアまたはソフトウェアで実装することができる。従って、例えば、別段の指示がない限り、本明細書に記載される技術の種々のプロセッサ、機能要素、ステージ、及び「手段」は、所望の方法で動作するようにプログラムされ得る適切な専用ハードウェア要素(処理回路)及び/又はプログラマブルハードウェア要素(処理回路)のような種々のステップ又は機能を実行するように動作可能な任意の適切な1つ又は複数のプロセッサ、1つ又は複数のコントローラ、機能ユニット、回路、処理論理、マイクロプロセッサ構成等を含み得る。例えば、本明細書で説明される態様または実施形態のいずれかによる該方法のステップのいずれかを実行するための手段は一般に、そうするために、例えば、コンピュータ可読命令のセットでプログラムされるように構成された1つまたは複数のプロセッサ(またはプロセッシング回路)のセットを備えることができる。所与のステップは、任意の他のステップと同じまたは異なるプロセッサのセットを使用して実行することができる。任意の所与のステップは、プロセッサのセットの組合せを使用して実行することができる。システムはさらに、例えば、インストラクティブデータおよびインフォマティブデータを含む少なくとも1つのレポジトリを格納するための、コンピュータメモリなどのデータ格納手段を備えることができる。本発明による方法のいずれも、ソフトウェア、例えばコンピュータプログラムを少なくとも部分的に使用して実施することができる。したがって、本発明は、本発明の態様または実施形態のいずれかによる方法を実行するか、またはシステムおよび/またはサーバに実行させるように実行可能なコンピュータ可読命令を備えるコンピュータプログラム製品にも及ぶ。したがって、本発明はシステムの1つまたは複数のプロセッサのセットに、本明細書で説明する方法の態様または実施形態のいずれかのステップを実行させるために、本発明の実施形態のいずれかによるシステム上で実行可能なコンピュータ可読命令を備える、好ましくは非一時的なコンピュータプログラム製品に及ぶ。
本発明のさらなる態様のいずれも、本発明の他の態様および実施形態に関連して説明された本発明の特徴のいずれかまたはすべてを、それらが相互に矛盾しない限り、含み得ることが理解されるだろう。特に、第2の態様およびさらなる態様における本発明は本発明の第1の態様の方法に関して説明された特徴のいずれかまたはすべてを含むことができ、その逆も同様であることが理解されるだろう。したがって、明示的に述べられていない場合、方法はシステムまたは装置に関連して説明された機能のいずれか(またはすべて)を実行するステップを含むことができ、本発明のシステムは、本明細書で説明された方法ステップのいずれか(またはすべて)を実行するように構成することができる。例えば、システムは、上述のステップを実行するように動作可能な或いは構成された1つまたは複数のプロセッサのセットを備えることができる。任意のステップは、プロセッサのうちの任意の1つによって、または複数のプロセッサによって実行されてもよい。
これらの実施形態の利点は以下に説明され、これらの実施形態の各々のさらなる詳細および特徴は添付の従属請求項および以下の詳細な説明の他の場所で定義される。
ここで、本明細書に記載される技術の様々な実施形態を、単なる例として、添付の図面を参照して説明する。
図1は、ローカル地図に集約される画像シーケンスと当該画像シーケンスが記録された概略位置が、集約されたローカル地図におおよそ対応するセクション範囲(エリア)を有しており且つ記録された画像シーケンスに基づいて地理的位置及び向きを判定するために使用される地図レポジトリから抽出された基準地図のセクションと比較され得る方法を示し、且つ、地図レポジトリを更新するために使用されてもよいキーフレーム及びオブジェクト情報を識別する、本開示の実施形態に従った視覚的な全地球測位およびマッピングシステムの概念を示す。 図2は、自律車両においてオドメトリ支援を提供するための、視覚グローバルマッピングシステム(V-GMS)と視覚全地球測位システム(V-GPS)とを組み合わせた例を概略的に示す。 図3は、自律車両のためのV-GPSオドメトリ支援の別の例を概略的に示す。 図4は、無人機(ドローン)を使用するオフボードV-GPS/V-GMSの一例を概略的に示す。 図5は、本発明の実施形態に係るV-GMS/V-GPSシステムの相互作用および機能ユニットを概略的に示す。 図6は、本発明の実施形態による、ローカル地図集約中に実行され得る処理フローの一例を示す。 図7は実施形態において、例えば、処理されている画像に関連するカメラ姿勢(ポーズ)を判定するために使用することができるステレオダイレクトスパースオドメトリ(DSO:direct sparse odometry)技術の原理を示す。 図8は、DSO技術のさらなる詳細を示す。 図9は、オブジェクトクラスに従って画像を分類するために、本発明の実施形態において使用され得るセマンティックセグメンテーションアプローチの例を示す。 図10~図15は、交通標識などのランドマークオブジェクトをどのようにして追跡し、フレームごとにトレースすることができるかを示す図である。 図16は、異なる(トップダウン)透視図から道路幾何形状のビューを生成するために、(2D)画像がどのように地面に投影され得るかを示す。 図17A、17B、および17Cは、それぞれ、トング(tongue)グランドメッシュ、ラスタグランドメッシュ、およびトングおよびラスタグランドメッシュの重ね合わせを示す。 図18は、レーンマーキングオブジェクトをより良好に強調表示するために、セマンティックセグメンテーションに基づいて画素値が設定される道路画像をどのように生成することができるかを示す。 図19および図20は、本発明のいくつかの例に従って、識別されたレーンマーカオブジェクトをどのように処理することができるかを示す。 図21は、道路網のエリアに対するレーンの幾何形状がどのように作成され得るかを示す。 図22は、本発明の実施形態による(図5の)ユニットAの図を提供する。 図23は、本発明の実施形態による(図5の)ユニットCの図を提供する。
本開示は一般に、例えば、事前に構築された地図によってカバーされる道路網内で、観察者(車両)の地理的位置および向きを決定するための改善された技術を提供することに関する。したがって、実施形態では、本開示が以下で説明するように、大規模視覚地理的位置特定およびマッピングのための技法に関する。本開示の位置特定技法は例えば、様々な自律運転機能を容易にするために、または、例えば、自律運転と共に使用するために、改善された電子地図を補足または生成するために使用されてもよい。例えば、上述したように、自律走行は典型的には車両の局所性における車線幾何学的形状、例えば、車線中心線及び車線接続性に関する少なくとも情報を提供する地図の使用を必要とする(例えば、非自律車両による使用のために、例えば、標準的なポータブルナビゲーション装置による使用のために、標準的なデジタル地図において提供され得るような、単なる道路中心線ではなく)。
すなわち、必要とされるのは、高精度での位置特定を可能にする高精細度(HD)地図である。HD地図はまた、レーン閉鎖、道路工事、および更新された速度制限などの変更を反映するために、頻繁に更新される(または少なくとも更新可能である)必要がある。自律運転のための最小要件であるレーンの幾何形状を示すことに加えて、HD地図は典型的には、交通標識、交通信号灯、広告板などのランドマークも含むことができ、これらは、位置特定を助けるために使用することができる(もちろん、他の目的のためにも使用することができる)。これらのランドマークは典型的にはランドマークの位置、ランドマークの寸法(例えば、高さ、幅)、及びランドマークの画像、例えば、ランドマークをランドマークとして有用にする面、例えばランドマークの前面からの画像によって定義することができる。
したがって、このようなHD地図の生成および維持は、様々な自律運転機能を容易にするのに役立つ。例えば、HD地図は経路計画を可能にし、知覚を助け、自律車両がそのセンサの範囲を超えても前方の道路を見て予想することを可能にすることができる。そのようなHD地図の使用は、自律車両に限定されず、予測パワートレイン制御、エコルーティング、およびカーブ速度警告などの広範囲の高度運転者支援システム(ADAS)アプリケーションを実現するために活用することもできる。しかし、本明細書に記載されるHD地図は自律運転を容易にするために特に有用性を見出すことができ、したがって、本開示の実施形態は、この文脈で以下に記載されることになる。
特に、本開示の技法は、車両が走行しているローカル環境の「地理参照」観察を生成することを含む。地理参照観察は、車両が現在走行している道路網のローカル環境のセンサ取得観察である。例えば、道路網上を走行する車両上またはその中に位置するカメラを使用して、車両の近傍の道路網に関する画像を取得することができ、次いで、これらの画像を処理して、このエリア内の道路網の環境を示す任意の特徴を抽出することができる。次いで、画像から抽出された地理参照された特徴または観察は、エリアの以前にコンパイルされた基準地図との比較を可能にする適切なローカル地図表現に組み込むことができる。この比較により、車両をエリア内で正確に位置特定することができる。さらに、比較結果が基準地図内のエラー(誤差)を識別すると、基準地図はそれに応じて更新されてもよい。
図1は、本開示に従って提供され得る視覚的な全地球測位およびマッピングシステムの概念を示す。導入されたV-GPS(Visual Global Positioning System)は、画像中の視覚的手がかり(キュー)を使用して観察者のグローバルな位置および向きを判定するためのアプローチを提供する。これは「ローカル地図」を集約する目的で記録された画像を検査することによって行われ、「ローカル地図」はエリアの基準地図と照合(マッチング)される。この基準地図は、 V-GMS(Visual Global Mapping System)と同じアプローチの一部を使用することによって、以前にコンパイルされている。
視覚的全地球測位及びマッピングシステムの機能原理
図1を参照すると、少なくとも1つの例による、図示の視覚的全地球測位及びマッピングシステムの原理は、以下のステップに従って要約することができる。
1.既知の近似位置12(±100m)で記録された画像シーケンス10は、V-GPS/V-GMSのためのシステムの入力として提供される。
2.画像シーケンス10は、風景の一貫した、圧縮された、特徴的なローカル地図表現14に集約される。
3.基準地図セクション16は、以前にコンパイルされた内部地図レポジトリ18から抽出される。基準地図セクションの範囲20は、記録された画像シーケンスのおおよそのエリアに対応する。
4.次いで、風景のローカル地図表現14は、ローカル地図表現14と基準地図セクション16との間の様々な対応22を判定するために、(基準地図が十分なカバレッジを提供すると仮定して)基準地図セクション16と照合(マッチング)され、位置合わせされる。
5.画像シーケンスのキーフレーム24及び認識されたオブジェクト情報26のような選択されたソースデータは、地図作成及び更新の目的で内部地図レポジトリ18に提供される。
6.地理的位置28および向き(方位)38は、マッチング変換から導出され、応答およびシステムの出力として返される。
図1に示すように、従来の視覚的地理的位置特定システムとは異なり、V-GPS/V-GMSは、位置特定の目的で画像データから直接抽出された特徴を使用することを試みていない。代わりに、位置特定手順は、ローカル地図表現を生成する中間ステップを導入する。
例えば、少なくともいくつかの例では、すべての入力画像が異なる視点から同じ風景を描写するという仮定(すなわち、動きの仮定からの構成)の下で、3D再構成を実行するための特徴の第1のセットを使用することによって、一貫したローカル地図表現が集約される。これは、最新の画像から、集約されたローカル地図を生成し、これは単なる入力画像よりも有用である。これは、画像と、各画像の捕捉中の観察者の3D姿勢(ポーズ)と、周囲のまばらな点群とから構成される。
より重要なことには、これは、この静的な風景に従わない入力画像のコンテンツの全てが自動的に省略/フィルタリングされる、局所的な水平線のシステムのクリーンアップされたコヒーレントな知覚を表す。世界のこのクリーンアップされたモデルは、動的オブジェクトまたはカメラの特定の軌跡に対して不変である。
次に、このローカル地図表現は、マッチング、位置合わせ、および位置特定の目的で使用される特徴の第2のセットを埋め込み、抽出するために使用される。この特徴のセットは風景の特徴(疎点群)の3D表現、レーンマーキングや、交通信号、交通標識、木、下水道カバーなどのグランド(地面、地上)タイプのオブジェクトなどの検出されたランドマークおよび高レベル特徴の2D上面図(オルソマップ(orthomap))、および/または合成航空写真(オルソフォト(orthophoto))などの2D上面図高密度再構成から構成されてもよいが、これらに限定されない。
上述の位置特定システムはカメラ画像を視覚的に位置合わせして周囲エリアの3D幾何形状を回復することによって大まかに機能し、そこから第2レベルの特徴の位置が判定される。
視覚的グローバルマッピングシステムは、他の方法に進むことによって、オーバーラップするローカル地図からグローバル地図を構築するための新しい方法であり、第2レベルの特徴を介して複数のローカル地図をマッチングすることによって、これらのローカル地図間の不整合が発見される。これらの不整合は、補正を特定のカメラ姿勢にフィードバックすることによって改善される。これにより、特に正確で、同時にグローバルに一貫したグローバル地図を構築することができる。
従って、上述のV-GPS/V-GMSアプローチは、従来の画像コンテンツおよびモーション/ビジュアルオドメトリ技術からの画像特徴ベース構造と、大規模視覚地理的位置特定システムにおいて使用される通常のオブジェクトおよびランドマーク認識方法とを組み合わせるという点で、ハイブリッドアプローチとして特徴付けられる。このようにして、V-GPS/V-GMSは揮発性の低レベルの特徴から導出されるローカル的な安定性および精度、ならびに同様に、位置特定の目的のための高レベルの特徴マッチングのグローバルな安定性および耐久性を利用する。
システムは一般に、以下のような、独立して構成可能な3つのサブシステムまたはユニットに分割することができる。
ユニットA-ローカル地図集約およびオブジェクト検出:画像およびセンサデータ処理、画像情報抽出、および特性ローカル地図の集約。
ユニットB-グローバル地図ルックアップ及びポーズ推定:集約ローカル地図を対応する基準地図セクションと照合(マッチング)することによる位置特定。
ユニットC-グローバル地図作成および更新:地図作成および更新、事前処理、および位置特定目的のための基準地図の提供。
