WO2023037594A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents
情報処理装置、情報処理方法およびプログラム Download PDFInfo
- Publication number
- WO2023037594A1 WO2023037594A1 PCT/JP2022/009307 JP2022009307W WO2023037594A1 WO 2023037594 A1 WO2023037594 A1 WO 2023037594A1 JP 2022009307 W JP2022009307 W JP 2022009307W WO 2023037594 A1 WO2023037594 A1 WO 2023037594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- destination
- map
- information processing
- information
- processor
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 47
- 238000003672 processing method Methods 0.000 title claims description 8
- 238000001914 filtration Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 22
- 239000003550 marker Substances 0.000 description 21
- 238000012545 processing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 230000033001 locomotion Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
- G05D1/249—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons from positioning sensors located off-board the vehicle, e.g. from cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/02—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/656—Interaction with payloads or external entities
- G05D1/667—Delivering or retrieving payloads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2105/00—Specific applications of the controlled vehicles
- G05D2105/20—Specific applications of the controlled vehicles for transportation
- G05D2105/28—Specific applications of the controlled vehicles for transportation of freight
- G05D2105/285—Specific applications of the controlled vehicles for transportation of freight postal packages
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2109/00—Types of controlled vehicles
- G05D2109/20—Aircraft, e.g. drones
- G05D2109/25—Rotorcrafts
- G05D2109/254—Flying platforms, e.g. multicopters
Definitions
- the present invention relates to an information processing device, an information processing method, and a program.
- JP 2021-005267 A Japanese Patent Publication No. 2020-534198
- the present disclosure proposes an information processing device, an information processing method, and a program capable of flexibly setting a destination and accurately searching for a route.
- an information processing device includes a processor that searches for a route to a destination using a 3D map of the surroundings of the destination generated by a client using SLAM. Further, according to the present disclosure, there are provided an information processing method in which the information processing of the information processing device is executed by a computer, and a program for causing the computer to implement the information processing of the information processing device.
- FIG. 11 is a flowchart showing an example of marker installation request processing
- FIG. 10 is a diagram showing an example in which a public space is specified as a delivery destination; It is a figure which shows the structure of an authentication process.
- FIG. 11 is a flow chart showing an example of a recipient authentication process;
- FIG. It is a figure which shows the example by which the destination was set inside the building.
- 4 is a flow chart showing an example of a video shooting method;
- FIG. 10 is a diagram showing an example of applying a route search method using a 3D map to meeting with a friend; It is a figure which shows the hardware structural example of a processor.
- FIG. 1 is a diagram showing an example of a delivery system DS.
- the delivery system DS is a system that automatically delivers packages BG using mobile units MB such as drones DR.
- the delivery system DS includes a server SV, terminals TM and mobiles MB.
- a client CL requesting delivery of the package BG sets a destination TP (delivery destination of the package BG) using a terminal TM such as a smart phone.
- a 3D (three-dimensional) map MD around the destination TP is used to set the destination TP.
- the client CL uses a terminal TM having a camera function to shoot an image IM around the destination TP.
- the terminal TM has a GPS (Global Positioning System) function.
- GPS data PD indicating the recording position of the image IM is embedded in the image IM.
- the terminal TM uses SLAM (Simultaneous Localization and Mapping) to generate a 3D map MD around the destination TP.
- the terminal TM transmits the image IM and the 3D map MD together with the GPS data PD to the server SV.
- the server SV transmits the image IM, 3D map MD and GPS data PD obtained from the terminal TM to the mobile object MB.
- the mobile MB searches for a route to the vicinity of the destination TP based on the GPS data PD.
- the moving body MB searches for a detailed route to the destination TP using the image IM and the 3D map MD of the vicinity of the destination TP.
- the veranda table is the destination TP
- the load BG is a vase.
- the moving body MB delivers the vase onto the table on the balcony.
- FIG. 2 is a diagram showing an example of a method for generating the 3D map MD.
- the terminal TM uses SLAM to generate a 3D map around the destination TP.
