WO2005038402A1 - ナビゲーション装置 - Google Patents

ナビゲーション装置 Download PDF

Info

Publication number
WO2005038402A1
WO2005038402A1 PCT/JP2004/014989 JP2004014989W WO2005038402A1 WO 2005038402 A1 WO2005038402 A1 WO 2005038402A1 JP 2004014989 W JP2004014989 W JP 2004014989W WO 2005038402 A1 WO2005038402 A1 WO 2005038402A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
dimensional
feature point
image
unit
Prior art date
Application number
PCT/JP2004/014989
Other languages
English (en)
French (fr)
Inventor
Waro Iwane
Original Assignee
Waro Iwane
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waro Iwane filed Critical Waro Iwane
Priority to JP2005514748A priority Critical patent/JP4273119B2/ja
Publication of WO2005038402A1 publication Critical patent/WO2005038402A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Definitions

  • the present invention relates to a navigation device for guiding a moving direction of a moving body such as a vehicle, a ship, and an aircraft, a current state, and the like.
  • the present invention searches for the current position of a moving object traveling or navigating in a three-dimensional space, and displays the current position on the three-dimensional map together with the traveling direction of the moving object, the vehicle attitude, and the like.
  • the present invention relates to a navigation device capable of outputting and displaying the current state of a body with high accuracy.
  • the GPS navigation system reads the time and position data at which multiple geodetic satellites also emit power using a receiver installed on the vehicle, calculates the three-dimensional coordinates of the receiving point from the difference in the radio wave arrival time from each satellite, and calculates the vehicle's three-dimensional coordinates. Etc. are displayed. According to such a GPS navigation system, it is possible to measure the three-dimensional position of the receiving point on a globally equal basis. '
  • the position accuracy obtained by the GP navigation system has conventionally been affected by the reflection and refraction of radio waves in the ionosphere, and the error is 50 to 300 meters.
  • Patent Document 1 JP-A-11-304513
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-357430
  • the present inventor has automatically detected a sufficient number of feature points from a plurality of frame images of a moving image captured by a camera mounted on a moving object, and has been able to obtain a characteristic between each frame. Points can be automatically tracked and the camera position and rotation angle can be obtained with high accuracy by performing overlapping calculations on many feature points, and the three-dimensional position coordinates of the moving object can be displayed with high accuracy based on the camera position information. I came to that.
  • the present invention has been proposed in order to solve the problems of the conventional technology, and the three-dimensional coordinates of the feature points of the moving path of the moving object are accurately determined in advance using the image processing technology.
  • the three-dimensional coordinates indicating the camera position of the moving object can be obtained with higher accuracy than the GPS 'system. It is an object of the present invention to provide a navigation device capable of indicating the current position of a moving object within a range of a few cm error.
  • a navigation device of the present invention includes a recording medium that records video feature points in three-dimensional coordinates in a range observed from a moving object to be navigated, and a navigation object.
  • the real image obtained by the camera mounted on the moving object is compared with the three-dimensional coordinates of the visual feature points obtained by reproducing the recording medium, and the three-dimensional coordinates that match the current and real images are obtained.
  • the camera provided on the moving body to determine the point and direction of Of three or more specified items including the position, speed, acceleration, viewpoint direction, 3-axis rotation posture, 3-axis rotation speed, and 3-axis rotation acceleration on the three-dimensional coordinates of And a search navigation device.
  • the information recorded on the recording medium includes the types of visual feature points in the range observed from the moving object, the three-dimensional coordinates thereof, and the visual feature points. Necessary for 3D arrangement of 2D image of small area including and its 3D coordinates, shape of object including visual feature points and its 3D coordinates, and movement of moving objects other than visual feature points Including the shape and three-dimensional coordinates of various peripheral images, CG, etc., and images such as roads on which the moving object moves, vehicles traveling, or scheduled routes, CG and its three-dimensional shapes, and their three-dimensional coordinates.
  • the information is recorded together with the three-dimensional map, including any or a combination thereof, all of them, or their attribute information. .
  • the point search navigation device specifies a feature point 3D map reproducing unit for reproducing a recording medium and an approximate current position of a moving object, and a search range at the time of initial setting.
  • An approximate current position designating unit that limits the current position, a plurality of feature points around the current position of the moving object from the three-dimensional map recorded on the recording medium, and a current position surrounding feature point designating unit that designates as a search target of the current position.
  • a camera image acquisition unit for acquiring an image of the moving object from a camera provided in the navigation object, a temporary image recording unit for recording the image acquired by the camera image acquisition unit, and an image temporary recording In the video recorded in the section, a feature point search section in the video that searches for a feature point candidate that should be the same as the search target, a feature point candidate obtained in the video feature point search ⁇ section, and the current location Surrounding search targets Comparing matching seek correspondence relationship as the same product, determined a predetermined number of corresponding points from the candidate.
  • the three-dimensional coordinates of the determined corresponding point are recorded on the recording medium, and the feature point corresponding part in the image, and the determined corresponding point and its three-dimensional coordinates are used to determine the camera position indicating the current situation of the moving object,
  • a camera coordinate calculation unit that determines three-dimensional data such as directions and postures by calculation, and a map recorded alone or on a recording medium by combining all or three-dimensional data determined by the camera coordinate calculation unit.
  • a current position display section for displaying on the screen along with information such as video, attributes, and the like.
  • the navigation device of the present invention includes a camera provided in a moving body for generating a recording medium.
  • a feature point three-dimensional map generation device that generates information to be recorded on a recording medium by recording, in three-dimensional coordinates, visual feature points in a range in which the moving physical strength is observed based on a real image obtained by the camera.
  • the feature point three-dimensional map generation device may obtain a surrounding image of the moving body from a camera provided on the moving body for generating a recording medium, and A video recording unit that records images acquired by the camera video acquisition unit, a feature point extraction unit that automatically extracts a predetermined number of feature points from image data recorded in the video storage unit, and a feature point extraction unit.
  • a feature point correspondence processing unit that automatically tracks the extracted feature points in each frame image to obtain a correspondence relationship between the frame images, and a three-dimensional position of the feature point for which the correspondence relationship is found by the feature point correspondence processing unit
  • a feature point 'camera vector calculation unit for obtaining a camera vector corresponding to each frame image from the three-dimensional position coordinates, and a feature point' cubic of each feature point obtained in the camera vector calculation unit
  • An error minimizing unit that performs statistical processing so that the distribution of position coordinates and camera vectors is minimized, and automatically determines the three-dimensional coordinates and camera level of the feature points that have undergone error minimization processing.
  • the camera vector subjected to the error minimization processing by the minimization unit and the three-dimensional shape of the feature point or the image of the small area including the feature point, and the three-dimensional coordinates and distribution of the camera vector are displayed on the moving object to be navigated.
  • the system is configured to include a 3P map generation recording unit that records on a recording medium along with passages and other objects including feature points, etc. as a three-dimensional map.
  • the navigation device of the present invention is based on a real image obtained by a camera provided in a moving object to be navigated, and is characterized by visual features in a range that can be observed from the moving object. Is generated in three-dimensional coordinates, a camera vector is generated from the three-dimensional coordinates, and a three-dimensional map is generated based on the generated three-dimensional coordinates. Any of the specified items including the position, speed, acceleration, viewpoint direction, three-axis rotation posture, three-axis rotation speed, and three-axis rotation acceleration on the three-dimensional coordinates of the camera equipped with It is configured to include a feature point three-dimensional map generation display device that outputs items.
  • the feature point three-dimensional map generation and display device includes a camera image acquisition unit that acquires a surrounding image of the moving object from a camera mounted on the moving object, and a camera image acquisition unit that acquires the image.
  • a video recording unit that records the obtained image
  • a feature point extraction unit that automatically extracts a predetermined number of feature points from the image data recorded in the video storage unit, and a feature point extracted by the feature point extraction unit.
  • a feature point correspondence processing unit that automatically tracks within each frame image to find a correspondence relationship between the frame images; and a three-dimensional position coordinate of the feature point for which the correspondence relationship is found by the feature point correspondence processing unit.
  • the feature point-camera vector calculation unit that calculates the camera vector corresponding to each frame image from the three-dimensional position coordinates, and the three-dimensional position coordinates and camera vector distribution of each feature point calculated by the feature point's camera vector calculation unit are minimized.
  • Error minimization unit that automatically determines the 3D coordinates and camera vector of the feature points that have been statistically processed and error minimization has been performed, and the error minimization unit minimizes the error place
  • a 3D map generation display unit for arranging the three-dimensional map together with the planned travel path and displaying the target object including feature points and the like.
  • the three-dimensional coordinates of the camera vector and the feature point are obtained by the calculation of the lifespan, and the error minimizing unit performs multiple times at the same feature point by continuously progressing n as the image progresses.
  • the configuration is such that the three-dimensional coordinates of each camera vector and the feature point obtained by the equalization are scale-adjusted so that the error is minimized, and the final three-dimensional coordinates are determined. '.
  • the feature point ′ camera vector calculation unit of the present invention sets the frame interval m according to the distance from the camera to the feature point such that the camera power also increases as the distance from the feature point increases. Then, the unit operation is performed.
  • the feature point 'camera vector calculation unit of the present invention deletes the feature point when the obtained camera vector or the three-dimensional coordinate error distribution of the feature point is large, and deletes the feature point if necessary. The feature point is recalculated to improve the accuracy of the three-dimensional coordinate calculation.
  • the navigation device of the present invention is provided with a recording medium and a point searching navigation device provided separately, and a predetermined three-dimensional recording medium recorded on a recording medium provided in a base station or another moving object. Information is transmitted to one or more point search navigation devices via a communication line.
  • the navigation device of the present invention is configured such that the point search navigation device specifies the approximate current position of the moving object by the approximate current position specifying unit based on the latitude / longitude altitude data obtained by the GPS. There is.
  • the point search navigation device of the present invention converts three-dimensional data such as a camera position, a direction, and an attitude, which indicates the current state of the moving body at the current point, obtained by the camera coordinate calculation unit into latitude and longitude. Then, it outputs a correction signal for capturing the GPS, and as an auxiliary signal for obtaining position data from the GPS when a video feature point cannot be obtained.
  • the navigation device of the present invention is configured to be a mobile vehicle, an aircraft, a ship, a person, a robot, a heavy machine, a spacecraft, a deep sea exploration ship, a machine having a moving part, and the like, which are navigation targets. is there. ⁇
  • a sufficient number of feature points are automatically detected from a plurality of frame images of a moving image taken by a camera mounted on a moving object such as a vehicle.
  • a moving object such as a vehicle.
  • the obtained three-dimensional coordinates of the feature points are stored in a recording medium in advance, and the three-dimensional coordinates are compared with a camera image of a moving body that actually moves, or obtained from a camera.
  • the 3D coordinates of the camera position are directly generated in real time from the video, and high-precision 3D information indicating the current camera position can be obtained, so that it can be used as a navigation system for moving objects. it can.
  • an image processing technique is used to obtain a plurality of coordinates in an image. Focus on the points with the characteristics of deep. Then, a map (3D map) in which the feature points are described in three-dimensional coordinates is stored in a recording medium, and the three-dimensional coordinates of the feature points can be read out by reproducing the recording medium on the moving body side. Furthermore, feature points in the video are extracted from the camera image obtained at the current position of the moving object, and the directions of the feature points and the directions of the feature points whose three-dimensional coordinates pre-recorded on the recording medium are known. By calculating the coordinates of a point where the directions of a plurality of feature points coincide, the three-dimensional coordinates indicating the camera position, that is, the three-dimensional coordinates indicating the current position of the moving object, can be obtained. .
  • feature points are automatically extracted and automatically tracked on the spot from the video acquired by the camera of the moving object, and the three-dimensional coordinates are obtained directly without comparing with the three-dimensional map.
  • the camera position can also be determined.
  • FIG. 1 is a block diagram showing a schematic configuration of a navigation device according to a first embodiment of the present invention. '
  • FIG. 2 is a block diagram showing a schematic configuration of a feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a schematic configuration of a point search navigation device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a state recorded on a recording medium in the navigation device according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram schematically showing a correspondence relationship between three-dimensional coordinates and a camera image.
  • FIG. 5 is an explanatory diagram showing a specific camera vector detection method in the feature point three-dimensional map generation device according to the first embodiment of the present invention. .
  • FIG. 6 is an explanatory diagram showing a specific camera vector detection method in the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing a specific method for detecting force / mera vectors in the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a desirable feature point designation mode in a camera solid detection method by the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 9 is a graph showing an example of three-dimensional coordinates of a feature point and a camera vector obtained by the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 10 is a graph showing an example of three-dimensional coordinates of a feature point and a camera vector obtained by the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 11 is a graph showing an example of three-dimensional coordinates of a feature point and a camera vector obtained by the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 12 In the feature point three-dimensional map generation device according to the first embodiment of the present invention, a case where ⁇ multiple feature points are set according to the distance between camera camera and feature points, and multiple '.
  • a fluctuation component detection in a fluctuation component detector provided in the navigation device according to the first embodiment of the present invention ( ⁇ is an explanatory diagram showing a specific example.
  • FIG. 14 is an explanatory diagram showing an example of a stabilized image corrected based on a fluctuation component detected by a fluctuation component detection unit according to the first embodiment
  • FIG. 15 is a graph showing a locus of a camera vector captured based on a shake component detected by a shake component detection unit according to the first embodiment of the present invention.
  • FIG. 16 is a diagram showing a case where a locus of a camera vector obtained by the feature point three-dimensional map generation device according to the first embodiment of the present invention is displayed in a generated three-dimensional map.
  • FIG. 17 is an explanatory diagram showing a display example of a three-dimensional shape (three-dimensional map) generated and displayed by the navigation device according to the first embodiment of the present invention.
  • FIG. 18 is an explanatory diagram showing a method for generating a three-dimensional map in the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 19 is an explanatory diagram showing a three-dimensional map updating method in the feature point three-dimensional map generation device according to the first embodiment of the present invention.
  • FIG. 20 is a diagram showing an example of a three-dimensional map generated by the feature point three-dimensional map generation device according to the first embodiment of the present invention, wherein (a) is a cross section of a road represented by the three-dimensional map (B) is a projection view obtained by aerodynamic photographing on the road in an example of the three-dimensional map of the road shown in (a), and (c) obtains three-dimensional coordinates in the three-dimensional map shown in (b)
  • FIG. 2 is a diagram showing operator parts used for the following.
  • FIG. 21 is a three-dimensional view of the road shown in FIG. 20, in which operator parts (CG parts) of the road sign are combined. ;
  • FIG. 22 A diagram illustrating a case in which the attributes of the object are manually acquired and registered in the CV video shown in FIG. 21, (a) is a diagram illustrating a CV video, and (b) an arbitrary point in the CV video. A state in which a straight line is designated, (b) shows a 3D map generated and displayed by registering the designated point and the straight line.
  • FIG. 23 is an explanatory diagram showing an example of an outline of an operation of the entire navigation device according to the first embodiment of the present invention. ⁇ no.
  • FIG. 24 is an explanatory diagram showing another example of the outline of the operation of the entire navigation device according to the first embodiment of the present invention.
  • FIG. 25 is an explanatory diagram showing another example of the outline of the operation of the entire navigation device according to the first embodiment of the present invention. ⁇
  • FIG. 26 is an explanatory diagram showing another example of the outline of the operation of the entire navigation device according to the first embodiment of the present invention. ''
  • FIG. 27 is a block diagram showing a schematic configuration of an optional device added to the navigation device according to the second embodiment of the present invention.
  • FIG. 28 is a block diagram showing a schematic configuration of a navigation device according to a third embodiment of the present invention.
  • FIG. 29 is a schematic configuration of another embodiment of the navigation device according to the third embodiment of the present invention. It is a block diagram showing composition.
  • FIG. 30 is a block diagram showing a schematic configuration of a navigation device according to a fourth embodiment of the present invention.
  • FIG. 31 is a block diagram showing a schematic configuration when the navigation devices according to the first to fourth embodiments of the present invention are combined.
  • FIG. 32 is an explanatory diagram showing three-dimensional coordinates of feature points generated and displayed by the real-time navigation method according to the fourth embodiment of the present invention and the current position of a moving object.
  • FIG. 33 is an explanatory diagram showing ⁇ -dimensional coordinates of feature points generated and displayed by the real-time navigation method according to the fourth embodiment of the present invention and the current position of a moving object.
  • FIG. 34 is a block diagram showing a specific configuration of a navigation device according to a fourth embodiment of the present invention. :
  • FIG. 35 is a block diagram showing the contents of a processing operation in the navigation device according to the fourth embodiment of the present invention.
  • FIG. 36 is an explanatory view schematically showing a specific example using the navigation device according to the fourth embodiment of the present invention.
  • the navigation device of the present invention described below is realized by processing, means, and functions executed by a computer according to instructions and instructions of a program (software).
  • the program sends commands to each component of the computer, and performs the following predetermined processing and functions, for example, automatic extraction of feature points, automatic tracking of extracted feature points, calculation of three-dimensional coordinates of feature points. , Camera vector calculation and the like.
  • each processing and means in the navigation device of the present invention is realized by specific means in which the program and the computer cooperate.
  • the program is provided, for example, by a magnetic disk, an optical disk, a semiconductor memory, or any other computer-readable recording medium, and the read program is installed in the computer and executed. Is done. Also, The program can also be loaded and executed directly on a computer through a communication line without using a recording medium.
  • FIG. 1 is a block diagram showing a schematic configuration of the navigation device according to the first embodiment of the present invention.
  • the navigation device 100 includes a feature point three-dimensional map generation device 110, a recording medium 120, and a point search navigation device 130.
  • the present embodiment employs an image processing technique to generate a plurality of coordinates in an image. Focusing on the points having the characteristics described above, the three-dimensional coordinates of the characteristic points have been accurately measured using the characteristic point three-dimensional map generator 110, and the characteristic points are described in a three-dimensional coordinate map (3D map). ).
  • the generated 3D map is, for example, a DVD, hard disk, or CD.
  • a vehicle or the like that becomes a navigation device that uses the navigation device is moved.
  • a point searcher On the body side, a point searcher;
  • a feature point in the video is extracted from the camera image of the current position obtained by the selected camera, and the direction of the feature point and the direction of the feature point whose three-dimensional coordinates recorded in advance on the recording medium are known are determined.
  • the moving objects navigated by the navigation device include, for example, vehicles, ships, aircraft, robots, moving machines, moving people, and the like. Heavy machinery), deep sea exploration vessels, machinery with moving parts, and spacecraft.
  • a location search navigation device is used.
  • 130 an image having three-dimensional coordinates of a plurality of visual feature points read from the recording medium 120 is searched for in a video obtained from a camera mounted on a traveling vehicle, an aircraft, or the like, and a correspondence relationship is searched.
  • Ask In the two-dimensional video obtained from the camera, corresponding points with a plurality of feature points described as a three-dimensional map obtained from the recording medium 120 are obtained by image recognition.
  • a point in which the direction of each corresponding point matches in both directions is searched in the three-dimensional map in the recording medium, and is obtained by calculation. That position is the current position of the camera, that is, the current position of the moving object.
  • the three-dimensional current position, speed, acceleration, direction, rotational speed, and rotational acceleration of the vehicle equipped with the camera can be displayed in real time.
  • the current position of the moving object is accurately indicated by the three-dimensional coordinates generated and recorded in advance, which is impossible with the conventional GPS system.
  • a highly accurate navigation system with an error range of about several centimeters can be realized.
  • the present embodiment by recording a 3D map indicating the three-dimensional coordinates of the feature points on a recording medium, it becomes possible to mass-produce and to make a mass production.
  • the user of the navigation device can obtain the recording medium and reproduce it to read out the three-dimensional coordinates of the feature points.
  • a recording medium fe
  • the 3D map generator 110 automatically or manually extracts a plurality of feature points from those images, and calculates a plurality of these feature points in a plane image.
  • a three-dimensional map (3D map) showing the camera position and the three-dimensional coordinates of each feature point is generated by tracking the trajectory that moves within each frame of the image and solving a system of linear equations using epipolar geometry. I can do it.
  • the number of feature points to be extracted and tracked is made sufficiently large, and multiple parallaxes are obtained by using a sufficient number of frames, so that the number of feature points that are 'The number of frames is obtained.
  • Statistical processing is performed using multiple parallaxes based on the surplus feature points and the surplus number of frames, and overlapping calculations are repeated to obtain the error distribution of the camera position. I do.
  • the camera position of each frame can be determined with high accuracy, and if the camera position can be determined with high accuracy, then the technology for obtaining three-dimensional coordinates from parallax can be used to calculate all the pixels in the image. Three-dimensional coordinates can be obtained.
  • the moving object for generating the 3D: t diagram to be recorded on the recording medium includes, for example, an automobile, a ship, an aircraft, a robot, a moving machine, a moving person, and the like.
  • Nabigeshiyon device 100 of this embodiment 3D maps themselves advance three-dimensional feature point map generator: ' ⁇ made, the generated 3D map recorded on the recording medium 1 2 0
  • a moving object such as a vehicle equipped with the point search navigation device 130
  • ' be able to.
  • the feature point three-dimensional map generation device 110 can be provided separately from the recording medium 120 and the point search navigation device 130 that need not be provided on the user side. Further, if a predetermined 3D map can be generated and recorded on the recording medium 120, a 3D map can be generated and recorded by a configuration other than the feature point three-dimensional map generation device 110.
  • the feature points of the navigation device 100 of the present embodiment The original map generation device 110, the recording medium 120, and the point search navigation device 130 will be described.
  • FIG. 2 is a block diagram showing a schematic configuration of the feature point three-dimensional map generation device 110 according to the present embodiment.
  • the feature point three-dimensional map generation device 110 is configured to generate a predetermined tertiary coordinate including three-dimensional coordinates of image-like feature points in a range where the moving physical strength is observed, based on a real image obtained by a camera provided on a moving body such as a vehicle. Generate source information. '
  • a camera video acquisition unit 111 a video recording unit 112
  • a feature point extraction unit 113 a feature point correspondence processing unit 114
  • a feature point-camera vector calculation unit 115 a minimum error And a 3D map generation / recording unit 119.
  • the camera image acquisition unit 11 # acquires a surrounding image of a moving object from a camera provided on the moving object such as a vehicle-mounted camera of a moving vehicle.
  • the video recording unit 112 records the image acquired by the camera video acquisition unit 111.
  • the feature point extracting unit 113 manually or automatically determines and outputs a small area image to be a feature point in the recorded image. , "
  • the feature point correspondence processing unit 1'- converts the automatically extracted feature points between the respective frames.
  • the feature point 'camera vector rendering unit 115 determines the three-dimensional position coordinates of the feature points for which the correspondence has been determined, and automatically calculates the camera vector corresponding to each frame image from the three-dimensional position coordinates by calculation. . '
  • the error minimizing unit 116 performs statistical processing so as to minimize the distribution of the positions of each camera level and each feature point by a plurality of overlapping operations, detects feature points having a larger error, and detects the feature points. Is deleted to minimize the overall error.
  • the blur component detection unit 117 uses a camera vector (the three-dimensional position coordinates and three-axis rotation coordinates of the camera) obtained by the feature point / camera vector calculation unit 115 to calculate a predetermined vehicle.
  • a camera vector the three-dimensional position coordinates and three-axis rotation coordinates of the camera
  • vehicle rotation posture corresponding one-to-one with camera posture
  • a deviation component from a certain scheduled camera vector is extracted.
  • a displacement component signal and a rotation displacement component signal are generated from the difference between the planned camera vector and the camera vector at the present time, or from the camera vector at the time of evaluation.
  • the position and orientation of the camera itself are drive-controlled to stabilize the image in the same way as the image stabilization process (position and orientation stabilization process). .
  • the object specified in the image ⁇ is measured in a real coordinate system to obtain its three-dimensional coordinates, and the specified object whose three-dimensional coordinates have been obtained is always in the image frame.
  • Image display or camera so that it is displayed at the center position (or any predetermined position)
  • the absolute coordinate obtaining unit 118 converts the three-dimensional relative coordinates obtained from the known absolute coordinates of a predetermined reference point into an absolute coordinate system, and converts all the characteristic points, or Give the absolute coordinates for the required point.
  • the length can be calibrated for each image using the length reference point indicating the length standard, the scale can be adjusted, and the coordinates of the correct scale can be obtained.
  • the feature point 'camera vector calculation unit 115 obtains the three-dimensional coordinates of both ends of the length reference point, and calculates the distance between the two length reference points from the obtained three-dimensional coordinates by calculation. Ask. Then, in the error minimizing section 116, the feature point 'camera vector calculating section 115 The overlapping calculation is repeated and statistical processing is performed so that the distance between the two length reference points obtained by the calculation in step 1 matches the known length of the length reference point.
  • the coordinate reference point and the length reference point can be used simultaneously, in which case the accuracy can be further improved.
  • the reference point is a reference point when converting the three-dimensional relative coordinates into the absolute coordinates, as will be described later, and is known in advance by an arbitrary method.
  • the reference point may include a reference point with a known length (length reference point) together with a reference point with known three-dimensional absolute coordinates or in place of a reference point with known three-dimensional absolute coordinates.
  • the length reference point is composed of two or more points, and the distance between the two points is assumed to be a known reference point.
  • the distance between the length reference points is set to 1 meter. It can be obtained by installing a large number of 1-meter sticks inside. Then, shooting is performed so that at least one length reference point overlaps each image.
  • a scale calibration can be performed for each image based on the known length of the length reference point, as described later, and the accuracy can be greatly improved.
  • the length reference point can be considered to be the same as setting a plurality of coordinate reference points.
  • the number of length reference points that are "lengths” means that the coordinate reference point that is a "point" is used. This is more effective than setting many points. That is, absolute coordinates can be converted by setting only two reference points and reference points in the entire measurement range. Also, coordinate reference points are not necessarily observed from all images. Providing multiple length reference points is more advantageous in terms of cost and labor than doing so. Therefore, for example, in the entire measurement range, only two coordinate reference points are used, and a large number of rods of a predetermined length (for example, 1 meter) indicating the length reference are placed in the measurement range at random, and the present invention can be implemented. Automatic surveying can be carried out, and the labor and cost of measurement work can be greatly reduced.
  • the three-dimensional coordinates and length of the reference point may be measured by any method. You can get the length.
  • the 3D map generation and recording unit 119 includes a camera vector that has been subjected to error minimization processing, a feature point, Alternatively, the three-dimensional shape of the image of the small area including the feature point, its three-dimensional coordinates, and its distribution are arranged as a three-dimensional map together with the passages (traveling routes, navigation routes, etc.) of moving objects such as vehicles. The information is recorded on the recording medium 120 together with the object including the points.
  • a feature to be recorded on the recording medium 120 is obtained by finding a plurality of corresponding points from a two-frame image by using an epipolar system. Generate a three-dimensional map of points.
  • the operation of automatically detecting the corresponding points, and the operations that are sufficient if there are about seven corresponding points and two frame images are all performed.
  • a high-precision 3D map is generated by minimizing errors by calculating and performing statistical processing over the entire frame, that is, using a sufficiently large number of information such as the number of feature points and the number of frames.
  • the error of each feature point is reduced, and the feature point including the error is deleted to generate a highly accurate feature point three-dimensional map.
  • FIG. 3 is a block diagram showing a schematic configuration of the recording medium 1′20 and the point searching navigation device 130 according to the present embodiment.
  • the recording medium 120 is a medium that can record data such as a DVD, a hard disk, and a CD, and records and stores predetermined information including the three-dimensional map information generated by the feature point three-dimensional map generator. You. ,