これらのサブシステムは、位置特定される車両に搭載されて提供されてもよい。しかしながら、典型的には、処理の少なくともいくつかは遠隔的に分散され、例えば、クラウドで実行される。次に、いくつかの例示的なシステム構成について説明する。
自律車両におけるV-GMS地図作成とV-GPSオドメトリ支援
図2は、カメラセンサ入力と、クラウドコンピューティング環境206への高帯域幅無線インターネット接続とを備えた自律車両システム200を示す。したがって、自律車両は、単眼またはステレオカメラ202と、ハイエンドオンボード処理部と、高帯域幅高遅延モバイルデータ接続、すなわちW-LAN 204とを備えている。システムはオンボードカメラ202からライブ記録画像を受信し、オンボードオドメトリから粗いGPS座標を受信する。位置特定結果208は、自律運転ロジックに渡される。地図構築結果は、クラウドベースのレポジトリ206内に存在する。
図2では、ハイエンドオンボード処理部が、入力画像の固定バッチを範囲限定ローカル地図表現要求に集約し、モバイルデータ接続を介して前処理された拡張基準地図セクションを受信する第1のユニット、すなわちユニットAと、次いで、任意の完成したローカル地図表現をその対応する基準地図セクションと照合(マッチング)し、照合(マッチング)結果としてユニットAに戻される地理位置特定を計算する第2のユニット、すなわちユニットBとを備えている。第3のユニット、すなわちユニットCはクラウド内に配置され、時折、ソースデータのパケットを受信し、これらのパケットは最終的に、参照地図に組み込まれる。
サードパーティの基準地図のための自律車両における小フットプリントV-GPS専用オドメトリ支援
図3は、カメラセンサ入力と、位置特定結果を判定するためにクラウドコンピューティング環境内のサードパーティ基準地図データベースと通信するための低帯域幅モバイルインターネット接続とを備えた自律車両システム300を示す。したがって、自律車両は、単眼またはステレオカメラ302と、ローエンドオンボード処理部と、低帯域幅低遅延モバイルデータ接続304とを備えている。システムはオンボードカメラ302からライブ記録画像を受信し、オンボードオドメトリから粗いGPS座標を受信する。位置特定結果308は、自律運転ロジックに渡される。
図3では、オンボード処理部が、入力画像の固定されたバッチを範囲限定ローカル地図表現に集約し、完成したローカル地図をモバイルデータ接続304を介してクラウド内に位置する第2のユニットであるユニットBに送信する第1のユニットであるユニットAを備える。ユニットBは、対応するサードパーティ基準地図セクションに任意の入力ローカル地図表現を要求し、クラウド内でマッチングを実行し、同じモバイルデータ接続を介して地理的位置特定を送り返す。図2に示すユニットCは、サードパーティ提供の基準地図サービス(追加のアップストリーム帯域幅を必要とされず地図アップデート手段もない)に置き換えられる。
ドローン(無人機)用オフボードV-GPS/V-GMS
図4は高帯域幅無線ビデオを処理ユニットに提供するためのカメラセンサ入力を有するオペレータ制御無人機を備える無人機ベースのシステムの一例を示し、処理ユニットは、位置特定およびマッピング結果を無人オペレータ装置(例えば、電話またはナビゲーションユニット)に提供する。したがって、システムは、単眼カメラまたはステレオカメラ402を有する無人機400と、ハイエンド大容量基地局処理部412と通信するための低帯域幅低遅延無線データ接続404とから構成される(無人機上にはオンボード処理部は存在しない)。したがって、V-GPS/V-GMSシステムは、基地局上に存在する。基地局は、無人機400のオンボードカメラ402からライブ記録画像を無線で受信する。次いで、位置特定およびマッピング結果408は、モバイルオペレータ装置410に渡される。
V-GPS/V-GMSシステムは3つのユニットを含み、図4では、すべてが基地局412上に存在する。ユニットAは、入力画像の固定されたバッチを受信し、範囲が限定されたローカル地図表現に集約する。ユニットBは、ローカルに利用可能な基準地図セクションに対してローカル地図表現を直接マッチングする。ユニットCは、ソースデータを基準地図に直接組み込む。
図5は、システム内の機能ユニットまたはサブシステム間の相互作用を示す。特に、図5は、上述の3つのユニットの各々によって実行されるステップを概略的に示す。したがって、以下のセクションは、少なくともいくつかの例による、システムの論理構成要素の例示的な実施形態を、個々の処理ステップおよび技法に詳細に分解したものである。図6は、記録された画像からローカル地図表現を生成するために(ユニットAにおいて)実行され得る処理フローの例をより詳細に示す。各種入力を受け取るいくつかの異なるモジュール(またはステップ)を含むものとして図5および図6に示されているが、各種モジュールおよびステップは別個の処理回路によって実行される必要はなく、実施形態ではこれらのステップのうちの少なくともいくつかは共有回路を使用して実行され得ることが理解されるのであろう。さらに、実施形態では、これらのモジュールのすべてが提供される必要はないことが理解されるのであろう。例えば、説明されたステップのいくつかは、省略されてもよいし、同じ基本機能を提供する類似または同等のステップによって置き換えられてもよい。
ユニットA-ローカル地図集約及びオブジェクト検出
画像データ取得
システムへの入力は一般に、道路網を走行する車両と関連付けられた1つ以上のカメラから取得される一連の画像500を含む。各画像は、道路網に沿った既知の位置で記録される。任意選択で、画像500は上述のように、(粗い)位置502と共に提供されてもよい。例えば、画像データは、取得された画像のおおよその位置および正確なタイムスタンプを提供するために、例えば車両のナビゲーションモジュールからのGNSS測位データと組み合わされてもよい。しかしながら、場合によっては、画像の(相対的な)位置が画像500自体から判定されてもよい。
画像500のシーケンスは、典型的には位置特定されるべき車両上または車両内に設けられる様々なカメラセンサから得られる1つ以上のビデオストリームを含む。したがって、カメラセンサは、車両が現在走行している道路環境の画像を取得する。
実施形態では、以下でさらに説明するように、車両は、ビジュアルオドメトリを実行する目的のためのステレオカメラと、標識検出、分類、追跡、およびセグメント化の目的のための別個の観察者カメラとを備える。典型的には、所望のビジュアルオドメトリを実行するために、ステレオ画像センサはグレースケール画像を取得するために使用され、中間フレームレート(例えば、15~30fps)および解像度(例えば、1280×720)で動作することができる。一方、観察者撮像素子は典型的にはより高いフレームレート(例えば、30~90fps)及び解像度(例えば、2560×1440)でカラー画像を得ることが望ましい。しかし、処理されるべき画像を得るために、撮像素子の様々な構成および組み合わせが適切に使用され得ることが理解されるのであろう。
センサがステレオビデオカメラおよび単一の(単眼)ビデオカメラを含む場合、システムへの入力は、ステレオカメラからのビデオフレームの第1のセットと、単一の(単眼)ビデオカメラからのビデオフレームの第2のセットとを含むことができる。画像の第1のセットの各々について、深度地図(デプスマップ)も提供される。タイムスタンプはまた、画像の両方のセットに対して提供される。
オドメトリ推定(ODO)
このシステムは、ビデオシーケンス内のキーフレームに対するカメラの相対的な3D位置及び回転を推定するビジュアルオドメトリシステムを使用する。オドメトリは、典型的なVisual-SLAMシステムにおけるのと同じ方法で、ビデオデータに動きアプローチからのオンザフライ構造を適用することによって、純粋に視覚的に得ることができる。例えば、オドメトリは、以下のようにして得ることができる。
1.所与の入力画像シーケンスから、十分なカメラ移動を示すフレームのみがキーフレームとしてピックされる。
2.任意の新しいキーフレームに対して、妥当な相対3D姿勢は、高精度オンボードオドメータおよびディファレンシャルGPSなどの外部オドメトリソースをタップすることによって初期化することができる。
3.次いで、絶対姿勢は、他のすべてのキーフレームに沿った関連する画像特徴に従ってグローバルに推定され、最適化される。
代替的に、連続する奥行き画像を位置合わせすることによって相対的な3Dカメラ姿勢を導出する様々なステレオ画像位置合わせ技法を使用することができる。
好ましくは、キーフレームのカメラの位置および回転がステレオビジュアルオドメトリのプロセスを使用して判定される。一般に、任意の既知のステレオビジュアルオドメトリ技術を使用して、キーフレームのカメラ位置および回転を判定することができる。しかし、好ましい実施形態では、ステレオダイレクトスパースオドメトリ(DSO)プロセスを使用して、キーフレームの各々に対する相対的なカメラ位置および回転を推定する。
DSOはカメラ上へのオブジェクトの投影間の測光誤差の直接最小化に基づく既知の技術である(すなわち、バンドル調整などの間接技術ではなく)。DSOの背後にある原理を図7に示す。図7に示すように、各ランドマーク(またはオブジェクト)は所定のフレーム内でキーポイントと深さ(デプス)のセットとして定義することができる。例えば、図7では2つのランドマーク72-1、72-2があり、これらの基準フレーム画像70(フレームi)への投影は2つのキーポイント70-1、70-2の対応するセットを定義し、それぞれは対応する深度値(デプス値)を暗黙的に有する。基準フレーム(フレームi)から次のフレーム(フレームj)の画像にランドマークを投影または追跡するために、キーポイントは次のフレームに投影され、投影された複数のキーポイント76-1、76-2の測光誤差は基準フレームに対する次のフレーム(フレームj)でのカメラ姿勢を判定するために、すなわち、測光誤差を最小にする、基準フレームから次のフレームに移動するための適切な変換を判定することによって、最小化される。
バンドル調整のような間接的な方法と比較して、DSOは、2つの画像におけるキーポイント対応を判定するために(スケール不変特徴変換(SIFT)のような)特徴検出器を必要としない。このことは、エッジを含む画像のどこにでもDSOのキーポイントを配置できることを意味する。
オリジナルのDSO技術は、単眼画像に基づいていた。しかし、DSO処理は既存の奥行き値(デプス値)を有する既存のフレームを必要とし、DSOでは、トラッキングを通して新しいフレームが直接生成されるので、オンザフライデータを使用してDSOを実行することは困難である。この問題はDSOアルゴリズムのための入力としてステレオ画像を使用することによって克服することができ、その場合、フレーム深度は、記録された画像から直接取得することができる。
図8は、ビデオシーケンスのキーフレーム間でカメラを追跡するためにDSOを使用する例を示す。各キーフレーム82に対して、そのキーフレーム上へのキーポイントの投影を表す固定点群80がある。次に、カメラトラッカはキーフレームから現在のフレームに投影されたときに、深度地図(デプスマップ)内のすべての点の測光誤差を最小にするために、最適なカメラパラメータ(回転、平行移動)を計算する。追跡されたカメラが所与の閾値を超えて最後のキーフレームから後退し、その結果、エラーが大きすぎる場合、(新しい固定の点群を有する)新しいキーフレーム84が生成される。
抽出されたビジュアルオドメトリの品質は、画像シーケンスの視覚特性に依存する。モーションブラー(動きブレ)、画像歪み、グレア、および反射などの視覚的アーチファクトは、キーフレームにわたって関連付けることができる画像特徴の数を大幅に低減する。また、移動車、窓またはパドル内の鏡面、さらには天候条件などの一貫性のない画像の動きは、画像特徴の本質的な関連性を容易に妨げ、視覚的なオドメトリ抽出の試みを妨げる可能性がある。記録された画像シーケンスの長さを増加させるために、無効なオドメトリ再構成の機会も急速に増加する。
したがって、ロバスト性のために、ビジュアルオドメトリ抽出は、再構成が所与の品質マージンを満たすか、または地図サイズ限界に達する、時折の「安定性の島(islands of stability)」に限定される。センサ、車両、および環境条件に応じて、有効な再構成オドメトリのこれらの安定したパッチの合理的なサイズは、約50mから200mの範囲である。同様に、様々な内部条件および外部条件に応じて、これらの安定したパッチの発生頻度は、平均的な都市および地方環境において、キロメートル当たり2~10パッチの範囲であり得る。
次いで、これらの安定したオドメトリパッチはすべてのキーフレームデータと共に、画像セグメンテーション(SEG)および集約ローカル地図(MAP)処理ステップに渡される。
センサがステレオビデオカメラおよび単一の(単眼)ビデオカメラを含む場合、システムへの入力は、ステレオカメラからのビデオフレームの第1のセットと、単一の(単眼)ビデオカメラからのビデオフレームの第2の設セットとを含むことができる。画像の第1のセットの各々について、深度地図(デプスマップ)も提供される。タイムスタンプはまた、画像の両方のセットに対して提供される。
したがって、実施形態では、ビジュアルオドメトリの出力は、ステレオカメラからのビデオフレームの第1のセットのキーフレームの、例えば、ビデオフレームの第1のセットの第1のフレームに対するポーズ(回転および位置)である。出力はまた、キー点群、すなわち、例えば、以下に説明するように、グランド(地面)メッシュを生成する際に使用するためのキーフレーム内のキーポイントの点群を含むことができる。
画像セグメンテーション(SEG)
画像セグメンテーション処理ステップでは、あらゆる所与のキーフレーム内の各画素が例えば道路、木、レーンマーキング、自動車などの所定の環境クラスのセットに従って分類される。次いで、クラスラベルが各画素に付加され、環境クラスの任意のサブセット、例えば、地面のみに注意を払うことができる後続の処理ステップのために利用可能にされる。セグメンテーションは、以下のような、1つ以上の画素毎の分類アプローチによって実行されてもよい。
・以前に訓練された高度なディープニューラルネットワークベースの画像分類システム
・ステレオカメラからの深さデータ(デプスデータ)を使用してグランド(地面、地上)レベル画素、壁/筐体、または交通標識のポールをセグメント化する
・粗いグランド(地面、地上)マスクの形成を可能にするオドメトリ推定によって提供される疎な特徴点群データを使用する。