- the 3D map MD is generated using images IM of the surroundings of the destination TP photographed so that the same position is shown multiple times.
- the client CL rotates the body by 360° while holding the terminal TM to take a picture.
- Loop closure is performed by making one rotation of the body, photographing the same position twice, and using the two image data at the same position as SLAM data. Loop closure increases the accuracy of the 3D map MD.
- the terminal TM is rotated by 360° and photographed so that the same position is captured twice.
- the number of times the same position is photographed is not limited to two. Shooting may be performed so that the same position is captured three times or more. If the terminal TM has an out-camera and an in-camera, the out-camera and the in-camera may be used simultaneously to shoot the surrounding image IM. In this case, the same position is photographed twice by rotating the terminal TM by 180 degrees.
- FIG. 3 is a diagram showing an example of the 3D map MD.
- the terminal TM displays a 3D map MD on the touch panel.
- the client CL designates an arbitrary position within the 3D map MD as a delivery destination by performing a touch operation on the 3D map MD.
- the client CL taps the central portion of the table displayed on the 3D map MD.
- the terminal TM analyzes the tapped position and sets the central part of the table as the delivery destination of the package BG.
- the terminal TM registers the position of the delivery destination on the 3D map MD as the destination TP in the 3D map MD. As a result, the position information of the destination TP is added to the 3D map MD.
- FIG. 4 is a diagram showing a system configuration example of the delivery system DS.
- the terminal TM has a sensor unit ST and a processor PRT.
- the sensor unit ST has a plurality of sensors for implementing SLAM.
- the processor PRT uses the sensor information acquired from the sensor unit ST to perform position detection, direction detection, motion detection, RGB image acquisition, and 3D recognition.
- the processor PRT detects the current location using radio waves from GPS satellites, radio waves from mobile phone base stations, and communication with wireless LAN access points.
- the processor PRT detects the direction using the geomagnetic sensor.
- the processor PRT uses an IMU (Inertial Measurement Unit) to detect the movement of the terminal TM.
- the processor PRT acquires a visible light image of the surroundings using a camera.
- the processor PRT performs space recognition using a ToF (Time of Flight) sensor.
- ToF Time of Flight
- the mobile MB has a sensor unit SM and a processor PRM.
- the moving body MB may be any device provided with a moving mechanism.
- a drone DR and a delivery vehicle DC are shown as mobile bodies MB, but robots such as AIBO (registered trademark) may also be used.
- the moving body MB functions as an information processing device that processes various information acquired from the sensor unit SM and the like.
- the sensor unit SM has multiple sensors for SLAM and navigation.
- the processor PRM uses radio waves from GPS satellites to detect the current location.
- the processor PRM detects direction using the geomagnetic sensor.
- the processor PRM uses the IMU to detect the motion of the terminal TM.
- the processor PRM obtains a visible light image of the surroundings using a camera.
- the processor PRM performs spatial recognition using lidar (light detection and ranging).
- the processor PRM detects the operation of the actuator (for example, the propeller of the drone DR) based on the number of revolutions of the motor built into the actuator.
- the terminal TM and the mobile object MB each perform wireless communication with the server SV via the communication unit.
- a cloud application for carrying out the delivery service is installed on the server SV.
- the processor PRT transmits the delivery destination information DI generated by the client CL to the server SV via the cloud application.
- the delivery destination information DI includes an image IM around the destination TP, GPS data PD indicating the recording position of the image IM, and a 3D map MD around the destination TP generated by the client CL using SLAM.
- the processor PRM acquires the delivery destination information DI from the server SV via the cloud application.
- the processor PRM acquires traffic/weather information TI from the server SV via the cloud application.
- the traffic/weather information TI includes road traffic information, weather information, and disaster prevention information.
- Road traffic information includes real-time congestion information and regulation information on highways and general roads, as well as information regarding future congestion forecasts and schedules.
- Weather information includes weather warnings, heavy rain risk, and typhoon information.
- Disaster prevention information includes information on natural disasters such as earthquakes and tsunamis.