  • Information recorded on the recording medium 120 includes (1) visual features observable from the moving object. .Point type features and their tertiary ⁇ coordinates (three-dimensional map); (2) visual feature points. Three-dimensional arrangement of two-dimensional images in a small area including three-dimensional coordinates and their three-dimensional coordinates, (3) the shape of the object (two-dimensional or three-dimensional shape) including visual feature points, and its three-dimensional coordinates, (4) It is not necessarily a feature point, but the shapes (two-dimensional or three-dimensional) such as peripheral images and CG necessary for traveling and navigation and three-dimensional coordinates, (5) the moving path of the moving object, for example, roads, vehicle driving paths , Images of planned routes, C.G and their shapes (two-dimensional or three-dimensional shapes), and their three-dimensional coordinates. Then, any of these information, or a combination thereof, or all of them is recorded together with the three-dimensional map in a form including their attributes as necessary.
  • the recording medium 120 describes the feature points that allow the user to observe the moving physical strength. It is preferable to record the image of the small area around the laying point, since it is easy to correspond the local point image of the moving object to the characteristic point on the map.
  • images such as traffic signs and road signs, CG, and their attributes are recorded as information that helps the user to drive. This is preferable because it is easier to understand and operate.
  • the point search navigation device 130 is a device installed on the side of a moving body such as a vehicle, and compares a real image obtained by a camera provided on the moving body with predetermined three-dimensional information recorded on the recording medium 120. Then, the points and directions on the three-dimensional coordinates that match the real images are obtained. As a result, among the predetermined items including the position, speed, caro speed, viewpoint direction, three-axis rotation posture, three-axis rotation speed, and three-axis rotation acceleration of the camera provided on the moving object on three-dimensional coordinates, Output one or a plurality of items combining them.
  • the point 3D map reproducing unit 13i the approximate current position designating unit 132, the current location surrounding feature designating unit 133, the camera video acquisition unit 134, the video temporary recording unit 135, and the features in the video are shown in FIG. It has a point search unit 136, a feature point correspondence unit 137 in the video, a camera coordinate calculation unit 138, and a current point display unit 139. '
  • the feature point 3D map reproducing unit 131 reproduces the recording medium 120 and records the predetermined three-dimensional map.
  • the recording medium 120 is provided as a DVD or a CD
  • the user loads the recording medium 120 into a navigation system provided in his / her vehicle or the like and reproduces it.
  • the feature point 3D map playback unit 131 plays back the feature point 3D map recorded on the recording medium 120.
  • the three-dimensional coordinates of the feature points and their attributes are described.
  • the approximate current position specification unit 132 determines and specifies the approximate current position of the moving object by some means, and limits the search range at the time of initial setting.
  • the designation of this current position is, for example, 'It is possible for a person to manually specify the position, and also to specify the approximate current position of the moving object by latitude and longitude altitude data obtained by GPS. Specifying and inputting the approximate location information of a moving object can be a great clue to finding feature points around the current location.
  • GPS can be used as a means for that. Although the GPS has lower accuracy than the navigation device 100 of the present invention, it can be said that it has appropriate accuracy as the approximate position information, and can be effectively used as a means for specifying the approximate position information.
  • the current location peripheral feature point designating unit 133 reads a plurality of feature points around the current location from the 3D map of the recording medium 120, designates them as search targets for the current location, and outputs them to the video feature point search ' ⁇ . . Since the approximate position can be known by the designation of the approximate current position designation section 132, the current location surrounding feature point designation section 133 takes in feature point data around the current location from the recording medium 120 and distributes those feature points as three-dimensional coordinates.
  • the camera image acquisition unit 134 uses an in-vehicle camera to transmit a surrounding image To get.
  • the video temporary recording unit 135 records the image acquired by the camera video acquisition unit 134, similarly to the video recording unit 112 of the feature point three-dimensional map generation device 110. .
  • the feature point searching unit 136 in the video should be the same as the search target specified by the feature point specifying unit 13 around the current location in the video recorded in the temporary video recording unit 135. Find some feature points.
  • the feature point corresponding unit 137 in the image compares and compares the candidate of the feature point searched by the feature point searching unit 136 with the search item around the current point. Associative relationship. Then, a sufficient number of corresponding points for the calculation are determined from the prospects for which the response has been determined. .
  • it can be performed by an image processing technique such as matching or correlation.
  • FIG. 4 two-dimensionally shows the correspondence between the three-dimensional coordinates recorded on the recording medium 120 and the camera image.
  • X indicates a strong feature point in which the correspondence is not obtained.
  • the camera coordinate calculation unit 138 receives the three-dimensional coordinates of the determined corresponding point from the recording medium 120, and uses the determined corresponding point and its three-dimensional coordinates to display a force camera indicating the current vehicle situation. It is determined by calculating three-dimensional data such as a position, a direction, and a posture. A point at which many feature points recorded on the recording medium 120 coincide with the three-dimensional array of feature points of the captured video. The navigation system is completed by displaying data such as the three-dimensional coordinates of the obtained camera position, speed, acceleration, rotation posture, and the like.
  • the current point display unit 139 displays several items of the ⁇ -dimensional data indicating the current state of the moving object obtained by the camera coordinate calculation unit 138, or a combination thereof, alone or in the form of a map, a video,
  • the information such as, for example, or all of the information is displayed on a map such as a travel map or a planned travel path in a desired format.
  • the point search navigation device 130 obtains a plurality of feature points recorded in the recording medium 120 and corresponding feature points in the video captured in real time, and determines the observation direction of the feature points. It is easy to calculate the viewpoint on the 3D map that matches. -Since the map 120 and various information other than the three-dimensional information of the zero point are recorded on the recording medium 120, it can be displayed together with the ' ⁇ t ⁇ '.
  • the point search navigation device 130 further includes a vehicle equipped with the navigation device based on the three-dimensional data determined by the camera coordinate calculation unit 1 ⁇ 8. And the like, and a control device for directly controlling the moving body. That is, based on the high-precision position information required by the navigation device, it is possible to automatically control a moving object such as a vehicle, and realize an automatic driving system.
  • the point search navigation device 130 can update the data of the recording medium 120 by adding the function of the feature point three-dimensional map generation device 110 described above.
  • the image captured by the camera mounted on the user's vehicle or the like is accumulated, and the feature points of the recording medium over a plurality of frames and the corresponding points with the small area image including the feature points are determined. Tracking in the image acquired by the camera, feature points Similar to the three-dimensional map generator 110, the feature points of the recording medium over a plurality of frames
  • the point search navigation device 130 provided on the user side is provided with a device corresponding to the characteristic point three-dimensional map generation device S110, so that it is possible to perform a search while creating a map.
  • a data updating device and a real-time navigation device can be configured.
  • the data updating device will be described later with reference to FIG. 27, and the real-time navigation device will be described later with reference to FIG. 30 and subsequent figures.
  • _Feature point force of a plurality of images There are several methods for obtaining the camera vector and the three-dimensional information of the feature point.
  • a sufficiently large number of feature points are automatically extracted and automatically tracked within.
  • the camera's three-dimensional vector and three-axis rotation vector and the three-dimensional coordinates of the feature points can be calculated. I have to ask.
  • camera vector information is duplicated, and errors can be minimized from the overlapped information, and more accurate camera vector and three-dimensional coordinates of the feature points can be obtained.
  • an image is acquired by an in-vehicle camera or the like, and a camera vector is accurately calculated by using a sufficiently large number of points corresponding to each other between frames.
  • the three-dimensional coordinates can be determined as a force s . In the present embodiment, for example, about 100 points are sufficient.
  • the distribution of the solution is obtained, and each vector is obtained from the distribution by statistical processing. As a result, the camera vector is obtained.
  • the three-dimensional coordinates of the feature point of the object can be obtained by calculation from the three-dimensional position of the camera that has already been obtained.
  • the above processing is performed by using an on-board camera alone. For example, a person holds a hand and swings the camera freely to photograph an object, and after photographing, obtains the image power. Thus, the three-dimensional shape of the photographed object can be obtained.
  • the camera vector is a vector of the degree of freedom of the camera.
  • a stationary 3D object has six degrees of freedom: position coordinates (X, Y, Z) and rotation angles ( ⁇ , ⁇ , ⁇ ) of each coordinate axis. Therefore, the camera vector is a vector of six degrees of freedom of the position coordinates (X, ⁇ , ⁇ ) of the camera and the rotation angles ( ⁇ , ⁇ , . ⁇ ) of the respective coordinate axes.
  • a force in which the moving direction is included in the degree of freedom. This can be derived by differentiating the above six degrees of freedom.
  • the camera vector .DELTA Is detected by the camera taking six degrees of freedom for each frame and six different degrees of freedom for each frame. Determining the degree of freedom.
  • a feature point extraction unit 113 automatically extracts a point or a small area image to be a feature point from a properly sampled frame image. Then, the correspondence of feature points among a plurality of frame images is automatically obtained. Specifically, a sufficient number or more of feature points, which serve as a reference for detecting a camera vector, are obtained. Examples of feature points between images and their correspondence are shown in Figs. 5 to 7. . In the figure, “+ J” is the automatically extracted feature point, and the correspondence is automatically tracked between a plurality of frame images (see corresponding points 1 to 4 in FIG. 7).
  • the feature point ′ camera vector calculation unit 115 calculates the positions of a sufficient number of features existing between consecutive frames, the position vectors between moving cameras, the three-axis rotation vector of the camera, Relative values of various three-dimensional vectors such as a vector connecting each camera position and a feature point are continuously calculated by calculation.
  • a 360-degree full-circle image is used in principle as a camera image, and camera motion (camera position and camera rotation) is calculated by solving an epipolar equation from the epipolar geometry of the 360-degree full-circle image. ing.
  • the 360-degree omnidirectional image is, for example, a panoramic image, an omnidirectional image, or a 360-degree omnidirectional image photographed by a camera with a wide-angle lens or a fish-eye lens, a plurality of cameras, a rotating camera, or the like. Since a wider range is shown than an image captured by a camera, it is preferable because a highly accurate camera vector operation can be calculated more easily and quickly.
  • a 360-degree full-circle image is not necessarily only an image that includes the entire 4 ⁇ space. You can also handle it. In this sense, a video taken by a normal camera can be regarded as a part of the 360-degree circumference! ⁇ , And although there are few excellent effects as in the present embodiment, there is essentially no difference in the present invention. It can be handled in the same way as 360-degree full-circle video (4 ⁇ video). '
  • t and R can be calculated as solutions by the method of least squares by linear algebra. This operation is applied to a plurality of corresponding frames to perform the operation.
  • Fig. 7 shows a map image of a 360-degree spherical image of the entire circumference, which is composed of images taken by one or more cameras, in order to facilitate understanding of the processing in the feature point three-dimensional map generator 110.
  • (4) Force indicating the image developed by the Mercator projection In the processing of the actual feature point three-dimensional map generator 110, it is not always necessary to use the developed image by the Mercator projection.
  • the error minimizing unit 116 uses a plurality of camera positions corresponding to each frame and the number of feature points to generate a vector based on each feature point using a plurality of arithmetic equations generated.
  • the final vector is obtained by performing calculations in several ways and performing statistical processing so that the distribution of the position of each feature point and the camera position is minimized.
  • the optimal solution of the least squares method is estimated by the Levenberg-Marquardt method based on the camera positions, camera rotations, and multiple feature points of multiple frames. Find the coordinates of the point. .
  • the position of the feature point and the camera vector can be obtained with high accuracy.
  • FIGS. 9 to 11 show the feature points and force 'mela vector operation unit 115!
  • 3D coordinates and camera vectors of feature points obtained from /. 9 to 11 are explanatory diagrams illustrating a vector detection method according to the present embodiment, and are diagrams illustrating a relative positional relationship between a camera and an object obtained from a plurality of frame images acquired by a moving camera. is there.
  • FIG. 9 shows the three-dimensional coordinates of the feature points 1 to 4 shown in images 1 and 2 of FIG. 7 and the camera vector moving between image 1 and image 2.
  • FIGS. 10 and 11 show a sufficiently large number of feature points, the positions of the feature points obtained from the frame images, and the positions of the moving cameras.
  • a continuous ⁇ mark at the center of the graph indicates the camera position
  • ⁇ marks around the camera position indicate the position and height of the feature point.
  • the calculation in the feature point three-dimensional map generation device 110 is performed by using a camera as shown in FIG. 12 in order to obtain three-dimensional information of feature points and camera positions with higher accuracy.
  • a plurality of feature points are set according to the distance, and a plurality of calculations are repeatedly performed.
  • the vector detection unit automatically detects feature points having video features in the image, and uses them in the camera vector calculation when calculating the corresponding points of the feature points in each frame image.
  • the unit calculation is performed focusing on the two frame images Fn and Fn + m of the nth and n + mth units, and the unit calculation in which n and m are appropriately set is repeated.
  • m is a frame interval
  • the feature points are classified into a plurality of stages according to the distance from the camera to the feature points in the image, and m is set to increase as the distance from the camera to the feature points increases. Set so that m becomes smaller as the distance to is shorter. The reason for this is that the farther the distance from the camera to the feature point, the smaller the change in position between images. '
  • the classification of the feature points by the m values is set to a plurality of levels of m while sufficiently overlapping each other, and the calculation is continuously performed as n progresses continuously as the image progresses. Proceed to Then, in the progress of n and each stage of m, the duplicate operation is performed a plurality of times for the same feature point.
  • the precision camera takes a long time between frames sampled every m frames (frames are dropped between frames).
  • the vector is calculated, and for m frames (minimum unit frame) between the frame images Fn and Fn + m, a simple calculation can be performed in a short time.
  • both ends of the camera vector of the m frames overlap with the camera vectors of Fn and Fn + m that have been subjected to the high precision calculation. Become. Therefore, the m minimum unit frames between Fn and Fn + m were obtained by simple calculation, and both ends of the camera vector of the m minimum unit frames obtained by simple calculation were obtained by high precision calculation.
  • the scale of m continuous camera vectors can be adjusted to match the camera vectors of Fn and Fn + m.
  • real-time processing of a camera vector can be performed.
  • real-time processing of camera vectors calculations are performed using the minimum number of frames that can achieve the desired accuracy and the minimum number of feature points that are automatically extracted, and approximate camera vector values are obtained and displayed in real time. As the image accumulates, the number of frames is increased, the number of feature points is increased, more accurate camera vector calculations are performed, and approximate values can be replaced with more accurate camera vector values for display. .-
  • the feature point extracting unit 113 and the feature point correspondence processing unit 114 automatically track feature points in a plurality of inter-frame images.
  • the number may be limited.
  • the image is two-dimensional, and the tracking accuracy has a certain limit because the shape changes during tracking. Therefore, the camera obtained by feature point tracking
  • the vector is positioned as an approximate value, and three-dimensional information (three-dimensional shape) obtained in the subsequent process is tracked on each frame image, and a high-precision camera vector can be obtained from the trajectory.
  • Such three-dimensional shape tracking can achieve the accuracy of matching and correlation, and the three-dimensional shape can be tracked over many frames because the three-dimensional shape and size do not change depending on the frame image.
  • the accuracy of the camera vector calculation can be improved. This is possible because the approximate camera vector is known by the feature point / camera vector calculation unit 115 and the three-dimensional shape is already known.
  • the three-dimensional shape data to be tracked there are, for example, a three-dimensional distribution shape of a feature point, a polygon surface for which a three-dimensional shape force of a feature point is obtained, and the like.
  • a deviation component between a predetermined camera position and a planned camera vector indicating a camera posture is extracted by the shake component detection unit 117.
  • ⁇ , ⁇ , SZ, 5 ⁇ , ⁇ , ⁇ mean the deviation of the planned position and the planned posture force, which cannot necessarily be calculated by the difference value or the difference value.
  • the swing component can be detected by substituting the derivative value, but if the expected position and the expected posture are determined in advance, the differences between them are ⁇ X, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ .
  • the scheduled camera vector is close to the average value measured during traveling, but it is similar to an aircraft, which travels in a three-dimensional space. Means that the scheduled camera vector does not coincide on average with that during travel.
  • a total of 12 parameters of X, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , ⁇ , ⁇ , ⁇ y, ⁇ can be output.
  • the number of parameters can be selectively combined from these depending on which swing evaluation is intended, and can correspond to the evaluation target.
  • FIG. 13 shows a specific example of the fluctuation component detection in the fluctuation component detection unit 117. Shown in the figure An example is a case where a vehicle is mounted on a vehicle and the vehicle travels, and the moving image force captured at that time is detected by the fluctuation component detecting unit 117.
  • the thick arrows indicate the direction of travel of the vehicle with the camera attached, and the position and orientation of the camera with the optical axis of the camera as the origin are defined as the camera coordinate system (Xc, Yc, Zc) (see FIG.
  • the vehicle with the camera mounted in a semi-fixed state is the vehicle coordinate system (3 ⁇ 4, Yt, Zt) (solid line shown in the figure), and the coordinate system that always changes the coordinate axis in the vehicle traveling direction is the rotating world coordinate system ( Xwr, Ywr, Zwr) (two-dot chain line in the figure), and the coordinate system representing the external stationary system is the world coordinate system (Xw, Yw, Zw) (one-dot chain line in the figure).
  • the relationship between the four coordinate systems is determined, and the coordinates are converted into a coordinate system necessary for the evaluation so that the vehicle shake is expressed.
  • the camera vector obtained by the camera vector calculation unit 115 is the camera coordinate system (Xc, Yc, Zc) itself. Since the camera coordinate system is generally set in an arbitrary direction, the camera coordinate system is converted into a vehicle coordinate system (Xt, Yt, Zt) in order to detect the deviation of the vehicle. This conversion is merely a rotation conversion, and is generally semi-fixed, and if set, does not change until the measurement is completed.
  • a ning system suitable for evaluating the sway can be obtained.
  • Ift of the movement of the vehicle is expressed in a world coordinate system (Xw, Yw, Zw) which is a stationary coordinate system.
  • Xw, Yw, Zw a world coordinate system
  • the evaluation is performed in a coordinate system suitable for the evaluation.
  • the shaking signal is detected as a deviation from the planned course, in the example shown in FIG. 13, the shaking is evaluated using the average course of the vehicle as the planned course. Therefore, the movement trajectory of the camera is determined on the world coordinate system, the average path is determined, and this is set as the planned path.
  • a force s which enables detection of a shake component only by a camera that obtains image data without using a gyro or the like serving as a reference for posture
  • the obtained camera vector is a relative value
  • the camera vector with the world coordinate system such as gyro Since there is no calibration device, accumulation of errors will occur. For this reason, it is necessary to give the average vertical and horizontal directions in order to always evaluate the deviation from the vehicle. Therefore, when the camera is installed, if one axis of the camera coordinate system is aligned with the horizontal axis with respect to the vehicle, the horizontal attitude can be easily calibrated later as a reference. As a result, the camera coordinate system (Xc, Yc, Zc) may be converted into the vehicle coordinate system. (Xt, Yt, Zt), and the deviation may be measured and evaluated.
  • the fluctuations to be evaluated include displacement components Xt, Yt, Zt, rotation components ⁇ , ⁇ , ⁇ , and displacement differences 5 Xt, ⁇ , s zt (where zt and s zt are Since it is the directional speed and its acceleration component, the meaning of sway is different from other components.)
  • variables to be evaluated and the display include the following. ',
  • Vehicle position display in world coordinate system :
  • Velocity and acceleration in a rotating world coordinate system rotated in the vehicle traveling direction ⁇ Xwr, 5 Ywr, 5 Zwr) (m ⁇ Xwr, m ⁇ Ywr, ⁇ ⁇ Zwr)
  • Xc, Yc, Zc H (Xt, Yt, Zt).
  • the shake of the train is analyzed and analyzed by the shake component detecting unit 117. It will be possible to detect abnormalities on the vehicle track. Usually expensive equipment such as a mercury accelerometer By using the shake component detection unit 117 of the present embodiment, the swing component can be easily detected and displayed, while the swing component is measured using the.
  • FIG. 14 shows an example of an image that is converted into a stabilized image by a correction signal based on the fluctuation component detected by the fluctuation component detection unit 117.
  • FIGS. The images with fluctuations as shown in ()) are output and displayed as the stabilized images captured as shown in (c) and (d) in the same figure.
  • Figure 15 shows the corrected camera This is a graph showing the trajectory of the vector. In the figure, a straight line comb at the center of the graph is the trajectory of the camera movement, and indicates the position and height of the moving camera.
  • the absolute coordinate acquisition unit 118 replaces each of the three-dimensional relative coordinates with a known reference point whose absolute coordinates have been measured in advance.
  • the three-dimensional relative coordinates are converted into an absolute coordinate system, and absolute coordinates are given to all points (or necessary predetermined points) of the measurement point, the reference point, and the feature point.
  • the final absolute coordinates of the desired measurement point and the arbitrarily designated point in the feature point are obtained, and are recorded in the data D map generation recording unit 1 M., and the 3D map information is recorded. As required,-power is displayed.
  • the feature point, the camera coordinates and the rotation are simultaneously performed by the feature point 'camera vector rendering unit 115; the force described to obtain L.
  • the new feature point and any specified point in the feature point are taken together with the camera vector.
  • two images that is, two camera positions are taken as the base. It can be easily calculated as one point of the vertex. Since the accuracy of the camera vector does not change, the accuracy of a new feature point or any designated point does not change. However, if the camera vector is calculated again and recalculated, the accuracy generally improves.
  • the camera vectors and the three-dimensional coordinates of the feature points obtained as described above can be displayed in the generated three-dimensional map.
  • the video from the on-board camera is developed into a plane, the corresponding points on the target plane in each frame image are automatically searched, and the corresponding points are combined so that they match, and the target is combined.
  • a combined image of the plane is generated and integrated into the same coordinate system and displayed. Then, the camera position and camera direction can be detected one after another in the common coordinate system, and the position, direction, and locus can be plotted.
  • FIG. 17 shows a display example of a 3D map generated in the present embodiment.
  • one camera may be used to acquire the video, or a plurality of cameras may be used.
  • two or more feature points whose absolute coordinates are known can be obtained in the image, and ⁇ pair coordinates can be given to the feature points ⁇ . If a single camera is used, the relative value will be zero, but if multiple cameras are used, the absolute distance will be given. And
  • the raw image is generated.
  • FIG. 18 is an explanatory diagram showing a method of generating a three-dimensional map generated by the feature point three-dimensional map generation device 110 of the present embodiment, and FIG. It is explanatory drawing which shows the updating method of the three-dimensional map performed.
  • 3D map three-dimensional map
  • two types of 3D maps can be generated in the present embodiment, one is a CV video map, and the other is a CV video map.
  • a CV image is a camera vector image, that is, a camera position and a camera posture (camera vector) obtained from a 360-degree full-circle image are acquired over all frame images, and force is applied to each frame (CV value). Is a 360-degree full-circle image that corresponds to As described above, even a normal video that is not a 360-degree full-circle video can be positioned as a part of a 360-degree full-circle video.
  • a panoramic image of the traveling space is captured by a camera mounted on a vehicle traveling on a road surface, and a 360-degree full-circle image is acquired (S1801: 4 ⁇ ground image).
  • the above-described camera vector calculation is performed based on the 360-degree full-circle image (S1802: CV calculation) to obtain a camera vector.
  • the acquired camera vector is calibrated based on the actual image and the existing map (S1807) (S1803: Calibration). Further, since the CV value is a relative value, the existing map ( By comparing with S1807), the latitude 'longitude' altitude is obtained and absolute coordinates are obtained (S1808). -
  • an aerial image (S1804) is taken, and a camera vector is obtained from the aerial image by a CV operation (S1-yes ⁇ :).
  • Calibration is performed by (S1807) etc. (S1806), and absolute coordinates are obtained (S1808) Errors in each of the obtained CV values are corrected, coordinates are integrated (S1809), and a CV video map database is constructed. (S1810).
  • the CV video map database (S1810) can be used as it is as a 3D map for traffic guide devices, but it can also generate a 3D CG map based on CV video
  • the CV video map database (S1810) is subjected to stabilization processing (S1811) in the following process.
  • S1811 stabilization processing
  • a part of a video is cut out of a range to be converted into a CG image, and image fluctuation is eliminated by image stabilization.
  • the virtual camera movement direction is determined, and the error of the image is corrected by designating the traveling direction and detecting the roll.
  • the time axis for traveling in a certain direction at a certain speed is corrected.
  • the image is locked on a predetermined fixed plane to perform the stabilization processing.
  • MRSS pure S1812
  • .MRSS View product name of Iwane Research Institute Co., Ltd.
  • Iwane Research Institute Co., Ltd. is an abbreviation of Mixed Reality Simulation System Pure, a display device that can acquire three-dimensional coordinates on pure.
  • the virtual running surface moves exactly parallel to the road surface.
  • the moving speed of the object on the plane is inversely proportional to the vertical distance of the traveling camera force, and the closer the object is, the slower the object is.
  • the moving speed of the target plane has a one-to-one relationship with the distance, only the target target plane can be selectively extracted in the background separation and the target extraction (S1813: Vector selection extraction).
  • the coordinates of the target object can be obtained by performing three-dimensional measurement (S1813) on the MRSS pure.
  • the movement vector has a width of 3 ⁇ 4ff, a certain range of ⁇ objects can be selectively extracted. Since the object is acquired from multiple viewpoints using 360-degree image symbols, the texture of the background and the object can be extracted by direction and pasted to the CG by multi-viewpoint texture extraction (S1814). .
  • the shape of the object can be extracted with the wireframe.
  • the representative point is manually clicked on the displayed target object, and the three-dimensional coordinates of the target object are replaced with the CG creation tool (S1816).
  • a CG generation tool such as 3DSMAX and generate CG on the tool (S1817).
  • simple figures can be generated on the MRSS viewer.
  • CG generation S1818
  • the attributes of the object are manually added to the generated CG (SI 820), coordinate integration is performed (S1821), and a three-dimensional CG map database (S1822) is constructed.
  • the CG can be simplified or deleted as appropriate.
  • the role of CG in a three-dimensional map is that "humans see it. In other words, if the three-dimensional map is not seen by humans, it is only necessary for machines to see (recognize) it. If there is, it is not necessary to accurately generate the CG shape itself according to the purpose of use or the required accuracy, and the name (name of the object) as a genus of CG 'I' It is only necessary to register the approximate position coordinates and the approximate size. In addition, if omitted, the approximate size can be neglected, and it may be possible to express and register only points, straight lines, and surfaces.
  • the generation of the CG three-dimensional map can be simplified as much as possible, thereby reducing the cost.
  • an important point is manually designated for an object suitable for comparison between the old and new images, such as an object suitable as a mark in the image (S1902).
  • the important point is an image of a fragment with a certain area.
  • the distinctive portion of the image is automatically extracted (S190 3: wherein points automatic extraction), the three-dimensional coordinate acquisition of key points and feature points (S1904) 0
  • the important points and the feature points can be recorded together with the three-dimensional coordinates (S1906) by partially forming them into three-dimensional parts (S1905) corresponding to the video as needed.
  • a CG video map database (S1907) with an automatic update function for updating will be constructed.
  • the CV video map data is updated.
  • a 4 ⁇ captured image 360-degree full-circle image
  • an update image S1908.
  • feature points are automatically extracted by feature point extraction (S1912), new and old images are matched by new and old features (S1913), and coordinates of new and old images are acquired by acquiring new image coordinates (S1914). Get the original coordinates and rotation coordinates.
  • the camera vector of the updated image can be obtained by an operation to solve a triangle. it can. Note that the extraction of the feature point 'new / old correspondence' coordinate acquisition (S1912 to S1914) may be omitted.
  • the CV video map database (S1907) having the automatic update function can be updated by the camera vector.
  • the tertiary coordinates of the important point are obtained by the above-described acquisition of new image coordinates (S1911), the new and old coordinates are compared (S1916), and the update target is specified ( (S1917), it is automatically determined whether the coordinates are the same. If the coordinates do not match, it is determined that the object needs to be replaced, and the manual processing (S1918) using CG generation shown in Fig. 18 automatically or manually generates a CG for updating, and saves important points.
  • the updated data is recorded in the three-dimensional CG map database (S1919) that has been updated.
  • Fig. 20 shows an example in which a three-dimensional map is generated based on a video taken from above the road. An example is shown.
  • the road image shown in the figure is a 360-degree CV image, not a complete plan view, but a road surface observed several meters above ground.
  • the shape near the road surface is important, and high measurement accuracy is required.
  • the road structure has a structure as shown in the cross-sectional view of Fig. 20 (a), so it is possible to predict its shape and perform three-dimensional measurement. .
  • the road markings (center line, shoulder line, etc.) are drawn on the pavement surface according to the determined standard, the pattern is prepared in advance as a part of the PRM operator. By comparing the image with the intended operator part, it is possible to detect the three-dimensional position.
  • PRM is an abbreviation of Parts Reconstruction Method (3D space recognition method), and is a technique for recognizing an object for which the applicant of the present invention has already issued a patent (International Application PCT). / JP01 / 05387).
  • the PRM technology prepares all the shapes and attributes of the object... That are expected in advance as parts (operator parts), compares those parts with actual images, and matches Is a technique for recognizing a target object by selecting a target object.
  • the ⁇ parts '' of the objects required for automatic guidance driving and automatic driving of vehicles include lanes, white lines, yellow lines, pedestrian crossings, speed signs as road signs, guidance signs, etc. as road signs. Yes, these are standard and can be easily recognized by PRM technology.
  • the expected three-dimensional space where the object exists can be limited to a narrow range, and recognition efficiency can be improved.