画像セグメンテーションは、例えば、分類されたオブジェクトがフロー内の他の処理モジュールによって抽出され、使用されることができるように、画像内に現れるオブジェクトを分類するために実行される。したがって、「車両環境」のセマンティックセグメンテーションのステップは、取得された画像データを入力として使用し、画素ごとに画像のそれぞれを処理して、複数のクラスのそれぞれについてスコア(または尤度値)を含むオブジェクトクラスベクトルを各画素に割り当てることを実行することができる。したがって、例えば、画素は、画像内の空(そら)の一部を表す98%の尤度、道路標識を表す1%の尤度、および/または道路を表す1%の尤度などを有するものとして分類することができる。画素はこのように分類されると、(例えば、同じオブジェクトを表す可能性が高い隣接する、または近接して間隔を空けられた画素を一緒にグループ化することによって)オブジェクトに一緒にグループ化することができる。
一般に、画素ごとのセマンティックセグメンテーションは、任意の所望のまたは適切なアルゴリズムを使用して実行することができる。好ましい実施形態では、機械学習アルゴリズム、特に畳み込みニューラルネットワーク(CNN)が使用される。例えば、アルゴリズムは既知のSegNetまたはPSPNetアルゴリズムを含むか、またはそれに基づくことができるが、当然、他のアルゴリズムを適切に使用することができる。したがって、画像内の画素は一般に、いくつかの事前定義されたクラスのうちの1つに従って分類することができる。例えば、クラスは、空(そら)、建物、柱(ポール)、道路標識、道路、舗装、木、交通標識、フェンス、道路車両(およびタイプ)、人、自転車、交通信号、壁、地形、乗り手、列車などの一部または全部を含むことができる。これらのクラスは一般に、SegNetおよび/またはPSPNetアルゴリズム内で定義される。
図9は、車両環境セマンティックセグメンテーション処理の結果の一例を示す。処理の結果、オリジナルのRGB画像(左側のパネル)内の画素のそれぞれにオブジェクトクラスが割り当てられ、異なるオブジェクトクラスのそれぞれを、意味的にセグメント化された出力(右側のパネル)において一貫した方法で表すことができる。したがって、各クラス内のすべてのオブジェクトを抽出し、後続の処理ステップに使用することができる。
次いで、これらのオブジェクトクラスはビジュアルオドメトリ(ODO)および(キー)フレームを使用して得られたカメラ姿勢と共に、高レベル特徴検出(DTCT)処理ステップに渡されてもよい。
高レベル特徴検出(DTCT-1)
高レベル特徴検出ステップは所与のフレームにわたって、交通標識/交通信号、レーンマーカ、木などの高レベル特徴を識別し、追跡する。カメラの既知のオドメトリを使用して、追跡された高レベルの特徴を、カメラ位置に対する3D空間に三角測量することもできる。これらの特徴位置及びそれらのクラスラベルは入力画像シーケンスにおけるそれらの画素表現と共に、後続の処理ステップのために利用可能にされる。高レベル特徴検出は、以前に計算された画像分類を利用して、特殊化された特徴検出努力を適切な領域に制限する。特徴検出は、GPU処理能力を使用するブルートフォース畳み込み演算応答クラスタリング、例えば、オブジェクト検出のためのViola-Jonesアプローチなどの特徴カスケードを使用する高速オブジェクト検出、複数のクラスに適した以前に訓練されたランダムフォレスト分類器などの、1つ以上のパッチごとの分類アプローチによって実行することができる。
例えば、高レベル特徴検出は例えば、以下に説明するように、ランドマーク観察を作成するための様々なステップを含むことができる。
ランドマークの検出及び認識
ランドマークは、「交通標識」オブジェクトクラスなど、ランドマークに対応するオブジェクトクラスを割り当てられた任意の画素、または画素のグループを抽出することによって、分類された画像から検出することができる。例えば、画像データ取得から出力された観察者画像フレーム、ならびに車両環境セマンティックセグメンテーションからの画素クラススコアベクトルを使用して、もしあれば、検出されたランドマークを含む、各フレーム内の1つ以上のエリア(典型的には矩形)のリストの形式で、いくつかのバウンディングボックスを生成することが可能である。次いで、これらのバウンディングボックスをランドマーククラスと共に出力することができる。ランドマークは、オリジナルの車両環境セマンティックセグメンテーションに基づいてのみ検出されてもよい。しかし、実施形態では、画像内の関心領域、すなわちランドマークを潜在的に含むと判定された領域がセマンティックセグメンテーションから取り出され、サポートベクターマシン(SVM)またはニューラルネットワークなどの教師付き学習方法が、検出されたランドマークのそれぞれにクラスを割り当てるために領域上で使用される。すなわち、特定のランドマーククラスを検出された各ランドマークに割り当てるために、車両環境セマンティックセグメンテーション処理ステップから判定され得るように、画像内の任意の関心領域に対して、さらなるランドマーククラスセマンティックセグメンテーション(または「ランドマーク認識」)が実行され得る。これにより、ランドマーククラスの割り当ての精度を向上させることができる。
オドメトリ転送(図示せず)
オドメトリ転送は、ビジュアルオドメトリおよびランドマーク検出のために異なる撮像素子(例えば、複数のカメラ)を使用する場合に使用されてもよい。例えば、オドメトリ転送を使用して、異なるカメラから得られた画像を較正(キャリブレーション)することができる。特に、オドメトリ転送は、ランドマーク検出のために使用される画像のポーズ(姿勢)、例えば、単一の(単眼)ビデオカメラからのビデオフレームの第2のセット、を判定するために使用されてもよい。これは、異なるカメラを位置合わせするのに必要な回転および/または平行移動に基づいて画像を適切に較正することによって、画像をビジュアルオドメトリの結果と組み合わせて使用して行うことができる。したがって、画像の第2のセットに対するカメラ姿勢は、例えばビジュアルオドメトリ処理ステップにおいて、画像の第1のセットに対して判定されたカメラ姿勢を適切に較正することによって得ることができる。
ランドマーク観察作成
ランドマーク観察生成は、画像データ取得モジュールから出力された画像データを使用して、例えば、(オドメトリ転送からの)これらのフレームのポーズ(姿勢)と組み合わせて、必要に応じて、ランドマーク検出および認識プロセスから判定されたバウンディングボックスおよびランドマーククラスと組み合わせて、実行されてもよい。画像データから抽出された各ランドマークについて、正規化された座標における2Dポリラインの形式でのランドマーク形状、および向き(例えば、2Dポリラインを3D空間に変換するための姿勢行列)が、ランドマークの内容を記述するランドマーク画像と共に生成される。ランドマークは、例えば、交通標識、交通信号、広告板等、または、位置特定目的で適切かつ望ましく使用することができる、道路に沿って存在し得る任意の他の識別対象を含み得る。
図10~図15は、画像内の交通標識などのランドマークを検出し、追跡し、トレースする方法を示す。例えば、図10に示すように、外部標識検出システムは一般に、フレームの所与のセットの各フレーム1002に対して単一標識検出1001を提供する。しかし、図示されるように、これらの検出は散発的であり(例えば、第3のフレームはいかなる標識検出も含まない)、または(第4のフレームにおけるように)偽陰性/陽性検出の傾向があり、不正確な境界を提供する。
したがって、実施形態では、検出された各標識はその後、その透視歪みに関して、およびフレームシーケンス内の隣接するフレームの範囲内で(後方および前方に)、注意深く追跡される。追跡結果は、標識が検出された元のフレーム(原フレーム)における検出された標識、すなわち画素カットアウトの、隣接するフレームの範囲への理想的なマッピングを記述する透視変換1101のセットから構成される。これを図11Aに示す。図11Bに示すように、これにより、標識を三角測量して、車両の3D座標系(すなわち、上記で判定することができるような車両のオドメトリの座標系)における標識の表現1102を与えることができる。
これは、全ての所与のフレームにおいて、全ての検出された標識及び全ての単一の検出に対して行われる。したがって、これは、トラッキング品質が十分に高い場合、おおよそ重複するべき同じ物理標識についての多くの三角形輪郭1201をもたらす。これを図12に示す。
次いで、3D表現がグループ化され、一緒に融合され、外れ値が除去される。したがって、図13に示すように、偽陽性、または他の不正確な標識検出および三角測量が3D空間に散乱して見える傾向があるので、3Dグループ化は、正確な偽陽性フィルタを提供し、一方、真の標識はうまく積み重なる(たとえば、基準標識1301を有する検出を参照されたい)。
融合された標識輪郭はまた、標識が2D画像空間内に配置され、各フレームから正確に切り出されて、標識のいくつかの切り抜き1401を与えることを可能にする。切り抜きの全てを重ね合わせることによって、標識1402の融合画像を作成することができる。これは、オクルージョンまたは鏡面ハイライトのような欠陥を標識の画像から確実に除去するために、また、例えば、切り抜き間の高い色分散を有する画素1403をマスクすることによって標識の境界を検出するために、使用することができる。これを図14に示す。
マスクされた切り抜きの画素輪郭は、例えば図15に示されるように、車両のオドメトリに関する標識の形状、画素内容、および位置の正確な3D再構成1501を提供するようにベクトル化されてもよい。この正確な再構成は、本明細書に記載されるタイプの、すなわち、記録セッションから導出される3D標識再構成を、地図内の基準3D標識と関連付けることによる、ビジュアルグローバル測位などのフォローアップアプリケーションのために使用でき、或いは、現実世界の標識サイズについての知識を活用してこの情報を使用して動き再構成からの単眼構造にスケールを正規化することによりスケールドリフトなどの不正確性を補正することを可能にすることによって、単眼ビジュアルオドメトリおよびSLAM記録を洗練するために使用できる。
ローカル地図集約(MAP-1)
この処理ステップは2D上面図高密度オルソフォト再構成を作成し、以前に抽出されたすべての高レベル特徴(例えば、ランドマークおよび/またはレーンマーキング)をその中に埋め込むことによって、ローカル地図を集約する。
高密度オルソフォト再構成のために、まず、疎特徴点群から抽出された点を使用して、ギャップレス地形が推定される。精度要件に応じて、グランド(地面)モデルは、以下のものから構成されてもよい。
・地面として分類された3D特徴点全体にわたる単一の平面、
・各キーフレームの近傍における複数の地面の交点、または、
・地面特徴点クラスタにわたる粗い多角形メッシュ。
各キーフレームの既知の絶対位置および向き、ならびにそれに関連する仮想カメラ(ビジュアルオドメトリ推定によって提供される)を使用して、すべての2D画像情報、すなわち画素色、セグメンテーション情報が高レベル特徴位置とともに、3D地形に投影される。次いで、このパッチの2Dオルソフォトは、地面を垂直に見下ろす仮想正投影カメラ上にデータを再び投影することによって生成され、したがって、風景の鳥瞰図をもたらす。重複データは、カメラ位置推定精度、視野角、距離等に応じて、投影誤差範囲に対して合成される。
グランド(地面)メッシュ生成
「グランド(地面)メッシュ」は、道路網内の任意のグランド(地面)レベル特徴を含むように生成されてもよい。上述のステレオビジュアルオドメトリプロセスから出力されるDSO点群、またはステレオ画像の奥行きデータから直接判定されるステレオ点群は任意選択で、グランド(地面)メッシュを生成するために、セマンティックセグメンテーションプロセスから出力される関連画素クラススコアベクトルと共に使用されてもよい。例えば、セマンティックセグメンテーションから得られたオブジェクトクラスは、「道路」または「レーンマーキング」などの任意のグランド(地面)特徴を選択するために使用することができる。しかし、セマンティックセグメンテーションは完全ではなく、場合によっては、セマンティックセグメンテーションはいくつかの誤った値を与えることがあり、すなわち、いくつかの点を、それらがグランド(地面)上にない場合であっても、グランド(地面)レベル点として選択することがある。例えば、DSO点群内のキーポイントの深さを使用して、グランド(地面)レベル点をさらに選択することができる。場合によっては、例えば、DSO点群が疎すぎる場合、代わりにステレオ点群が使用されてもよい(例えば、画像の第1のセットおよび関連する奥行き地図(デプスマップ)から直接得られる)。実施形態では、DSOおよびステレオ点群の様々な組合せを使用することができる。例えば、ステレオ点群は、DSO点群が疎すぎる領域を補間するために使用されてもよい。実施形態では点群、例えばステレオ点群またはDSO点群のいずれかは、例えば、(セマンティックセグメンテーションによって不正確に分類された自動車、木、および建物を示す点を除去するための)通常のフィルタ、統計的外れ値除去フィルタ、およびRANSACフィルタのうちの1つ以上を使用することによって、フィルタリングすることができ、メッシュはフィルタリングされた点群を使用して作成される。グランド(地面)メッシュは一般に、例えば、図17A~17Cに示されるように、格子型および/または舌型のグランド(地面)メッシュのいずれかを含み得る。
オルソ補正(orthorectify)された道路画像生成
グランド(地面)メッシュは、カメラからの画像及び関連する姿勢と共に使用されて、道路のオルソ補正された画像を生成することができる。例えば、道路の鳥瞰モザイク地理参照画像は、画像がグランド(地面)メッシュ上に投影され、画像内の各画素の画素値が、画像を生成するために使用される画像から検出される環境内の位置の色を表すように、一緒にブレンド/重み付けされる、移動の2D上面図を含むように生成されてもよい。
図16は、複数の2D画像1601をどのように地面に投影することができるか、および道路の画像1602を提供するためにこれらの投影をどのように組み合わせることができるかを示す。例えば、ビジュアルオドメトリを用いてカメラ姿勢が得られると、任意の所望の視点から画像を再投影することが可能である。図16に示されるように、複数の画像が同じ地図エリアに投影され、次いで、適切な重み付けを用いて一緒にブレンドされて、そのエリア内の道路の画像を構築する。これは、道路の正確なオルソ補正された画像を生成するために、カメラの姿勢が知られている記録された画像のすべてを使用して繰り返すことができる。
レーンマーキングセマンティックセグメンテーションで使用される場合、鳥瞰モザイクから判定されるような移動の真っ直ぐなビューを含む地理参照画像を含む直線的に変換された画像(LRI:linearly registered image)を生成することもできる。LRI生成のさらなる詳細は例えば、国際公開第2009/045096号および国際公開第2017/021473号に見出すことができる。
結果として得られる鳥瞰モザイクまたは直線的に変換された画像は、本発明の実施形態においてローカル地図として使用されてもよい。
高レベル特徴検出(DTCT-2)
高レベル特徴検出は例えば、以下に説明するように、レーンマーキング観察を作成するための様々なステップをさらに含むことができる。