- the processor PRM searches for the route of the mobile body MB to the destination TP in consideration of the traffic/weather information TI.
- the processor PRM acquires the dynamic map DY from the server SV.
- the dynamic map DY is a digital map that combines three-dimensional map information and location information such as traffic congestion information and traffic restrictions.
- the dynamic map DY is used when the mobile body MB automatically drives using road information and building information.
- FIG. 5 is a diagram showing an example of the dynamic map DY.
- the dynamic map DY contains various information that changes from moment to moment.
- Information included in the dynamic map DY is classified into a plurality of layers according to how easily it changes over time. For example, three-dimensional map information such as road surfaces, lanes, and structures that change relatively little over time is classified as static information. Information that is more likely to change over time than static information is classified as dynamic information.
- the 3D map MD is generated based on video information (video information indicating static information) obtained by filtering out dynamic information that changes during the travel time to the destination TP.
- Dynamic information is classified into multiple layers according to how easily it changes over time.
- the information about the location of roads and intersections is classified as static information.
- Dynamic information is classified into three layers. For example, information about the location of landmarks, signs and signals is classified into layers that change relatively little over time (quasi-static information).
- Information on accidents, regulations, traffic jams, rain and fog is classified into a layer (quasi-dynamic information) that changes little over time after quasi-static information.
- Information about vehicle position and signal changes are classified into the most time-varying layers.
- a mobile MB uses only static information, semi-static information and semi-dynamic information for route search.
- FIG. 6 is a diagram showing an example of a moving route of the mobile body MB.
- the processor PRM switches the main data used for route search according to the distance to the destination TP.
- positioning data of the current location measured by GPS includes an error of several meters.
- the processor PRM defines, as a GPS search area GNA, a route search area from the destination TP to the vicinity of the destination by a distance (for example, 10 meters) according to the GPS positioning error.
- the processor PRM searches for a route to the vicinity of the destination using GPS data PD indicating the recording position of the image IM.
- the processor PRM switches the main data used for route search from the GPS data PD to the image IM and the 3D map MD.
- the processor PRM defines a route search area in which a route to the destination TP can be searched by the 3D map MD as a map search area MNA, and defines a route search area from the vicinity of the destination to the map search area MNA as an intermediate search area INA. and In the intermediate search area INA, the processor PRM searches for a route from near the destination to the map search area MNA using auxiliary data including the image IM.
- the auxiliary data includes direction information (compass) detected by the mobile object MB to be guided to the destination TP.
- the processor PRM uses the azimuth information to detect the moving direction of the mobile MB.
- the processor PRM searches for a route that approaches the destination TP from a preferred direction. For example, if the destination TP is on the veranda facing the west side of the building, a route approaching from the west side of the building is searched.
- the auxiliary data includes the floor information of the destination TP.
- the floor information indicates the position of the room where the destination TP is located.
- the floor information includes, for example, information on the number of floors and room numbers of the rooms.
- the processor PRM uses the floor information to detect the position of the destination TP. For example, if the destination TP is on the veranda of a specific room on the 10th floor of a building, a route is searched for a route that ascends to an altitude corresponding to the 10th floor and goes to the veranda of the specific room.
- the altitude is detected by an air pressure sensor or the like.
- the auxiliary data includes information on markers MK (see FIG. 9) installed around the destination TP.
- the processor PRM searches for the marker MK using the image captured by the camera of the mobile object MB.
- the processor PRM searches for paths approaching the marker MK.
- FIG. 7 is a flow chart showing an example of a method of setting the destination TP.
- the processor PRT determines whether or not both the in-camera and out-camera of the terminal TM support SLAM (step S2).
- step S2 If it is determined in step S2 that both the in-camera and the out-camera are compatible with SLAM (step S2: Yes), the processor PRT detects various sensors for implementing SLAM including the in-camera and the out-camera. Start up (step S3).
- the client CL rotates the body by 180° while holding the terminal TM, and shoots an image IM around the destination TP. By performing shooting while rotating the fields of view of the in-camera and the out-camera by 180°, an omnidirectional image IM centered on the client CL is shot.