  • the road surface operator there is a pattern as shown in Fig. 20 (c). Note that many other patterns (not shown) are assumed as operator parts.For example, force S, three-dimensional maps, and measurement of the entire road surface are not necessary. Since the figure only needs to be completed, it can be said that the degree shown in Fig. 20 is sufficient.
  • FIG. 21 shows a three-dimensional map obtained by stereoscopically viewing the road shown in FIG.
  • the PRM operator is more effective in recognizing a three-dimensional road sign than the road surface display such as the center line shown in FIG.
  • the expected road sign space is assumed on the CV image, and the type, position, shape, and coordinates of the target road sign in the limited space. Can be recognized.
  • the expected road sign space can be synthesized and placed on the actual image as CG, and it is possible to search for the target road sign only within the limited range.
  • CV video can be treated in the same way as an object having three-dimensional coordinates, and can be detected.
  • the 360-degree live CV video displayed on MRSS Pure can be clicked on any point in the CV video with the mouse to (1) obtain the three-dimensional coordinates of the specified point, (2) Connect any two specified points to a straight line with the mouse and measure the distance between the two points. Furthermore, (3) Specify an arbitrary polygon with the mouse. By inputting it, the area of the polygon can be measured. Therefore, by simply using this function to click on the position of the target object in the CV image with the mouse, (1) the attribute registration point can be specified in the actual video, and (2) the road Shapes and road markings can be registered as straight lines, and (3) road surfaces and signboard surfaces can be registered.
  • FIG. 22 is a diagram showing a procedure for manually acquiring and registering an attribute of a target object in a CV video, and the CV video shown in FIG.
  • a desired point or straight line can be designated in the video using a mouse as shown in FIG.
  • the specified points, straight lines, and planes can be registered, and can be output and displayed as a three-dimensional map as shown in FIG.
  • a three-dimensional map can be generated by specifying an arbitrary point of the CV video and registering only straight lines and planes, and if attributes are classified at the time of registration, attribute extraction is completed at the same time,
  • the desired 3D map can be easily generated and obtained.
  • Video map generating instrumentation g feature point three-dimensional map generation apparatus 110
  • the other is post-processing performed by the navigation device (point search navigation device 130) loaded on a vehicle or the like.
  • the pre-processing is performed in the following order.
  • a 360-degree full-circle image is acquired by a vehicle-mounted camera or the like (S2201: 369-degree image shooting), and the camera vector of all frames is acquired for this 360-degree image by CV computation (FIG. 23).
  • the image shot by the camera is a 360-degree full-circle image in principle, but it is not necessarily required to be a 360-degree full-circle image.
  • the CV data obtained by the CV calculation is a relative value
  • the CV data is converted into absolute coordinates (latitude, longitude, height) based on actual measurement data or GPS (S2203: Absolute coordinate acquisition).
  • S2203 Absolute coordinate acquisition
  • an image part that can be a measurement reference later is cut out and added and recorded together with the attribute of the part (S2204: designated reference part coordinate and attribute addition).
  • the designated point is cut as a partial image to reduce the data amount.
  • the exclusive mark can be acquired as a video of a stationary object. .
  • Important points and signboards in the CV video are converted to CG and combined with the CV video together with the attributes or made to correspond (S2205: Add designated CG). Since traffic signs and the like are common, only their IDs and coordinates are added as common CG.
  • CV data 'attributes and the like corresponding to each frame are generated (S2206: CV video generation). If the image is not observed only by measurement, the image should be only the characteristic part. Then, the generated CV video is distributed to the navigation device that performs the post-processing on the WEB, HDD, DVD, or the like (S2207: CV video distribution).
  • Post-processing is performed according to the following procedure.
  • the distributed CV video is received via the web or the like, or read from the purchased DVD or the like (S2301: CV video reception).
  • the current 360-degree image is acquired by the camera mounted on the vehicle (S2302: real-time image acquisition).
  • the acquired video need not necessarily be a 360-degree video.
  • the current position of the vehicle is calculated (S2303: real-time vehicle position measurement).
  • the current position of the vehicle is calculated by (1) CV calculation, (2) calculation of vehicle coordinates from a designated point whose coordinates are known, or (intermediate method combining both). There is.
  • the obtained three-dimensional position of the vehicle is displayed on the map with high precision (for example, more than ten times the precision of GPS), and items necessary for navigation are automatically displayed (S2304: navigation items).
  • the attribute for navigation purpose is displayed.
  • by comparing the coordinates of the vehicle with the map it is possible to sequentially select a sign-road sign.
  • attributes can be displayed by clicking the object in the display image. Displaying the three-dimensional position of the vehicle is sufficient for navigation, and it is not necessary to display the CV video (recorded video) itself. '
  • the GPS can be used as auxiliary information for obtaining the approximate position (see the second embodiment described later).
  • a CV image around the own vehicle is displayed at an arbitrary viewing angle. Depending on the purpose, it can be displayed at any viewpoint (S2306 in Fig. 24: Arbitrary viewpoint image and attribute display) D
  • viewpoint S2306 in Fig. 24: Arbitrary viewpoint image and attribute display
  • traffic signs and the like can be extracted from common CG parts and expressed. It is also possible to display daytime images at night or summer images in winter with snow.
  • the data obtained in the post-processing can be transmitted / received to / from another vehicle or a base station (S2308: Driving situation recognition ′ judgment data in FIG. 26). Send and receive). .
  • the running status recognition in the vehicle ⁇ sectional was Result: in order to have a half "sectional data with other vehicles *, can send a predetermined de 1" data in Tacha charges, at the same time, traveling around It is possible to receive the judgment data of the driving situation recognized as a result of the judgment made by the other vehicle and reflect it on the running of the own vehicle (refer to a third embodiment described later).
  • a sufficient number of feature points can be obtained from a plurality of frame images of a moving image captured by a camera mounted on a moving body such as a vehicle.
  • the camera vector camera position and rotation angle
  • the three-dimensional position coordinates of the feature points with high accuracy by performing overlapping calculations for many feature points. it can.
  • the three-dimensional coordinates of the obtained feature points are stored in a recording medium in advance, and the three-dimensional coordinates are compared with a camera image taken from a moving object that actually moves, or the camera power is obtained.
  • 3D coordinates of the camera position can be directly generated in real time from the video, and high-precision 3D information indicating the current camera position can be obtained, which allows it to be used as a navigation system for moving objects. .
  • the navigation device of the present invention in order to acquire the current position coordinates of a moving object such as a vehicle in real time with higher accuracy than GPS, a plurality of images in an image are acquired using image processing technology. Pay attention to the characteristic points, and measure the three-dimensional coordinates of the characteristic points with high accuracy in advance. Then, a map (3D map) in which the feature points are described in three-dimensional coordinates is stored in a recording medium, and the three-dimensional coordinates of the feature points can be read out by reproducing the recording medium on the moving object side.
  • 3D map 3D map
  • feature points in the video are extracted from the camera image obtained at the current position of the moving object, and the directions of the feature points and the directions of the feature points whose three-dimensional coordinates recorded in advance on the recording medium are known are known.
  • the three-dimensional coordinates indicating the camera position that is, the three-dimensional coordinates indicating the current position of the moving object.
  • the current position of a moving object such as a running vehicle can be accurately determined directly from a camera image or by a previously generated and recorded three-dimensional map.
  • a high-accuracy navigation system with an error range of several cm, which was not possible with the system, can be realized.
  • FIG. 27 is a block diagram illustrating a schematic configuration of a navigation device 100 according to the second embodiment of the present invention.
  • the navigation device 100 according to the present embodiment includes an optional device 300 that can be selectively added. I'm getting ready.
  • the optional device 300 can include a caro with a 3D map attribute, a device 310, a GPS device 320, a data updating device 330, and an optional display device 340.
  • a caro with a 3D map attribute can include a caro with a 3D map attribute, a device 310, a GPS device 320, a data updating device 330, and an optional display device 340.
  • [0117] [3D map attribute adding device]
  • the 3D map attribute adding device 310 can add attribute information as additional information other than the three-dimensional coordinates of the feature points as information recorded on the recording medium 120.
  • the attribute of the feature point includes, for example, the name of the building to which the feature point belongs, the name of the street, the address, the description of the history, and the like. Taste.
  • the feature point attribute acquiring unit 311 acquires the feature point attribute.
  • the belonging object 3D shape coordinate acquisition unit 312 inputs the three-dimensional coordinates of the feature point to which the attribute is to be added from the feature point's camera vector calculation unit 115 of the feature point three-dimensional ground generation device 110.
  • the attribute adding unit 313 adds attribute information corresponding to the input three-dimensional coordinates.
  • the object-with-attribute 3D map generation unit 314 returns the three-dimensional information to which the attribute information has been added to the 3D map generation unit 119 of the feature point three-dimensional map generation device 110.
  • the attribute information of the feature point is added as the three-dimensional information recorded on the recording medium 120.
  • the GPS device 320 outputs latitude / longitude altitude data obtained by GPS to the approximate current position specifying unit 132 of the point search Nahi: Gation device ISO, and specifies the approximate current position of the moving object in the approximate current position specifying unit 132. I do.
  • the GPS device 320 inputs three-dimensional data such as the camera position and orientation indicating the current movement obtained by the camera coordinate calculator 138 ′ of the point search navigation device 130.
  • the obtained data is corrected and used as an auxiliary device when no feature points can be obtained from the video.
  • GPS is inadequate in comparison with position information obtained by the navigation device of the present invention. If there is rough location information from the GPS, the location search navigation device 130 provides a great clue for searching for feature points around the current location.
  • the present invention By using the high-accuracy position data as a correction signal and correcting the data obtained by the GPS system, it becomes possible to finally maintain the same accuracy as that of the present invention for a certain period of time.
  • the GPS device of the present invention it may be desirable to use the GPS device together with the GPS system at night or in a tunnel where it is difficult to obtain a camera image.
  • the GPS device 320 as an optional device of the navigation device 100, measurement is performed at the measurable point by the navigation device 100, and a sufficient image feature point cannot be obtained.
  • the GPS system can be operated with high accuracy by calibrating and calibrating the GPS based on the final data acquired by this device.
  • the advantages of the navigation device 100 and the GPS can be effectively used.
  • the GPS data acquisition unit 321 acquires data obtained by GPS.
  • the device coordinate calculation unit 322 generates and outputs a coordinate signal to be input to the approximate current position specification unit 132 of the point search navigation device 130 based on the GPS data.
  • the GPS data correction unit 323 inputs the highly accurate position information obtained by the camera coordinate calculation 138 of the point search navigation device 130, detects the difference with the GPS measurement device, and detects the difference with the GPS correction calibration signal. ⁇ 3 ⁇ 4 Generate.
  • the GPS data acquisition unit 323 is provided with an output terminal for sending a correction calibration signal of the frictional accuracy generated by the GPS position measuring device.
  • the current location display unit 324 is acquired by the correction calibration signal.
  • the GPS data is output and displayed as a display of the current location. ' ⁇ .
  • the GPS device 320 by providing the GPS device 320 as an optional device, it normally operates as a point search navigation device 130 ", and continuously transmits visual feature points such as nighttime. If it is difficult to obtain the data in a point-by-point manner, the GPS-based navigation function is used together, and the point data obtained from the point search navigation device 130 obtained in pieces is used as the correction signal, and the data is corrected with high accuracy. GPS data can be displayed.
  • the data updating device 330 is a device that can update the data of the recording medium 120 and adds the function of the special feature three-dimensional map generating device 110 to the point search and navigation device 130. 'Specifically, the data updating device 330 stores the camera video acquired by the point search navigation device 130 in the video recording unit 331.
  • the feature point data recalculation unit 332 tracks feature points of the recording medium over a plurality of frames and corresponding points with a small area image including the feature points in the image acquired by the camera, and generates a feature point three-dimensional map.
  • the existing feature points are determined from the correspondence between the feature points of the recording medium over a plurality of frames or the small area image including the feature points and the image of the small area in the video acquired by the camera. Update data such as movement is required.
  • the new feature point acquisition unit 333 detects a new feature point from the image captured by the camera, and adds it as a feature point from the next time by converting the feature point to three-dimensional coordinates. Add.
  • the data is updated by the feature point data updating unit 334, and the updated data is output to the recording medium 120 by the updated data recording unit 335.
  • the earth point searching navigate Chillon So ⁇ 1 3 0 provided to the user side by a data updating apparatus 330, it is possible to add a function corresponding to the feature point three-dimensional map generation apparatus 110 In addition, it is possible to search while creating a map, and to search for local points.At the same time, feature points are detected and three-dimensional coordinates are calculated at the same time, recorded, the data on the recording medium is updated, and the next data is used. Will be able to do it.
  • the option display device 340 can display additional information other than the display content displayed by the point search navigation device 130.
  • the option display device 340 displays images such as traffic signs and road displays and CG that help the user to drive, even though they are not directly related to the recognition of the current position in the point search navigation device 130.
  • the navigation device can be more easily understood and operated.
  • the location search image display unit 341 displays a location search navigableon device 1.
  • 30 feature points Display image data of the 3D map playback unit 131 and the current point display unit 139 are input.
  • the display image attribute display unit 342 displays the attribute of the input display image data.
  • the traffic sign etc. recognition display unit 343 displays an image such as a traffic sign and a road display or a CG observed from the current location.
  • a plurality of frame images of a moving image captured in advance by a camera mounted on a 3D map generation vehicle or the like are sufficient.
  • By automatically detecting a number of feature points and automatically tracking the feature points between each frame it is possible to obtain the camera position and rotation angle with high accuracy by performing an overlap calculation on many feature points.
  • the obtained three-dimensional coordinates of the camera position are stored in a recording medium in advance (a certain one generates the three-dimensional coordinates of the camera position in real time), and the three-dimensional coordinates are actually moved to the navigation object.
  • highly accurate three-dimensional information indicating the current position of the force camera can be obtained, so that it can be used as a navigation system for moving objects. Can be.
  • FIG. 28 is a block diagram showing a schematic configuration of the navigation device according to the third embodiment of the present invention
  • Fig. 29 is the same as the navigation device according to the third embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the embodiment.
  • a recording medium 120 and a point searching navigation device 130 are provided apart from each other, and predetermined three-dimensional information recorded on a recording medium 120 provided in a base station or another moving object is provided. Are transmitted to one or more other location searching and navigation devices 130 via a communication line.
  • the navigation device shown in FIG. 28 employs a satellite communication system.
  • a recording medium 120 on which predetermined three-dimensional information is recorded is stored in a satellite device 400 serving as a base station. It is prepared for.
  • the receiving unit 411 receives the update data from the data updating device 332 via the data updating and inverse transmitting device 350, and the data updating unit 412 can update the data of the recording medium 120 as needed. It has become.
  • the data of the recording medium 120 is transmitted to the point search navigation device by the transmission unit 413.
  • a receiving device 140 is provided on the point search navigation device 130 side.
  • the receiving device 140 receives the three-dimensional information data of the recording medium 120 transmitted from the satellite device 400 via the communication line by the receiving unit 141.
  • the small device shown in Fig. 29 employs an intercommunication method, and data is transmitted and received not only between base stations but also between mobile units. Can be performed.
  • the data of the recording medium 120 is received from the base station, the updated data and the newly obtained data are transmitted to the base station, and the data is directly transmitted between the vehicles. Data can be exchanged, updated as needed, and shared with other vehicles.
  • the f self-recording medium 120 is usually i3 ⁇ 4VD, a hard disk, or the like, and is loaded or installed as a solid in a device on the moving body side.
  • the data of the recording medium 120 is transmitted from the base station to a plurality of vehicles.
  • the recording medium 120 can be handled as software itself or digital data itself.
  • the reception of the software has the same meaning as the loading of the recording medium 120 as a solid, and the use range is expanded by the amount independent of the configuration and the standard of the reproducing apparatus.
  • the vehicle can send newly acquired data to the base station and can directly exchange data between the vehicles. Data can be shared, and real-time data can be exchanged.
  • a navigation device having more excellent versatility is provided.
  • FIG. 30 is a block diagram showing a schematic configuration of the navigation device according to the third embodiment of the present invention.
  • the real-time navigation device 200 of the present embodiment omits the recording medium 120 shown in the above-described first embodiment, and provides a feature of the first embodiment on the side of the moving object to be navigated.
  • a feature point three-dimensional map generation and display device 210 is provided which has the function of a point search navigation device 130 in the three-dimensional map generation device 110.
  • the feature point three-dimensional map generation and display device 210 provided in the real-time navigation device 200 does not include the recording medium as shown in the first embodiment, and moves a vehicle or the like to be navigated. Based on the real image obtained by the camera mounted on the body, the three-dimensional coordinates of the visual feature points in the range observed from the moving body are directly generated in real time and the camera vector is generated. .
  • the real-time navigation device 200 of the present embodiment includes a feature point three-dimensional map generation and display device 210. ,.
  • the feature point three-dimensional map generation and display device 210 has substantially the same configuration as the feature point three-dimensional map generation device 110 of the first embodiment, and includes a camera image acquisition unit 211, a video recording unit 212, and a feature point extraction unit. 213, a feature point correspondence processing unit 214, a feature point 'camera level calculation unit 215, an error minimization unit 216, a shake component detection unit 217, an absolute coordinate acquisition unit 218, and a 3D map generation display unit 219.
  • camera video acquisition unit 211, video recording unit 212, features The point extraction unit 213, the feature point correspondence processing unit 214, the feature point-camera vector calculation unit 215, the error minimization unit 216, the fluctuation component detection unit 217, and the absolute coordinate acquisition unit 218 perform the camera image acquisition in the first embodiment.
  • Unit 111, video recording unit 112, feature point extraction unit 113, feature point correspondence processing unit 114, feature point ⁇ camera vector calculation unit 115, error minimization unit 116, shake component detection unit 117, and absolute coordinate acquisition unit 118 It has a structure.
  • the 3D map generation and display unit 219 performs error minimization processing in the error minimization unit 216, and absolutely obtains the absolute coordinate acquisition unit 218.
  • the three-dimensional shape of the image of the feature point or the small area including the feature point to which the coordinates are assigned, the three-dimensional coordinates and the distribution of the three-dimensional shape, and the movement locus of the mobile object to be navigated, and, if necessary, They are arranged as a three-dimensional map along with the planned travel route, and these are directly displayed together with the objects including feature points.
  • FIGS. 32 and 33 show the three-dimensional coordinates of the feature points generated and displayed by the real-time navigation method according to the present embodiment and the current position of the moving object.
  • FIG. 32 (a) a number of features around the traveling vehicle are extracted, and a three-dimensional map of the road and buildings on which the vehicle travels is generated from the feature points, and is moved to the map.
  • the trajectory of the moving vehicle ⁇ is shown.
  • FIG. 32 (b) shows the extracted feature points and the trajectory of the obtained vehicle displayed in an actual camera image.
  • Fig. 33 is a planar development image of the image shown in Fig. 32 (b), in which the running trajectory of the vehicle, the current position and the planned course are plotted in the image.
  • the real-time navigation device 200 of the present embodiment ⁇ can search for the current location while directly creating a 3D map while moving with the moving object to be navigated. It realizes real-time navigation that can simultaneously perform feature point detection, three-dimensional coordinate calculation, and local point search, and record and update data on the recording medium. '
  • the feature point three-dimensional map generation device 110 generates a three-dimensional map by offline processing after acquiring an image, and thereafter records the three-dimensional map on the recording medium 120 and distributes it.
  • a method of confirming the current position is adopted.
  • a 3D map can be generated in real time while a vehicle or the like moves, a current point can be searched, and the recording medium 120 can be omitted. Thereby, for example, it is described on the feature point three-dimensional map recorded on the recording medium 120!
  • the current point can be displayed while generating a three-dimensional feature point map in real time.
  • the recording medium 120 shown in the first embodiment it is possible to use the recording medium 120 shown in the first embodiment together.
  • a system provided with a recording medium 120 (a navigation device 100 shown in FIG. 31) and a system provided with a recording medium 120 omitted (see FIG. 31)
  • the navigation device 200) shown in FIG. 3 can be implemented, and in the method including the recording medium 120, the feature point three-dimensional map generation device 110 is provided separately from the point search navigation device 130.
  • the case where the former map generation device 110 and the point search navigation device 130 are provided integrally can be implemented.
  • the various optional devices 300 shown in the first embodiment can be provided, and the type of the moving object on which the navigation device of the present invention is mounted, the moving route, the moving range, and the use Select and combine optional devices 300 according to the purpose, etc.
  • FIG. 34 is a block diagram showing a schematic configuration of an embodiment of the real-time navigation device.
  • FIG. 34 is a block diagram illustrating a case where the real-time navigation device is mounted on a vehicle traveling on a road as a moving object.
  • the specific contents of the processing operation in each section of the real-time navigation device described below are the same as those in the corresponding first and second embodiments.
  • an image acquisition unit 200-Q1 acquires a surrounding image by a camera mounted on a vehicle.
  • the temporary image recording unit 200-02 temporarily records the surrounding image acquired by the image acquisition unit 200-01.
  • the feature point extracting unit 200-03 extracts a feature point from the surrounding image recorded in the temporary image recording unit 200-02.
  • the feature point tracking unit 200-04 tracks the feature points in the image that is in contact with the P.
  • the feature point tracking coordinate table creating unit 200-05 records the coordinates of feature points in a plurality of images tracked by the feature point tracking unit 200-04.
  • the vector calculation unit 200-06 selects some of the coordinates of the feature points in the image, and obtains the camera vector and the feature point distribution by calculation.
  • the absolute coordinate conversion unit 200-07 gives absolute coordinates to the calculation result in the vector calculation unit 200-06.
  • the feature point distribution diagram internal force vector display unit 200-08 displays the calculation result to which the absolute coordinates are assigned, together with the three-dimensional distribution of the feature points.
  • the map section 200-09 describes the planned traveling route of the vehicle that constitutes the moving object.
  • the reference object database unit 200-10 describes a reference object whose position and position are visible from the traveling path of the vehicle and whose coordinates and shape are known.
  • the reference object since the moving object is a vehicle, for example, a traffic light at each intersection of the traveling road is suitable.
  • the reference object database unit .20010 once the approximate position is known, the specification of the reference object (signal, etc.) can be obtained. Since the size is standardized, if the format is known, it can be used as a known reference object.
  • the reference object recognition unit 20011 recognizes a reference object having a known shape and coordinates in the surrounding image acquired by the image acquisition unit 200-01.
  • the reference object position calculation unit 200-12 calculates the three-dimensional coordinates of the reference object from the position in the image of the reference object recognized by the reference object recognition unit 200-11.
  • the absolute coordinate converter 200-13 compares the three-dimensional coordinates of the reference object obtained by the reference object position calculator 200-12 with the known data of the reference object, and converts the coordinates into absolute coordinates. .
  • the composite display unit 200-14 composites and displays the converted absolute coordinates of the camera together with the rough power, a previously prepared map, and the like. [0142] [Attitude control]
  • the camera posture signal acquisition unit 200-15 detects a three-axis posture signal of the camera from the camera vector obtained by the vector calculation unit 200-06.
  • the vehicle attitude control unit 200-16 controls the attitude of the vehicle based on the camera three-axis attitude signal detected by the camera attitude signal acquisition unit 200-15.
  • the vehicle attitude can be measured. Then, a feedback signal is generated from the vehicle attitude signal so that the vehicle attitude maintains the target position, and the vehicle attitude can be controlled. 'In the horizontal and vertical directions, calibration can be performed with a level or the like when the vehicle is stationary or at constant acceleration.
  • the GPS data acquisition section 200-17 acquires position data by GPS.
  • the approximate position coordinate acquisition unit 200-18 specifies the approximate position and direction of the vehicle based on the GPS position data, and specifies the reference object in the surrounding image acquired by the image acquisition unit 200-01.
  • the navigation system of the present invention since the navigation system of the present invention is superior to the existing GPS position accuracy, the position can be narrowed down by using the position data by the GPS for the approximate position acquisition. It becomes possible, which is advantageous for calculation. In addition, it is possible to acquire the latitude and longitude by GPS-based position data and display the camera position in latitude and longitude. Furthermore, by incorporating GPS data, for example, when a feature point cannot be found, it becomes possible to travel by navigating with GPS. .
  • the image acquisition unit 200-01 described above can be provided with a function of acquiring a parallel image by a camera loaded with a plurality of cameras having a fixed positional relationship and arranged in parallel so that the fields of view are overlapped. .
  • the feature point tracking unit 200-04 can add a function of searching for corresponding points of image power feature points in a parallel image by a plurality of cameras.
  • the vector operation unit 200-06 obtains a characteristic from the coordinates of each corresponding point in the parallel image.
  • a function for calculating the absolute length of the mark point and the camera vector can be added. In this case, since the absolute length can be acquired at all camera positions by the parallel cameras, measurement can be performed with little error accumulation and long-distance measurement.
  • the moving object feature point tracking unit 200-19 removes a feature point in the feature point stationary coordinate system and treats the removed feature point as a feature point of the moving object.
  • the movement tracking coordinate table creation unit 200-20 creates a table of tracked feature points.
  • the moving body vector calculation unit 200-21 calculates the moving body vector for each moving body, converts it into a stationary coordinate system, and combines it with the previously obtained feature points of the stationary coordinate system to obtain a stationary
  • the feature points of the coordinate system are superimposed on the vector of the moving object.
  • FIG. 35 shows the details of the moving object vector extraction processing.
  • the camera vector that is, the camera position and direction are already three-dimensionally determined in the camera vector determination unit S3401 based on the stationary coordinate system.
  • feature points other than the stationary coordinate system are selected and extracted from all the feature points, and it is determined that they include the feature point in the moving object.
  • Acquisition point calculation • Tracking the feature point in the camera movement in the S3403, tabulating it and storing it in a table t'f temporarily, and calculating the total of the feature points of the moving object by the following process.
  • this table different camera position groups are generated for each moving object. 'Even if there is only one camera, the moving object is observed as a group of features ⁇ , so that the group corresponds to one camera position, so that multiple camera positions are different for each feature point corresponding to the moving object. 'You will be guessed.
  • 'A plurality of camera position classifiers S3405 viewed from the feature point coordinate system determine the camera positions, and the moving object is classified for each camera position.
  • a feature point classifying unit S3406 which is a group for each camera position, feature points are classified for each moving object.
  • the camera position and the moving object are relative movements, coordinate conversion can be performed at any time. Then, in the coordinate system determining unit S3407 of each feature point group viewed from the stationary coordinate system, the camera is returned to the original stationary coordinate system display, thereby moving the feature point group and the coordinate determining unit S3408 by each moving body. The coordinates of the feature points for each body can also be converted to a stationary coordinate system. As a result, the moving object extracting unit S3409 can three-dimensionally extract the moving object into the stationary coordinate system.
  • the calculation is simplified in order to pursue real-time performance, and a recording medium such as a large node disk is not used.
  • a recording medium such as a large node disk is not used.
  • FIG. 36 shows an automatic take-off and landing device as an application example of the real-time navigation device.
  • FIG. 1 shows an example in which the real-time navigation device according to the present embodiment is applied as an automatic landing / landing device (or guidance device) of an aircraft.
  • a wide-angle camera is installed at an arbitrary position on the ground side of the aircraft.
  • the camera shoots the ground side and captures part of the runway in its field of view.
  • a sufficient number of feature points are automatically detected and tracked in the video taken by the camera, and the three-dimensional position and attitude of the aircraft are calculated by calculation.
  • a known object on the ground is taken, compared with the known parts stored in the database, recognized in the video, and named. Check the shape and coordinates.
  • Examples of applications of the navigation device similar to the above are, for example, (1) automatic take-off and landing device, (2) automatic docking device for spacecraft, (3) automatic stop position securing device for train vehicles, (4) It can be applied to automatic parking equipment, (5) automatic ship berthing equipment, and the like.
  • the navigation device according to the present invention has been described with reference to the preferred embodiment.
  • the navigation device according to the present invention is not limited to the above-described embodiment but is within the scope of the present invention. It goes without saying that various modifications can be made.
  • the moving object to which the navigation device is applied is not limited to a vehicle traveling on the ground, and may be one that navigates in a three-dimensional space. Since it can be used on an airplane, navigation with high accuracy at the time of landing is possible. In addition, navigation with a space model is also possible, using M and constellations as feature points visible from the spacecraft. ,
  • the present invention provides, for example, a car navigation device mounted on an automobile, a navigation device mounted on an airplane, a navigation device for automatic driving, and a navigation device for a robot. It can be used as a suitable navigation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 誤差数cmの範囲で移動体の現在位置を示すことができるナビゲーションシステムを提供する。 ナビゲーション装置100は、車両等の移動体に備えられたカメラにより得られる現実の映像に基づき、当該移動体から観察される範囲における映像的な特徴点の三次元座標を含む所定の三次元情報を予め生成する特徴点三次元地図生成装置110と、その所定の三次元情報を記録した記録媒体120と、移動体に備えられたカメラにより得られる現実の映像を、記録媒体120に記録された所定の三次元情報と比較し、現実の映像と一致する三次元座標上の地点と方向を求め、移動体に備えられたカメラの三次元座標上の位置,速度,加速度,視点方向,3軸回転姿勢,3軸回転速度,3軸回転加速度等の所定項目を出力,表示する地点検索ナビゲーション装置130とを備えている。