レーンマーキングセマンティックセグメンテーション
上述の鳥瞰モザイクおよび/または直線的に変換された画像に加えて、またはその代わりに、画像内の各画素の画素値が、車両環境セマンティックセグメンテーションからの出力として、環境内の位置がレーンマーキングオブジェクトである確率を表すオルソ補正道路画像を生成することもできる。例えば、グレースケール色空間を使用する場合、レーンマーキングオブジェクトである100%の確率が割り当てられた任意の画素は「白」であってもよく、0%の確率を有する任意の画素は「黒」であってもよく、他の画素値はそれぞれの確率に基づいて適切に選択される。このようにして、レーンマーキングオブジェクトを強調表示し、レーンマーキングセマンティックセグメンテーションを実行するためのより明瞭な画像を提供する「フィルタリングされた」グレースケール正投影道路画像を生成することができる。このようなフィルタリングされた画像を図18Bに示す。比較のために、図18Aは同じ初期画像から決定されるが、画素値は初期セマンティックセグメンテーションから判定される位置の最も可能性の高いオブジェクトクラスを示す。観察できるように、レーンマーキングは、図18Aと比較して、図18Bにおいて十分に明瞭である。したがって、この画像は、レーンマーキングオブジェクトが強調表示されたクリーンアップされた道路画像を表す。
レーン観察の作成
フィルタリングされたグレースケール正投影道路画像は典型的には直線的に変換された画像の形式であり、次に、例えば、訓練された畳み込みニュートラルネットを使用して、さらなるレーンマーキングオブジェクト検出および認識を受け、画像内のオブジェクトを特定のタイプのレーンマーキングとして識別および分類する。レーンマーキングクラスの例は、単一の実線、単一の短い破線、単一の長い破線、二重の実線、二重の破線、アイランド境界などのうちの1つ以上を含むことができる。LRI、レーンマーキングオブジェクト、およびレーンマーキングセマンティックセグメンテーションからのクラスを使用して、レーン幾何形状を生成すること、すなわち、例えば、自律運転モジュールによる使用のため、および/またはHD地図への組み込みのために、レーン識別子および幾何形状を示すことが可能である。
例えば、図19では、レーンマーキングセマンティックセグメンテーションからレーンマーキング1901として識別された任意のオブジェクトが抽出されている。次いで、識別されたレーンマーキングは例えば、画像を閾値処理し、二値化することによって、および/または、1つ以上の形態学的アルゴリズムを適用して、ノイズを除去し、データを平滑化することを助けることによって、クリーンアップされてもよい。次に、結果は例えば、識別されフィルタリングされたレーンマーキングの各々の中心に線を生成することによって、スケルトン化される。この結果は、多数のスケルトン化されたレーンマーキング1902を含む図19の右側のパネルに示されている。次いで、アルゴリズムは各分割器(ディバイダ)タイプにわたってループし、各分割器タイプについて線をフィルタリングするステップと、異なるIDで各分割器タイプを分類するステップとを実行する。例えば、図20は、レーンマーキングセマンティックセグメンテーションに基づいて識別された1つの特定の分割器タイプに対する処理を示す。
図21は最終的な結果を示しており、各異なる分割器タイプは、道路画像上で異なるように表されている。
ローカル地図集約(MAP-2)
上述のように、道路網を描写する鳥瞰モザイクまたは直線的に変換された画像は任意選択で、抽出された高レベル特徴(例えば、ランドマークおよび/またはランドマーキング)が埋め込まれた、ローカル地図として使用されてもよい。しかし、代替的に、ローカル地図は例えば、以下に説明するように、抽出された高レベル特徴を単に含むことができる。
観察データグラムの作成
したがって、ランドマーク観察生成およびレーン幾何形状から出力されるランドマーク形状、向き、および画像は、カメラセンサから抽出された、および、たとえば、位置特定プロセスのために、および/または、より正確に現実を反映するようにHD地図を更新するために使用することができる、上述のレーンおよび/またはランドマーク観察などの位置特定された地図データを含む「データグラム」(または「ロードグラム」)を生成するための観察データグラム作成モジュールに出力することができる。換言すれば、データグラムはローカル地図に対応する。データグラムは一般に、HD地図に対するスケーラブルで効率的な更新を可能にするために、最小帯域幅で(例えば、クラウドに)送信することができるそのような地図データの圧縮された断片(スニペット(snippet))である。
したがって、データグラムは、前のステップから出力されたランドマーク観察作成データおよび/またはレーン観察作成データを含むことができる。典型的には、データグラムはランドマーク観察とレーンマーキング観察の両方を含む。しかし、場合によってはランドマーク観察データのみ、またはレーン観察データのみが存在してもよく、その場合、これらのうちの1つ(すなわち、利用可能なデータが存在するもの)のみが、データグラムを生成し、例えば、地図を更新するために使用される。これは、例えば、有用なランドマークが存在しない地方道路セクション、又はレーンマーキングが存在しない場合、又は何らかの理由でデータが取得されない(例えば、車両が利用可能なセンサの一部しか有していない)場合にあり得る。
これらのデータグラムを生成するための一般的な処理フローを図6に示す。図6のフローは、画像取得のステップから開始する。次いで、記録された画像は上述の車両環境セマンティックセグメンテーションおよびビジュアルオドメトリを実行するために、車両環境セマンティックセグメンテーションおよびステレオビジュアルオドメトリモジュールに提供される。次いで、記録された画像および車両環境セマンティックセグメンテーションの結果を使用して、ランドマークを検出および認識することができる。次いで、検出された各ランドマークについて、ランドマーク検出およびビジュアルオドメトリから得られたカメラ姿勢を使用して、ランドマーク観察を作成することができる。これと並行して、ビジュアルオドメトリを使用して得られた車両環境セマンティックセグメンテーションおよびカメラ姿勢および点群の結果を使用して、グランド(地面)メッシュを生成することができる。次に、グランド(地面)メッシュを使用して、オルソ補正された道路画像を生成し、そこで、レーンマーキングセマンティックセグメンテーションのさらなるステップが実行され、そこからレーンマーキング観察が作成され得る。次いで、ランドマークおよびレーンマーキング観察を使用して、ローカル地図表現に組み込むため、またはローカル地図表現として使用するための「データグラム」を作成することができる。一般的な処理フロー、すなわち図5のユニットAの例も図22に示されている。
地図ソースデータのアップロード(UPLD)
うまくマッチングされたローカル地図は、グローバルスケール基準地図の作成および/または保守および更新プロセスに寄与することができる貴重な(価値のある)データを含む。
キーフレーム、分類マスク、および検出された高レベル特徴などの選択されたソースデータは、地図作成および地図更新パッケージとしてバンドルされ、地図作成プロセスへの転送のためにスケジューリングされる。供給されるデータは地図作成および更新の必要性に従って、すなわち、グローバルスケール基準地図のマッピングされていないエリアまたは古くなったエリアを埋める目的で、選択することができる。
ユニットB-グローバル地図ルックアップ及びポーズ推定
グローバル地図セクション検索(DWNLD)
地図セクション検索ステップは、近似位置に対応するグローバルスケール基準地図のサブセクションと、照合(マッチング)されている集約ローカル地図の範囲とを要求し、検索する。
選択されたセクションは、再構成されたローカル地図の範囲とおおよそ一致しているべき、低精度オドメータに関連する所与の粗GPS位置およびコンパスベースの向きなどの、複数の粗測位ソースから導出することができる。
マッチングのために検索された情報層はローカル地図に存在する情報と一致するものとし、以下のようにすることができる。
・好ましくは、ローカル地図にスポットされた、長期的に関連付け可能な高レベル特徴、
・ローカル地図の入力画像に従って昼間、季節、および閲覧方向によって選択された、よく選択された関連付け可能な低レベル特徴、
・互換性のある構成で作成された合成オルソフォト地図セクション。
位置特定及びマッチング(MATCH)
位置特定ステップは、ローカル地図を基準地図セクションと照合(マッチング)することによって実行される。位置特定の品質およびロバスト性は、ローカル地図埋め込みまたは抽出された高レベル特徴の耐久性および安定性を利用することによって達成される。適用可能な技術は、以下の通りである。
・(例えば、RANSACにおけるように)ローカル地図および基準地図内の対応する高レベル特徴およびオブジェクトの関連付け、ならびに、対応する特徴を最良に位置合わせする地図の変換の導出
・(KLTなどの画像誤差回帰アプローチにおけるように)画素強度の差が最小化されるように、ローカル地図の高密度2Dオルソフォト再構成を対応する基準地図のオルソフォトに変換する
・(モーションのバンドル調整からの構造のように)低レベル特徴の対応に従ってキーフレームのポーズ(姿勢)を最適化することによって、ローカルパッチから、および地図から、選択されたキーフレームを3Dマッチングし、位置合わせする。
その結果は、高い精度および正確性を有するグローバル地図内のアップロードされたパッチのグローバルに参照される位置および向きである。
位置応答(RSPND)
グローバル地図ルックアップテーブル及び姿勢(ポーズ)推定ユニットは、信頼性及び精度、全体的なパッチのワイド及びローカル品質、及び/又は地図カバレッジ及び最新性のような、姿勢推定に関する余分な情報と共に、グローバル位置504及び向き(姿勢)506で応答する。
この余分な情報はローカル地図集約及びオブジェクト検出ユニット構成要素によって、外部から提供される測位データに姿勢結果をより正確に組み込み、地図構築の目的でグローバル地図作成及び更新ユニットにデータを提供すべきかどうかを決定するために使用することができる。
ユニットC-グローバル地図作成及び更新
ソースデータ入力(IN)
ソースデータ入力ステップは、地図構築および更新の目的でソースデータを受け取る。データパッケージは、世界規模のソースデータレポジトリに格納され、次の地図処理のために利用可能にされる。
ソースデータ入力ステップはまた、地図構築および調整サービスに、入ってくるジョブおよび未処理のジョブの可用性について通知する。
地図構築及び調整(BUILD)
地図構築および調整ステップは、世界規模のソースデータレポジトリ内の変更および新しく利用可能なデータに関する領域更新通知を受信し、集約する。
進行中の構築および最適化プロセスの一部として、地図構築および調整プロセスは、更新されたすべての領域にわたって繰り返される。
1.更新されたグローバル地図セクションのすべてのソースデータ(新たに追加されたデータを含む)を検索する
2.既存のソースデータを有する新しいデータを組み込み、セクション全体のオドメトリ再構成を更新する
3.更新されたセクションを世界規模のデータレポジトリに格納する
4.更新された地図セクションについて基準地図抽出ステップへ通知する。
セクションワイド地図の再構成および調整は、動き技術からの構造をソースデータの選択された品質サブセットに適用することによって行われる。地理的登録(geo-registered)された地点と共に、検出された高レベルの特徴、選択された低レベルの特徴などの長期の関連付け可能な特徴が関連付けられ、バンドル調整が繰り返し適用される。さらに、地図構築の安定性および精度をさらに向上させるために、関連付け可能な高レベルの特徴を含むサードパーティデータを含めることもできる。
地図構築および調整ステップ、すなわち、図5のユニットCの例が、図23に示されている。
基準地図抽出(XTRCT)
基準地図抽出は、世界規模のソースデータレポジトリ(SDR)から地図マッチングデータを事前に生成する。この地図マッチングデータは、所与の集約ローカル地図をマッチングし、位置合わせするという、位置特定およびマッチングのステップの目的と互換性があるように意図されている。したがって、それは、ローカル地図集約およびオブジェクト検出ユニットによってコンパイルされる集約ローカル地図と同じ情報層から構成することができる。
地図構築および調整ステップと同様に、基準地図抽出ステップは、進行中の生成サービスの一部である。これは、更新されたソースデータセクション毎に繰り返され、以下のようになる。
1.新たに構築された及び/又は調整されたソースデータを検索する
2.(位置特定およびマッチングステップに適切な)圧縮および空間最適化されたマッチングヒント/情報を抽出する。これらのマッチング情報層はさらに、以下を含むことができる。
・改善された関連付けのための任意選択の高レベル特徴データ(すなわち、OCR)
・フィルタリングされた及び品質向上された合成2D上面図高密度オルソフォト再構成(すなわち、KLTベースのフィッティング)
・選択されカテゴライズされた低レベル特徴抽出(すなわち、日中、季節、気象条件などによって)。
3.抽出されたパッチマッチングデータを世界規模のマッチングデータレポジトリ(MDR)に格納する
4.基準地図情報サービスに、発生した変更について通知する。
基準地図情報サービス(SRV)
基準地図情報サービスは、基準地図抽出ステップによって増分的に生成され、提供される基準地図への効率的でスケーラブルなアクセスを提供する。要求された地図セクションについて、サービスは以下のとおりである。
・世界規模の地図データレポジトリから基準地図データを取り出す
・短縮/圧縮された基準地図データバンドルで応答する。
基準地図情報サービスは、キャッシング技術を含んでも含まなくてもよい。
前述の詳細な説明は、例示および説明の目的のために提示されている。網羅的であること、または本明細書に記載の技術を開示された正確な形態に限定することは意図されていない。上記の教示に照らして、多くの修正および変形が可能である。記載された実施形態は、本明細書に記載された技術の原理およびその実用的な用途を最良に説明するために選択され、それによって、他の当業者が様々な実施形態において、意図された特定の使用に適した様々な修正を伴って、本明細書に記載された技術を最良に利用することを可能にする。したがって、本明細書、図面、および/または特許請求の範囲に開示される特徴は、単独で、またはそれらの様々な組み合わせでとられた、様々な実施形態の実現のための材料であり得る。さらに、本発明を様々な実施形態を参照して説明してきたが、添付の特許請求の範囲に記載されている本発明の範囲から逸脱することなく、形態および詳細の様々な変更を行うことができることが、当業者には理解されよう。