- the processor PRT recognizes the space using the image IM and generates a 3D map MD (step S4).
- step S2 When it is determined in step S2 that only the out-camera supports SLAM (step S2: No), the processor PRT activates various sensors for implementing SLAM, including the out-camera (step S7).
- the client CL rotates the body by 360° while holding the terminal TM, and shoots an image IM around the destination TP. By performing shooting while rotating the field of view of the out-camera by 360°, an omnidirectional image IM centered on the client CL is shot.
- the processor PRT recognizes the space using the image IM and generates a 3D map MD (step S8).
- step S4 the processor PRT displays the 3D map MD on the touch panel of the terminal TM.
- the client CL taps a position on the 3D map MD to designate a delivery destination (step S5).
- the processor PRT registers the delivery destination position on the 3D map MD as the destination TP in the 3D map MD.
- the processor PRT links the 3D map MD to which the positional information of the destination TP is attached to the purchased product together with the image IM and the GPS data PD. This generates order data including the product, 3D map MD, destination TP, image IM and GPS data PD. If the delivery destination is the client CL's home, the client CL's address data is also added to the order data.
- the address data includes floor information.
- the processor PRT uploads the order data to the server SV (step S6).
- FIG. 8 is a flow chart showing an example of a route search and package BG delivery method.
- the processor PRM downloads order data from the server SV (step S11).
- the deliverer prepares the product purchased by the client CL as a package BG for delivery.
- the deliverer attaches the package BG to the mobile object MB and starts automatic delivery (step S12).
- the processor PRM monitors the distance to the destination TP (step S13).
- the processor PRM mainly uses the GPS data PD to search for a route to the vicinity of the destination (step S14).
- step S13 the processor PRM determines that the destination has been reached.
- the processor PRM switches main data used for route search based on the distance to the destination TP (step S15). For example, if the distance to the destination TP is 3 m or more (step S15: Yes), the processor PRM uses the GPS data, the image IM around the destination, and the orientation information to point to the destination TP. route search is performed (step S16).
- the processor PRM extracts floor information from the address data. Based on the floor information, the processor PRM searches for a route to the floor with the destination TP (step S17).
- step S15 the processor PRM determines that the route to the destination TP has reached the map search area MNA where the route to the destination TP can be searched using the 3D map MD.
- the processor PRM performs space recognition using SLAM (step S18), and searches for a route to the destination TP registered in the 3D map MD (step S19).
- the moving body MB moves to the destination TP according to the searched route and places the package BG at the destination TP (step S20).
- the processor PRM When the placement of the package BG is completed, the processor PRM notifies the deliverer of the placement completion (step S21). After that, the mobile body MB returns to the deliverer (step S22).
- FIG. 9 is a diagram showing an example of the surrounding environment AD of the destination TP.
- the location of the destination TP will be reflected in the image of the destination surroundings included in the order data. It is specified with high accuracy based on IM.
- other locations with similar structures e.g., other floors of the same building
- the processor PRT determines whether the image IM contains enough distinctive features. When it is determined that the image IM does not contain enough discriminating features, the processor PRT places a marker MK around the destination TP and shoots the image IM around the destination TP again. Client CL is urged to do so.
- FIG. 10 is a flowchart showing an example of processing for requesting installation of the marker MK.
- the processor PRT acquires the image IM around the destination TP taken by the client CL (step S31).
- the processor PRT analyzes the image IM and determines whether or not the surrounding environment AD satisfies a predetermined discrimination criterion (step S32). For example, when the surrounding environment AD has a sufficient amount of features exceeding a predetermined threshold, it is determined that the identification criteria are met.
- step S32 When it is determined that the surrounding environment AD satisfies the identification criteria (step S32: Yes), the processor PRT generates a 3D map MD using the image IM, and performs a process of setting the delivery destination (destination TP). (step S34).
- the delivery destination setting process is the same as that shown in step S5 of FIG.