Description

明 細 書
ナビゲーシヨン装置
技術分野
[0001] 本発明は、車両や船舶,航空機等の移動体の進行方向や現在状況等をガイドする ためのナビゲーシヨン装置に関する。特に、本発明は、走行,航行する移動体の現 在位置を三次元の空間内に探索して、移動体の進行方向や車両姿勢等とともに三 次元地図上に表示することにより、移動する移動体の現在状況を高精度に出力,表 示することができるナビゲーシヨン装置に関する。
背景 S術
[0002] 一般に、車両等の移動をナビゲートするナビゲーシヨン装置としては、 GPS測地衛 星を利用したカーナビゲーシヨンシステムが知られている (例えば、特許文献 1—3参 照。)。 . '
GPSナビゲーシヨンシステムは、複数の測地衛星力も発せ れる時刻と位置データ を、車両に設置した受信装置で読み取り、各衛星からの電波到達時間の差から受信 地点の三次元座標を演算により求め、車両等の現在位置を表示するものである。こ のような GPSナビゲーシヨンシステムによれば、全地球的 等囲で受信地点の三次 元位置を計測すること力 きる。 '
[0003] ここで、 GP ナビゲーシヨンシス ムで得られる位置精度としては、従来は、電離層 における電波の反射や屈折等の影響があり、誤差が 50〜300メートルというところで
' めつ 7こ。 .
近年は、緯度'経度 '高度'^既知の点を利用して電波到達時間の誤差を計測し、そ れを修正信号として送信して受信地点の誤差を修正する方法が付加されるようになり 、誤差は十数メートル程度まで縮小されるようになった。
[0004] 特許文献 1 :特開平 11— 304513号
' 特許文献 2 :特開 2001— 255157号
特許文献 3:特開 2002— 357430号
発明の開示 発明が解決しょうとする課題
[0005] しかしながら、このように位置精度の誤差が数十メートルの範囲にある従来のナビゲ ーシヨンシステムでは、誤差が大きすぎて自動運転等には適用できなかった。例えば 、道路上で車両の自動運転を実現するためには、道路上の車両位置精度を数 cm程 度の誤差にまで高める必要があり、この精度は測量の精度に近く、従来のナビゲー シヨンシステムを利用する限り、いかなる方法であっても、数 cmの精度で、しかも、リア レタイムに連続的な位置計測をして、それを出力するようなことは不可能であった。 また、自動運転に限らず、例えば、自動車の車庫入れや、航空機の離着陸時、ロボ ットのナビゲーシヨンなどに用いる場合にも、数 cm程度の位置精度をリアルタイムに 取得することが必要であり、このようなナビゲーシヨンシステムは現在まで実現されて いない。 '
[0006] そこで、本願発明者は、鋭意研究の結果、移動体に搭載したカメラで撮影される動 画映像の複数のフレーム画像から充分な数の特徴点を自動検出し、各フレーム間で 特徴点を自動追跡し、多数の特徴点について重複演算してカメラ位置と回転角を高 . 精度に求めることができ、そのカメラ位置情報により、移動体の三次元位置座標を高 精度に表示し得ることに想到した。
[0007] すなわち、本発明は、従来の技術が有する問題を解決 るために提案されたもの であり、画像 理技術を用いて、移動体の移動経路について予め特徴点の三次元 座標を精度良く計測しておき、その三次元座標と、現実の移動体の移動時に撮影さ -れるカメラ映像を対比する とにより、移動体のカメラ位置を示す三次元座標を GPS ' システムより高精度に求め ことができ、誤差数 cmの範囲で移動体の現在位 を . 示すことができるナビゲーシヨン装置の提供を目的とする。
課題を解決するための手^
[0008] 上記目的を達成するため、本発明のナビゲーシヨン装置は、ナビゲーシヨン対象と なる移動体から観察される範囲における映像的な特徴点を三次元座標で記録した 記録媒体と、ナビゲーシヨン対象となる移動体に備えられたカメラにより得られる現実 の映像を、記録媒体を再生して得られる映像的な特徴点の三次元座標と比較し、現 · 実の映像と一致する三次元座標上の地点と方向を求め、移動体に備えられたカメラ の三次元座標上の位置、速度、加速度、視点方向、 3軸回転姿勢、 3軸回転速度、 3 軸回転加速度を含む所定項目のうち、いずれか又はそれらを組み合わせた複数の 項目を出力する地点検索ナビゲーシヨン装置とを備える構成としてある。
[0009] また、本発明のナビゲーシヨン装置は、記録媒体に記録される情報が、移動体から 観察される範囲における映像的な特徴点の種類とその三次元座標と、映像的な特徴 点を含む小領域の二次元画像の三次元配置とその三次元座標と、映像的な特徴点 を含む対象物の形状とその三次元座標と、映像的な特徴点以外の移動体の移動に ' 必要な周辺画像, CG等の形状と三次元座標と、移動体が移動する道路,車両走行 ' 路,又は予定航路等め画像, CGとその三次元形状及びその三次元座標とを含み、 これら各情報は、いずれか又はそれらの組み合わせ又はそれら全部、又はそれらの 属性情報を含んで、三次元地図とともに記録される構成としてある。.
[0010] また、本発明のナビゲーシヨン装置は、地点探索ナビゲーシヨン装置が、記録媒体 を再生する特徴点 3D地図再生部と、移動体の概略の現在位置を指定し、初期設定 時の探索範囲を限定する概略現在位置指定部と、記録媒体に記録された三次元地 図から、移動体の現在地周辺の複数の特徴点を読み出し、現在地の探索目標として 指定する現在地周辺特徴点指定部と、ナビゲーシヨン対象となる移動体に備えられ たカメラから当該移動体 與,の映像を取得するカメラ映像取得部と、カメラ映像取得 部で取得された映像を 録 る映像一時記録部と、映像一時記録部に記録された 映像内に、探索目標と同一物となるべき特徴点の候補を探し出す映像内特徴点探 索部と、映像内特徴点探索 ^部で得られた特徴点の候補と、現在地周辺の探索目標と を比較照合して同一物としての対応関係を求め、候補の中から所定数の対応点を決 .
J
定し、決定された対応点の三次元座標を記録媒体力 受け取る映像内特徴点対応 部と、決定された対応点とその三次元座標を用いて、移動体の現時点の状況を示す カメラ位置,方向,姿勢等の三次元データを演算により決定するカメラ座標演算部と 、カメラ座標演算部で決定された三次元データの組み合わせ又はそのすベてを、単 独で又は記録媒体に記録された地図、映像、属性等の情報とともに画面上に表示す る現在地点表示部とを備える構成としてある。
[0011] また、本発明のナビゲーシヨン装置は、記録媒体生成用の移動体に備えられたカメ ラにより得られる現実の映像に基づき、当該移動体力 観察される範囲における映像 的な特徴点を三次元座標で記録した、記録媒体に記録すべき情報を生成する特徴 点三次元地図生成装置を備える構成としてある。
[0012] また、本発明のナビゲーシヨン装置は、特徴点三次元地図生成装置が、記録媒体 生成用の移動体に備えられたカメラから当該移動体の周囲画像を取得するカメラ映 像取得部と、カメラ映像取得部で取得された画像を記録する映像記録部と、映像記 憶部に記録された画像データから、所定数の特徴点を自動抽出する特徴点抽出部 と、特徴点抽出部で抽出された特徴点について、各フレーム画像内で自動追跡して フレーム画像間での対応関係を求める特徴点対応処理部と、特徴点対応処理部で 対応関係が求められた特徴点の三次元位置座標を求めるとともに、当該三次元位置 座標から各フレーム画像に対応したカメラベクトルを求める特徴点'カメラベクトル演 算部と、特徴点'カメラベクトル演算部において求められる各特徴点の三次元位置座 標とカメラベクトルの分布が最小になるように統計処理し、誤差の最小化処理を施し た特徴点の三次元座標とカメラべ外ルを自動的に決定する誤差最小化部と、誤差 最小化部で誤差の最小化処理が施されたカメラベクトルと特徴点又はその特徴点を 含む小領域の画像の三次元形状とその三次元座標及びその分布を、ナビゲーショ ン対象となる移動体の通路ととも 三次元地図として配歹 Iし.、'特徵点を含む対象物 等とともに記録媒体に言録する 3P地図生成記録部とを備える構成としてある。
[0013] また、本発明のナビゲーシヨン装置は、ナビゲーシヨン対象となる移動体に備えられ -たカメラにより得られる現実 映像に基づき、当該移動体から観察される範囲におけ る映像的な特徴点を三次元座標で生成するとともに、当該三次元座標からカメラベク トルを生成し、生成された三次元座標に基づいて三次元地図を生成しつつ、特 ^5:点 の三次元分布及び当該移動体に備えられたカメラの三次元座標上の位置、速度、 加速度、視点方向、 3軸回転姿勢、 3軸回転速度、 3軸回転加速度を含む所定項目 のうち、いずれか又はそれらを組み合わせた複数の項目を出力する特徴点三次元 地図生成表示装置を備える構成としてある。
[0014] そして、本発明の特徴点三次元地図生成表示装置は、移動体に備えられたカメラ から当該移動体の周囲画像を取得するカメラ映像取得部と、カメラ映像取得部で取 得された画像を記録する映像記録部と、映像記憶部に記録された画像データから、 所定数の特徴点を自動抽出する特徴点抽出部と、特徴点抽出部で抽出された特徴 点について、各フレーム画像内で自動追跡してフレーム画像間での対応関係を求め る特徴点対応処理部と、特徴点対応処理部で対応関係が求められた特徴点の三次 元位置座標を求めるとともに、当該三次元位置座標から各フレーム画像に対応した カメラベクトルを求める特徴点-カメラベクトル演算部と、特徴点'カメラベクトル演算部 において求められる各特徴点の三次元位置座標とカメラベクトルの分布が最小にな るように統計処理し、誤差の最小化処理を施した特徴点の三次元座標とカメラべクト ' ルを自動的に決定する'誤差最小化部と、誤差最小化部で誤差の最小化処理が施さ れたカメラベクトルと特徴点又はその特徴点を含む小領域の画像の三次元形状とそ の三次元座標及びその分布を、ナビゲーシヨン対象となる移動体の移動軌跡又は必 要に応じて移動予定路とともに三次元地図として配列し、特徴点を含む対象物等とと もに表示する 3D地図生成表示部とを備える構成としてある。
[0015] また、本発明のナビゲーシヨン装置は、特徴点'カメラベクトル演算部が、カメラベク トル及び特徴点の三次元座標演算に用レ、る任意の二つのフレーム画像 Fn及び Fn +ni (m=フレーム間隔)を単位画像として、所望の特徴点の三次元座標とカメラベク トルを求める単位演算を耨り翠し、二つのフレーム画像 Fn¾び Fn+mの間のフレー ム面像については、簡寿,化 tた演算によりカメラベクトル及び特徴点の三次元座標を 求め、誤差最小化部は、画像の進行とともに nが連続的に進行することにより、同一 特徴点にっレ、て複数回演等されて得られる各カメラベクトルと特徴点の三次元座標 の誤差が最小になるようにスケール調整して統合し、最終の三次元座標を決定する 構成としてある。 ' .
[0016] また、本発明の特徴点'カメラベクトル演算部は、フレーム間隔 mを、カメラから特徴 点までの距離に応じて、カメラ力も特徴点までの距離が大きいほど mが大きくなるよう に設定して単位演算を行う構成としてある。
[0017] また、本発明の特徴点'カメラベクトル演算部は、求められたカメラベクトル又は特 徴点の三次元座標の誤差の分布が大きレ、特徴点を削除し、必要が有れば他の特徴 点について再演算を行い、三次元座標演算の精度を上げる構成としてある。 [0018] また、本発明のナビゲーシヨン装置は、記録媒体と地点探索ナビゲーシヨン装置が 離間して備えられ、基地局又は他の移動体に備えられた記録媒体に記録された所 定の三次元情報が、通信回線を介して一又は二以上の地点探索ナビゲーシヨン装 置に送信される構成としてある。 ,
[0019] また、本発明のナビゲーシヨン装置は、地点探索ナビゲーシヨン装置が、 GPSによ つて得られた緯度経度高度データにより、概略現在位置指定部による移動体の概略 の現在位置を指定する構成としてある。
[0020] また、本発明の地点探索ナビゲーシヨン装置は、カメラ座標演算部で得られた現時 ' 点の移動体状況を示すカメラ位置,方向,姿勢等の三次元データを、緯度経度高度 に変換して GPSを捕正する補正信号として出力し、映像的特徴点が得られない場合 に GPSから位置データを得るための補助信号とする構成としてある。
[0021] そして、本発明のナビゲーシヨン装置は、ナビゲーシヨン対象となる移動体力 自動 車,航空機,船舶,人,ロボット,重機,宇宙船,深海探査船,移動部分を持つ機械 等である構成としてある。 ·
発明の効果
[0022] 以上のような本発明のナビゲーシヨン装置によれば、車両等の移動体に搭載された カメラで撮影される動画映像の複数のフレーム画像力ら充分な数の特徴点を自動検 出し、各フレーム間で特 t'点を自動追跡することにより、多数の特徴点について重複 演算して、カヌラベクトル (カメラ位置と回転角)と特徴点の三次元位置座標を高精度 に求めることができる。 ,
そして、得られた特徴点の三次元座標を予め記録媒体に格納し、その三次元座標 . を現実に移動する移動体力 撮影されたカメラ映像と対比することで、あるいは、カメ ラから得られた映像から、リアルタイムにカメラ位置の三次元座標を直接生成し、現在 . のカメラ位置を示す高精度な三次元情報を得ることができ、これによつて、移動体の ナビゲーシヨンシステムとして用いることができる。
' [0023] 具体的には、本発明のナビゲーシヨン装置では、車両等の移動体の現在地点座標 を GPSより高い精度でリアルタイムに取得するために、画像処理技術を用いて、画像 内の複数の特徴有る点に着目し、前もって特徴点の三次元座標を精度良く計測して おく。そして、その特徴点を三次元座標に記述した地図(3D地図)を記録媒体に格 納し、移動体側でその記録媒体を再生することで、特徴点の三次元座標を読み出す ことができる。さらに、移動体の現在地点で得られたカメラ画像から映像内の特徴点 を抽出し、その特徴点の方向と、記録媒体に予め記録された三次元座標が既知であ る特徴点の方向とを比較して、複数の特徴点の方向が一致する地点の座標を演算 により求めることで、カメラ位置を示す三次元座標、すなわち、現在の移動体の位置 を示す三次元座標を得ることができる。
また、記録媒体を備えず、移動体のカメラで取得した映像から、その場で特徴点を 自動抽出し、自動追跡'し、三次元地図と比較することなぐ直接三次元座標を取得し 、直接カメラ位置を求めることもできる。
[0024] これにより、走行する車両等の移動体の現在位置が、カメラ映像から直接的に、あ るいは、予め生成,記録された三次元地図によって正確に示されることになり、従来 の GPSシステムでは不可能であった、誤差範囲が数 cm程度の高精度なナビゲーシ ヨンシステムを実現することができる。
なお、記録媒体に記録しておくべき (又はリアルタイムで生成する)特徴点の三次元 座標を示す 3D地図を生成するには、予め、走行が予想される道路及ぴその周辺を 撮影し、記録し、それらの 像の に複数の特徴点を自動おるいは手動で抽出し、 それら特徴点を画像内 ネ复数点 *め、それらが動画像の各フレーム内で移動する軌 跡を追跡して、ェピポーラ幾何学により線形連立方程式を解くことで、各特徴点の三 次元地図を生成することが きる。 '
図面の簡単な説明
[0025] [図 1]本発明の第一実施形態に係るナビゲーシヨン装置の概略構成を示すプロック 図である。 '
[図 2]本発明の第一実施形態に係る特徴点三次元地図生成装置の概略構成を示す プ'ロック図である。
[図 3]本発明の第一実施形態に係る地点探索ナビゲーシヨン装置の概略構成を示す プロック図である。
. [図 4]本発明の第一実施形態に係るナビゲーシヨン装置における記録媒体に記録さ れた三次元座標とカメラ映像の対応関係を模式的に示す説明図である。
[図 5]本発明の第一実施形態に係る特徴点三次元地図生成装置における具体的な カメラベクトルの検出方法を示す説明図である。.
[図 6]本発明の第一実施形態に係る特徴点三次元地図生成装置における具体的な カメラベクトルの検出方法を示す説明図である。
[図 7]本発明の第一実施形態に係る特徴点三次元地図生成装置における具体的な 力'メラベクトルの検出方法を示す説明図である。
[図 8]本発明の第一実施形態に係る特徴点三次元地図生成装置によるカメラべタト ' ルの検出方法におけ 望ましい特徴点の指定態様を示す説明図である。
[図 9]本発明の第一実施形態に係る特徴点三次元地図生成装置により得られる特徴 点の三次元座標とカメラベクトルの例を示すグラフである。
[図 10]本発明の第一実施形態に係る特徴点三次元地図生成装置により得られる特 徴点の三次元座標とカメラベクトルの例を示すグラフである。
[図 11]本発明の第一実施形態に係る特徴点三次元地図生成装置により得られる特 徴点の三次元座標とカメラベクトルの例を示すグラフである。
[図 12]本発明の第一実施形態に係る特徴点三次元地図生成装置において、カメラ カゝら特徴点の距離に応じて <複数 特徴点を設定し、複数'の.演算を繰り返し行う場合 を示す説明図である。 -
[013]本発明の第一実施形態に係るナビゲーシヨン装置に備えられる揺れ成分検出 部における揺れ成分検出 (^具体例を示す説明図である。
[図 14]本発明の第一実施形 ||に係る揺れ成分検出部で検出される揺れ成分に基づ. いて補正される安定化画像の一例を示す説明図である。
[図 15]本発明の第一実施形態に係る揺れ成分検出部で検出される揺れ成分に基づ いて捕正されるカメラベクトルの軌跡を示すグラフである。
[図 16]本発明の第一実施形態に係る特徴点三次元地図生成装置で求められたカメ ラベクトルの軌跡を生成された三次元地図中に表示した場合の図である。
[図 17]本発明の第一実施形態に係るナビゲーシヨン装置で生成,表示される三次元 形状 (三次元地図)の表示例を示す説明図である。 [図 18]本発明の第一実施形態に係る特徴点三次元地図生成装置における三次元 地図の生成方法を示す説明図である。
[図 19]本発明の第一実施形態に係る特徴点三次元地図生成装置における三次元 地図の更新方法を示す説明図である。 ' [図 20]本発明の第一実施形態に係る特徴点三次元地図生成装置で生成される三次 元地図の一例を示す図であり、(a)は三次元地図で表される道路の断面図であり、 ( b)は (a)に示す道路の三次元地図の一例で道路上空力 撮影した投影図であり、 (c )は (b)に示す三次元地図において三次元座標を取得するために使用されるォペレ ータ部品を示す図で る。
[図 21]図 20に示す道路の立体図であり、道路標識のオペレータ部品(CG部品)が合 成された図を示している。 ;
[図 22]図 21に示す CV映像中に手動により対象物の属性を取得し登録する場合を説 明する図であり、(a)は CV映像、(b) CV映像中に任意の点と直線を指定した状態、 (b)は指定された点と直線を登録することにより生成 '表示された三次元地図を示し ている。
[図 23]本発明の第一実施形態に係るナビゲーシヨン装置全体の動作の概要の一例 を示す説明図である。 . Λ . s ノ
[図 24]本発明の第一実 开態に係るナビゲーシヨン装置全体の動作の概要の他の 一例を示す説明図である。
[図 25]本発明の第一実施^態に係るナビゲーシヨン装置全体の動作の概要の他の 一例を示す説明図である。 ■
[図 26]本発明の第一実施形'態に係るナビゲーシヨン装置全体の動作の概要の他の 一例を示す説明図である。 ' '
[図 27]本発明の第二.実施形態に係るナビゲーシヨン装置に付加されるオプション装 置の概略構成を示すブロック図である。
[図 28]本発明の第三実施形態に係るナビゲーシヨン装置の概略構成を示すプロック 図である。
[図 29]本発明の第三実施形態に係るナビゲーシヨン装置の他の実施形態の概略構 成を示すブロック図である。
[図 30]本発明の第四実施形態に係るナビゲーシヨン装置の概略構成を示すブロック 図である。
[図 31]本発明の第一〜第四実施形態に係るナビゲーシヨン装置を組み合わせた場 合の概略構成を示すブロック図である。
[図 32]本発明の第四実施形態におけるリアルタイムナビゲーシヨン方法により生成, 表示される特徴点の三次元座標と移動体の現在位置を示す説明図である。
[図 33]本発明の第四実施形態におけるリアルタイムナビゲーシヨン方法により生成, ' 表示される特徴点の兰次元座標と移動体の現在位置を示す説明図である。
[図 34]本発明の第四実施形態に係るナビゲーシヨン装置の具体的な構成を示すプロ ック図である。 :
[図 35]本発明の第四実施形態に係るナビゲーシヨン装置における処理動作の内容を 示すブロック図である。
[図 36]本発明の第四実施形態に係るナビゲーシヨン装置を利用した具体例を模式的 に示す説明図である。
発明を実施するための最良の形態
以下、本発明に係るナビ ーシ,ヨン装置の好ましい実滅 態について、図面を参 照しつつ説明する。
-ここで、以下に示す本発明のナビゲーシヨン装置は、プログラム(ソフトウェア)の命 ,令によりコンピュータで実行される処理,手段,機能によって実現される。プログラム は、コンピュータの各構成要^に指令を送り、以下に示すような所定の処理や機能、 · 例えば、特徴点の自動抽出,抽出した特徴点の自動追跡,特徴点の三次元座標の 算出,カメラベクトルの演算等を'行わせる。このように、本発明のナビゲーシヨン装置 における各処理や手段は、プログラムとコンピュータとが協働した具体的手段によつ て実現されるようになっている。
なお、プログラムの全部又は一部は、例えば、磁気ディスク,光ディスク,半導体メ モリ,その他任意のコンピュータで読取り可能な記録媒体により提供され、記録媒体 力 読み出されたプログラムがコンピュータにインストールされて実行される。また、プ ログラムは、記録媒体を介さず、通信回線を通じて直接にコンピュータにロードし実 行することもできる。
[0027] [第一実施形態]
まず、図 1〜図 26を参照して、本発明に係るナビゲーシヨン装置の第一実施形態 について説明する。
[基本構成]
図 1は、本発明の第一実施形態に係るナビゲーシヨン装置の概略構成を示すプロ ック図である。
同図に示す本実施 態に係るナビゲーシヨン装置 100は、特徴点三次元地図生 成装置 110と、記録媒体 120と、地点探索ナビゲーシヨン装置 130とを備えている。
[0028] 車両や航空機,船舶等の移動体の現在地点座標を GPSより高い精度でリアルタイ ムに取得できるようにするために、本実施形態では、画像処理技術を用いて、画像内 の複数の特徴有る点に着目し、特徴点三次元地図生成装置 110を使用して前もつ て特徴点の三次元座標を精度良く計測し、その特徴点を三次元座標に記述した地 図(3D地図)を生成する。生成した 3D地図は、例えば DVDやハードディスク, CDな
.どの記録媒体 120に記録する。
そして、本ナビグーシ ^ 置を烤用するナビゲー ヨン ¾ ^となる車両等の移動. 体側では、地点探索ナ ;ゲ一シヨン装置 130により、実際に移動する移動体に備えら
' れたカメラで得られた現在地点のカメラ画像から映像内の特徴点を抽出し、その特徴 点の方向と、記録媒体に予め記録された三次元座標が既知である特徴点の方向とを •
比較して、複数の特徴点の方向が一致する地点の座標を演算により求める。 . これによつて、移動体にィ M1られたカメラ位置を示す三次元座標、すなわち、現在 の移動体の位置を示す三次元座標を得ることができる。
. なお、本ナビゲーシヨン装置によってナビゲートされる移動体としては、例えば、自 動車,船舶,航空機,ロボット,移動する機械,移動する人等があり、また、その用途 等に応じて、重機 (重工業用機械),深海探査船、移動部分を持つ機械、さらには宇 宙船等も含まれる。
[0029] 具体的には、ナビゲーシヨン対象となる移動体では、地点探索ナビゲーシヨン装置 130によって、記録媒体 120から読み出された複数の映像的な特徴点の三次元座 標を持つ画像を、走行車両や航空機等に取り付けたカメラから得られる映像内に探 索し、対応関係を求める。カメラから得られた二次元映像内に、記録媒体 120から得 られる三次元地図として記述された複数の特徴点との対応点を画像認識で求める。 次に、各対応点の方向が両者で一致する地点を、記録媒体中の三次元地図の中 に探索し、演算で求める。その位置がカメラの現在地点、すなわち、移動体の現在地 点となる。そして、記録媒体 120に記録された三次元地図中に、カメラを搭載した車 両の三次元的現在位置、速度、加速度、方向、回転速度、回転加速度、をリアルタイ ' ムで表示できることに ¾る。 ■
[0030] このようにして、本実施形態のナビゲーシヨン装置では、予め生成,記録された三次 元座標によって移動体の現在位置が正確に示されることになり、従来の GPSシステ ムでは不可能であった、誤差範囲が数 cm程度の高精度なナビゲーシヨンシステムを 実現することができる。
また、本実施形態では、特徴点の三次元座標を示す 3D地図を記録媒体に記録す ることで、量産し、酉己布できるようになる。これにより、本ナビゲーシヨン装置の利用者 は、その記録媒体を取得し、それを再生することで、特徴点の三次元座標を読み出 すことが可能となる。
記録媒体に記録して: fe べき特徴点の三次元座標を示す 3D地図を生成するには ,予め、 3D地図生成用車両等に搭載したカメラで走行が予想される道路及びその周 辺を撮影し、記録し、特徴 '三次元地図生成装置 110によって、それらの映像の中 に複数の特徴点を自動あるいは手動で抽出し、それら特徴点を面像内に複数点求 . め、それらが動画像の各フ^ーム内で移動する軌跡を追跡して、ェピポーラ幾何学 により線形連立方程式を解くことで、カメラ位置と各特徴点の三次元座標を示す三次 元地図(3D地図)を生成すること力できる。
[0031] ここで、 3D地図を精度良く生成するには、画像内の映像的な特徴点を検出し、そ の移動を追跡する技術を用いることが好ましい。特徴点の検出を自動化し、追跡も自 動化することで、手作業による作業を大幅に省略することができる。
画像内の特徴点から三次元座標とカメラ位置 (カメラベクトル)を求めるには、例え ば、同時に 6〜7点以上の特徴点があるように、特徴点を画像内で追跡する。そして、 それらの特徴点に対してェピポーラ幾何学を用い、特徴点の三次元座標とカメラ位 置を演算により求めることができる力 S、 6〜7点程度の特徴点では、得られる特徴点や カメラの位置精度は不十分なものとなる。 '
[0032] そこで、本実施形態では、後述するように、抽出,追跡する特徴点の数を十分に多 くし、また、十分なフレーム数を用いることで多重視差を取得し、有り余る特徴点とフ ' レーム数を得るようにしてある。有り余る特徴点と有り余るフレーム数による多重視差 を用い、統計処理を施して、重複する演算を繰り返し、カメラ位置の誤差分布を求め ' 、そこから統計処理により、精度の高いカメラ位置を求めるようにする。このようにする ことで、各フレームのカメラ位置は高精度で求められ、カメラ位置が高精度で求めら れれば、その後は、視差から三次元座標を求める技術で、画像内の全画素について の三次元座標が得られるようになる。
3D地図生成の詳細については更に後述する。
なお、記録媒体に記録すべき 3D:t也図生成用の移動体としては、例えば、自動車, 船舶,航空機,ロボット,移動する機械,移動する人等が含まれる。
[0033] このように、本実施形態のナビゲーシヨン装置 100は、 3D地図自体は予め特徴点 三次元地図生成装置: '^成され、生成された 3D地図が記録媒体 120に記録さ れ、それを地点探索ナ ゲニシヨン装置 130が備えられた車両等の移動体側で再生 することにより、現実の映像と 3D地図を比較して地点を探索できるようになつている。 従って、利用者側では、記 媒体 120のみを入手 (購入)し、地点探索ナビゲーショ ン装置 130を搭載した車両で再生,使用することができ、容易かつ安価に本ナビゲ . ーシヨン装置 100を利用す ' ことができる。
その意味で、特徴点三次元地図生成装置 110は、利用者側に備えられる必要はな ぐ記録媒体 120及び地点探索ナビゲーシヨン装置 130とは分離して設けることがで , きる。また、所定の 3D地図を生成して記録媒体 120に記録できれば、特徴点三次元 地図生成装置 110以外の構成によって 3D地図を生成,記録することも可能である。
[0034] [具体的構成]
以下、より具体的に、本実施形態のナビゲーシヨン装置 100を構成する特徴点三次 元地図生成装置 110と記録媒体 120及ぴ地点探索ナビゲーシヨン装置 130につい て説明する。
[特徴点三次元地図生成装置]
図 2は、本実施形態に係る特徴点三次元地図生成装置 110の概略構成を示すプ ロック図である。
特徴点三次元地図生成装置 110は、車両等の移動体に備えられたカメラにより得 られる現実の映像に基づき、移動体力 観察される範囲における映像的な特徴点の 三次元座標を含む所定の三次元情報を生成する。 '
[0035] 具体的には、図 2に すように、カメラ映像取得部 111,映像記録部 112,特徴点 抽出部 113,特徴点対応処理部 114,特徴点-カメラベクトル演算部 115,誤差最小 化部 116,揺れ成分検出部 117,絶対座標取得部 118及び 3D地図生成記録部 11 9を備えている。
カメラ映像取得部 11 ίは、移動する車両の車載カメラ等の移動体に備えられるカメ ラから移動体の周囲画像を取得する。
映像記録部 112は、カメラ映像取得部 111におレヽて取得した画像を記録する。
特徴点抽出部 113は、において、記録した画像の中に、特徴点となるべき小領域 画像を手動又は自動に り Jf定し神出する。 , " ノ
[0036] 特徴点対応処理部 1 'は-、自動抽出された特徴点を、各フレーム間で各フレーム
i像内におレ、て自動的に追跡することで、その対応関係を自動的に求める。 特徴点'カメラベクトル演蓽部 115は、対応関係が求められた特徴点の三次元位置 座標を求め、その三次元位置座標から各フレーム画像に対応したカメラベクトルを演 . 算で自動的に求める。 '
誤差最小化部 116は、複数の重複演算により、各カメラべ外ルと各特徴点の位置 の分布が最小になるように統計処理をし、さらに誤差の大きい特徴点を検出して、そ れを削除することで、全体の誤差を最小化処理する。
[0037] 摇れ成分検出部 117は、特徴点 ·カメラベクトル演算部 115におレ、て得られたカメラ ベクトノレ (カメラの三次元位置座標及び 3軸回転座標)から、あらかじめ予定された車 両位置 (カメラ位置と一対一に対応)と車両回転姿勢 (カメラ姿勢と一対一に対応)で ある予定カメラベクトルとのズレ成分を抽出する。そして、予定カメラベクトルと現時点 でのカメラベクトルとの差から、若しくは評価時点でのカメラベクトルとの差から、 置 ズレ成分信号及び回転ズレ成分信号を生成し、これらズレ成分信号のすべて、若しく は一部及びそれらの選択と組み合わせによる値を、目的に沿った適切な評価すべき 座標系に変換して、カメラ (カメラが固定される車両等の固定物)の揺れを評価し、出 力し、さらに、必要が有れば表示することができる。この揺れ成分検出の詳細につい ては後述する。 ' .