Claims (18)

  1. 道路網を走行する車両の地理的位置及び向きを判定するコンピュータ実施方法であって、
    前記道路網を走行する前記車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得することであって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得することと、
    前記取得された画像及び前記関連するカメラ位置の少なくともいくつかを用いて、前記車両が走行している前記道路網のエリアを表すローカル地図表現を生成することと、
    前記生成されたローカル地図表現を、前記車両が走行している前記道路網の前記エリアをカバーする基準地図のセクションと比較することと、
    前記比較に基づいて、前記道路網内の前記車両の前記地理的位置及び向きを判定することと、
    を含み、
    前記ローカル地図表現を生成することは、
    前記画像内の1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理することであって、前記ランドマークオブジェクトは、前記道路網の前記環境におけるランドマークを表す、前記処理することと、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、前記画像の前記関連するカメラ位置を使用して、前記検出されたランドマークオブジェクトを、当該ランドマークオブジェクトが検出された画像から前記一連の画像のうちの1つ以上の隣接する画像にマッピングするための変換のセットを生成することと、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、3次元座標空間における前記ランドマークオブジェクトの表現を、前記マッピングに基づいて生成することと、
    前記環境内の同じランドマークに対応する異なる画像から生成された3次元表現のセットを判定することと、
    3次元表現の前記判定されたセットから、3次元表現の前記セットによって表される前記環境内の前記ランドマークを示すデータを生成することと、
    を含むことを特徴とする方法。
  2. 前記比較に基づいて、前記基準地図のセクション内の1つ以上のエラーを識別することと、
    前記1つ以上のエラーが識別されると、前記ローカル地図表現、または前記ローカル地図表現を示すデータを、前記基準地図のセクションを更新するため、及び/又は、新しい基準地図のセクションを生成するために、リモートサーバへ提供することと、
    をさらに含むことを特徴とする請求項1に記載の方法。
  3. 基準画像に対する前記ローカル地図表現を生成するために使用される前記画像のうちの前記少なくともいくつかに対する相対カメラ位置を判定することを含み、選択的に、前記基準画像は、前記一連の画像内の第1の画像であることを特徴とする請求項1又は2に記載の方法。
  4. 前記画像に対して画素単位のセマンティックセグメンテーションを実行することを含み、前記画素単位のセマンティックセグメンテーションの結果は、前記画像の各々に対して、各画素に、当該画素に対する各オブジェクトクラスの確率を示すオブジェクトクラスまたはオブジェクトクラスベクトルが割り当てられることであることを特徴とする請求項1乃至3の何れか1項に記載の方法。
  5. 1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理することと、前記検出された1つ以上のランドマークオブジェクトを使用して、前記ローカル地図表現に含めるためのランドマーク観察特徴を生成することとを含み、
    前記ランドマーク観察特徴は、ランドマークの位置と、方向と、形状とを含むことを特徴とする請求項1乃至4の何れか1項に記載の方法。
  6. 道路網の環境内の1つ以上のランドマークを識別するコンピュータ実施方法であって、
    前記道路網を走行する車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の前記環境を反映する一連の画像を取得することであって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得することと、
    前記画像内の1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理することであって、前記ランドマークオブジェクトは、前記道路網の前記環境におけるランドマークを表す、前記処理することと、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、前記画像の前記関連するカメラ位置を使用して、前記検出されたランドマークオブジェクトを、当該ランドマークオブジェクトが検出された前記画像から前記一連の画像のうちの1つ以上の隣接する画像にマッピングするための変換のセットを生成することと、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、3次元座標空間における前記ランドマークオブジェクトの表現を、前記マッピングに基づいて生成することと、
    前記環境内の同じランドマークに対応する異なる画像から生成された3次元表現のセットを判定することと、
    3次元表現の前記判定されたセットから、3次元表現の前記セットによって表される前記環境内の前記ランドマークを示すデータを生成することと、
    を含むことを特徴とする方法。
  7. 前記ランドマークを示す前記データは、前記環境における前記ランドマークの位置および向きを示す情報を含むことを特徴とする請求項6に記載の方法。
  8. 前記ランドマークの2次元輪郭を判定するために、及び/又は、前記座標空間における前記ランドマークの再構成を生成するために、前記3次元表現を各セットにおいて融合することを含むことを特徴とする請求項6又は7に記載の方法。
  9. 1つ以上のレーンマーキングオブジェクトを検出するために前記画像の少なくともいくつかを処理することと、前記検出された1つ以上のレーンマーキングオブジェクトを使用して、前記ローカル地図表現に含めるためのレーンマーキング観察特徴を生成することとを含むことを特徴とする請求項1乃至5の何れか1項に記載の方法。
  10. 処理された画像の各画素が少なくとも、前記画素が前記環境内のレーンマーキングを表す確率値を割り当てられるように、セマンティックセグメンテーションを実行するために前記画像の少なくともいくつかを処理することと、
    前記車両が走行している前記道路網のエリアを表す道路画像を生成するために前記一連の画像の少なくともいくつかを処理することであって、前記道路画像内の各画素の画素値は、前記道路画像を生成するために使用される前記画像内の対応する画素の前記割り当てられた確率値に基づくものである、前記処理することと、
    前記画像内の1つ以上のレーンマーキングオブジェクトを検出及び分類するために畳み込みニュートラルネットワークを使用して前記道路画像を処理することであって、前記レーンマーキングオブジェクトは、前記道路画像に描かれた1つ以上の道路上のレーンマーキングを表す、前記処理することと、
    前記検出及び分類されたレーンマーキングオブジェクトを使用して、前記レーンマーキングオブジェクトによって表される前記レーンマーキングの位置および幾何形状を判定するために、前記道路画像を処理することと、
    を含むことを特徴とする請求項1乃至5、及び9の何れか1項に記載の方法。
  11. 処理された画像の各画素が少なくとも、前記画素が前記環境内のレーンマーキングを表す確率値を割り当てられるように、セマンティックセグメンテーションを実行するために前記画像の少なくともいくつかを処理することと、
    前記車両が走行している前記道路網のエリアを表す道路画像を生成するために前記一連の画像の少なくともいくつかを処理することであって、前記道路画像内の各画素の画素値は、前記道路画像を生成するために使用される前記画像内の対応する画素の前記割り当てられた確率値に基づくものである、前記処理することと、
    前記画像内の1つ以上のレーンマーキングオブジェクトを検出及び分類するために畳み込みニュートラルネットを使用して前記道路画像を処理することであって、前記レーンマーキングオブジェクトは、前記道路画像に描かれた1つ以上の道路上のレーンマーキングを表す、前記処理することと、
    前記検出及び分類されたレーンマーキングオブジェクトを使用して、前記レーンマーキングオブジェクトによって表される前記レーンマーキングの位置および幾何形状を判定するために、前記道路画像を処理することと、
    を含むことを特徴とする請求項6乃至8の何れか1項に記載の方法。
  12. 前記車両が移動している前記道路網のエリアの画像を生成して前記ローカル地図表現に含めるために複数の画像を処理することを含み、前記道路網の前記エリアの前記画像は、ビジュアルオドメトリを使用して複数の異なる画像を3次元座標フレームに投影することによって生成される、ことを特徴とする請求項1乃至5の何れか1項に記載の方法。
  13. 道路網を走行する車両の地理的位置および向きを判定するシステムであって、
    前記道路網を走行する前記車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の環境を反映する一連の画像を取得する手段であって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得する手段と、
    前記取得された画像及び前記関連するカメラ位置の少なくともいくつかを使用して、前記車両が走行している前記道路網のエリアを表すローカル地図表現を生成する手段と、
    前記生成されたローカル地図表現を、地図レポジトリから抽出された基準地図のセクションと比較する手段であって、前記基準地図のセクションは、前記車両が走行している前記道路網の前記エリアをカバーする、前記比較する手段と、
    前記比較に基づいて、前記道路網内の前記車両の前記地理的位置および向きを判定する手段と、
    を備え、前記ローカル地図表現を生成する手段は、
    前記画像内の1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理する手段であって、前記ランドマークオブジェクトは、前記道路網の前記環境におけるランドマークを表す、前記処理する手段と、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、前記画像の前記関連するカメラ位置を使用して、前記検出されたランドマークオブジェクトを、当該ランドマークオブジェクトが検出された画像から前記一連の画像のうちの1つ以上の隣接する画像にマッピングするための変換のセットを生成する手段と、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、3次元座標空間における前記ランドマークオブジェクトの表現を、前記マッピングに基づいて生成する手段と、
    前記環境内の同じランドマークに対応する異なる画像から生成された3次元表現のセットを判定する手段と、
    3次元表現の前記判定されたセットから、3次元表現の前記セットによって表される前記環境内の前記ランドマークを示すデータを生成する手段と、
    を備えることを特徴とするシステム。
  14. 道路網の環境内の1つ以上のランドマークを識別するシステムであって、
    前記道路網を走行する車両と関連付けられた1つ以上のカメラから、前記車両が走行している前記道路網の前記環境を反映する一連の画像を取得する手段であって、前記画像の各々は、前記画像が記録された関連するカメラ位置を有する、前記取得する手段と、
    前記画像内の1つ以上のランドマークオブジェクトを検出するために前記画像の少なくともいくつかを処理する手段であって、前記ランドマークオブジェクトは、前記道路網の前記環境内のランドマークを表す、前記処理する手段と、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、前記画像の前記関連するカメラ位置を使用して、前記検出されたランドマークオブジェクトを、当該ランドマークオブジェクトが検出された前記画像から前記一連の画像のうちの1つ以上の隣接する画像にマッピングするための変換のセットを生成する手段と、
    前記一連の画像の各画像において検出された各ランドマークオブジェクトについて、3次元座標空間における前記ランドマークオブジェクトの表現を、前記マッピングに基づいて生成する手段と、
    前記環境内の同じランドマークに対応する異なる画像から生成された3次元表現のセットを判定する手段と、
    3次元表現の前記判定されたセットから、3次元表現の前記セットによって表される前記環境内の前記ランドマークを示すデータを生成する手段と、
    を備えることを特徴とするシステム。
  15. 1つ以上のプロセッサを備えるコンピューティングデバイスによって読み取られると、請求項1乃至5、9、10及び12の何れか1項に記載の方法に従って前記コンピューティングデバイスを動作させる命令を含むコンピュータプログラム。
  16. 請求項15に記載のコンピュータプログラムを有するコンピュータ可読媒体。
  17. 1つ以上のプロセッサを備えるコンピューティングデバイスによって読み取られると、請求項6乃至8、及び11の何れか1項に記載の方法に従って前記コンピューティングデバイスを動作させる命令を含むコンピュータプログラム。
  18. 請求項17に記載のコンピュータプログラムを有するコンピュータ可読媒体。
JP2022189460A 2016-12-09 2022-11-28 ビデオベースの位置決め及びマッピングの方法及びシステム Active JP7485749B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP16203258.5 2016-12-09
EP16203258 2016-12-09
GB1714381.9 2017-09-07
GBGB1714381.9A GB201714381D0 (en) 2017-09-07 2017-09-07 Sign tracking and tracing
JP2019529215A JP7213809B2 (ja) 2016-12-09 2017-12-11 ビデオベースの位置決め及びマッピングの方法及びシステム
PCT/EP2017/082293 WO2018104563A2 (en) 2016-12-09 2017-12-11 Method and system for video-based positioning and mapping