- the processor PRT prompts the client CL to place the marker MK using video or audio. Anything can be used as the marker MK as long as it enhances the distinguishing power.
- the marker MK is provided as a two-dimensional or three-dimensional structure with enhanced identification power through a combination of pictures, letters and colors.
- the client CL shoots an image IM around the destination TP where the marker MK is set.
- the processor PRT analyzes the image IM after setting the marker MK, and determines whether or not the surrounding environment AD satisfies the identification criteria (step S32).
- the processor PRT repeats the above process until the surrounding environment AD satisfies the identification criteria.
- FIG. 11 is a diagram showing an example in which the public space PS is specified as the delivery destination.
- the client CL can specify the public space PS as the delivery destination of the package BG.
- the processor PRM authenticates the recipient RC of the package BG to be delivered to the destination TP.
- FIG. 12 is a diagram showing the mechanism of authentication processing.
- the recipient RC registers personal information PI required for authentication processing on the server SV.
- the personal information PI includes information on the ID of the terminal TM, password, physical features (living organs), and behavioral features (habits).
- Physical features include fingerprints, hand geometry, retina, iris, facial, vascular, vocal and ear features, and the like.
- Behavioral features include walking features and the like.
- the sensor unit SM includes sensors necessary for authentication processing.
- the processor PRM performs authentication by comparing sensor information obtained from the sensor unit SM with personal information PI registered in the server SV. Once authenticated, the mobile MB delivers the package BG to the recipient RC.
- the authentication process may be omitted depending on the type of package BG. For example, for relatively low-price products such as magazines, if the parcel BG cannot be authenticated and the package BG is taken home, the time and cost required for redelivery, etc., will be greater than the price of the product. In such a case, it is also possible to leave the baggage BG at the destination TP as it is without performing the authentication process.
- FIG. 13 is a flow chart showing an example of authentication processing for a recipient RC.
- the processor PRM starts authentication processing of the recipient RC (step S41).
- the processor PRM acquires the ID of the terminal TM using Bluetooth (registered trademark).
- the terminal TM of the recipient RC is searched by comparing the acquired ID with the ID registered as the personal information PI (step S42).
- the processor PRM performs delivery processing of the package BG (step S43). First, the processor PRM moves the mobile MB to the location of the recipient RC (terminal TM). Then, the processor PRM separates the package BG from the mobile object MB and delivers it to the recipient RC. When the delivery is completed, the processor PRM notifies the deliverer of the delivery completion. After the handover completion notification, the mobile body MB returns to the deliverer.
- step S42 the processor PRM searches for the recipient RC among people near the destination TP by face recognition (step S44). ). If the recipient RC is detected (step S44: Yes), the processor PRM performs delivery processing of the package BG (step S43).
- step S44 If the recipient RC is not detected by face authentication within a predetermined time (step S44: No), the processor PRM moves to the destination TP and waits for someone to operate the fingerprint authentication sensor.
- the processor PRM searches for the recipient RC among the people who operated the sensor by fingerprint authentication (step S45). If the recipient RC is detected (step S45: Yes), the processor PRM performs delivery processing of the package BG (step S43).
- step S45 determines that the package BG cannot be handed over (step S46).
- the processor PRM notifies the shipper of non-delivery. After receiving the notification of non-delivery, the moving body MB returns to the deliverer while holding the package BG.
- FIG. 14 is a diagram showing an example in which the destination TP is set inside the building BL.
- the processor PRM searches for a route to the destination TP based on the image IM showing the inside of the building BL.
- the moving route RT from the entrance ET of the building BL to the destination TP set in the building BL is shown in the image IM.
- FIG. 15 is a flow chart showing an example of a method for capturing an image IM.
- the client CL uses the camera function of the terminal TM to photograph the surroundings of the destination TP (step S51).
- the processor PRT analyzes the captured image IM and determines whether or not the current location is indoors (step S52). If it is determined that the current location is indoors (step S52: Yes), the processor PRT uses video or audio to prompt the client CL to move outdoors while continuing to shoot (step S53).