[0038] そして、求められたカメラベクトルとその摇れ成分に基づいて、ビデオ映像等の動画' 撮影において取得された画像のカメラの揺れに起因する不規則なプレ等を捕正し、 ブレのある画像力らブレのない画像を生成することができる(画像安定化処理)。また
、得られるカメラベクトルとそ 揺れ成分に基づいて、カメラ自身の位置と姿勢を駆動 制御して、画像安定ィ匕処理と同様に、画像を安定化させることができる (位置姿勢安 定化処理)。
さらに、得られたカメラベクトルに基づいて、画像內に指定した対象物を実写座標 系で計測してその三次元座標を求め、三次元座標が求められた指定対象物が、常 に画枠の中心位置 (又は任意の所定位置)に表示されるよう.に、画像表示又はカメラ
(カメラが固定される固定 )の位置及び姿勢を制御する€1 ができる(目的対象物口 ックォン処理)。このと ¾;ぉックォン制御される対象画像は、摇れ成分を含んだままの オリジナル画像でもよぐまた、画像安定化処理され安定ィヒされた画像であっても良 レ、 n
[0039] 絶対座標取得部 118は、予め定めた所定の基準点の既知の絶対座標から、求めら. れた三次元相対座標を絶对座標系に変換し、特徴点のすべての点、又は必要な所 定の点について絶対座標を与える。
なお、緯度経度等の絶対座標を必要としないときは、長さの基準を示す長さ基準点 により、各画像で長さ校正をし、スケール合わせができて、正しいスケールの座標を 取得できる。この場合には、特徴点 '·カメラベクトル演算部 115は、長さ基準点の両端 の三次元座標を求め、得られた三次元座標から長さ基準点の 2点間の距離を演算に より求める。そして、誤差最小化部 116において、特徴点'カメラベクトル演算部 115 で演算により得られた長さ基準点の 2点間の距離が、長さ基準点の既知の長さと一 致するように、重複演算を繰り返し、統計処理する。
勿論、座標基準点と長さ基準点を同時に用レ、ることもでき、その場合には、更に精 度を向上させることができる。 '
[0040] ここで、基準点は、後述するように、三次元相対座標を絶対座標に変換する際の基 準となる点であり、予め、任意の方法により既知の基準座標(三次元絶対座標)が計 測される点 (座標基準点)である。また、基準点は、三次元絶対座標が既知の基準点 とともに、又は三次元絶対座標が既知の基準点に換えて、長さが既知の基準点 (長さ 基準点)を含むことが きる。
長ざ基準点とは、 2点以上の点からなり、 2点間の距離を既知のものとして极ぅ基準 点であり、例えば、長さ基準点の間隔を 1メートルというように設定レ、画像内に 1メー トルの棒等を多数映るように設置することで得られる。そして、各画像に少なくとも一 つの長さ基準点が重複するように撮影する。このような長さ基準点を設けることで、長 さ基準点の既知の長さを基準として、後述するように、画像毎にスケールのキヤリブレ ーシヨンができ、精度を大幅に向上させることができる。
[0041] 長さ基準点は、座標基準点を複数設定するのと同様と捉えることもできるが、「長さ」 である長さ基準点を多数 する,ことは、「点」である座標基準点を多数設定するより も有効である。すなわち 標基,準点は全計測範囲に 2点のみ設定すれば絶対座標 変換でき、また、座標基準点がすべての画像から観察されるとは限らず、さらに、 . 複数の座標基準点を設定するよりも複数の長さ基準点を設ける方が費用や手間の点 で有利となる。従って、例えば全計測範囲において、座標基準点は 2点のみとし、長 · . さの基準を示す所定長 (例えば 1メートル)の棒を計測範囲に多数、しかもランダムに 設置するだけで、本発明に係る自動測量を実施でき、計測作業の手間も費用も大幅 に削減することができる。
なお、基準点 (座標基準点又は長さ基準点)についての三次元座標や長さの測量 はどのような方法であってもよく、例えば、三角法等の従来公知の測量方法によって 絶対座標や長さを取得しておくことができる。
[0042] 3D地図生成記録部 119は、誤差の最小化処理を施したカメラベクトルと特徴点、 又はその特徴点を含む小領域の画像の三次元形状と、その三次元座標と、その分 布を、車両等の移動体の通路(走行路,航路等)とともに三次元地図として配列し、 特徴点を含む対象物等とともに、記録媒体 120に記録する。
[0043] 以上のような特徴点三次元地図生成装置 110では、後述するように、ェピポ ラ幾 何により、 2フレーム画像から複数点の対応点を求めることで、記録媒体 120に記録 すべき特徴点の三次元地図を生成する。本実施形態では、対応点の三次元座標が 演算可能なェピポーラ幾何学を用いるとともに、さらに、対応点を自動検出すること、 7点程度の対応点と二フレーム画像があれば足りる演算を、すべてのフレームにわた つて演算して統計処理することにより誤差を最小にすることにより、高精度な 3D地図 を生成している すなわち、特徴点の数やフレームの数等の充分に多数の情報を用 いて、各特徴点の誤差を縮小.にし、エラーを含む特徴点を削除して精度の高い特徴 点三次元地図を生成するようにしてある。
[0044] [記録媒体]
図 3は、本実施形態に係る記録媒体 1'20及び地点探索ナビ 'グーション装置 130の 概略構成を示すブロック図である。
記録媒体 120は、 DVDやハードディスク, CDなどのデータを記録可能な媒体から なり、特徴点三次元地図生成装置 ,ΙΙΟで生成された三次元.地図情報を含む所定の 情報が記録,格納され ί る。 ,
.記録媒体 120に記録される情報としては、(1)移動体から観察可能な映像的な特徴 .点の特徴の種類とその三次^座標 (三次元地図)、(2)映像的な特徴点を含む小領 域の二次元画像の三次元配置とその三次元座標、(3)映像的な特徴点を含む対象 物の形状 (二次元又は三次元形状)とその三次元座標、(4)必ずしも特徴点ではない ' が、走行、航行に必要な周辺画像や CG等の形状 (二次元又は三次元形状)と三次 元座標、(5)移動体の移動路、例えば、道路、車両走行路、予定航路などの画像、 C . G及びその形状 (二次元又は三次元形状)と、その三次元座標、などがある。そして、 これらの情報のいずれ力 \又はそれらの組み合わせ、又はその全部を、必要に応じ てそれらの属性を含む形で、三次元地図とともに記録されるようになっている。
[0045] このように、記録媒体 120には、移動体力 観察可能な特徴点が記述されるが、そ の特 ί敷点の周囲の小領域の画像を含めて記録することで、移動体の現地点映像と 地図上の特徴点の対応がとり易くなり好ましい。
また、後述するように、地点探索ナビゲーシヨン装置 130において演算の結果求め + られるのは三次元座標であり、抽出される特徴点は人間の視覚から見た特徴点であ る必要はないが、利用者に理解し易い情報を出力するために、車両走行路の地図 や周辺の建築物等が記録されることが望ましい。
さらに、現在地点の認識には直接関係しない情報であっても、利用者の走行等を 助ける情報として、例えば、 ¾通標識や道路表示等の画像や CGとその属性が記録 ' されることで、より理解し易ぐ操作し易くなり好ましい。
[0046] [地点探索ナビゲーシヨン装置]
地点探索ナビゲーシヨン装置 130は、車両等の移動体側に設置される装置であり、 移動体に備えられたカメラにより得られる現実の映像を、記録媒体 120に記録された 所定の三次元情報と比較し、現実の映像と一致する三次元座標上の地点と方向を 求める。これによつて、移動体に備えられたカメラの三次元座標上の位置、速度、カロ 速度、視点方向、 3軸回転姿勢、 3軸回転速度、 3軸回転加速度を含む所定項目のう ち、いずれか又はそれらを組み合わせた複数の項目を出力する。
具体的には、図 3に示: t うに、 徴点 3D地図再生部 13i,概略現在位置指定部 132,現在地周辺特徴 指定部 133,カメラ映像取得部 134,映像一時記録部 135 ,映像内特徴点探索部 136,映像内特徴点対応部 137,カメラ座標演算部 138,現 在地点表示部 139を備え 1いる。 '
[0047] 特徴点 3D地図再生部 131は、記録媒体 120を再生し、記録されている所定の三 .
1
次元情報を読み出す。上述したように、記録媒体 120は、 DVDや CDとして提供され るので、利用者は自己の車両等に備えられたナビゲーシヨンシステムに記録媒体 12 0を装填し、再生する。特徴点 3D地図再生部 131では、記録媒体 120に記録されて いる特徴点 3D地図を再生する。再生された 3D地図には、特徴点の三次元座標と、 その属性が記述されている。
概略現在位置指定部 132は、移動体の概略の現在位置を何らかの手段で決定し て指定し、初期設定時の探索範囲を限定する。この現在位置の指定は、例えば利用 ' 者が手入力に指定することもでき、また、 GPSによって得られた緯度経度高度データ によって移動体の概略の現在位置を指定することもできる。移動体の概略位置情報 を指定,入力することにより、現在地点周辺の特徴点を探すのに大きな手力 Sかりとな る。そして、そのための手段として GPSを利用することができる。 GPSは本発明のナ ビゲーシヨン装置 100と比較して精度が悪いが、.概略位置の情報としては適当な精 度を持つといえ、概略位置情報の指定手段としては有効に利用できる。
[0048] 現在地周辺特徴点指定部 133は、記録媒体 120の 3D地図から現在地周辺の複 数の特徴点を読み出し、それを現在地の探索目標として指定し、映像内特徴点探索' 咅 に出力する。概略現在位置指定部 132の指定により概略位置が分かるので、 現在地周辺特徴点指示部 133では、記録媒体 120から現在地周辺の特徴点データ 取り込み、それらの特徴点を三次元座標として配分する。
カメラ映像取得部 134は、特徴点三次元地図生成装置 110のカメラ映像取得部 11 1と同様、車載カメラにより、移動する車両の車載カメラ等の移動体に備えられるカメ ラから移動体の周囲画像を取得する。
映像一時記録部 135は、特徴点三次元地図生成装置 110の映像記録部 112と同 様、カメラ映像取得部 134において取得した画像を記録する。 .
[0049] 映像内特徴点探索部 136は、映像一時記録部 135に言 g録された映像内に、現在 地周辺特徴点指定部 1 3で指定された探索目'標と同一物となるべき特徴点の候捕 をいくつか探 出す。
'映像内特徴点対応部 137は、映像内特徴点探索部 136で探索された特徴点の候 '補と現在地点周辺の探索目 ' '撣とを比較照合して一致点を探し出し、同一物としての 対応関係を求める。そして、 応関係が求められた候捕の中から演算に十分な数の 対応点を決定する。 .
ここで、記録媒体 120に記録された三次元座標とカメラ映像の一致点を求めるには
、例えば、マッチングや相関等の画像処理技術により行える。
図 4に、記録媒体 120に記録された三次元座標とカメラ映像の対応関係を二次元 的に示す。同図において、 はカメラ映像と三次元座標の対応が取れた特徴点であ り、 Xは対応が取れな力 た特徴点を示している。 r
20
[0050] カメラ座標演算部 138は、決定された対応点の三次元座標を記録媒体 120から受 け取り、決定された対応点とその三次元座標を用いて、現時点の車両状況を示す力 メラ位置、方向、姿勢等の三次元データを演算して決定する。記録媒体 120に記録 されている多数の特徴点と、取り込んだ映像の特徴点の三次元配列が一致する地点 力 求めるカメラ位置の三次元座標である。得られたカメラ位置の三次元座標、速度 、加速度、回転姿勢等のデータを表示することで、ナビゲーシヨンシステムが完了す る。
すなわち、現在地点表示部 139は、カメラ座標演算部 138で求められら現時点の 移動体の状況を示す兰次元データのいくつかの項目、又はその組み合わせ項目を 、単独で、あるいは地図、映像、属性等、記録媒体 120に記録されている情報ととも に、それらのうちのレ、くつか又は全部を目的の形式で走行地図,予定走行路等の地 図上に表示する。
[0051] このように、地点探索ナビゲーシヨン装置 130では、記録媒体 120に記録されてい る特徴点と、それに対応するリアルタイムで取り込んだ映像内の特徴点を複数個求め て、それらの観察方向が一致するような三次元地図上の視点を演算で求めることが でさる。 - そして、記録媒体 120 、特 ί零点の三次元情報以外に '地図や様々な情報が記 録してあるので、それら '†t¾と もに表示することができる。
.なお、本実施形態では、特に図示しないが、地点探索ナビゲ一シヨン装置 130は、 .さらに、カメラ座標演算部 1^8で決定された三次元データにより、本ナビゲーシヨン装 置を搭載する車両等の移動体を直接制御する制御装置を備えることができる。すな . わち、本ナビゲーシヨン装 で求められる高精度な位置情報に基づいて、車両等の 移動体を自動制御することができ、自動運転システムを実現することができる。
[0052] また、地点探索ナビゲーシヨン装置 130は、上述した特徴点三次元地図生成装置 110の機能を付加することにより、記録媒体 120のデータを更新するようにすることも できる。すなわち、地点探索ナビゲーシヨン装置 130において、利用者の車両等に搭 載したカメラによる映像を蓄積し、複数のフレームにわたる記録媒体の特徴点やその 特徴点を含む小領域画像との対応点を、カメラで取得した画像内で追跡し、特徴点 三次元地図生成装置 110と同様にして、複数のフレームにわたる記録媒体の特徴点
、又はその特徴点を含む小領域画像と、カメラで取得した映像内の小領域の画像と の対応関係から、既存の特徴点の移動等の座標更新データを演算で求め、その結 果を次回からの特徴点として付加することが可能である。 ' ' あるいは、カメラによる映像から新たな特徴点を検出して、三次元座標にカロえること で、次回からの特徴点として付カ卩し、次回からの特徴点として付加することが可能で ある。 '
[0053] このようにすると、利用者側に備えられる地点探索ナビゲーシヨン装置 130に、特徴 ' 点三次元地図生成装 S110に相当する装置を備えることで、地図を作りながら探索 をすることが可能となり、現地点探索と同時に、特徴点検出と三次元座標演算を同時 に行い、記録し、記録媒体のデータを更新し、次回からのデータとして用いることがで きる。これにより、データ更新装置やリアルタイムナビゲーシヨン装置を構成することが できる。データ更新装置については図 27を参照しつつ、また、リアルタイムナビゲー シヨン装置については図 30以下を参照しつつ、それぞれ後述する。
[0054] [カメラベクトル演算 ' 3D地図生成方法]
次に、上述した本実施形態の特徴点三次元地図生成装置 110 (必要に応じて地点 探索ナビゲーシヨン装脣 3〇,)におけるカメラベクトル演算 び三次元情報(3D±也図 )の生成方法について ¾明する。
_複数の画像 (動画又は連続静止画)の特徴点力 カメラベクトルと特徴点の三次元 情報を求めるにはいくつか 方法があるが、本実施形態の特徴点三次元地図生成 装置 110では、画像内に十分に多くの数の特徴点を自動抽出し、それを自動追跡す. ることで、ェピポーラ幾何^!こより、カメラの三次元ベクトル及び 3軸回転ベクトルと特 徴点の三次元座標を求めるようにしてある。特徴点を充分に多くとることにより、カメラ ベクトル情報が重複することになり、重複する情報から誤差を最小化させて、より精度 の高いカメラベクトルと特徴点の三次元座標を求めることができる。
[0055] まず、車載カメラ等によって画像を取得し、フレーム間で対応関係にある十分に多く の点を用い、カメラベクトルを精度良く演算で求める。原理的には 6点乃至 7点の特 徴点があれば三次元座標は求まる力 s、本実施形態では、例えば、 100点程度の十分 に多くの点を用いることで、解の分布を求め、その分布から統計処理により各ベクトル を求め、結果としてカメラベクトルを求める。
このようにして求められたカメラの三次元位置とカメラの 3軸回転から、それを各フレ ーム画像にデータとして付加し、複数のフレーム画像力 得られる複数の視差、,即ち 多重視差と、既に取得しているカメラの三次元位置から、対象物の特徴点の三次元 座標を演算で求めることができる。
[0056] なお、以上の処理は、車載カメラだけでなぐ例えば、人が手に持ってカメラを自由 に振り回して、対象物を撮影し、撮影後にその映像力 カメラベクトルを演算で求め、 カメラベクトルから、撮影した対象物の三次元形状を求めることができる。
そして、以上の処理を繰り返すことで、広範囲の三次元形状、即ち三次元地図(3D 地図)が生成されることになる'.。
[0057] [カメラベクトル演算]
カメラベクトルとは、カメラの持つ自由度のベクトルをいう。
一般に、静止した三次元物体は、位置座標 (X, Y, Z)と、それぞれの座標軸の回 転角(Φχ, γ, Φ ζ)の六個の自由度を持つ。従って、カメラベクトルは、カメラの位 置座標 (X, Υ, Ζ)とそれぞれの座標軸の回転角(Φχ, Φγ, . Φζ)の六個の自由度の ベクトルをいう。なお、カメラ 移動する場合は、自由度に移動方向も入る力 これは 上記の六個の自由度カ¾ 微分して導き出すことができる。
-このように、本実施形態の特徴点三次元地図生成装置 11Qにおけるカメラベクトル .の検出は、カメラは各フレ Α毎に六個の自由度の値をとり、各フレーム毎に異なる 六個の自由度を決定するこ である。
[0058] 以下、特徴点三次元地図生成装置 110における、より具体的なカメラベクトルと特 徴点の三次元座標の検出方法について、図 5以下を参照しつつ説明する。
特徴点三次元地図生成装置 110では、まず、特徴点抽出部 113において、適切に サンプリングしたフレーム画像中に、特徴点となるべき点又は小領域画像を自動抽 出し、特徴点対応処理部 114で、複数のフレーム画像間で特徴点の対応関係を自 動的に求める。具体的には、カメラベクトルの検出の基準となる、十分に必要な数以 上の特徴点を求める。画像間の特徴点とその対応関係の一例を、図 5〜図 7に示す 。図中「 + Jが自動抽出された特徴点であり、複数のフレーム画像間で対応関係が自 動追跡される(図 7に示す対応点 1〜4参照)。
ここで、特徴点の抽出は、図 8に示すように、各画像中に充分に多くの特徴点を指 定,抽出することが望まし 図 8の〇印参照)、例えば、 100点程度の特徴点を抽出 する。 .
[0059] 続いて、特徴点'カメラベクトル演算部 115で、抽出された特徴点の三次元座標が 演算により求められ、その三次元座標に基づいてカメラベクトルが演算により求めら れる。具体的には、特徴点'カメラベクトル演算部 115は、連続する各フレーム間に存 在する、十分な数の特徴の位置と、移動するカメラ間の位置ベクトル、カメラの 3軸回 転ベクトル、各カメラ位置と特徴点をそれぞれ結んだベクトル等、各種三次元ベクトル の相対値を演算により連続的に算出する。'
本実施形態では、カメラ映像として原則的に 360度全周映像を使用し、 360度全周 映像のェピポーラ幾何からェピポーラ方程式を解くことによりカメラ運動 (カメラ位置と カメラ回転)を計算するようになっている。
[0060] 360度全周映像は、例えば広角レンズや魚眼レンズ付きカメラや複数台のカメラ、. あるいは回転カメラなどで撮影されるパノラマ映像や全方位映像, 360度全周囲映 像であり、通常のカメラで撮影される映像より広い範囲が示されるため、高精度なカメ ラベクトル演算をより簡^','迅速に算出することができ好ましい。なお、 360度全周映 像といっても、必ずしも 4 π全空間を含む映像のみでなぐ 360度全周の一部分を力 -メラベクトル演算用の映像と!^て扱うこともできる。その意味では、通常のカメラで撮影 される映像も、 360度全周!^の一部と捉えることができ、本実施形態におけるような 優れた効果は少ないものの、本質的に差異はなぐ本発明の 360度全周映像 (4 π 映像)と同様に扱うことができる。 '
[0061] 図 7に示す画像 1, 2は、 360度全周映像をメルカトール展開した画像であり、緯度 Ψ、経度 6とすると、画像 1上の点は(θ 1, Φ 1)、画像 2上の点は(6 2, ψ 2)となる 。そして、それぞれのカメラでの空間座標は、 zl = (cos φ lcos θ 1, cos φ lsin θ 1 , sin φ 1)、
Figure imgf000025_0001
(cos φ 2cos θ 2, cos φ 2sin θ 2, sin φ 2)である。カメラの移動べ タトルを t、カメラの回転行列を R、とすると、 zlT[t] XRz2 = 0がェピポーラ方程式で ある。
十分な数の特徴点を与えることにより、線形代数演算により最小自乗法による解とし て t及び Rを計算することができる。この演算を対応する複数フレームに適用し演算す る。 . なお、図 7は、特徴点三次元地図生成装置 110における処理を理解し易くするため に、 1台または複数台のカメラで撮影した画像を合成した 360度全周囲の球面画像 を地図図法でレ、うメルカトール図法で展開したものを示している力 実際の特徴点三 次元地図生成装置 110の処理では、必ずしもメルカトール図法による展開画像であ る必要はない。
[0062] 次に'、誤差最小化部 116では、各フレームに対応する複数のカメラ位置と複数の特 徴点の数により、複数通り生 ϋる演算方程式により、各特徴点に基づくベクトルを複 数通り演算して求めて、各特徴点の位置及びカメラ位置の分布が最小になるように 統計処理をして、最終的なベクトルを求める。例えば、複数フレームのカメラ位置、力 メラ回転及び複数の特徴点にっレ、て、 Levenberg- Marquardt法により最小自乗法の 最適解を推定し、誤差を収束してカメラ位置、カメラ回転行列、特徴点の座標を求め る。 .
さらに、誤差の分布が大きい特徴点につては削除し、他の特徴点に基づいて 演 算することで、各特徴 及びカメラ位置での演算の精度を上げるようにする。
'このようにして、特徴点の位置とカメラベクトルを精度良く求めることができる。
[0063] - 図 9〜図 11に、特徴点 ·力'メラベクトル演算部 115にお!/、て得られる特徴点の三次 元座標とカメラベクトルの例を示す。図 9〜図 11は、本実施形態におけるベクトル検 出方法を示す説明図であり、移動するカメラによって取得された複数のフレーム画像 によって得られるカメラ及び対象物の相対的な位置関係を示す図である。
図 9では、図 7の画像 1, 2に示した特徴点 1〜4の三次元座標と、画像 1と画像 2の 間で移動するカメラベクトルが示されている。
図 10及び図 11は、充分に多くの特徴点とフレーム画像により得られた特徴点の位 置と移動するカメラの位置が示されている。同図中、グラフ中央に直線状に連続する 〇印がカメラ位置であり、その周囲に位置する〇印が特徴点の位置と高さを示してい る。.
[0064] ここで、特徴点三次元地図生成装置 110における演算は、より高精度な特徴点と力 メラ位置の三次元情報を高速に得るために、図 12に示すように、カメラから特徴点の 距離に応じて複数の特徴点を設定し、複数の演算を繰り返し行うようにする。 . 具体的には、ベクトル検出部は、画像内には映像的に特徴がある特徴点を自動検 出し、各フレーム画像内に特徴点の対応点を求める際に、カメラベクトル演算に用い る n番目と n+m番目の二つのフレーム画像 Fnと Fn+mに着目して単位癀算とし、 n と mを適切に設定した単位演算を繰り返す。
mはフレーム間隔で り、カメラから画像内の特徴点までの距離によって特徴点を 複数段に分類し、カメラから特徴点までの距離が遠いほど mが大きくなるように設定し 、カメラから特徴点までの距離が近いほど mが小さくなるように設定する。このようにす るのは、カメラから特徴点までの距離が遠ければ遠いほど、画像間における位置の 変化が少ないからである。 '
[0065] そして、特徴点の m値による分類を、十分にオーバーラップきせながら、複数段階 の mを設定し、画像の進行とともに nが連続的に進行するのにともなって、演算を連 続的に進行させる。そして、 nの進行と mの各段階で、同一特徴点について複数回重 複演算を行う。
このようにして、フレー 画像 Fnと Fn+mに着目した単位演算を行うことにより、 m 枚毎にサンプリングした各フレーム間(フレーム間は駒落ちしている)では、長時間か けて精密カメラベクトルを演算し、フレーム画像 Fnと Fn+mの間の m枚のフレーム( 最小単位フレーム)では、短時間処理で行える簡易演算とすることができる。
[0066] m枚毎の精密カメラベクトル演算に誤差がなレ、とすれば、 m枚のフレームのカメラべ クトルの両端は、高精度演算をした Fnと Fn+mのカメラベクトルと重なることになる。 従って、 Fnと Fn+mの中間の m枚の最小単位のフレームについては簡易演算で求 め、簡易演算で求めた m枚の最小単位フレームのカメラベクトルの両端を、高精度演 算で求めた Fnと Fn+mのカメラベクトルに一致するように、 m枚の連続したカメラベク トルのスケール調整をすることができる。
これにより、誤差のない高精度のカメラベクトルを求めつつ、簡易演算を組み合わ せる とにより、演算処理を高速ィヒすることができるようになる。
[0067] ここで、簡易演算としては、精度に応じて種々の方法があるが、例えば、(1)高精度 演算では 100個以上の多くの特徴点を用いる場合に、簡易演算では最低限の 10個 程度の特徴点を用レ、る方法や、(2)同じ特徴点の数としても、特徴点とカメラ位置を同 等に考えれば、そこには無数の三角形が成立し、その数だけの方程式が成立するた め、その方程式の数を減らすことで、簡易演算とすることができる。これによつて、各 特徴点及びカメラ位置の誤差が最小になるようにスケール調整する形で統合し、距 離演算を行い、さらに、誤差の分布が大きい特徴点を削除し、必要に応じて他の特 . 徴点について再演算することで、各特徴点及びカメラ位置での演算の精度を上げる ことができる。
[0068] また、このように高速な簡易演算を行うことにより、カメラベクトルのリアルタイム処理 が可能となる。カメラベクトルのリアルタイム処理は、目的の精度をとれる最低のフレ ーム数と、自動抽出した最低の特徵点数で演算を行い、カメラベクトルの概略値をリ アルタイムで求め、表示し、次に、画像が蓄積するにつれて、フレーム数を増加させ、 特徴点の数を増加させ、より精度の高いカメラベクトル演算を行い、概略値を精度の 高いカメラベクトル値に置き換えて表示することができる。 . -
[0069] さらに、より高精度のカメラベクトルを求めるために、三次元情報(三次元形状)の追 跡を行うことが好ましい Λ·具体的には、三次元情報の追跡とは、まず、特徴点'カメラ ベクトノレ演算部 115,誤差最小化部 116を経て得られたカメラベクトルを概略のカメラ ベクトルと位置づけ、その後 < プロセスで生成される画像の一部として得られる三次 "元情報 (三次元形状)に基 て、複数のフレーム画像に含まれる部分的三次元情 報を隣接するフレーム間で 続的に追跡して三次元形状の自動追跡を行う。そして 、自動追跡で得られた三次元情報の追跡結果から、高精度カメラベクトル演算部に お!/、てより高精度なカメラベクトルが求められる。
[0070] 上述した特徴点抽出部 113及び特徴点対応処理部 114では、特徴点を複数のフ レーム間画像内に自動追跡するが、'特徴点が消失するなどして特徴点の追跡フレー ム数に制限が出てくることがある。また、画像は二次元であり、追跡途中で形状が変 化するために追跡精度にも一定の限界がある。そこで、特徴点追跡で得られるカメラ ベクトルを概略値と位置づけ、その後のプロセスで得られる三次元情報 (三次元形状 )を各フレーム画像上に追跡して、その軌跡から高精度カメラベクトルを求めることが できる。このような三次元形状の追跡は'、マッチング及び相関の精度を得やすぐ三 次元形状はフレーム画像によって、その三次元形状も大きさも変化しないので、多く のフレームに亘つて追跡が可能であり、そのことでカメラベクトル演算の精度を向上さ せることができる。これは特徴点 ·カメラベクトル演算部 115により概略のカメラべクト ルが既知で'あり、三次元形状が既に分かっているから可能となるものである。
[0071] カメラベクトルが概略値の場合、非常に多くのフレームに亘る三次元座標の誤差は 、特徴点追跡による各フレームに関係するフレームが少ないので、誤差が累積して 長距離では次第に夭きな誤差になるが、画像の一部分を切り取ったときの三次元形 状の誤差は相対的に少なぐ形状の変化と大きさに及ぼす影響はかなり少ないものと なる。このため、三次元形状での比較や追跡は、二次元形状追跡の時よりも極めて 有利となる。追跡において、二次元形状での追跡の場合、複数のフレームにおける 形状の変化と大きさの変化を避けられなレ、まま追跡することになるので、誤差が大き かったり、対応点が見つからないなどの問題があつたが、三次元形状での追跡にお いては形状の変化が極めて少なぐし力、も原理的に大きさの変化もないので、正確な 追跡が可能となる。
[0072] ここで、追跡の対象となる 3:次元形状データとしては、例えば、特徴点の三次元分 布形状や、特徴点の三 分布形状力 求められるポリゴン面等がある。また、得ら れた三次元形状を、カメラ位置力 二次元画像に変換して、二次元画像として追跡 することも可能である。カメラ^7トルの概略値が既知であることから、カメラ視点から の二次元画像に投影変換が であり、カメラ視点の移動による対象の形状変化に も追従することが可能となる。
[0073] [揺れ成分検出]. '
そして、以上のようにして求められたカメラベクトルは、揺れ成分検出部 117におい て、あらかじめ予定されたカメラ位置とカメラ姿勢を示す予定カメラベクトルとのズレ成 分が抽出される。
揺れ成分検出部 117においては、例えば、車載カメラを搭載した車両位置 (すなわ ちカメラ位置) X, Υ, Zと、車両回転姿勢 (すなわちカメラ姿勢) Φχ, Φγ, Φζによる 揺れ成分である δΧ, δΥ, δΖ, δ Φχ, δ Φγ, δ Φζのすべてが評価の対象となる 。ここで、 δ , δΥ, SZ, 5 Φχ, δ Φγ, δ Φζとは、必ずしも ί敷分値や差分値では なぐ予定の位置及び予定の姿勢力 のズレを意味する。多くの場合は微分値で代 用することで揺れ成分は検出できるが、予定の位置と予定の姿勢が前もって決まって いれば、そ との差分が δ X, δΥ, δΖ, δ χ, δ Φγ, δ Φζとなる。
[0074] 具体的には、軌道上を走行する電車等においては、予定カメラベクトルは走行時に 計測される平均値に近レ、ものであるが、航空機のように三次元空間を航行する壤合 は、予定カメラベクトルは走行時のものと平均で一致することはない。