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019529215A Division JP7213809B2 (ja) 2016-12-09 2017-12-11 ビデオベースの位置決め及びマッピングの方法及びシステム

Publications (2)

Publication Number Publication Date
JP2023022193A JP2023022193A (ja) 2023-02-14
JP7485749B2 true JP7485749B2 (ja) 2024-05-16

Family

ID=60888377

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019529215A Active JP7213809B2 (ja) 2016-12-09 2017-12-11 ビデオベースの位置決め及びマッピングの方法及びシステム
JP2022189460A Active JP7485749B2 (ja) 2016-12-09 2022-11-28 ビデオベースの位置決め及びマッピングの方法及びシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019529215A Active JP7213809B2 (ja) 2016-12-09 2017-12-11 ビデオベースの位置決め及びマッピングの方法及びシステム

Country Status (6)

Country Link
US (3) US11761790B2 (ja)
EP (1) EP3551967A2 (ja)
JP (2) JP7213809B2 (ja)
KR (2) KR20240005161A (ja)
CN (2) CN117824676A (ja)
WO (1) WO2018104563A2 (ja)

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160291154A1 (en) * 2015-04-01 2016-10-06 Vayavision, Ltd. Apparatus for acquiring 3-dimensional maps of a scene
US10066946B2 (en) 2016-08-26 2018-09-04 Here Global B.V. Automatic localization geometry detection
JP7329298B2 (ja) * 2016-10-11 2023-08-18 モービルアイ ビジョン テクノロジーズ リミテッド 検出された障壁に基づく車両のナビゲーション
EP3343172B1 (en) * 2017-01-03 2024-03-13 iOnRoad Technologies Ltd. Creation and use of enhanced maps
DE112017006840B4 (de) * 2017-01-16 2023-11-02 Fujitsu Limited Informationsverarbeitungsprogramm, Informationsverarbeitungsverfahren und Informationsverarbeitungsvorrichtung
US10430968B2 (en) * 2017-03-14 2019-10-01 Ford Global Technologies, Llc Vehicle localization using cameras
CN109923488A (zh) * 2017-04-27 2019-06-21 深圳市大疆创新科技有限公司 使用可移动物体生成实时地图的系统和方法
US10990829B2 (en) * 2017-04-28 2021-04-27 Micro Focus Llc Stitching maps generated using simultaneous localization and mapping
US11175146B2 (en) * 2017-05-11 2021-11-16 Anantak Robotics Inc. Autonomously moving machine and method for operating an autonomously moving machine
DE102017211607A1 (de) * 2017-07-07 2019-01-10 Robert Bosch Gmbh Verfahren zur Verifizierung einer digitalen Karte eines höher automatisierten Fahrzeugs (HAF), insbesondere eines hochautomatisierten Fahrzeugs
JP6838522B2 (ja) * 2017-08-10 2021-03-03 トヨタ自動車株式会社 画像収集システム、画像収集方法、画像収集装置、および記録媒体
DE102017214921A1 (de) * 2017-08-25 2019-02-28 Robert Bosch Gmbh Mobiles Gerät, Server und Verfahren zum Aktualisieren und Bereitstellen einer hochgenauen Karte
DE102017215718B4 (de) * 2017-09-07 2019-06-13 Audi Ag Verfahren zum Auswerten eines optischen Erscheinungsbildes in einer Fahrzeugumgebung und Fahrzeug
DE102017122440A1 (de) * 2017-09-27 2019-03-28 Valeo Schalter Und Sensoren Gmbh Verfahren zum Lokalisieren und Weiterbilden einer digitalen Karte durch ein Kraftfahrzeug; Lokalisierungseinrichtung
GB2568286B (en) 2017-11-10 2020-06-10 Horiba Mira Ltd Method of computer vision based localisation and navigation and system for performing the same
JP6932205B2 (ja) * 2017-11-30 2021-09-08 三菱電機株式会社 三次元地図生成システム、三次元地図生成方法および三次元地図生成プログラム
US11867522B2 (en) * 2018-01-04 2024-01-09 Pioneer Corporation Map information-providing system, map information-providing method, and map information-providing program
US10733470B2 (en) * 2018-01-25 2020-08-04 Geomni, Inc. Systems and methods for rapid alignment of digital imagery datasets to models of structures
US11365976B2 (en) * 2018-03-02 2022-06-21 Nvidia Corporation Semantic label based filtering of objects in an image generated from high definition map data
US11093759B2 (en) * 2018-03-06 2021-08-17 Here Global B.V. Automatic identification of roadside objects for localization
US11537139B2 (en) 2018-03-15 2022-12-27 Nvidia Corporation Determining drivable free-space for autonomous vehicles
US11087492B2 (en) * 2018-03-21 2021-08-10 ISVision America Methods for identifying location of automated guided vehicles on a mapped substrate
US10969237B1 (en) * 2018-03-23 2021-04-06 Apple Inc. Distributed collection and verification of map information
DE112019002126T5 (de) * 2018-04-26 2021-01-07 Sony Corporation Positionsschätzungsvorrichtung, positionsschätzungsverfahren und programm dafür
KR102420568B1 (ko) * 2018-04-27 2022-07-13 삼성전자주식회사 차량의 위치를 결정하는 방법 및 이를 위한 차량
US11334753B2 (en) * 2018-04-30 2022-05-17 Uatc, Llc Traffic signal state classification for autonomous vehicles
WO2019241782A1 (en) * 2018-06-16 2019-12-19 Artisense Corporation Deep virtual stereo odometry
WO2020006667A1 (en) 2018-07-02 2020-01-09 Beijing DIDI Infinity Technology and Development Co., Ltd Vehicle navigation system using pose estimation based on point cloud
WO2020008221A1 (ja) * 2018-07-04 2020-01-09 日産自動車株式会社 走行支援方法及び走行支援装置
US11068627B2 (en) * 2018-08-09 2021-07-20 Zoox, Inc. Procedural world generation
CN109063163B (zh) * 2018-08-14 2022-12-02 腾讯科技(深圳)有限公司 一种音乐推荐的方法、装置、终端设备和介质
US10810466B2 (en) * 2018-08-23 2020-10-20 Fuji Xerox Co., Ltd. Method for location inference from map images
CN109141444B (zh) * 2018-08-28 2019-12-06 北京三快在线科技有限公司 定位方法、装置、存储介质及移动设备
CN109285220B (zh) * 2018-08-30 2022-11-15 阿波罗智能技术(北京)有限公司 一种三维场景地图的生成方法、装置、设备及存储介质
KR102233260B1 (ko) * 2018-10-02 2021-03-29 에스케이텔레콤 주식회사 정밀 지도 업데이트 장치 및 방법
WO2020078572A1 (en) * 2018-10-19 2020-04-23 Harman Becker Automotive Systems Gmbh Global map creation using fleet trajectories and observations
CN109544559B (zh) * 2018-10-19 2022-07-08 深圳大学 图像语义分割方法、装置、计算机设备和存储介质
US11182607B2 (en) * 2018-10-26 2021-11-23 Here Global B.V. Method, apparatus, and system for determining a ground control point from image data using machine learning
GB201818357D0 (en) * 2018-11-12 2018-12-26 Forsberg Services Ltd Locating system
US11003920B2 (en) * 2018-11-13 2021-05-11 GM Global Technology Operations LLC Detection and planar representation of three dimensional lanes in a road scene
DE102018219602A1 (de) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Verfahren zum Erkennen von Kartenfehlern
CN111256693B (zh) * 2018-12-03 2022-05-13 北京魔门塔科技有限公司 一种计算位姿变化方法及车载终端
US11188765B2 (en) * 2018-12-04 2021-11-30 Here Global B.V. Method and apparatus for providing real time feature triangulation
EP3667236B1 (en) * 2018-12-13 2023-09-06 Ordnance Survey Limited A method of determining position data
TWI682361B (zh) * 2018-12-14 2020-01-11 財團法人工業技術研究院 路面影像重建與載具定位之方法與系統
US11030457B2 (en) 2018-12-17 2021-06-08 Here Global B.V. Lane feature detection in aerial images based on road geometry
DE102018222169A1 (de) * 2018-12-18 2020-06-18 Eidgenössische Technische Hochschule Zürich Bordeigenes visuelles Ermitteln kinematischer Messgrößen eines Schienenfahrzeugs
US10922558B2 (en) 2018-12-20 2021-02-16 Here Global B.V. Method and apparatus for localization using search space pruning
US11790667B2 (en) 2018-12-20 2023-10-17 Here Global B.V. Method and apparatus for localization using search space pruning
DE102018133441A1 (de) 2018-12-21 2020-06-25 Volkswagen Aktiengesellschaft Verfahren und System zum Bestimmen von Landmarken in einer Umgebung eines Fahrzeugs
US10955841B2 (en) * 2018-12-28 2021-03-23 At&T Intellectual Property I, L.P. Autonomous vehicle sensor security system
US11798293B2 (en) * 2018-12-28 2023-10-24 Sony Group Corporation Optical vehicle positioning
US11675083B2 (en) * 2019-01-03 2023-06-13 Nvidia Corporation Removal of ephemeral points from point cloud of a high-definition map for navigating autonomous vehicles
CN112005079B (zh) * 2019-01-03 2022-08-09 北京嘀嘀无限科技发展有限公司 用于更新高清地图的系统和方法
US10823562B1 (en) * 2019-01-10 2020-11-03 State Farm Mutual Automobile Insurance Company Systems and methods for enhanced base map generation
KR102604298B1 (ko) * 2019-01-28 2023-11-17 에스케이텔레콤 주식회사 랜드마크 위치 추정 장치와 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨터 프로그램을 저장하는 컴퓨터 판독 가능한 기록매체
JP7086111B2 (ja) * 2019-01-30 2022-06-17 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッド 自動運転車のlidar測位に用いられるディープラーニングに基づく特徴抽出方法
CN112654836A (zh) * 2019-02-04 2021-04-13 御眼视觉技术有限公司 用于车辆导航的系统和方法
EP3693702A1 (en) * 2019-02-05 2020-08-12 Visteon Global Technologies, Inc. Method for localizing a vehicle
GB2622490A (en) * 2019-02-14 2024-03-20 Mobileye Vision Technologies Ltd Systems and methods for vehicle navigation
US11648945B2 (en) 2019-03-11 2023-05-16 Nvidia Corporation Intersection detection and classification in autonomous machine applications
CN110084095B (zh) * 2019-03-12 2022-03-25 浙江大华技术股份有限公司 车道线检测方法、车道线检测装置和计算机存储介质
US11402220B2 (en) 2019-03-13 2022-08-02 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11287267B2 (en) 2019-03-13 2022-03-29 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11255680B2 (en) 2019-03-13 2022-02-22 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11096026B2 (en) 2019-03-13 2021-08-17 Here Global B.V. Road network change detection and local propagation of detected change
US11287266B2 (en) 2019-03-13 2022-03-29 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11280622B2 (en) 2019-03-13 2022-03-22 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
JP7245084B2 (ja) * 2019-03-15 2023-03-23 日立Astemo株式会社 自動運転システム
US11199415B2 (en) * 2019-03-26 2021-12-14 Lyft, Inc. Systems and methods for estimating vehicle position based on contextual sensor information
US11972507B2 (en) * 2019-04-03 2024-04-30 Nanjing Polagis Technology Co. Ltd Orthophoto map generation method based on panoramic map
DE102019206036A1 (de) 2019-04-26 2020-10-29 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung der geografischen Position und Orientierung eines Fahrzeugs
US11176374B2 (en) * 2019-05-01 2021-11-16 Microsoft Technology Licensing, Llc Deriving information from images
DE102019206336A1 (de) * 2019-05-03 2020-11-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erstellen einer ersten Karte
CN110110787A (zh) * 2019-05-06 2019-08-09 腾讯科技(深圳)有限公司 目标的位置获取方法、装置、计算机设备及存储介质
WO2020224761A1 (en) * 2019-05-06 2020-11-12 Zenuity Ab Automated map making and positioning
US11657072B2 (en) 2019-05-16 2023-05-23 Here Global B.V. Automatic feature extraction from imagery
US11295161B2 (en) * 2019-05-22 2022-04-05 Zoox, Inc. Localization using semantically segmented images
US10854012B1 (en) * 2019-05-29 2020-12-01 Dell Products, L.P. Concealing loss of distributed simultaneous localization and mapping (SLAM) data in edge cloud architectures
CN112069856A (zh) * 2019-06-10 2020-12-11 商汤集团有限公司 地图生成方法、驾驶控制方法、装置、电子设备及系统
US11468591B2 (en) * 2019-06-13 2022-10-11 Nec Corporation Scene attribute annotation of complex road typographies
US11727272B2 (en) 2019-06-19 2023-08-15 Nvidia Corporation LIDAR-based detection of traffic signs for navigation of autonomous vehicles
KR102209655B1 (ko) * 2019-06-21 2021-01-29 경북대학교 산학협력단 이동체를 제어하기 위한 주변 객체 검출 장치 및 방법
US11549815B2 (en) * 2019-06-28 2023-01-10 GM Cruise Holdings LLC. Map change detection
GB201909556D0 (en) 2019-07-03 2019-08-14 Tomtom Traffic Bv Collecting user-contributed data relating to a navibable network
US11549816B2 (en) * 2019-07-31 2023-01-10 Here Global B.V. Systems and methods for controlling mapping information inaccuracies
CN112307848B (zh) * 2019-08-01 2024-04-30 惠普发展公司,有限责任合伙企业 检测视频会议中的欺骗说话者
TWI712993B (zh) * 2019-08-19 2020-12-11 國立雲林科技大學 應用於半特徵視覺式同步定位與建圖方法的半特徵視覺里程計
CN112446915B (zh) * 2019-08-28 2024-03-29 北京初速度科技有限公司 一种基于图像组的建图方法及装置
DE112020004139T5 (de) * 2019-08-31 2022-05-12 Nvidia Corporation Erstellung von karten und lokalisierung für anwendungen im bereich des autonomen fahrens
EP4026049A4 (en) * 2019-09-05 2022-11-02 Netradyne, Inc. VEHICLE SENSOR SYSTEM CALIBRATION
CN111936946A (zh) * 2019-09-10 2020-11-13 北京航迹科技有限公司 一种定位系统和方法
US10762650B1 (en) * 2019-09-13 2020-09-01 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for estimating depth using a monocular camera
GB201914100D0 (en) 2019-09-30 2019-11-13 Tomtom Global Int B V Methods and systems using digital map data
US11062455B2 (en) 2019-10-01 2021-07-13 Volvo Car Corporation Data filtering of image stacks and video streams
WO2021069967A1 (en) * 2019-10-08 2021-04-15 Mobileye Vision Technologies Ltd. Systems and methods for vehicle navigation
JP7327077B2 (ja) * 2019-10-18 2023-08-16 トヨタ自動車株式会社 路上障害物検知装置、路上障害物検知方法、及び路上障害物検知プログラム
KR102255595B1 (ko) * 2019-10-23 2021-05-26 국민대학교산학협력단 사용자 관점의 자율주행 정보 제공 장치 및 방법
JP2022553805A (ja) * 2019-11-04 2022-12-26 クリアモーション,インコーポレイテッド 複車線道路の特徴付け及び追跡アルゴリズム
WO2021095361A1 (ja) * 2019-11-11 2021-05-20 株式会社デンソー 演算装置および学習済みモデル
KR102322000B1 (ko) * 2019-11-12 2021-11-04 네이버랩스 주식회사 비주얼 로컬리제이션과 오도메트리를 기반으로 한 경로 추적 방법 및 시스템
US11455813B2 (en) * 2019-11-14 2022-09-27 Nec Corporation Parametric top-view representation of complex road scenes
US11755917B2 (en) * 2019-11-15 2023-09-12 Waymo Llc Generating depth from camera images and known depth data using neural networks
CN112837393B (zh) * 2019-11-22 2024-04-09 中国航天系统工程有限公司 基于车辆位置数据的特大城市矢量路网的生成方法及系统
US10928830B1 (en) * 2019-11-23 2021-02-23 Ha Q Tran Smart vehicle
US10867190B1 (en) 2019-11-27 2020-12-15 Aimotive Kft. Method and system for lane detection
WO2021106388A1 (ja) * 2019-11-29 2021-06-03 ソニー株式会社 情報処理装置、情報処理方法および情報処理プログラム
CN112989900A (zh) * 2019-12-13 2021-06-18 深动科技(北京)有限公司 一种精确检测交通标志或标线的方法
DE102020200572A1 (de) * 2019-12-18 2021-06-24 Conti Temic Microelectronic Gmbh Verfahren zur verbesserten Erkennung von Landmarken und Fußgängern
US11681047B2 (en) 2019-12-19 2023-06-20 Argo AI, LLC Ground surface imaging combining LiDAR and camera data
GB201918932D0 (en) 2019-12-20 2020-02-05 Tomtom Traffic Bv Methods of generating and transmitting positional data
TWI725681B (zh) * 2019-12-24 2021-04-21 財團法人工業技術研究院 無人載具語意地圖建置系統及其建置方法
US11037328B1 (en) 2019-12-31 2021-06-15 Lyft, Inc. Overhead view image generation
US11244500B2 (en) 2019-12-31 2022-02-08 Woven Planet North America, Inc. Map feature extraction using overhead view images
US20210199446A1 (en) * 2019-12-31 2021-07-01 Lyft, Inc. Overhead view image generation
US11288522B2 (en) 2019-12-31 2022-03-29 Woven Planet North America, Inc. Generating training data from overhead view images
US20210200237A1 (en) * 2019-12-31 2021-07-01 Lyft, Inc. Feature coverage analysis
US20230175852A1 (en) * 2020-01-03 2023-06-08 Mobileye Vision Technologies Ltd. Navigation systems and methods for determining object dimensions
CN111274974B (zh) * 2020-01-21 2023-09-01 阿波罗智能技术(北京)有限公司 定位元素检测方法、装置、设备和介质
US20210237774A1 (en) * 2020-01-31 2021-08-05 Toyota Research Institute, Inc. Self-supervised 3d keypoint learning for monocular visual odometry