- the client CL takes pictures of the surroundings of the destination TP, and then moves toward the entrance ET of the building BL while continuing to take pictures.
- the processor PRT continues the space recognition processing by SLAM while the client CL moves inside the building BL (step S54).
- the processor PRT determines whether or not the current location is indoors based on the image IM captured while the client CL is moving inside the building BL (step S52). If it is determined that the current location is outdoors (step S52: No), the processor PRT finishes photographing.
- the processor PRT acquires the GPS data PD of the position where the shooting ended (for example, the position of the entrance of the building BL) as the recording position of the image IM (step S55).
- the processor PRT generates order data using a method similar to steps S5 and S6 in FIG. 7, and uploads it to the server SV (step S56).
- FIG. 16 is a diagram showing an example in which a route search method using a 3D map MD is applied to a meeting with a friend FR.
- the meeting place is set as the destination TP.
- the client CL uses SLAM to generate a 3D map MD from the image IM around the meeting place.
- the client CL taps a position on the 3D map MD displayed on the terminal TM to specify the meeting place.
- the processor PRT generates and uploads meeting data including 3D map MD, destination TP, image IM and GPS data PD to server SV.
- Friend FR uses a terminal such as an AR (Augmented Reality) glass as a navigation device.
- the navigation device has a processor PRM as described above.
- the processor PRM acquires meeting data from the server SV and searches for a route to the meeting place in the same manner as described above. Static information, semi-static information and semi-dynamic information of the dynamic map DY can be used for route search.
- the processor PRM presents the searched route to the friend FR and guides the friend FR to the meeting place.
- FIG. 17 is a diagram showing a hardware configuration example of the processor PRM.
- the processor PRM is implemented by a computer 1000 configured as shown in FIG. 17, for example.
- Computer 1000 has CPU 1100 , RAM 1200 , ROM (Read Only Memory) 1300 , HDD (Hard Disk Drive) 1400 , communication interface 1500 and input/output interface 1600 .
- Each part of computer 1000 is connected by bus 1050 .
- the CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400 and controls each section. For example, the CPU 1100 loads programs stored in the ROM 1300 or HDD 1400 into the RAM 1200 and executes processes corresponding to various programs.
- the ROM 1300 stores a boot program such as BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, and programs dependent on the hardware of the computer 1000.
- BIOS Basic Input Output System
- the HDD 1400 is a computer-readable non-temporary recording medium that non-temporarily records programs executed by the CPU 1100 and data used by the programs.
- HDD 1400 is a recording medium that records an information processing program according to the present disclosure, which is an example of program data 1450 .
- a communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
- CPU 1100 receives data from another device via communication interface 1500, and transmits data generated by CPU 1100 to another device.
- the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000 .
- CPU 1100 receives data from an input device such as a keyboard or mouse via input/output interface 1600 .
- the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600 .
- the input/output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
- Media include, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memories, etc. is.
- optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk)
- magneto-optical recording media such as MO (Magneto-Optical disk)
- tape media magnetic recording media
- magnetic recording media semiconductor memories, etc. is.
- the CPU 1100 of the computer 1000 implements the function of the processor PRM by executing the information processing program loaded on the RAM 1200.
- the HDD 1400 also stores an information processing program according to the present disclosure, parameter information used for various types of information processing, and the like.
- CPU 1100 reads and executes program data 1450 from HDD 1400 , as another example, these programs may be obtained from another device via external network 1550 .
- the mobile MB has a processor PRM.
- the processor PRM searches for a route to the destination TP using the 3D map MD around the destination TP generated by the client CL using SLAM.
- the processing of the mobile MB is executed by a computer.
- the program of the present disclosure causes a computer to implement the processing of the mobile body MB.
- a route search is performed using a highly accurate 3D map MD. Therefore, an accurate route search is performed.
- the designation of the destination TP is performed using the 3D map MD. Therefore, any position can be set as the destination TP.
- the 3D map MD is generated using images IM around the destination TP that are shot so that the same position appears multiple times.