揺れ成分出力としては、 X, Υ, Ζ, Φχ, Φγ, Φζと、 δΧ, δΥ, δΖ, δ Φχ, δ Φ y, δ Φζの計 12個のパラメ タを出力することができる。 - 但し、いずれの揺れ評価を目的とするかによつて、パラメータの数はこの中から選択 的に組み合わせることができ、評価対象物に対応することができる。
[0075] すなわち、特徴点'カメラべ外ル演算部 115と揺れ成分検出部 117からの出力を 総合すると、 X, Υ, Ζと、 Φχ, γ, Φζと、 δΧ, δΥ, δΖと、 δ Φχ, δ Φγ, δ Φζ の 12のパラメータがある力 通常の画像安定化処理には δ Φχ, δ Φγ, δ Φζの 3つ のパラメータのみでよい。 方、力 ラを同時に複数用いてい'るような場合には、画像 の三次元位置の補正も' ¼能とな ので、 δΧ, 5Υ, δ Ζのパラメータを用意しておく 必要がある。また、通常、姿勢制御には、回転制御の場合には δ Φχ, δ Φγ, δ Φζ、 位置の制御を含むのであ まこれにカ卩えて δΧ, δΥ, δ Ζの計六個のパラメータが 必要となる。さらに、状況判呀を含めれば特徴点三次元地図生成装置 110からの出 力である X, Υ, Zと、 Φχ, <Iy, Φζ
も含めて必要となる場合もあるので、得られる 12個のパラメータの中力 選択的に組 み合わせて画像処理や姿勢制翻に用レ、ること力できる。
なお、この 12個の変数以外に、画像安定化や姿勢安定化に用いられる撮影条件 による他の係数としては、カメラの基準姿勢として画像の画枠での揺れ幅制限などが め "0。
[0076] 図 13に揺れ成分検出部 117における揺れ成分検出の具体例を示す。同図に示す 例は、車両にカメラを取り付けて走行し、その時に撮影した動画像力 揺れ成分検出 部 117で揺れを検出する場合となっている。
同図において、太線矢印はカメラを取り付けた車両の進行方向を示しており、カメラ の光軸を原点とするカメラの位置と姿勢をカメラ座標系 (Xc, Yc, Zc)とし(同図に示 す破線)、カメラが半固定状態で取り付けられた車両は車両座標系 (¾, Yt, Zt)とし (同図に示す実線)、常に車両進行方向に座標軸を変える座標系を回転世界座標系 (Xwr, Ywr, Zwr)とし(同図に示す 2点鎖線)、さらに、外界の静止系を表す座標系 を世界座標系(Xw, Yw, Zw)とする(同図に示す 1点鎖線)。そして、この四つの座 標系の関係を求めて、'評価に必要な座標系に変換して車両の揺れが表現されるよう になっている。
[0077] 特徴点 ·カメラベクトル演算部 115で得られるカメラベクトルはカメラ座標系 (Xc, Yc , Zc)そのものである。カメラ座標系は、一般に任意の方向で設定されるから、車両の 摇れを検出するには、カメラ座標系をー且車両座標系(Xt, Yt, Zt)に変換する。こ の変換は単なる回転変換であり、一般には半固定であり、ー且設定すれば、その後 は計測を終了するまで変更はな 、。
車両進行方向を車両座標系(Xt, Yt, Zt)の 3軸の一つに選択することで揺れを評 価するのにふさわしい 寧系とすることができる。
[0078] また、車両の移動の Ift は静止座標系である世界座標系 (Xw, Yw, Zw)で表現 するのが適切である。速度を表現するには回転世界座標系(Xwr, Ywr, Zwr)で単 純に表現することができる力、ベクトノレとして表現するには世界座標系 (Xw, Yw, Z w)で表現するのがふさわしい。
摇れ評価にあたっては、禱れ評価に適した座標系で評価を行う。 '
揺れ信号は予定進路からのズレとして検出されるが、図 13に示す例では、車両の 平均進路を予定進路として揺れを評価している。そこで、世界座標系上でカメラの移 動軌跡を求め、その平均進路を求め、これを予定進路とする。
[0079] 本実施形態の摇れ成分検出部 117では、姿勢の基準となるジャイロ等を用レ、ること なぐ画像データを取得するカメラのみで揺れ成分の検出が可能となっている力 s、力 メラ 1台の場合、得られるカメラベクトルは相対値となり、ジャイロ等の世界座標系との 校正装置を持たないことから、誤差の蓄積が生じることになる。このため、常に車両に 対する摇れを評価するために、平均鉛直水平方向を与える必要がある。そこで、カメ ラ設置時点において、カメラ座標系の 1軸を車両に対する水平軸に合致させて設置 すれば、それが基準となって、後にも水平姿勢の校正が容易にできることになる。こ れにより、カメラ座標系 (Xc, Yc, Zc)は、車両座標系 .(Xt, Yt, Zt)に変換して摇れを 計測して評価すればよい。
評価される揺れとしては、位置ズレ成分 Xt, Yt, Ztと、回転成分 Φχΐ, Φγΐ, Φζί, 及び位置ズレ差分 5 Xt, δ Υΐ, s zt等である(但し、 ztと s ztは、進行方向速度及 ぴその加速度成分となるので、揺れの意味が他の成分とは異なる)。
[0080] 以上のような揺れ成分の評価において、評価すべき変数と表示は次のようなものが 挙げられる。 ',
世界座標系における車両位置表示:
Xw, Yw, Zw)
車両進行方向に回転した回転世界座標系における速度及ひ'加速度表示: δ Xwr, 5 Ywr, 5 Zwr) (厶 δ Xwr,厶 δ Ywr, Δ δ Zwr)
車両座標系における揺れ表示:
△Xt, ΔΥί,(ΔΖί)) (Δ Φχί, Δ Φγί, Δ ζί) ,
車両座標系とカメラ座,系の回転表示(半固^ :
Xc, Yc, Zc) =F (Xt, Yt, Zt)
世界座標系における進行 f; 向表示:
Xw, Yw, Zw) =G (Xt, Yt, Zt)
J . カメラ座標系における進 方向表示:
:Xc, Yc, Zc) =H (Xt, Yt, Zt).
世界座様系に対する車両座標系の原点移動、回転姿勢表示:
Xw, Yw, Zw) ( δ Xw, δ Yw, δ Zw)
[0081] 以上のような本実施形態の揺れ]^分検出部 117によれば、例えば、電車に取り付 けたカメラの場合には、揺れ成分検出部 117により、電車の揺れを解析'分析し、車 両ゃ線路の異常を発見することが可能となる。通常は水銀加速時計等の高額な装置 を使つて揺れを計測するのに対して、本実施形態の揺れ成分検出部 117を使用する ことにより、簡単に揺れ成分が検出でき、それを表示することができる。
そして、このような摇れ成分検出部 117を用いることにより、上述したような画像の安 定化処理やカメラの位置姿勢安定化処理、更には目的対象物のロックオン処理が実 現できるようになる。
[0082] 図 14は、摇れ成分検出部 117で検出された揺れ成分に基づく補正信号により安定 化画像に変換処理される画像の一例を示しており、例えば、同図(a) , (b)に示すよう に揺らぎのある画像が、同図(c) , (d)に示すように捕正された安定化画像として出力 ,表示されるようになる また、図 15は、補正されたカメラベクトルの軌跡を示すグラフ であり.、同図中、グラフ中央に直線櫛状に並ぶのがカメラ移動の軌跡であり、移動す るカメラの位置と高さを示している。
[0083] そして、以上のようにして各点の三次元位置相対座標が求められると、絶対座標取 得部 118において、各三次元相対座標に、予め絶対座標が測定された基準点の既 知の座標が与えられ、三次元相対座標が絶対座標系に変^され、計測点、基準点、 特徴点のすべての点(又は必要な所定の点)について、絶対座標が付与される。こ れにより、所望の計測点や、特徴点中の任意に指定した指定点についての最終的な 絶対座標が得られ、そのデ タカ D地図生成記録部 1 M.に記録され、 3D地図情 報として必要に応じて ¾力, -表^される。
[0084] .なお、以上の説明では、特徴点,カメラ座標と回転 (カメラベクトル)を特徴点'カメラ ベクトル演出部 115で同時; L求めるように説明した力 一度カメラベクトルが求められ れば、新たな特徴点,特徴点中の任意の指定点については、カメラべクトノレとともに . 再演算することなぐすでにネ寻られたカメラベクトルから、二らの画像、すなわち、二 つのカメラ位置を底辺とする頂点の一点として簡単に演算することができる。カメラべ クトルの精度が変わらないため、新たな特徴点や任意の指定点の精度も変わらない 。但し、再度カメラベクトルを求めて再演算すれば、精度は一般に向上することになる
[0085] 以上のように求められたカメラベクトルや特徴点の三次元座標は、生成された三次 元地図中に表示することができる。 例えば、図 16に示すように、車載カメラからの映像を平面展開して、各フレーム画 像内の目的平面上の対応点を自動で探索し、対応点を一致させるように結合して目 的平面の結合画像を生成し、同一の座標系に統合して表示する。そして、その共通 座標系の中にカメラ位置とカメラ方向を次々に検出し、その位置や方向、軌跡をプロ ットしていくことができる。
図 17に、本実施形態で生成される 3D地図の表示例を示す。
[0086] なお、以上の方法では、映像を取得するカメラは一台でも良ぐ複数のカメラであつ ても良い。カメラを同時に複数台設置し、複数のカメラ間距離による近距離計測を併 用することで、三次元 ½対距離の基準長を取得可能とし、また、移動体検出を可能 にし、移動体座標 ·距離-速度を計測可能とし、さらに、移動体部分の削除を可能と すること力 Sできる。 :
カメラを二台用いることにより、絶対計測ができるようになり、絶対計測ができること で、カメラ一台による演算結果に基準長を与えることが可能となり、また、これによつて 、移動体検出が可能となる。従って、不必要な移動体については特徴点から削除す ることができる。
さらに、複数のカメラを用いることにより、絶対座標が既知である 2点以上の特徴点 を画像内に求め、特徴点埤 に^対座標を与えることができる。カメラ一台で計測し た場合には相対値が搏:0れるが、複数台使用すれば絶対距離が与えられる。そして
、既知の絶対座標を二点以上の特徴点として与えれば、絶対座標が得られる。
[0087] [3D地図生成]
次に、以上のように求められたカメラベクトルや特徴点の三次元座標に基づいて生 .
1
成される 3D地図の生成方法について、図 18及び図 19を参照して説明する。
図 18は、本実施形態の特徴点三次元地図生成装置 110で生成される三次元地図 の生成方法を示す説明図であり、図 19は、同様に、特徴点三次元地図生成装置 11 0で行われる三次元地図の更新方法を示す説明図である。
[0088] ナビゲーシヨン装置 (交通自動案内装置)で使用する 3D地図(三次元地図)として 、本実施形態では二種類の 3D地図の生成が可能であり、一つは CV映像地図であり 、もう一つは CV映像から生成する CG地図による三次元地図である。 CV映像とは、カメラベクトル映像、すなわち、 360度全周映像から得られるカメラ位 置及びカメラ姿勢(カメラベクトル)を全フレーム画像に亘つて取得し、各フレームに力 メラべクトノレ(CV値)を対応させた 360度全周映像のことである。なお、上述したように 、 360度全周映像ではない通常の映像であっても、 360度全周映像の一部分'として 位置づけることができる。
[0089] 図 18を参照しつつ、 CV映像地図から CG地図を生成するプロセスを以下に説明す る。
同図に示すように、まず、道路面を走行する車両に搭載したカメラによって走行空 間の全景映像を撮影して、 360度全周映像を取得する(S1801 :地上 4 π撮影映像) 取得した 360度全周映像に基づいて、上述したようなカメラベクトル演算を行い(S1 802: CV演算)、カメラベクトルを取得する。
そして、取得したカメラベクトルに対して、実写映像や既成の地図(S1807)等に基 づいてキャリブレーションを施し(S1803 :キャリブレーション)、さらに、 CV値は相対 値であることから既成の地図(S1807)と対比させることで緯度 '経度'高度を取得し て絶対座標取得(S1808)を行う。 -
[0090] 路面等を俯瞰で観察するため は、空撮映像 (S 1804)を撮影し、その空撮映像 について CV演算(S1 -する^:とによりカメラベクトルを取得し、同様に既成の地図 (S1807)等によりキャリブレーションし (S1806)、絶対座標を取得する(S1808)。 得られた各 CV値の誤差 修正して座標統合し(S1809)、これによつて、 CV映像 地図データベースを構築す (S1810)。 .
CV映像地図データベース (S1810)は、そのまま三次元地図として交通案内装置 に利用できるが、さらに、 CV映像に基づいて三次元 CG地図を生成することができる
[0091] 以下、カーナビゲーシヨン装置等においてより一般的に受けズれられている三次元 CG地図を CV映像地図から生成する方法について説明する。
図 18に示すように、 CV映像地図データベース(S1810)は、次のプロセスで安定 化処理(S1811)がなされる。 安定化処理は、 S1811に示すように、まず CG化される範囲を映像の一部切りだし 処理をし、画像スタビラィズにより画像の揺れを排除する。次に、仮想のカメラ移動方 向を決定して、走行方向指定及び横揺れ捕正により画像の誤差を修正する。さらに、 一定方向に一定スピードで走行する時間軸捕正を行う。この安定化処理は、画像を 所定の固定平面にロックオンして安定化処理を行う。
以上のようにして安定化処理された画像は、 MRSSピュア上に表示される(S1812 )。ここで、 .MRSSビユア(株式会社岩根研究所の製品名)とは、 Mixed Reality Simulation Systemピュアの略で、ピュア上で三次元座標を取得できる表示装置であ る。 '
[0092] 画像は上述した安定化処理(S1811)により安定化されているので、仮想走行面は 道路面と正確に平行に移動する。そこでは、対象物の平面の移動速度は走行カメラ 力 の垂直距離に対して逆比例し、近いものほど早 遠いものほど遅くなる。すなわ ち、対象平面の移動速度が距離と一対一の関係になるので、背景分離と対象物抽 出で目的とする対象物平面のみを選択的に取り出すことができる(S1813:ベクトル 選択抽出)。また、 MRSSピュア上で三次元計測(S1813)することにより、対象物の 座標を取得することもできる。
また、移動ベクトルに幅 ¾ffたせることで、ある範囲の ¾ ^物を選択的に取り出すこ と できる。 360度映像 徴により対象物を多視点に取得しているので、多視点テ スチヤ一抽出切り取り(S1814)により、背景や対象物のテクスチャーを方向別に抽 出して、 CGに貼り付けるこ ,ができる。
さらに、対象物の三次元座標指定(マニュアル)及びワイヤフレーム CG取得(S 181. 5)を行うことで、対象物の形状をワイヤフレームで抜き出すことができる。
[0093] 次に、表示されている目的の対象物に対し、手動で代表点をクリックし、対象物の 三次元座標を CG作成ツールへ置換(S1816)する。これにより、 3DSMAX等の CG 生成ツールに入力し、そのツール上で CGを生成することができる(S1817)。また、 簡単な図形は MRSSビユア上で生成できるようにする。すなわち、垂直線'水平線' 垂直面 ·水平面 ·垂直円柱等の CG生成 (S1818)や、図形回転'図形切断 '移動'簡 易加工(S1819)を行うことができる。 そして、生成した CGには、マニュアルで対象物の属性付加(SI 820)を行い、座標 統合して(S1821)、三次元 CG地図データベース(S1822)が構築される。
[0094] なお、以上のような CGを付加した三次元地図については、適宜 CGを簡略化し、あ るいは消去することが可能である。三次元地図における CGの果たす役割は、 "^つに はそれを人間が見るものだからである。従って、三次元地図を、もし人間が見ず、機 械が見る(認識する)だけでよいのであれば、使用目的に応じて、または必要とされる 精度に応じて、 CGの形状そのものを正確に生成する必要はなくなり、 CGの属' I"生とし ては、名称 (対象物の名前)と概略位置座標と概略の大きさ程度の登録でよいことに なる。また、さらに省略して、概略の大きさも無視でき、点,直線,面だけで表現して 登録することが可能な場合もあり得る。
[0095] 例えば、機械が見る場合には、色や価値は必要なく、道路標識'電柱'ガードレー ル等はその道路側の位置座標だけでよぐまた、形状も必要なぐ例えばガードレー ルは線又は面で近似する。従って、ガードレースなどは大まかな存在範囲だけを取 得し、道路標識はその存在位置座標を点で登録すればよぐ道路のセンターライン は連続する線で近似し、登録することで目的を達することができる。
このように、 CG三次元地図の生成については、可能な限り簡略化することができ、 それによつてコストダウンを図ることができる。
[0096] 次に、以上のようにし l,生成された CV映像地図を更新する場合について、図 19を 参照しつつ説明する。 .
- 図 19に示すように、 CV映像地図(S1901)を更新する場合には、まず、自動更新 の前処理を行っておく。
具体的には、映像中の目'印として適切な対象物等、新旧映像で比較するに適した 対象物を重要ポイントをマニュアル指定しておく(S 1902)。重要ポイントは、ある領 域を持った断片の画像である。また、画像としての特徴ある部分を自動抽出し (S190 3:特徴ポイント自動抽出)、重要ポイントと特徴点の三次元座標取得をする(S1904 ) 0
[0097] 重要ポイントと特徴点は、必要に応じて映像に対応させて一部三次元部品化(S19 05)することにより、三次元座標とともに記録することができ(S1906)、これによつて、 更新のための自動更新機能を持つ CG映像地図データベース(S1907)が構築され ることになる。
以上のような前処理を経た後に、 CV映像地図データの更新処理を行う。 更新処理は、まず、更新用映像として 4 π撮影映像(360度全周映像)を取得する( S1908)。すなわち、 CV映像地図データを更新するためには、更新用の映像を取 得して新旧映像を比較しなければならなレ、。
[0098] 新旧映像の比較は、まず、重要ポイントについて初期位置合わせを行い(S1909) 、更新映像の最初のフレームだけをマニュアルで重要ポイントの旧映像との対応を取 る(S1910)。次に、新'画像座標取得により(S1911)、更新画像の重要ポイントの三 次元座標と回転座標を取得する。
同様に、特徴点ポイント抽出(S1912)により特徴点を自動抽出し、特徴点ポイント 新旧対応(S1913)により新旧映像の対応をとり、新画像座標取得により(S1914)更 新画像の特徴ポイントの三次元座標と回転座標を取得する。
[0099] 三個以上の重要ポイントにより、あるいは、必要に応じて特徼ポイントも加えて、新 画像カメラ座標点取得 (S1915)により、更新画像のカメラベクトルを三角形を解く演 算で求めることができる。なお、特徴ポイントの抽出'新旧対応'座標取得 (S1912〜 S1914)については省略,し もよい。
このようにして、更新さ^ I 映像とそのカメラベクトルが取得されると(S1915)、その カメラベクトルによって、自動更新機能を持つ CV映像地図データベース(S1907)を 更新することができる。
さらに、 CG地図データを更新するためには、上述した新画像座標取得 (S1911) . により、重要ポイントの三次 座標を取得し、新旧座標を比較し (S1916)、更新対象 物を特定して (S1917)、同じ座標に有るか否かを自動判断する。座標が一致しない 場合には対象物を入れ替える必要があると判断し、図 18で示した CG生成によるマ ニュアル処理(S1918)により、更新のための CGを自動又はマニュアルで生成し、重 要ポイントを更新した三次元 CG地図データベース(S 1919)に、更新データを記録 する。
[0100] 図 20は、道路上空から撮影した映像に基づいて三次元地図を生成する場合の一 例を示している。同図に示す道路映像は 360度の CV映像であり、完全な平面図で はなく、地上数メートル力 観察した道路面となっている。
道路の三次元地図を生成する場合には、道路面の近傍の形状が重要であり、高い 計測精度が求められる。一般に、道路構造は、図 20 (a)の断面図に示すよな構造を してレ、ることが前もって分かっているので、その形状を予想して、三次元計測をするこ と力 Sできる。
[0101] また、 360度映像の特長を生力 て、道路面の直下を視点方向とする道路面表示 に設定することで、広い領域でのマッチング &グリップが可能となる。具体的には、通 ' 常任意方向では 15 * ί 5ピクセル程度の領域でのマッチング &グリップが限界であつ たが、直下表示では視点と道路面が直角に近い形となり、フレーム間画像は形状を 変更することなく移動するので、各フレームによる画像歪みを無視することができる。 これにより、例えば 50 * 50ピクセル以上の広い領域でのマッチング &グリップ(M&G )が可能となり、特徴の少ない道路面であってもマッチング &グリップが行え、計測精 度が向上する。
さらに、道路舗装面には道路標示 (センターライン,路肩ライン等)が決められた基 準で描かれていることから、そのパターンを PRMオペレータ. (PRM Operator)の部品 として予め用意しておき、 意さ たオペレータ部品と映像比較することで、その三 次元的位置を検出する¾ が可锥となる。
[0102] ,ここで、 PRMとは、 Parts Reconstruction Method (3D空間認識方法)の略であり、 本願出願人が既に特許出顋している対象物を認識するための技術である(国際出願 PCT/JP01/05387号参照)。具体的には、 PRM技術は、前もって予想される対象物 . の形状と属性を部品(オペレータ部品)としてすベて用意しておき、それら部品と現実 の実写映像を対比して、一致する部品を選択して対象物を認識する技術である。車 両の自動案内走行や自動運転走行のために必要となる対象物の「部品」は、道路標 示としての車線、白線、黄線、横断道、道路標識としての速度標識、案内標識などで あり、これらは定形のものであるので、 PRM技術によりその認識は容易に行える。ま た対象物を CV映像中に検索する場合においても、その対象物の存在する予想三次 元空間を狭い範囲に限定することが可能となり、認識の効率ィ匕が可能となる。 [0103] 具体的には、道路面オペレータとしては、図 20 (c)に示すようなパターンがある。な お、オペレータ部品としては図示しない他のパターンも多数想定される力 S、三次元地 図におレ、ては道路全面の計測は必要なく、道路面を適切な間隔でサンプリングして 道路断面図を完成させればよいので、図 20に示す程度で十分であると言える。
さらに、三次元の PRMオペレータ部品 (PRM 3D Operator)も用意し、三次元的に マッチングすることで、例えば、道路の縁石部分の段差についても精度良く再現する こと力 Sできる。
[0104] 図 21は、図 20に示した道路を立体視した三次元地図を示す。
同図に示すように、 装道路の映像においては、 PRMオペレータは、図 20に示し たセンターライン等の道路面表示よりも、立体的な道路標識の認識においてその有 効性を発揮する。すなわち、道路標識の認識に関しては、図 21 (a)に示すように、 CV映像上に道路標識予想空間を想定して、その限定された空間で目的の道路標識 の種類と位置と形状と座標を認識することが可能となる。
CV映像は、実写画像上に道路標識予想空間を CGとして合成配置することができ、 その制限範囲のみで目的の道路標識を 索することが可能となる。
また、道路標識の形状やサイズ等は通常決まっているので、予め用意してある各道 路標識の三次元ォペレ Π 部 として(図 21 (b)参照 >\道路標識予想空間の中 に三次元的に決まった きさの標識を検索し、探し出すことが可能となる。そして、探 レ出された標識の種類と位置と座標と形状が認識される。
[0105] このように、 CV映像は、対象物が三次元座標を持つのと同じ扱いが可能であり、検
" . ,
索には極めて有利となる。道路標識のように、検索するものの形状が既に決まってい . るものについては、その三^ ^元位置における見かけの大きさを計算で求められるの で、 PRMオペレータを使用するのが有利であり、 PRMオペレータ部品として様々な標 識を用意しておくことで、用意された標識部品の中から一致する部品を探し出すこと で、対象標識を認識することが可能となる。
さらに、 MRSSピュアで表示される 360度実写の CV映像は、 CV映像内の任意の 点をマウスでクリックすることにより、(1)その指定した点の三次元座標を取得できるとと もに、(2)指定した任意の 2点間をマウスで直線に結び、その 2点間の距離を計測でき 、さらに、(3)任意の多角形をマウスで指定.入力することによりその多角形の面積を 計測することができる。従って、この機能を利用して CV映像中の目的対象物の位置 をマウスのクリック操作するだけで、(1)実写映像の中に属性の登録ポイントを指定す ることができ、(2)道路形状や道路標示を直線で登録でき、さらに、(3)路面や看板の 面を登録することが可能となる。
[0106] 図 22は、 CV映像中に手動により対象物の属性を取得し登録する場合の手順を示 す図であり、 MRSSピュアで同図(a)に示す CV映像が表示されてレ、る場合に、同図 (b)に示すように、マウスを用いて映像中に所望の点や直線を指定することができる。 指定した点や直線,面'は登録することができ、同図(c)に示すように三次元地図とし て出力'表示することができる。
このように CV映像の任意の点を指定して直線や面のみを登録することで三次 元地図が生成でき、その登録の際に属性についても分類しておけば属性抽出も同 時に完了し、所望の三次元地図を容易に生成 '取得することができる。
[0107] [ナビゲーシヨン動作]
次に、以上説明したような本実施形態に係るナビゲーシヨン装置における全体の動 作の概要を図 23〜図 26を参照しつつ説明する。
23に示すように、本寒旗形態 .ナビゲーシヨン の動作は大きく2つに分けら れ、一つは CV.映像地図生成装 g (特徴点三次元地図生成装置 110)側で行われる 前処理と、もう一つは車両等に積載されたナビゲーシヨン装置(地点探索ナビゲーシ ヨン装置 130)側で行われ 後処理である。
[0108] [前処理]
前処理としては、以下の '順により行う。
まず、図 23に示すように、車載カメラ等で 360度全周映像が取得され (S2201 : 36 9度映像撮影)、この 360度映像について CV演算により全フレームのカメラべクトノレ が取得される(S2202 : CVデータ付加)。なお、カメラで撮影される映像は原則として 360度全周映像であることが望ましいが、必ずしも 360度全周映像でなくてもよい。
CV演算で得られた CVデータは相対値であるので、これを実測データや GPS等に 基づレヽて絶対座標 (緯度 ·経度 ·高さ)に変換する(S2203:絶対座標取得)。 [0109] また、 CV映像中、後に計測基準となり得る画像部位を切り取り、当該部位の属性と ともに付加'記録する(S2204:指定基準部位座標及び属性付加)。ここでは、さらに 座標を与えてもよい。指定点は部分映像として切り取ることでデータ量を小さくする。 専用マークを静止物体の映像として取得することもできる。 .
CV映像中の重要ポイント及び看板等については、 CG化して属性とともに CV映像 に合成又は対応させておく(S2205 :指定 CG付加)。交通標識等は共通するもので あるので、共通の CGとしてその IDと座標のみを付カ卩する。
以上の手順により、各フレームに対応する CVデータ'属性等を生成する(S2206: CV映像生成)。なお、計測のみで映像を観察しない場合は、特徴部位のみの映像と する。そして、生成された CV映像は、 WEB, HDD又は DVD等により、後処理を行う ナビゲーシヨン装置側に配信する(S2207: CV映像配信)。
[0110] [後処理]
後処理としては、以下の手順により行う。
まず、図 23に示すように、配信された CV映像を WEB等を介して受信し、あるいは 購入した DVD等から読み取る(S2301: CV映像受信)。
また、車両に積載したカメラで現在の 360度映像を取得する(S2302 :リアルタイム 映像取得)。なお、ここでも取得映像は必ずしも 360度映像でなくてもよい。
そして、受信した CV映像と車載カメラで撮影されたリアルタイム映像を比較すること により、車両の現在位置を演算で求める(S2303 :リアルタイム車両位置計測)。なお .、この車両の現在位置の演算は、(1)CV演算で求める方法と、(2)座標が既知の指定 点から演算で車両の座標を求める方法と、( 両者を組み合わせた中間の方法とがあ . る。
[0111] その後、求められた自車両の三次元位置を地図上に高精度 (例えば GPSの十倍 以上の精度)で表示し、ナビゲーシヨンに必要な項目を自動表示する(S2304:ナビ ゲーシヨン項目自動選択、 S2305 :マルチビユア表示)。このとき、ナビゲーシヨン目 的の属性を表示する。また、車両の座標と地図を比較し、自車両走行に必要な標識- 道路標示.案内板等を走行に合わせて順次選択することができる。さらに、表示画像 内で対象物をクリックすることにより属性表示することができる。 なお、自車両の三次元位置を表示すればナビゲーシヨンとしては十分であり、 CV 映像 (記録映像)自体は表示しなくてもょレヽ。 '
また、自車両の位置を三次元地図上に表示する場合に、 GPSは概略位置を求める 補助的情報として利用できる (後述する第二実施形態参照)。 '
[0112] 以上でナビゲーシヨン装置の全体の動作が完了するが、さらに、図 24に示すように 、ナビゲーシヨン装置側の後処理において、自車両の周囲の CV映像を任意の視角 で表示し、目的によって任意視点で表示することができる(図 24の S2306:任意視点 映像及び属性表示) Dこのとき、交通標識等は共通の CG部品から取り出して表現す ' ることができる。また、夜間に昼間の映像を表示したり、積雪した冬に夏の映像を表示 することも可能である。
また、図 25に示すように、後処理において、車間距離や周囲を走行する車両の方 向と速度、路面状況等の走行状況の情報をリアルタイムで判断して、走行に必要な 認識 '判断の結果を表示することもできる(図 25の S2307:走行状況認識'判断)。
[0113] さらに、図 26に示すように、後処理において得られたデータは、他の車両や基地局 との間で送受信することが可能である(図 26の S2308:走行状況認識'判断データ 送受信)。 .
すなわち、自車両で認孿^ 断 た結果の走行状況認識:半」断データを他車両と *有するために、所定 デ 1 "タを多謝料に送信することができ、同時に、周囲を走行 する他車両が認識'判断した結果の走行状況認識'判断データを受信して、自車両 の走行に反映させることが可能である (後述する第三実施形態参照)。