US11579622B2 (en) * 2020-01-31 2023-02-14 Amazon Technologies, Inc. Systems and methods for utilizing images to determine the position and orientation of a vehicle
CN111383286B (zh) * 2020-02-11 2023-10-27 北京迈格威科技有限公司 定位方法、装置、电子设备及可读存储介质
JP2021136466A (ja) * 2020-02-21 2021-09-13 ヤマハ発動機株式会社 船舶の操船のためのシステム、方法、および船舶
DE102020202267A1 (de) 2020-02-21 2021-09-23 Denso Corporation Verfahrenspositionsbestimmung von Fahrzeugen und Vorrichtung zur Ausführung des Verfahrens
US11518402B2 (en) 2020-02-28 2022-12-06 Nissan North America, Inc. System and method for controlling a vehicle using contextual navigation assistance
US11731639B2 (en) * 2020-03-03 2023-08-22 GM Global Technology Operations LLC Method and apparatus for lane detection on a vehicle travel surface
SE2050258A1 (en) * 2020-03-06 2021-09-07 Scania Cv Ab Machine learning based system, methods, and control arrangement for positioning of an agent
US20230004797A1 (en) * 2020-03-10 2023-01-05 Sri International Physics-guided deep multimodal embeddings for task-specific data exploitation
CN113435227B (zh) * 2020-03-23 2023-04-07 阿里巴巴集团控股有限公司 地图生成及车辆定位方法、系统、设备及存储介质
CN111427373B (zh) * 2020-03-24 2023-11-24 上海商汤临港智能科技有限公司 一种位姿确定方法、装置、介质和设备
US11682297B2 (en) 2020-03-31 2023-06-20 Flir Systems Trading Belgium Bvba Real-time scene mapping to GPS coordinates in traffic sensing or monitoring systems and methods
CN111144388B (zh) * 2020-04-03 2020-07-14 速度时空信息科技股份有限公司 一种基于单目影像的道路标志标线的更新方法
US11994408B2 (en) 2020-04-14 2024-05-28 Toyota Research Institute, Inc. Incremental map building using learnable features and descriptors
US11232582B2 (en) 2020-04-21 2022-01-25 Here Global B.V. Visual localization using a three-dimensional model and image segmentation
WO2021212294A1 (en) * 2020-04-21 2021-10-28 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for determining a two-dimensional map
CN111553244B (zh) * 2020-04-24 2023-05-26 中国电建集团成都勘测设计研究院有限公司 基于自动定位定向技术的水土保持监测方法
DE102020112482A1 (de) 2020-05-08 2021-11-11 Car.Software Estonia As Verfahren und Vorrichtung zum Bestimmen einer Position eines Fahrzeugs in einem Straßennetzwerk
US11551363B2 (en) * 2020-06-04 2023-01-10 Toyota Research Institute, Inc. Systems and methods for self-supervised residual flow estimation
WO2021252925A1 (en) * 2020-06-12 2021-12-16 University Of Central Florida Research Foundation, Inc. Cooperative lidar object detection via feature sharing in deep networks
CN113806380B (zh) * 2020-06-16 2024-01-26 财团法人车辆研究测试中心 路口动态图像资源更新共享系统及方法
US11682124B2 (en) * 2020-06-29 2023-06-20 Lytt, inc. Systems and methods for transferring map data between different maps
US11972576B2 (en) * 2020-06-30 2024-04-30 Lyft, Inc. Generating and fusing reconstructions using overlapping map segments
US11691648B2 (en) * 2020-07-24 2023-07-04 SafeAI, Inc. Drivable surface identification techniques
US20220042817A1 (en) * 2020-08-04 2022-02-10 Toyota Research Institute, Inc. Systems and methods for map verification
SG10202007811QA (en) * 2020-08-14 2021-11-29 Grabtaxi Holdings Pte Ltd Method and device for generating map data
CN111950561A (zh) * 2020-08-25 2020-11-17 桂林电子科技大学 一种基于语义分割的剔除语义slam动态点的方法
US11550068B2 (en) * 2020-08-29 2023-01-10 Google Llc Modeling mutable environmental structures
US11508080B2 (en) * 2020-09-15 2022-11-22 Toyota Research Institute, Inc. Systems and methods for generic visual odometry using learned features via neural camera models
US11860304B2 (en) * 2020-10-01 2024-01-02 Huawei Technologies Co., Ltd. Method and system for real-time landmark extraction from a sparse three-dimensional point cloud
DE102020212771A1 (de) 2020-10-09 2022-05-05 Zf Friedrichshafen Ag Computerimplementiertes Verfahren und Computerprogramm zur Trajektorienplanung für ein automatisiertes System und Rechensystem eingebettet in ein automatisiertes System zur Trajektorienplanung und/oder Regelung und/oder Steuerung
US11623661B2 (en) * 2020-10-12 2023-04-11 Zoox, Inc. Estimating ground height based on lidar data
US11976939B2 (en) * 2020-10-12 2024-05-07 Nvidia Corporation High-definition maps and localization for road vehicles
KR102289752B1 (ko) * 2020-10-13 2021-08-13 주식회사 스페이스소프트인더스트리 Gps 음영 지역에서 경로 비행을 수행하는 드론 및 그 방법
US11189049B1 (en) 2020-10-16 2021-11-30 Ford Global Technologies, Llc Vehicle neural network perception and localization
CN112364822B (zh) * 2020-11-30 2022-08-19 重庆电子工程职业学院 一种自动驾驶视频语义分割系统及方法
KR102467858B1 (ko) * 2020-12-02 2022-11-17 서울대학교산학협력단 영상 기반의 협력적 동시 측위 및 지도 작성 시스템 및 방법
KR102633705B1 (ko) * 2020-12-03 2024-02-06 재단법인대구경북과학기술원 자율주행을 위한 차량의 위치추정 장치 및 방법
US11670088B2 (en) 2020-12-07 2023-06-06 Ford Global Technologies, Llc Vehicle neural network localization
DE102020215461A1 (de) * 2020-12-08 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Trainieren eines Bildgenerators
CN112560684B (zh) * 2020-12-16 2023-10-24 阿波罗智联(北京)科技有限公司 车道线检测方法、装置、电子设备、存储介质以及车辆
JP7406480B2 (ja) 2020-12-18 2023-12-27 株式会社豊田中央研究所 地図生成装置、地図生成方法、およびコンピュータプログラム
DE102020134119B3 (de) * 2020-12-18 2021-12-23 Audi Aktiengesellschaft Verfahren zur Lokalisierung eines Kraftfahrzeugs in einer Assistenzkarte, Kraftfahrzeug, Computerprogramm und elektronisch lesbarer Datenträger
US11776281B2 (en) 2020-12-22 2023-10-03 Toyota Research Institute, Inc. Systems and methods for traffic light detection and classification
CN112328730B (zh) * 2021-01-04 2021-04-02 腾讯科技(深圳)有限公司 一种地图数据更新的方法、相关装置、设备及存储介质
CN112686197B (zh) * 2021-01-07 2022-08-19 腾讯科技(深圳)有限公司 一种数据处理方法和相关装置
EP4027112A1 (en) * 2021-01-11 2022-07-13 Aptiv Technologies Limited Methods and system for determining a location of an object
US11747164B2 (en) * 2021-01-13 2023-09-05 GM Global Technology Operations LLC Methods for multi-dimensional lane matching for autonomous vehicle localization
CN112818866B (zh) * 2021-02-02 2023-11-07 苏州挚途科技有限公司 车辆定位的方法、装置及电子设备
US11514685B2 (en) 2021-02-17 2022-11-29 Toyota Research Institute, Inc. End-to-end signalized intersection transition state estimator with scene graphs over semantic keypoints
WO2022186256A1 (ja) * 2021-03-04 2022-09-09 株式会社ソシオネクスト マップ情報更新方法
JP2022137534A (ja) * 2021-03-09 2022-09-22 本田技研工業株式会社 地図生成装置および車両位置認識装置
WO2022208664A1 (ja) * 2021-03-30 2022-10-06 日本電気株式会社 画像処理装置、画像処理方法、プログラム
WO2022226529A1 (en) * 2021-04-22 2022-10-27 Continental Automotive Systems, Inc. Distributed multi-vehicle localization for gps-denied environments
DE102021111325A1 (de) 2021-05-03 2022-11-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Assistenzeinrichtung zum Unterstützen eines Fahrbetriebs eines Kraftfahrzeugs und Kraftfahrzeug
DE102021205852A1 (de) 2021-06-10 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Bereitstellen von Konturdaten hinsichtlich einer Oberflächenkontur einer durch ein Fahrzeug befahrenen Fahrbahnoberfläche und Verfahren und Vorrichtung zum Steuern eines Betriebs eines Fahrzeugs
EP4105818A1 (en) * 2021-06-18 2022-12-21 Continental Autonomous Mobility Germany GmbH Method and system for estimating road lane geometry
JP2023017704A (ja) * 2021-06-24 2023-02-07 オートブレインズ・テクノロジーズ・リミテッド 航空画像に基づく車両環境マップの取得
DE102021208525A1 (de) 2021-08-05 2023-02-09 Volkswagen Aktiengesellschaft Verfahren und Kartenerzeugungseinrichtung für ein Fahrzeug zur Erzeugung einer hochauflösenden Karte einer Bodenfläche in einem Fahrzeugumfeld
KR102362702B1 (ko) * 2021-08-30 2022-02-14 주식회사 무한정보기술 개인의 자가차량을 이용한 도로주변 영상 촬영 매칭 서비스 시스템 및 서비스 제공 방법
DE102021209786A1 (de) * 2021-09-06 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Positionieren einer Kartendarstellung eines Umfelds eines Fahrzeugs in einer semantischen Straßenkarte
KR102487408B1 (ko) * 2021-09-07 2023-01-12 포티투닷 주식회사 로컬맵에 기초한 차량의 라우팅 경로 결정 장치, 방법 및 이를 기록한 기록매체
DE102021210568A1 (de) * 2021-09-23 2023-03-23 Robert Bosch Gesellschaft mit beschränkter Haftung Prüfung einer digitalen Straßenkarte auf lokale Plausibilität
US20230094695A1 (en) * 2021-09-24 2023-03-30 Argo AI, LLC Visual localization against a prior map
US20230099494A1 (en) * 2021-09-29 2023-03-30 Nvidia Corporation Assigning obstacles to lanes using neural networks for autonomous machine applications
US20230109164A1 (en) * 2021-10-05 2023-04-06 Transportation Ip Holdings, Llc System and method for vehicle-based localizing of offboard features
WO2023073428A1 (en) * 2021-10-28 2023-05-04 Mobileye Vision Technologies Ltd. Stereo-assist network for determining an object's location
JP2023066897A (ja) * 2021-10-29 2023-05-16 株式会社豊田自動織機 自律走行車、及び自律走行車の制御装置
DE102021213147A1 (de) 2021-11-23 2023-05-25 Volkswagen Aktiengesellschaft Verfahren, Servereinrichtung und Kraftfahrzeug zum automatischen abschnittweisen Kartieren eines Umgebungsbereichs
US11790604B2 (en) * 2021-12-14 2023-10-17 Gm Cruise Holdings Llc Mapping data to generate simulation road paint geometry
US20230196608A1 (en) * 2021-12-16 2023-06-22 Here Global B.V. Method and apparatus for improving localization of a device
US20230194305A1 (en) * 2021-12-22 2023-06-22 Eduardo Jose Ramirez Llanos Mapping for autonomous vehicle parking
DE102022102567A1 (de) 2022-02-03 2023-08-03 Cariad Se Verfahren und Prozessorschaltung zum Lokalisieren eines Kraftfahrzeugs in einer Umgebung während einer Fahrt sowie entsprechend ausgestattetes Kraftfahrzeug
CN114724407B (zh) * 2022-03-25 2023-05-30 中电达通数据技术股份有限公司 一种道路拟合中基于多数据源的正确车道识别方法
WO2023191810A1 (en) * 2022-04-01 2023-10-05 Innopeak Technology, Inc. Map tile based slam
WO2023194759A2 (en) * 2022-04-08 2023-10-12 Commsignia Kft. Method for assembling a local high-definition map, system for using map data, computer program product and computer readable medium for implementing the method
JP2023159484A (ja) * 2022-04-20 2023-11-01 キヤノン株式会社 情報処理装置、情報処理システム、情報処理装置の制御方法およびプログラム
CN114670753B (zh) * 2022-04-21 2023-10-10 广州优创电子有限公司 一种基于adas系统的电子外后视镜独立显示屏切换系统
CN114577225B (zh) * 2022-04-28 2022-07-22 北京百度网讯科技有限公司 一种地图绘制方法、装置、电子设备和存储介质
DE102022207370A1 (de) 2022-07-19 2024-01-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Erkennen einer fehlerhaften Karte einer Umgebung
WO2024043772A1 (en) * 2022-08-23 2024-02-29 Samsung Electronics Co., Ltd. Method and electronic device for determining relative position of one or more objects in image
CN115265561A (zh) * 2022-09-27 2022-11-01 小米汽车科技有限公司 车辆定位方法、装置、车辆及介质
CN116109657B (zh) * 2023-02-16 2023-07-07 航科院中宇(北京)新技术发展有限公司 地理信息数据采集处理方法、系统、电子设备及存储介质
CN115994985B (zh) * 2023-03-24 2023-07-04 常州星宇车灯股份有限公司 一种汽车域控制器及通勤道路上车辆自动建图和定位方法
CN116433756B (zh) * 2023-06-15 2023-08-18 浪潮智慧科技有限公司 一种单目相机的地表物体空间分析方法、设备及介质
CN117894181B (zh) * 2024-03-14 2024-05-07 北京动视元科技有限公司 一种全域通行异常状况集成监测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265494A (ja) 2004-03-17 2005-09-29 Hitachi Ltd 車両位置推定装置およびこれを用いた運転支援装置
JP2006330908A (ja) 2005-05-24 2006-12-07 Toyota Motor Corp 位置記録装置及び位置記録方法
JP2014194625A (ja) 2013-03-28 2014-10-09 Fujitsu Ltd 目視確認評価装置、方法及びプログラム
US20150332104A1 (en) 2014-05-14 2015-11-19 Mobileye Vision Technologies Ltd. Systems and methods for detecting traffic signs
JP2016180980A (ja) 2015-03-23 2016-10-13 株式会社豊田中央研究所 情報処理装置、プログラム、及び地図データ更新システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144685A (en) * 1989-03-31 1992-09-01 Honeywell Inc. Landmark recognition for autonomous mobile robots
JP2004045051A (ja) * 2002-07-08 2004-02-12 Matsushita Electric Ind Co Ltd 情報処理装置および情報処理システム
KR20040091788A (ko) * 2003-04-22 2004-11-02 현대자동차주식회사 고속도로 자율주행 시스템 및 그의 제어방법
WO2005038402A1 (ja) * 2003-10-21 2005-04-28 Waro Iwane ナビゲーション装置
US7925049B2 (en) * 2006-08-15 2011-04-12 Sri International Stereo-based visual odometry method and system
US8351704B2 (en) 2007-10-02 2013-01-08 Tomtom Global Content B.V. Method of capturing linear features along a reference-line across a surface for use in a map database
CA2712673A1 (en) * 2008-02-04 2009-08-13 Tele Atlas North America Inc. Method for map matching with sensor detected objects
GB0822893D0 (en) * 2008-12-16 2009-01-21 Tele Atlas Bv Advanced speed profiles - Further updates
RU2011128379A (ru) * 2008-12-09 2013-01-20 Томтом Норт Америка, Инк. Способ генерации продукта геодезической справочной базы данных
EP2214122B1 (en) * 2009-02-03 2013-07-17 Harman Becker Automotive Systems GmbH Methods and devices for assisting a vehicle driver
KR101100827B1 (ko) * 2009-11-30 2012-01-02 한국생산기술연구원 도로주행 로봇의 자기 위치 인식방법
US8494285B2 (en) * 2010-12-09 2013-07-23 The Hong Kong University Of Science And Technology Joint semantic segmentation of images and scan data
US8873812B2 (en) * 2012-08-06 2014-10-28 Xerox Corporation Image segmentation using hierarchical unsupervised segmentation and hierarchical classifiers
US9036865B2 (en) * 2012-09-12 2015-05-19 International Business Machines Corporation Location determination for an object using visual data
US20150092048A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Off-Target Tracking Using Feature Aiding in the Context of Inertial Navigation
GB201318049D0 (en) * 2013-10-11 2013-11-27 Tomtom Int Bv Apparatus and methods of displaying navigation instructions
US9342888B2 (en) 2014-02-08 2016-05-17 Honda Motor Co., Ltd. System and method for mapping, localization and pose correction of a vehicle based on images
US9996976B2 (en) * 2014-05-05 2018-06-12 Avigilon Fortress Corporation System and method for real-time overlay of map features onto a video feed
JP6395481B2 (ja) * 2014-07-11 2018-09-26 キヤノン株式会社 画像認識装置、方法及びプログラム
CA2976344A1 (en) * 2015-02-10 2016-08-18 Mobileye Vision Technologies Ltd. Sparse map for autonomous vehicle navigation
US9891057B2 (en) * 2015-03-23 2018-02-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Information processing device, computer readable storage medium, and map data updating system
WO2016195698A1 (en) * 2015-06-05 2016-12-08 Siemens Aktiengesellschaft Method and system for simultaneous scene parsing and model fusion for endoscopic and laparoscopic navigation
CN106327469B (zh) * 2015-06-29 2019-06-18 北京航空航天大学 一种语义标签引导的视频对象分割方法
US10948302B2 (en) 2015-08-03 2021-03-16 Tomtom Global Content B.V. Methods and systems for generating and using localization reference data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265494A (ja) 2004-03-17 2005-09-29 Hitachi Ltd 車両位置推定装置およびこれを用いた運転支援装置
JP2006330908A (ja) 2005-05-24 2006-12-07 Toyota Motor Corp 位置記録装置及び位置記録方法
JP2014194625A (ja) 2013-03-28 2014-10-09 Fujitsu Ltd 目視確認評価装置、方法及びプログラム
US20150332104A1 (en) 2014-05-14 2015-11-19 Mobileye Vision Technologies Ltd. Systems and methods for detecting traffic signs
JP2016180980A (ja) 2015-03-23 2016-10-13 株式会社豊田中央研究所 情報処理装置、プログラム、及び地図データ更新システム