一 '
さらにまた、所定の基地局に自車両の走行状況認識 ·判断データを送信し、基地局. から送られる走行状況認識'判断データを受信して自車両の走行に反映させることも 可能である(後述する第三実施形態参照)。
[0114] . 以上説明したように本実施形態のナビゲーシヨン装置によれば、車両等の移動体 に搭載されたカメラで撮影される動画映像の複数のフレーム画像から充分な数の特 徴点を自動検出レ各フレーム間で特徴点を自動追跡することにより、多数の特徴点 について重複演算して、カメラベクトル (カメラ位置と回転角)と特徴点の三次元位置 座標を高精度に求めることができる。 そして、得られた特徴点の三次元座標を予め記録媒体に格納し、その三次元座標 を現実に移動する移動体から撮影されたカメラ映像と対比することで、あるいは、カメ ラ力 得られた映像から、リアルタイムにカメラ位置の三次元座標を直接生成し、現在 のカメラ位置を示す高精度な三次元情報を得ることができ、これによつて、移動体の ナビゲーシヨンシステムとして用いることができる。
[0115] 具体的には、本発明のナビゲーシヨン装置では、車両等の移動体の現在地点座標 を GPSより高い精度でリアルタイムに取得するために、画像処理技術を用いて、画像 内の複数の特徴有る点に着目し、前もって特徴点の三次元座標を精度良く計測して ' おく。そして、その特徴点を三次元座標に記述した地図(3D地図)を記録媒体に格 納し、.移動体側でその記録媒体を再生することで、特徴点の三次元座標を読み出す ことができる。さらに、移動体,の現在地点で得られたカメラ画像から映像内の特徴点 を抽出し、その特徴点の方向と、記録媒体に予め記録された三次元座標が既知であ る特徴点の方向とを比較して、複数の特徴点の方向が一致する地点の座標を演算 により求めることで、カメラ位置を示す三次元座標、すなわち、現在の移動体の位置 を示す三次元座標を得ることができる。
これにより、走行する車両等の移動体の現在位置が、カメラ映像から直接的に、あ るいは、予め生成,記録,された三次元地図によって ¾確に^されることになり、従来 の GPSシステムでは不 であった、誤差範囲が数 cm程度の高精度なナビゲーシ ヨンシステムを実現することができる。
[0116] [第二実施形態] .
次に、本発明のナビゲーシヨン装置の第二実施形態について、図 27を参照して説 . 明する。
図 27は、本発明の第二実施形態に係るナビゲーシヨン装置 100の概略構成を示 すブロック図であ 本実施形態のナビゲーシヨン装置 100は、選択的に付加するこ とができるオプション装置 300を備えるようになってレ、る。
同図に示すように、本実施形態では、オプション装置 300として、 3D地図属性付カロ , 装置 310, GPS装置 320,データ更新装置 330及びオプション表示装置 340を備え ること力 Sできる。 [0117] [3D地図属性付加装置]
3D地図属性付加装置 310は、記録媒体 120に記録される情報として、特徴点の三 次元座標以外の付加情報として属性情報を付加することができる。
ここで、特徴点の属性とは、例えば、特徴点の属するビルディングの名称,通りの名 称,住所,歴史の記述等があり、また、特徴点が標識の一部であればその標識の意 味等である。
具体的には、特徴点属性取得部 311におレ、て特徴点の属性を取得する。 所属対象物 3D形状座標取得部 312では、属性を付加すべき特徴点の三次元座 ' 標を特徴点三次元地 生成装置 110の特徴点'カメラベクトル演算部 115から入力 する。 ·
属性付加部 313では、入力された三次元座標に対応する属性情報を付加する。 ' 属性付き対象物 3D地図生成部 314では、属性情報が付加された三次元情報を特 徴点三次元地図生成装置 110の 3D地図生成部 119に戻す。
これにより、記録媒体 120に記録される三次元情報として特徴点の属性情報が付 カロされるようになる。
[0118] [GPS装置] -
GPS装置 320は、地点探索ナヒ:ゲーシヨン装置 ISOの概略現在位置指定部 132 に、 GPSによって得ら る緯度経度高度データを出力し、概略現在位置指定部 132 における移動体の概略の現在位置を指定する。
また、 GPS装置 320は、地点探索ナビゲーシヨン装置 130のカメラ座標演算部 138 'で得られた現時点の移動 {^況を示すカメラ位齓方向,姿勢等の三次元データを . 入力し、 GPSで得られるデータを補正し、映像から特徴点が得られない場合の補助 装置として利用する。 '
[0119] GPSは、本発明のナビゲーシヨン装置で得られる位置情報と比較して精度が悪い 力 概略位置を指定する情報としては適切である。 GPSからの概略位置情報があれ ば、地点探索ナビゲーシヨン装置 130により、現在地点周辺の特徴点を探すのに大 きな手がかりとなる。
また、このように精度の悪レ、 GPSを主体とした計測システムにおいては、本発明に よる高精度な位置データを捕正信号として利用して、 GPSシステムで得られたデータ を補正することにより、最終的に本発明と同等の精度を一定期間保持することが可能 となる。
さらに、本発明のナビゲーシヨン装置においてカメラ映像の取得が困難となる夜間 やトンネル内などにおいては、 GPSシステムとの併用が望ましい場合もある。
[0120] そこで、本実施形態では、ナビゲーシヨン装置 100のオプション装置として GPS装 置 320を組み合わせることで、計測可能地点ではナビゲーシヨン装置 100により計測 し、映像的な特徴点が充分に得られないような場合には、本装置で取得された最終 ' データによって GPS 捕正,校正することで、高精度に GPSシステムを稼働させるこ とができる。これによつて、本ナビゲーシヨン装置 100と GPSのそれぞれの長所を有 効活用することができる。 :
具体的には、 GPSデータ取得部 321では、 GPSで得られたデータを取得する。
[0121] 装置座標演算部 322では、 GPSデータに基づいて、地点探索ナビゲーシヨン装置 130の概略現在位置指定部 132に入力する座標信号を生成,出力する。
GPSデータ補正部 323では、地点探索ナビゲーシヨン装置 130のカメラ座標演算 1 38で得られた精度の高い位置情報を入力し、 GPS計測装置との差を検出して、そこ 力も GPSの補正校正信^ ¾ 成する。なお、 GPSデータ捕 ίΕ部 323には、 GPS位 計測装置に生成しだ摩精度の補正校正信号を送るための出力端子が備えられる 現在地点表示部 324は、褲正校正信号で捕正された GPSデータを現在地点の表 示として出力,表示する。 ' · .
[0122] このようにして、本実施形 ¾では、 GPS装置 320をオプション装置として備えること により、通常は地点探索ナビゲ^"シヨン装置 130として作動し、夜間等の映像的な特 徴点を連続的に取得することが困難な場合には、 GPSによるナビゲーシヨン機能を 併用し、断片的に取得される地点探索ナビゲーシヨン装置 130から得られる地点デ ータを補正信号とし、高精度に補正された GPSデータを表示することができる。
なお、 GPS装置 320をオプションで備える本実施形態では、 GPSによるナビゲータ システムに必要なデータも記録媒体 120に記録することができる。 [0123] [データ更新装置]
データ更新装置 330は、記録媒体 120のデータを更新することができ、地点探索 ナビゲーシヨン装置 130に特 点三次元地図生成装置 110の機能を付加する装置 である。 ' 具体的には、データ更新装置 330は、映像記録部 331で、地点探索ナビゲーショ ン装置 130において取得されたカメラ映像を蓄積する。
特徴点データ再演算部 332では、複数のフレームにわたる記録媒体の特徴点やそ の特徴点を含む小領域画像との対応点を、カメラで取得した画像内で追跡し、特徴 点三次元地図生成装置 110と同様にして、複数のフレームにわたる記録媒体の特徴 点、又はその特徴点を含む小領域画像と、カメラで取得した映像内の小領域の画像 との対応関係から、既存の特徴点の移動等の更新データが求められる。
また、新規特徴点取得部 333では、カメラによる映像から新たな特徴点を検出して 、三次元座標にカ卩えることで、次回からの特徴点として付加し、次回からの特徴点と して付加する。
[0124] そして、特徴点データ更新部 334でデータが更新され、その更新データが更新デ ータ記録部 335によつて記録媒体 120に出力される。
このようにして、データ更新装置 330を備えることにより 利用者側に備えられる地 点探索ナビゲ シヨン装齄 130に、特徴点三次元地図生成装置 110に相当する機 能を付加することができ、地図を作りながら探索をすることが可能となり、現地点探索 .と同時に、特徴点検出と三次元座標演算を同時に行い、記録し、記録媒体のデータ を更新し、次回からのデータ して用いることができるようになる。
[0125] [オプション表示装置]
オプション表示装置 340は、地点探索ナビゲーシヨン装置 130で表示される表示内 容以外の付加的な情報を表示することができる。例えば、地点探索ナビゲーシヨン装 置 130における現在地点の認識には直接関係しなくとも、利用者の走行を助ける交 通標識や道路表示等の画像や CGを、オプション表示装置 340によって表示すること で、より理解し易ぐ操作し易いナビゲーシヨン装置とすることができる。
具体的には、現在地点周辺画像表示部 341では、地点探索ナビデーンヨン装置 1 30の特徴点 3D地図再生部 131及び現在地点表示部 139の表示画像データを入力 する。
表示画像属性 示部 342では、入力した表示画像データの属性を表示する。 また、交通標識等認識表示部 343では、現在地点から観察される交通標識や道路 表示等の画像や CGを表示する。
[0126] 以上説明したように、本実施形態に係るナビゲーシヨン装置によれば、予め 3D地 図生成用の車両等に搭載されたカメラで撮影された動画映像の複数のフレーム画像 力ら充分な数の特徴点を自動検出し、各フレーム間で特徴点を自動追跡することに より、多数の特徴点について重複演算してカメラ位置と回転角を高精度に求めること ができる。
そして、得られたカメラ位置の三次元座標を予め記録媒体に格納し (あるレ、は、リア ルタイムにカメラ位置の三次元座標を生成し)、その三次元座標を現実に移動するナ ピゲーシヨン対象となる車両等力 撮影されたカメラ映像と対比することで、現在の力 メラ位置を示す高精度な三次元情報を得ることができ、これによつて、移動体のナビ ゲーシヨンシステムとして用いることができる。
[0127] [第三実施形態]
次に、本発明のナビゲマ ヨン 置の第三実施形態にり)/'、て、図 28及び図 29を 参照して説明する。
.図 28は、本努明の第三実施形態に係るナビゲーシヨン装置の概略構成を示すプロ ック図であり、図 29は、同じ 、本発明の第三実施形態に係るナビゲーシヨン装置の 他の実施形態の概略構成を示すプロック図である。
これらの図に示すナビゲ シヨン装置は、記録媒体 120と地点探索ナビゲーシヨン 装置 130が離間して備えられ、基地局や他の移動体に備えられた記録媒体 120に 記録された所定の三次元情報が、通信回線を介して一又は二以上の他の地点探索 ナビゲーシヨン装置 130に送信されるようになっている。
[0128] 具体的には、図 28に示すナビゲーシヨン装置は、サテライト通信方式を採用してお り、まず、所定の三次元情報を記録した記録媒体 120は、基地局となるサテライト装 置 400に備えられている。 サテライト装置 400は、受信部 411により、データ更新逆送信装置 350を介してデ ータ更新装置 332からの更新データが受信され、データ更新部 412により、記録媒 体 120のデータが随時更新できるようになっている。
そして、送信部 413により、記録媒体 120のデータが地点探索ナビゲーシヨン装置 に送信されるようになってレ、る。
[0129] 地点探索ナビゲーシヨン装置 130側には、受信装置 140が備えられている。
受信装置 140は、受信部 141により、通信回線を介してサテライト装置 400から送 信された記録媒体 120の三次元情報のデータを受信できるようなつてレ、る。
さらに、図 29に示すチビゲーシヨン装置は、図 28に示したサテライト通信方式にカロ えて、さらに、相互通信方式を採用しており、基地局との間のみでなく、移動体相互 間でもデータの送受信が行えるようになっている。
[0130] このような本実施形態のナビゲーシヨン装置によれば、記録媒体 120のデータを基 地局から受信し、更新データや新規取得データを基地局に送信し、さらには、直接 車両間でデータのやりとりをして、必要に応じてデータを更新し、他の車両とデータを 共有することができる。
これにより、一台の車両のみの場合と比較して、より広範囲で総合的なナビゲーショ ンシステムを実現すること きる s
[0131] f己録媒体 120は、通常 i¾ VD,やハードディスクなどであり、固体として移動体側の 装置に装填し、あるいは設置される。
本実施形態では、基地局から記録媒体 120のデータを複数の車両に送信すること
で、記録媒体 120はソフトウ アそのもの、デジタルデータそのものとして扱うことがで きる。そして、ソフトウェアの受信は、固体としての記録媒体 120の装填と同じ意味と なり、再生装置の構成や規格等に左右されない分、利用範囲が拡張される。
また、本実施形態では、車両が新たに取得したデータを基地局に送り、また直接車 両間でやりとりすることができ、さらに、通信回線を用いることでデータの更新が容易 となり、周囲車両とのデータの共有も可能となり、リアルタイムデータのやりとりも可能 となる。
このようにして、本実施形態によれば、より汎用性に優れたナビゲーシヨン装置を提 供すること力 Sできる。
[0132] [第四実施形態]
さらに、本発明のナビゲーシヨン装置の第四実施形態について、図 30〜図 36を参 照しつつ説明する。 . 図 30は、本発明の第三実施形態に係るナビゲーシヨン装置の概略構成を示すプロ ック図である。
同図に示すように、本実施形態のリアルタイムナビゲーシヨン装置 200は、上述した 第一実施形態で示した記録媒体 120を省略し、ナビゲーシヨン対象となる移動体側 に、第一実施形態における特徴点三次元地図生成装置 110に地点探索ナビゲーシ ヨン装置 130の機能を持たせた、特徴点三次元地図生成表示装置 210を備えている
[0133] , 本リアルタイムナビゲーシヨン装置 200に備えられる特徴点三次元地図生成表示装 置 210は、第一実施形態で示したような記録媒体を備えず、ナビゲーシヨン対象とな る車両等の移動体に備えられたカメラにより得られる現実の映像に基づき、当該移動 体から観察される範囲における映像的な特徴点の三次元座標を、そのままリアルタイ ムで生成するとともに、カメラベクトルを生成する。 . .
そして、求められた特徴点の三 元座標から直接的-に 3D地図を生成し、特徴点の 三次元分布と、ナビゲJ ^ヨン対象となる移動体に備えられたカメラの三次元座標上 の位置、速度、加速度、視点方向、 3軸回転 fe,勢、 3軸回転速度、 3軸回転加速度を .含む所定項目のうち、いず か又はそれらを組み合わせた複数の項目を出力,表示 する。
[0134] 具体的には、本実施形態' リアルタイムナビゲーシヨン装置 200は、図 30に示すよ うに、特徴点三次元地図生成表示装置 210を備えている。 , .
特徴点三次元地図生成表示装置 210は、第一実施形態の特徴点三次元地図生 成装置 110とほぼ同様の構成となっており、カメラ映像取得部 211,映像記録部 212 ,特徴点抽出部 213,特徴点対応処理部 214,特徴点'カメラべ外ル演算部 215, 誤差最小化部 216,揺れ成分検出部 217,絶対座標取得部 218及び 3D地図生成 表示部 219を備えている。このうち、カメラ映像取得部 211,映像記録部 212,特徴 点抽出部 213,特徴点対応処理部 214,特徴点-カメラベクトル演算部 215,誤差最 小化部 216,揺れ成分検出部 217及び絶対座標取得部 218については、第一実施 形態におけるカメラ映像取得部 111,映像記録部 112,特徴点抽出部 113,特徴点 対応処理部 114,特徴点 ·カメラベクトル演算部 115,誤差最小化部 116,揺れ成分 検出部 117及び絶対座標取得部 118と同様の構成となってレ、る。
[0135] 本実施形態の特徴点三次元地図生成表示装置 210では、 3D地図生成表示部 21 9は、誤差最小化部 216で誤差の最小化処理が施され、絶対座標取得部 218で絶 対座標が付与された特徴点又はその特徴点を含む小領域の画像の三次元形状とそ の三次元座標及びその'分布を、ナビゲーシヨン対象となる移動体の移動軌跡、さらに 、必要に応じて移動予定路とともに三次元地図として配列し、特徴点を含む対象物 等とともにこれらを直接表示するようになっている。
図 32及び図 33に、本実施形態におけるリアルタイムナビゲーシヨン方法により生成 ,表示される特徴点の三次元座標と移動体の現在位置を示す。
図 32 (a)に示すように、走行する車両の周囲の多数の特徴 が抽出され、その特 徴点から、車両が走行する道路と建物等の三次元地図が生成され、その地図中に移 動する車两の軌跡が示されている。図 32 (b)は、抽出された特徴点と求められた車 両の軌跡を、実際のカメラ! ¾像中 表示したものである。 . ノ
図 33は、図 32 (b)に す映像の平面展開画像であり、車両の走行軌跡と現在位 置,予定進路が映像中にプロットしてある。
[0136] このようにして、本実施形 φのリアルタイムナビゲーシヨン装置 200では、ナビゲー シヨン対象となる移動体で移動しながら、直接的に 3D地図を作りつつ、現在地点の 探索を行うことが可能となり、'特徴点検出と三次元座標演算,現地点探索を同時に行 レ、、記録し、記録媒体のデータを更新できるリアルタイムナビゲーシヨンを実現してい る。 '
上述した第一実施形態では、特徴点三次元地図生成装置 110は、画像の取得後 、オフライン処理で三次元地図を生成し、その後、三次元地図を記録媒体 120に記 録し、それを配布等することで、記録媒体 120に記録された特徴点と現時点の映像と 比較することで、現時点の位置を確認する方式を採っている。 本実施形態では、車両等で移動しつつ、リアルタイムに 3D地図を生成し、現在地 点の探索を行うことができ、記録媒体 120を省略することができる。これにより、例え ば、記録媒体 120に記録された特徴点三次元地図に記載されて!/、なレ、地域を走行 する場合や、記録媒体 120を備えていない場合等であっても、特徴点三次元地図を リアルタイムで生成しながら、現在地点を表示することができる。勿論、本実施形態に おいても、第一実施形態で示した記録媒体 120を併用することは可能である。
[0137] 従って、本発明に係るナビゲーシヨン装置としては、図 31に示すように、記録媒体 1 20を備える方式 (同図に示すナビゲーシヨン装置 100)と、記録媒体 120を省略する ' 方式(同図に示すナビゲーシヨン装置 200)とを実施でき、記録媒体 120を備える方 式においても、特徴点三次元地図生成装置 110を地点探索ナビゲーシヨン装置 130 と分離して設ける場合と、特徴点三次元地図生成装置 110と地点探索ナビゲーショ ン装置 130を一体的に設ける場合とが実施できる。
さらに、図 31に示すように、第一実施形態で示した各種のオプション装置 300を備 えることができ、本発明のナビゲーシヨン装置を搭載する移動体の種類や、移動経路 、移動範囲、使用目的等に応じて、オプション装置 300を選択的に組み合わせて採
, 用することができる。
[0138] 次に、以上のようなリアルタイムナビゲーシヨン機能を備えケこ本実施形態のリアルタ ィムナビゲーシヨン装嗇 20Όの詳細について、図 34〜図 36を参照しつつ説明する。 - 図 34は、リアルタイムナビゲーシヨン装置の一実施形態の概略構成を示すブロック - 図であり、移動体として道 を走行する車両にリアルタイムナビゲーシヨン装置が搭 載される場合を説明する。 . なお、以下に示すリアルタイムナビゲーシヨン装置の各部における処理動作の具体 的な内容は、対応する第一及び第二実施形態における内容と同様である。
[0139] [基本形]
同図に示すリアルタイムナビゲーシヨン装置 200におレ、て、画像取得部 200— Q1 は、車両に積載されたカメラにより周囲画像を取得する。
画像一時記録部 200— 02は、画像取得部 200— 01で取得された周囲画像を一次 記録する。 特徴点抽出部 200— 03は、画像一時記録部 200— 02に記録された周囲画像から ' 特徴点を抽出する。
特徴点追跡部 200— 04は、 P舞接する画像の中に特徴点を追跡する。
[0140] 特徴点追跡座標テーブル作成部 200— 05は、特徴点追跡部 200— 04で追跡した 複数の画像内における特徴点の各座標を記録しておく。
ベクトル演算部 200— 06は、画像内の特徴点の各座標のいくつかを選択して、カメ ラベクトル及び特徴点分布を演算で求める。
絶対座標変換部 200— 07は、ベクトノレ演算部 200— 06における演算結果に、絶 ' 対座標を与える。
特徴点分布図内力メラベクトル表示部 200— 08は、絶対座標が付与された演算結 果を特徴点の三次元分布とともに表示する。
[0141] [基準対象物による絶対座標変換]
地図部 200— 09には、移動体を構成する車两の予定走行路が記載してある。
基準対象物データベース部 200— 10には、車両の走行路から見える位置にあり、 座標と形状が既知である基準対象物が記載してある。基準対象物としては、移動体 が車両であるので、例えば、走行路の交差点毎にある信号機等が好適である。この 基準対象物データベース部.200 10により、概略位置が分 ればその基準対象物 (信号機等)の仕様が かるようになる。サイズ等は規格化されているので、形式が分 かれば既知の基準対象物として使える。
基準対象物認識部 200マ11は、画像取得部 200— 01で取得される周囲画像の中 にあり、形状と座標が既知である基準対象物を画像内において認識する。 . 基準対象物位置演算部 200— 12は、基準対象物認識部 200— 11で認識された 基準対象物の画像内位置から、'その基準対象物の三次元座標を演算で求める。 絶対座標変換部 200— 13は、基準対象物位置演算部 200— 12で得られた基準 対象物の三次元座標と、基準対象物の既知データとを比較して、座標を絶対座標に 変換する。
合成表示部 200— 14は、変換されたカメラの絶対座標を、あら力、じめ用意した地図 等とともに合成して表示する。 [0142] [姿勢制御]
カメラ姿勢信号取得部 200— 15は、ベクトル演算部 200— 06で得られ カメラベク トルから、カメラの 3軸姿勢信号を検出する。
車両姿勢制御部 200— 16は、カメラ姿勢信号取得部 200— 15で検出されたカメラ 3軸姿勢信号により、車両の姿勢制御を行う。
カメラベクトルから、カメラの回転成分を抽出できるので、車両姿勢を計測することが できる。そして、車両姿勢が目的の位置を保つように、車両姿勢信号からフィードバッ ク信号を生成し、車両姿勢制御を行うことができる。 ' また、水平及び鉛直方向は、車両静止時又は等加速度運動時に、水準器等でキヤ リブレーシヨンが可能である。
[0143] [GPSによる概略位置特定]
GPSデータ取得部 200— 17は、 GPSによる位置データを取得する。
概略位置座標取得部 200— 18は、 GPSによる位置データによって、車両の概略 位置及び方向を特定し、画像取得部 200— 01で取得される周囲画像中の基準対象 物を特定する。
第一実施形態で示したように、本発明のナビゲーシヨンシステムは、既存の GPSの 位置精度より優れているため、 GPSによる位置データを概略位置取得のために用い ることで、位置の絞り込みが可能となり、演算に有利となる。また、 GPSによる位置デ '-一タによって緯度経度を取得して、カメラ位置を緯度経度で表示することが可能であ - る。さらに、 GPSデータを り込むことにより、例えば、特徴点が見つからないような場 合には、 GPSによるナビゲ^-シヨンによって走行することが可能となる。 .
[0144] [並列カメラによる絶対測定捕正]
上述した画像取得部 200— 01は、視野が重複するように並列に配置され、位置関 係が固定されている複数のカメラを積載したカメラによる並列画像を取得する機能を 付カロすることができる。
そして、特徴点追跡部 200— 04では、複数のカメラによる画像力 特徴点の対応 点を並列画像内に検索する機能を付加することができる。
これにより、ベクトル演算部 200— 06では、並列画像内の各対応点の座標から、特 徴点及びカメラベクトルの絶対長を演算で求める機能を付加することができる。この 場合、並列カメラにより、すべてのカメラ位置で絶対長を取得できるので、長距離計 測にぉレ、て誤差の蓄積が少なレ、計測が行える。
[0145] [移動体ベクトル演算]
移動体特徴点追跡部 200— 19は、特徴点静止座標系の特徴点を取り除レ、たもの を移動体の特¾点として扱う。
移動追跡座標テーブル作成部 200— 20は、追跡した特徴点のテーブルを生成す る。 . ' 移動体ベクトル演算部 200— 21は、移動体別の移動体ベクトルを演算し、静止座 標系に変換し、先に求められている静止座標系の特徴点と合成することで、静止座 標系の特徴点と、移動体のベクトルを重ねて表示する。
この移動体ベクトル抽出処理の詳細を図 35に示す。
[0146] 図 35 (a)において、静止座標系によるカメラベクトル決定部 S3401においては、既 にカメラベクトル、すなわち、カメラ位置と方向が三次元的に汆められている。
静止座標系以外の移動体特徴点抽出部 S3402において、すべての特徴点の中 から、静止座標系以外の特徴点を選択,抽出し、それらが移動体における特徴点を 含むものと判断して、特搏点 定 ·カメラ移動とした特徴点追跡部 S3403において追 跡し、それをテーブル化 t'f一時保存し、'以下のプロセスで移動体の特徴点のベタト ルを演算で求める。
[0147] まず、特徴点は移動体で るから移雷カしている力 カメラから見れば、はじめは静止 座標系か移動座標系かの判断はできないので、すべて静止座標系の特徴点として . 扱うことになる。
特徴点固定 'カメラ移動とした特徴点追跡部 S3403において、特徴点の追跡を行 レ、、移動体特徴点追跡テーブル作成部 S3404により、特徴点追跡のテーブルを生 成する。.このテーブルには、移動体毎に異なるカメラ位置のグループが生成される。 'カメラは一つでも、移動体は特徴^の一群として観察され、その一群が一つのカメラ 位置に対応するように、移動体に対応する特徴点毎にカメラ位置が異なる場所に複 ' 数観'察されることになる。 [0148]' 特徴点座標系からみた複数のカメラ位置分類部 S3405において、レ、くつかのカメ ラ位置が求まり、それカメラ位置毎に移動体が分類される。カメラ位置毎に一群とする 特徴点の分類部 S3406において、特徴点を移動体毎に分類する。
カメラ位置と移動体は相対運動であるから、いつでも座標変換が可能である。そこ で、静止座標系からみた各特徴点群の座標系決定部 S3407において、カメラを元の 静止座標系表示に戻すことで、各移動体による特徴点群及び座標決定部 S3408に おいて、移動体毎の特徴点の座標も静止座標系に変換することができる。これにより 、移動体抽出部 S3409において、移動体を静止座標系の中に三次元的に抽出する ことができるようになる。
はじめから静止座標系を元として演算することもでき、その場合には、図 35 (b)に示 すようになる。 :
[0149] 以上のようなリアルタイムナビゲーシヨン装置によれば、リアルタイム性を追求するた めに、演算を簡素化しており、大きなノヽ一ドディスク等の記録媒体を用いない。特徴 点を抽出して、カメラベクトルと特徴点を抽出し、特徴点の中から適切なもののみを演 算に使用し、他は表示のみとすることで、十分に多くの特徴点の分布図は大まかな 三次元形状の地図として生成する。 - そして、その中にカメラ;^ク,トノレ 表示することで、走行位顰を道路及び周辺の形状 の.中に、表示することが ¼きる。また、特徴点の中から演算用の特徴点を選択するこ とで、演算スピードを上げることができる。
[0150] . 図 36に、リアルタイムナビダーシヨン装置の応用例として、自動離着陸装置を示す 。同図は、本実施形態に係 リアルタイムナビゲーシヨン装置を、航空機の自動離着 . 陸装置 (又は案内装置)とじて応用した例を示している。
同図に示す例では、航空機の地上側の任意の位置に広角のカメラを取り付けてお く。カメラは地上側を撮影し、滑走路を一部その視界にとらえている。
カメラによって撮影した映像の中に十分多くの特徴点を自動検出し、追跡し、航空 機の三次元的位置と姿勢を演算によって求める。 ,
また、位置の再確認と位置精度の向上を目的として、地上に既知の対象物をもとら え、データベースに保存してある既知の部'品と比較し、それを映像中に認識し、名称 と形状と座標を確認する。
[0151] このようにして、絶対座標を取得し、航空機位置と姿勢は、地上の滑走路との位置 ' 関係として、高精度で三次元的に完全に関係付けられることになる。
航空機の目的の理想進路を設定し、本ナビゲーシヨン装置で取得された航空機の 実際の進路とのズレを検出し、制御することで、理想の進路近くの進入路を自動的に 得ることができるようになる。航空機の離陸においても全く同様に制御することができ る。 . ·
以上と同様の本ナビゲーシヨン装置の応用例としては、例えば、(1)自動離着陸装 置、(2)宇宙船自動ドッキング装置、(3)列車車両の自動停止位置確保装置、(4)車両 の自動駐車装置、(5)船舶自動接岸装置などに適用することができる。
[0152] 以上、本発明のナビゲーシ,ヨン装置について、好ましい実施形態を示して説明した 、本発明に係るナビゲーシヨン装置は、上述した実施形態にのみ限定されるもので はなぐ本発明の範囲で種々の変更実施が可能であることは言うまでもない。
例えば、本発明のナビゲーシヨン装置は、三次元地図を持つことから、適用する移 動体は、地上を走行する車両に限らず、三次元空間を航行するものであっても良い - 。飛行機でも利用可能であるから、着陸時の精度の高いナビゲーシヨンが可能である 。また、宇宙船から見え Mや星座を特徴点として、 宙規摸でのナビゲーシヨンも 可能である。 ,
産業上の利用可能性
[0153] . 以上のように本発明は、例えば、自動車に搭載されるカーナビゲーシヨン装置、飛 行機に搭載されるナビゲー ¾:ヨン装置、自動運転用のナビゲーシヨン装置、ロボット のナビゲーシヨン装置などに好適なナビゲーシヨン装置として利用することができる。

Claims

請求の範囲
[1] ナビゲーシヨン対象となる移動体力 観察される範囲における映像的な特徴点を三 次元座標で記録した記録媒体と、
ナビゲーシヨン対象となる移動体に備えられたカメラにより得られる現実の映像を、 前記記録媒体を再生して得られる映像的な特徴点の三次元座標と比較し、現実の 映像と一致する三次元座標上の地点と方向を求め、移動体に備えられたカメラの三 次元座標上の位置、速度、加速度、視点方向、 3軸回転姿勢、 3軸回転速度、 3軸回 転加速度を含む所定項目のうち、いずれか又はそれらを組み合わせた複数の項目 を出力する地点検索ナビゲーシヨン装置と、
を備えることを特徴とするナビゲーシヨン装置。
[2] 前記記録媒体に記録される情報は、
移動体力 観察される範囲における映像的な特徴点の種類とその三次元座標と、 前記映像的な特徴点を含む小領域の二次元画像の三次元配置とその三次元座標 と、
前記映像的な特徴点を含む対象物の形状とその三次元座標と、
前記映像的な特徴点以外の移動体の移動に必要な周辺画像, CG等の形状と三 次元座標と、 , 移動体が移動する道路,車两走行路,又は予定航路等の画像, CGとその三次元 形状及びその三次元座標と、を含み、
これら各情報は、いずれか又はそれらの組み合わせ又はそれら全部、又はそれら の属性情報を含んで、三次元地図とともに記録される請求項 1記載のナビゲーシヨン '
[3] ■前記地点探索ナビゲーシヨン装置は、
前記記録媒体を再生する特徴点 3D地図再生部と、
移動体の概略の現在位置を指定し、初期設定時の搮索範囲を限定十る概略現在 位置指定部と、
前記記録媒体に記録された三次元地図から、移動体の現在地周辺の複数の特徴 点を読み出し、現在地の探索目標として指定する現在地周辺特徴点指定部と、 ナビゲーシヨン対象となる移動体に備えられたカメラから当該移動体周囲の映像を 取得するカメラ映像取得部と、
前記カメラ映像取得部で取得された映像を記録する映像一時記録部と、 前記映像一 Bき記録部に記録された映像内に、前記探索目標と同一物となるべき特 徴点の候捕を探し出す映像内特徴点探索部と、
前記映像内特徴点探索部で得られた特徴点の候補と、前記現在地周辺の探索目 標とを比較照合して同一物としての対応関係を求め、前記候補の中から所定数の対 応点を決定し、決定された対応点の三次元座標を前記記録媒体から受け取る映像 内特徴点対応部と、
前記決定された対応点とその三次元座標を用いて、移動体の現時点の状況を示 すカメラ位置,方向,姿勢等の三次元データを演算により決定するカメラ座標演算部 と、
前記カメラ座標演算部で決定された三次元データの組み合わせ又はそのすベてを 、単独で又は前記記録媒体に記録された地図、映像、属性等の情報とともに画面上 に表示する現在地点表示部と、 '
を備える請求項 1又は 2項記載のナビゲーシヨン装置。 -
[4] 記録媒体生成用の移動/本に備えられたカメラにより得られる現実の映像に基づき、 当該移動体から観察さ る範囲 (こおける映像的な特徴点を三次元座標で記録した、 前記記録媒体に記録すべき情報を生成する特徴点三次元地図生成装置を備える請 求項 1又は 2記載のナビゲ 7シヨン装置。
[5] 前記特徴点三次元地図生, ^装置は、
前記記録媒体生成用の 動体に備えられたカメラから当該移動体の周囲画像を取 得するカメラ映像取得部と、
前記カメラ映像取得部で取得された画像を記録する映像記録部と、
前記映像記憶部に記録された画像データから、所定数の特徴点を自動抽出する 特徴点抽出部と、
前記特徴点抽出部で抽出された特徴点について、各フレーム画像内で自動追跡 してフレーム画像間での対応関係を求める特徴点対応処理部と、 前記特徴点対応処理部で対応関係が求められた特徴点の三次元位置座標を求め るとともに、当該三次元位置座標から各フレーム画像に対応したカメラベクトルを求め る特徴点 ·カメラベクトル演算部ど、
前記特徴点'カメラベクトル演算部において求められる各特徴点の三次元位置座 標とカメラベクトルの分布が最小になるように統計処理し、誤差の最小化処理を施し た特徴点の三次元座標とカメラベクトルを自動的に決定する誤差最小化部と、 前記誤差最小化部で誤差の最小化処理が施され,たカメラベクトルと特徴点又はそ の特徴点を含む小領域の画像の三次元形状とその三次元座標及びその分布を、ナ ' ビグーシヨン対象となる移動体の通路とともに三次元地図として配列し、特徴点を含 む対象物等とともに、前記記録媒体に記録する 3D地図生成記録部と、
を備える請求項 4記載のナビゲーシヨン装置。
[6] ナビゲーシヨン対象となる移動体に備えられたカメラにより得られる現実の映像に基 づき、当該移動体から観察される範囲における映像的な特徴点を三次元座標で生 成するとともに、当該三次元座標からカメラベクトルを生成し、
, 生成された三次元座標に基づいて三次元地図を生成しつつ、特徴点の三次元分 布及ぴ当該移動体に備えられたカメラの三次元座標上の位置、速度、加速度、視点 方向、 3軸回転姿勢、 3 回 速度、 3軸回転加速度を含む所定項目のうち、いずれ か又はそれらを組み合^せこ複数の項目を出力する特徴点三次元地図生成表示装 ¾
を備えることを特徴とする ピゲーシヨン装置。
[7] 前記特徴点三次元地図生成表示装置は、 .
移動体に備えられたカメラ力ら当該移動体の周囲画像を取得するカメラ映像取得 部と、
前記カメラ映像取得部で取得された面像を記録する映像記録部と、
前記映像記憶部に記録された画像データから、所定数の特徴点を自動抽出する 特徴点抽出部と、
前記特徴点抽出部で抽出された特徴点について、各フレーム画像内で自動追跡 してフレーム画像間での対応関係を求める特徴点対応処理部と、 前記特徴点対応処理部で対応関係が求められた特徴点の三次元位置座標を求め るとともに、当該三次元位置座標から各フレーム画像に対応したカメラベクトルを求め る特徴点 ·カメラベクトル演算部と、
前記特徴点 ·カメラベクトル演算部において求められる各特徴点の三次元位置座 標とカメラベクトルの分布が最小になるように統計処理し、誤差の最小化処理を施し た特徴点の三次元座標とカメラベクトルを自動的に決定する誤差最小化部と、 前記誤差最小化部で誤差の最小化処理が施されたカメラベクトルと特徴点又はそ の特徴点を含む小領域の画像の三次元形状とその三次元座標及びその分布を、ナ ' ビグーシヨン対象となる移動体の移動軌跡又は必要に応じて移動予定路とともに三 次元地図として配列し、特徴点を含む対象物等とともに表示する 3D地図生成表示 部と、 :
を備える請求項 6記載のナビゲーシヨン装置。
[8] 前記特徴点'カメラベクトル演算部は、
カメラベクトル及び特徴点の三次元座標演算に用レ、る任意の二つのフレーム画像 Fn及び Fn+m (m=フレーム間隔)を単位画像として、所望の特徴点の三次元座標 とカメラベクトルを求める単位演算を繰り返し、 ' - 前記二つのフレーム呵像 Fn及び Fn+mの間のフ ーム 1|F像については、簡素化 した演算 (こよりカメラベタ レ及ぴ特徴点の三次元座標を求め、
前記誤差最小化部は、
画像の進行とともに nが連 的に進行することにより、同一特徴点について複数回 演算されて得られる各カメラべ外ルと特徴点の三次元座標の誤差が最小になるよう . にスケール調整して統合し': "最終の三次元座標を決定する請求項 5又は 7記載のナ ビゲーシヨン装置。
[9] 前記特徴点 ·カメラベクトル演算部は、
前記フレーム間隔 mを、カメラから特徴点までの距離に応じて、カメラから特徴点ま での距離が大きいほど mが大きくなるように設定して単位演算を行う請求項 8記載の ナビゲーシヨン装置。
[10] 前記特徴点'カメラベクトル演算部は、 求められたカメラベクトル又は特徴点の三次元座標の誤差の分布が大きい特徴点 を削除し、必要が有れば、他の特徵点について再演算を行い、三次元座標演算の 精 itを上げる請求項 5又は 7記載のナビゲーシヨン装置。
[11] 前記記録媒体と前記地点探索ナビゲーシヨン装置が離間して備えられ、 .
基地局又は他の移動体に備えられた記録媒体に記録された前記所定の三次元情 報が、通信回癱を介して一又は二以上の地点探索ナビゲーシヨン装置に送信される 請求項 1又は 2記載のナビゲーシヨン装置。
[12] 前記地点探索ナビゲーシヨン装置は、 GPSによって得られた緯度経度高度データ により、前記概略現在位置指定部による移動体の概略の現在位置を指定する請求 項 1又は 6記載のナビゲーシヨン装置。
[13] 前記地点探索ナビゲーシヨン装置は、前記カメラ座標演算部で得られた現時点の ' 移動体状況を示すカメラ位置,方向,姿勢等の三次元データを、緯度経度高度に変 換して GPSを捕正する補正信号として出力し、映像的特徴点が得られない場合に G
PSから位置データを得るための捕助信号とする請求項 12記載のナビゲーシヨン装 置。
[14] 前記ナビゲーシヨン対象となる移動体は、自動車,航空機,船舶,人,ロボット,重 . 機,宇宙船,深海探査船,移動部分を持つ機械等である請求項 1又は 6記載のナビ ゲーシヨン装置。
PCT/JP2004/014989 2003-10-21 2004-10-04 ナビゲーション装置 WO2005038402A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514748A JP4273119B2 (ja) 2003-10-21 2004-10-04 ナビゲーション装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361160 2003-10-21
JP2003-361160 2003-10-21

Publications (1)

Publication Number Publication Date
WO2005038402A1 true WO2005038402A1 (ja) 2005-04-28

Family

ID=34463431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014989 WO2005038402A1 (ja) 2003-10-21 2004-10-04 ナビゲーション装置

Country Status (2)

Country Link
JP (1) JP4273119B2 (ja)
WO (1) WO2005038402A1 (ja)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114916A (ja) * 2005-10-19 2007-05-10 Kazuo Iwane 新旧映像座標統合装置
JP2007133007A (ja) * 2005-11-08 2007-05-31 Toyota Mapmaster:Kk 路面撮像装置及び路面標示計測装置
JP2007142517A (ja) * 2005-11-15 2007-06-07 Kazuo Iwane 移動型自動監視装置
JP2007148809A (ja) * 2005-11-28 2007-06-14 Fujitsu Ltd 画像解析プログラム、該プログラムを記録した記録媒体、画像解析装置、および画像解析方法
JP2007290551A (ja) * 2006-04-25 2007-11-08 Kaaz Corp 走行情報表示装置
JP2007316839A (ja) * 2006-05-24 2007-12-06 Kazuo Iwane Cv映像によるcvタグ入出力検索装置
WO2008138670A1 (de) * 2007-05-14 2008-11-20 Robert Bosch Gmbh Verfahren zur anzeige von videobildern und videosystem
JP2009199572A (ja) * 2008-01-25 2009-09-03 Kazuo Iwane 三次元機械地図、三次元機械地図生成装置、ナビゲーション装置及び自動運転装置
JP2009223213A (ja) * 2008-03-18 2009-10-01 Zenrin Co Ltd 路面標示地図生成方法
JP2009258651A (ja) * 2008-03-18 2009-11-05 Zenrin Co Ltd 路面標示地図生成方法
JP2010507127A (ja) * 2006-10-20 2010-03-04 テレ アトラス ベスローテン フエンノートシャップ 異なるソースの位置データをマッチングさせるためのコンピュータ装置及び方法
US7868821B2 (en) 2009-01-15 2011-01-11 Alpine Electronics, Inc Method and apparatus to estimate vehicle position and recognized landmark positions using GPS and camera
JP2011215052A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 風景画像認識を用いた自車位置検出システム
JP2011215055A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 風景画像認識を用いた自車位置検出システム
JP2011215054A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 風景画像認識を用いた自車位置検出システム
JP2011215974A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 画像処理システム
US8417021B2 (en) 2005-10-13 2013-04-09 Cambridge University Technical Services Limited Image processing methods and apparatus
WO2014010601A1 (ja) * 2012-07-10 2014-01-16 国立大学法人千葉大学 トラッキングデータ作成方法、及び、トラッキングデータ作成プログラム
WO2014081351A1 (en) * 2011-09-16 2014-05-30 Saab Ab Method for improving the accuracy of a radio based navigation system
JP2015005298A (ja) * 2008-01-15 2015-01-08 グーグル インコーポレイテッド 街路ビューデータのための3次元注釈
WO2015177865A1 (ja) * 2014-05-20 2015-11-26 日産自動車株式会社 物標検出装置及び物標検出方法
JP2016082586A (ja) * 2014-10-17 2016-05-16 日本無線株式会社 画像生成装置
JP2016522895A (ja) * 2014-03-31 2016-08-04 小米科技有限責任公司Xiaomi Inc. 測位・ナビゲーション方法、装置、プログラム、及び記録媒体
WO2017168899A1 (ja) * 2016-03-30 2017-10-05 ソニー株式会社 情報処理方法および情報処理装置
US9818196B2 (en) 2014-03-31 2017-11-14 Xiaomi Inc. Method and device for positioning and navigating
JP2017228111A (ja) * 2016-06-23 2017-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機、無人航空機の制御方法、および無人航空機の制御プログラム
JP2018504650A (ja) * 2014-12-26 2018-02-15 ヘーレ グローバル ベスローテン フェンノートシャップ 装置の位置特定のための幾何学的指紋法
WO2018104563A3 (en) * 2016-12-09 2018-07-26 Tomtom Global Content B.V. Method and system for video-based positioning and mapping
CN108931255A (zh) * 2017-05-26 2018-12-04 数据转换研究所有限公司 移动体控制系统
JP2019045364A (ja) * 2017-09-05 2019-03-22 ソニー株式会社 情報処理装置、自己位置推定方法、及び、プログラム
JP2019124573A (ja) * 2018-01-16 2019-07-25 株式会社豊田中央研究所 自車位置推定装置、自車位置推定方法、および自車位置推定プログラム
JP2019132664A (ja) * 2018-01-30 2019-08-08 株式会社豊田中央研究所 自車位置推定装置、自車位置推定方法、及び自車位置推定プログラム
CN110869981A (zh) * 2016-12-30 2020-03-06 迪普迈普有限公司 用于自主车辆的高清晰度地图数据的向量数据编码
JP2020115348A (ja) * 2015-02-10 2020-07-30 モービルアイ ビジョン テクノロジーズ リミテッド 自律車両ナビゲーションのための疎な地図
JP2020126686A (ja) * 2013-03-25 2020-08-20 エイディシーテクノロジー株式会社 鉄道車両
JP2021032722A (ja) * 2019-08-26 2021-03-01 株式会社ミツトヨ 検査方法、補正方法、および検査装置
WO2022004603A1 (ja) * 2020-07-01 2022-01-06 株式会社多摩川ホールディングス センシング地図システム及び測位方法
WO2023037594A1 (ja) * 2021-09-08 2023-03-16 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996241B1 (ko) * 2012-06-06 2019-07-05 삼성전자주식회사 실시간 관심 지역을 나타내는 3차원 지도를 제공하는 장치 및 방법
CN105069842A (zh) * 2015-08-03 2015-11-18 百度在线网络技术(北京)有限公司 道路三维模型的建模方法和装置
KR102622585B1 (ko) * 2018-06-29 2024-01-08 현대오토에버 주식회사 실내 길안내 장치 및 그 방법
CN109087359B (zh) * 2018-08-30 2020-12-08 杭州易现先进科技有限公司 位姿确定方法、位姿确定装置、介质和计算设备
KR102383499B1 (ko) * 2020-05-28 2022-04-08 네이버랩스 주식회사 시각 특징 맵 생성 방법 및 시스템
KR102454599B1 (ko) * 2021-05-26 2022-10-17 포티투닷 주식회사 차로 맵 상에 객체의 위치를 결정하기 위한 방법 및 장치
DE112022002754T5 (de) * 2021-05-26 2024-05-02 42Dot Inc. Verfahren und Vorrichtung zum Bestimmen der Position eines Objekts auf einer Fahrspurkarte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247775A (ja) * 1995-03-15 1996-09-27 Toshiba Corp 移動体の自己位置同定装置および自己位置同定方法
JPH09218955A (ja) * 1996-02-14 1997-08-19 Hitachi Ltd 位置認識方法及び装置
JPH11271074A (ja) * 1998-03-20 1999-10-05 Fujitsu Ltd 目印画像照合装置及び目印画像照合方法及びプログラム記憶媒体
JP2002296044A (ja) * 2001-03-30 2002-10-09 Justec:Kk 地図情報提供方法、地図情報提供システム、及びコンピュータ読取可能なプログラム
JP2003287434A (ja) * 2002-01-25 2003-10-10 Iwane Kenkyusho:Kk 画像情報検索システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247775A (ja) * 1995-03-15 1996-09-27 Toshiba Corp 移動体の自己位置同定装置および自己位置同定方法
JPH09218955A (ja) * 1996-02-14 1997-08-19 Hitachi Ltd 位置認識方法及び装置
JPH11271074A (ja) * 1998-03-20 1999-10-05 Fujitsu Ltd 目印画像照合装置及び目印画像照合方法及びプログラム記憶媒体
JP2002296044A (ja) * 2001-03-30 2002-10-09 Justec:Kk 地図情報提供方法、地図情報提供システム、及びコンピュータ読取可能なプログラム
JP2003287434A (ja) * 2002-01-25 2003-10-10 Iwane Kenkyusho:Kk 画像情報検索システム

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8417021B2 (en) 2005-10-13 2013-04-09 Cambridge University Technical Services Limited Image processing methods and apparatus
JP2007114916A (ja) * 2005-10-19 2007-05-10 Kazuo Iwane 新旧映像座標統合装置
JP2007133007A (ja) * 2005-11-08 2007-05-31 Toyota Mapmaster:Kk 路面撮像装置及び路面標示計測装置
JP2007142517A (ja) * 2005-11-15 2007-06-07 Kazuo Iwane 移動型自動監視装置
JP4740723B2 (ja) * 2005-11-28 2011-08-03 富士通株式会社 画像解析プログラム、該プログラムを記録した記録媒体、画像解析装置、および画像解析方法
JP2007148809A (ja) * 2005-11-28 2007-06-14 Fujitsu Ltd 画像解析プログラム、該プログラムを記録した記録媒体、画像解析装置、および画像解析方法
US8194912B2 (en) 2005-11-28 2012-06-05 Fujitsu Limited Method and apparatus for analyzing image, and computer product
JP2007290551A (ja) * 2006-04-25 2007-11-08 Kaaz Corp 走行情報表示装置
JP2007316839A (ja) * 2006-05-24 2007-12-06 Kazuo Iwane Cv映像によるcvタグ入出力検索装置
JP2010507127A (ja) * 2006-10-20 2010-03-04 テレ アトラス ベスローテン フエンノートシャップ 異なるソースの位置データをマッチングさせるためのコンピュータ装置及び方法
US8884962B2 (en) 2006-10-20 2014-11-11 Tomtom Global Content B.V. Computer arrangement for and method of matching location data of different sources
WO2008138670A1 (de) * 2007-05-14 2008-11-20 Robert Bosch Gmbh Verfahren zur anzeige von videobildern und videosystem
JP2015005298A (ja) * 2008-01-15 2015-01-08 グーグル インコーポレイテッド 街路ビューデータのための3次元注釈
JP2009199572A (ja) * 2008-01-25 2009-09-03 Kazuo Iwane 三次元機械地図、三次元機械地図生成装置、ナビゲーション装置及び自動運転装置
JP2009223213A (ja) * 2008-03-18 2009-10-01 Zenrin Co Ltd 路面標示地図生成方法
JP2009258651A (ja) * 2008-03-18 2009-11-05 Zenrin Co Ltd 路面標示地図生成方法
US7868821B2 (en) 2009-01-15 2011-01-11 Alpine Electronics, Inc Method and apparatus to estimate vehicle position and recognized landmark positions using GPS and camera
JP2011215974A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 画像処理システム
JP2011215054A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 風景画像認識を用いた自車位置検出システム
JP2011215055A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 風景画像認識を用いた自車位置検出システム
JP2011215052A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 風景画像認識を用いた自車位置検出システム
WO2014081351A1 (en) * 2011-09-16 2014-05-30 Saab Ab Method for improving the accuracy of a radio based navigation system
US9423506B2 (en) 2011-09-16 2016-08-23 Saab Ab Tactical differential GPS
WO2014010601A1 (ja) * 2012-07-10 2014-01-16 国立大学法人千葉大学 トラッキングデータ作成方法、及び、トラッキングデータ作成プログラム
JP2020126686A (ja) * 2013-03-25 2020-08-20 エイディシーテクノロジー株式会社 鉄道車両
JP2016522895A (ja) * 2014-03-31 2016-08-04 小米科技有限責任公司Xiaomi Inc. 測位・ナビゲーション方法、装置、プログラム、及び記録媒体
US9818196B2 (en) 2014-03-31 2017-11-14 Xiaomi Inc. Method and device for positioning and navigating
WO2015177865A1 (ja) * 2014-05-20 2015-11-26 日産自動車株式会社 物標検出装置及び物標検出方法
CN106461403A (zh) * 2014-05-20 2017-02-22 日产自动车株式会社 物体检测装置及物体检测方法
JPWO2015177865A1 (ja) * 2014-05-20 2017-04-20 日産自動車株式会社 物標検出装置及び物標検出方法
US9767372B2 (en) 2014-05-20 2017-09-19 Nissan Motor Co., Ltd. Target detection apparatus and target detection method
CN106461403B (zh) * 2014-05-20 2019-02-15 日产自动车株式会社 物体检测装置及物体检测方法
JP2016082586A (ja) * 2014-10-17 2016-05-16 日本無線株式会社 画像生成装置
US10145956B2 (en) 2014-12-26 2018-12-04 Here Global B.V. Geometric fingerprinting for localization of a device
JP2018504650A (ja) * 2014-12-26 2018-02-15 ヘーレ グローバル ベスローテン フェンノートシャップ 装置の位置特定のための幾何学的指紋法
JP7070974B2 (ja) 2015-02-10 2022-05-18 モービルアイ ビジョン テクノロジーズ リミテッド 自律車両ナビゲーションのための疎な地図
US11599113B2 (en) 2015-02-10 2023-03-07 Mobileye Vision Technologies Ltd. Crowd sourcing data for autonomous vehicle navigation
JP2021103525A (ja) * 2015-02-10 2021-07-15 モービルアイ ビジョン テクノロジーズ リミテッド ナビゲーション情報を処理する方法、ナビゲーション情報を処理する地図サーバコンピュータプログラム、自律車両のナビゲーションを支援する車両システム、および自律車両
US11392123B2 (en) 2015-02-10 2022-07-19 Mobileye Vision Technologies Ltd. Crowd sourcing data for autonomous vehicle navigation
US11774251B2 (en) 2015-02-10 2023-10-03 Mobileye Vision Technologies Ltd. Systems and methods for identifying landmarks
US11681291B2 (en) 2015-02-10 2023-06-20 Mobileye Vision Technologies Ltd. Navigation based on free space determination
JP7280465B2 (ja) 2015-02-10 2023-05-24 モービルアイ ビジョン テクノロジーズ リミテッド ナビゲーション情報を処理する方法、ナビゲーション情報を処理する地図サーバコンピュータプログラム、自律車両のナビゲーションを支援する車両システム、および自律車両
US11781870B2 (en) 2015-02-10 2023-10-10 Mobileye Vision Technolgies Ltd. Crowd sourcing data for autonomous vehicle navigation
US11422554B2 (en) 2015-02-10 2022-08-23 Mobile Vision Technologies Ltd. Self-aware system for adaptive navigation
JP2020115348A (ja) * 2015-02-10 2020-07-30 モービルアイ ビジョン テクノロジーズ リミテッド 自律車両ナビゲーションのための疎な地図
WO2017168899A1 (ja) * 2016-03-30 2017-10-05 ソニー株式会社 情報処理方法および情報処理装置
US10949712B2 (en) 2016-03-30 2021-03-16 Sony Corporation Information processing method and information processing device
JPWO2017168899A1 (ja) * 2016-03-30 2019-02-07 ソニー株式会社 情報処理方法および情報処理装置
JP2017228111A (ja) * 2016-06-23 2017-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機、無人航空機の制御方法、および無人航空機の制御プログラム
WO2018104563A3 (en) * 2016-12-09 2018-07-26 Tomtom Global Content B.V. Method and system for video-based positioning and mapping
CN110062871B (zh) * 2016-12-09 2024-01-19 通腾全球信息公司 用于基于视频的定位及映射的方法及系统
US11761790B2 (en) 2016-12-09 2023-09-19 Tomtom Global Content B.V. Method and system for image-based positioning and mapping for a road network utilizing object detection
CN110062871A (zh) * 2016-12-09 2019-07-26 通腾全球信息公司 用于基于视频的定位及映射的方法及系统
US12092742B2 (en) 2016-12-30 2024-09-17 Nvidia Corporation Encoding LiDAR scanned data for generating high definition maps for autonomous vehicles
CN110869981B (zh) * 2016-12-30 2023-12-01 辉达公司 用于自主车辆的高清晰度地图数据的向量数据编码
CN110869981A (zh) * 2016-12-30 2020-03-06 迪普迈普有限公司 用于自主车辆的高清晰度地图数据的向量数据编码
US11754716B2 (en) 2016-12-30 2023-09-12 Nvidia Corporation Encoding LiDAR scanned data for generating high definition maps for autonomous vehicles
CN108931255B (zh) * 2017-05-26 2023-07-28 数据转换研究所有限公司 移动体控制系统
CN108931255A (zh) * 2017-05-26 2018-12-04 数据转换研究所有限公司 移动体控制系统
JP2019045364A (ja) * 2017-09-05 2019-03-22 ソニー株式会社 情報処理装置、自己位置推定方法、及び、プログラム
JP2019124573A (ja) * 2018-01-16 2019-07-25 株式会社豊田中央研究所 自車位置推定装置、自車位置推定方法、および自車位置推定プログラム
JP7056840B2 (ja) 2018-01-16 2022-04-19 株式会社豊田中央研究所 自車位置推定装置、自車位置推定方法、および自車位置推定プログラム
JP7036400B2 (ja) 2018-01-30 2022-03-15 株式会社豊田中央研究所 自車位置推定装置、自車位置推定方法、及び自車位置推定プログラム
JP2019132664A (ja) * 2018-01-30 2019-08-08 株式会社豊田中央研究所 自車位置推定装置、自車位置推定方法、及び自車位置推定プログラム
JP2021032722A (ja) * 2019-08-26 2021-03-01 株式会社ミツトヨ 検査方法、補正方法、および検査装置
JP7428492B2 (ja) 2019-08-26 2024-02-06 株式会社ミツトヨ 検査方法および補正方法
WO2022004603A1 (ja) * 2020-07-01 2022-01-06 株式会社多摩川ホールディングス センシング地図システム及び測位方法
WO2023037594A1 (ja) * 2021-09-08 2023-03-16 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム

Also Published As

Publication number Publication date
JPWO2005038402A1 (ja) 2007-01-11
JP4273119B2 (ja) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4273119B2 (ja) ナビゲーション装置
JP7040867B2 (ja) システム、方法およびプログラム
JP4767578B2 (ja) 高精度cv演算装置と、この高精度cv演算装置を備えたcv方式三次元地図生成装置及びcv方式航法装置
JP5227065B2 (ja) 三次元機械地図、三次元機械地図生成装置、ナビゲーション装置及び自動運転装置
CN104520675B (zh) 摄像机参数运算装置、导航系统及摄像机参数运算方法
JP4794019B2 (ja) 領域の3次元マップ表現を提供するための装置及び方法
CN105652305B (zh) 一种动态环境下轨道检测平台的三维定位定姿方法及系统
Alonso et al. Accurate global localization using visual odometry and digital maps on urban environments
JP6821154B2 (ja) 基準映像地図を用いた自己位置姿勢標定装置
US11138465B2 (en) Systems and methods for transforming coordinates between distorted and undistorted coordinate systems
CN105973236A (zh) 室内定位或导航方法、装置以及地图数据库生成方法
US20200005068A1 (en) System and method for improving the representation of line features
JPWO2010134502A1 (ja) 画像情報出力方法
CN109782766A (zh) 用于控制车辆行驶的方法和装置
Hu et al. Real-time data fusion on tracking camera pose for direct visual guidance
JP2012118666A (ja) 三次元地図自動生成装置
WO2020235286A1 (ja) 認識位置決め装置及び情報変換装置
US11754415B2 (en) Sensor localization from external source data
JP4624000B2 (ja) 複合人工知能装置
Soheilian et al. Generation of an integrated 3D city model with visual landmarks for autonomous navigation in dense urban areas
Chiang et al. Mobile mapping technologies
JP2020008664A (ja) ドライビングシミュレーター
JP4773794B2 (ja) 新旧映像座標統合装置
Golovnin et al. Video processing method for high-definition maps generation
CN116202538B (zh) 地图匹配融合方法、装置、设备及存储介质

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514748

Country of ref document: JP

122 Ep: pct application non-entry in european phase