Also Published As

Publication number Publication date
JP2020516853A (ja) 2020-06-11
US11761790B2 (en) 2023-09-19
US20240167844A1 (en) 2024-05-23
KR102618443B1 (ko) 2023-12-27
WO2018104563A2 (en) 2018-06-14
CN110062871B (zh) 2024-01-19
EP3551967A2 (en) 2019-10-16
KR20240005161A (ko) 2024-01-11
US20200098135A1 (en) 2020-03-26
JP2023022193A (ja) 2023-02-14
US20230129620A1 (en) 2023-04-27
CN117824676A (zh) 2024-04-05
CN110062871A (zh) 2019-07-26
US11835358B2 (en) 2023-12-05
KR20190094405A (ko) 2019-08-13
JP7213809B2 (ja) 2023-01-27
WO2018104563A3 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP7485749B2 (ja) ビデオベースの位置決め及びマッピングの方法及びシステム
US11900627B2 (en) Image annotation
Qin et al. 3D change detection–approaches and applications
Senlet et al. A framework for global vehicle localization using stereo images and satellite and road maps
JP5714940B2 (ja) 移動体位置測定装置
KR102200299B1 (ko) 3d-vr 멀티센서 시스템 기반의 도로 시설물 관리 솔루션을 구현하는 시스템 및 그 방법
Gao et al. Ground and aerial meta-data integration for localization and reconstruction: A review
US20230138487A1 (en) An Environment Model Using Cross-Sensor Feature Point Referencing
Busch et al. Lumpi: The leibniz university multi-perspective intersection dataset
CN117576652B (zh) 道路对象的识别方法、装置和存储介质及电子设备
CN111754388A (zh) 一种建图方法及车载终端
CN116917936A (zh) 双目相机外参标定的方法及装置
Lee et al. Semi-automatic framework for traffic landmark annotation
KR20220050386A (ko) 맵 생성 방법 및 이를 이용한 이미지 기반 측위 시스템
Rajamohan et al. Extracting Road Features from Aerial Videos of Small Unmanned Aerial Vehicles
KR20220151572A (ko) IPM 이미지와 정밀도로지도(HD Map) 피팅을 통해 노면객체의 변화를 자동으로 판단하고 갱신하는 정밀도로지도 자동갱신 방법 및 시스템
Senlet Visual localization, semantic video segmentation and labeling using satellite maps
CN117994744A (zh) 图像数据处理方法、装置、存储介质和车辆
CN117953446A (zh) 车道线标注方法、车载设备、存储介质及车辆
Taneja Geometric Change Detection and Image Registration in Large Scale Urban Environments

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240502

R150 Certificate of patent or registration of utility model

Ref document number: 7485749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150