- a highly accurate 3D map MD is generated by loop closure. Therefore, the route to the destination TP can be searched with high accuracy.
- the image IM shows the moving route RT from the entrance ET of the building BL to the destination TP set in the building BL.
- the 3D map MD is generated based on video information obtained by filtering out dynamic information that changes during the travel time to the destination TP.
- the search accuracy is less likely to deteriorate due to dynamic information.
- the processor PRM searches for a route to the vicinity of the destination TP using the GPS data PD indicating the recording position of the image IM.
- the route search to the destination TP is performed step by step while switching the search method.
- the positioning accuracy is low, but the processing load on the processor PRM is small.
- the routing load of the processor PRM is large.
- the processor PRM searches for a route from the periphery of the destination TP to the map search area MNA using auxiliary data including the image IM.
- the map search area MNA is an area where it is possible to search for a route to the destination TP using the 3D map MD.
- the route to the map search area MNA can be searched with high accuracy.
- the auxiliary data includes azimuth information detected by the mobile object MB to be guided to the destination TP.
- a route approaching the destination TP is accurately searched based on the image IM around the destination TP and the azimuth information.
- the auxiliary data includes the floor information of the destination TP.
- the position of the destination TP can be specified with high accuracy.
- the auxiliary data includes information on the markers MK installed around the destination TP.
- the route to the map search area MNA is searched with high accuracy using the marker MK as a landmark.
- the processor PRM authenticates the recipient RC of the package BG delivered to the destination TP.
- the package BG can be reliably delivered to the recipient RC.
- information processing related to route search is performed in the mobile body MB.
- the information processing related to this route search may be performed by the server SV.
- the server SV may perform a route search based on various information uploaded from the terminal TM, and transmit the searched route to the mobile object MB.
- An information processing apparatus having a processor that searches for a route to the destination using a map of the vicinity of the destination generated by a client using SLAM.
- the 3D map is generated using images around the destination taken so that the same position is shown multiple times.
- the 3D map is generated using the video obtained by photographing the movement route from the entrance of the building to the destination set inside the building.
- the 3D map is generated based on information obtained by filtering out dynamic information that changes during travel time to the destination.
- the processor searches for a route to the vicinity of the destination using GPS data indicating the recording position of the video.
- the processor searches for a route from the vicinity of the destination to a map search area where a route to the destination can be searched using the 3D map, using the auxiliary data including the image.
- the auxiliary data includes azimuth information detected by a moving object to be guided to the destination.
- the auxiliary data includes floor information of the destination, The information processing apparatus according to (6) or (7) above. (9)
- the auxiliary data includes information on markers placed around the destination, The information processing apparatus according to any one of (6) to (8) above.
- the processor authenticates a recipient of a package to be delivered to the destination;
- the information processing apparatus according to any one of (1) to (9) above.
- (11) A computer-implemented method of information processing, comprising searching a route to a destination using a 3D map of the surroundings of a destination generated by a client using SLAM.
- (12) A program that causes a computer to search for a route to a destination using a 3D map around the destination generated by a client using SLAM.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Human Computer Interaction (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Astronomy & Astrophysics (AREA)
- Navigation (AREA)
- Instructional Devices (AREA)
Abstract
情報処理装置(MB)は、プロセッサ(PRM)を有する。プロセッサ(PRM)は、SLAMを用いてクライアント(CL)が生成した目的地の周辺の3Dマップを用いて目的地までの経路を探索する。
Description
本発明は、情報処理装置、情報処理方法およびプログラムに関する。
自動操縦や自動配送の技術開発が急速に進んでいる。例えば、ドローンを用いた自動配送については、マーカベースの配送システムの実証実験が行われている。この種の配送システムでは、配送先付近に目印となるマーカが設置される。ドローンは、ビジョンカメラでマーカを検出しながらマーカまでの飛行経路を探索する。
ブルーイノベーション株式会社国立大学法人東京大学,"物流用ドローンポートの利用方法について",[online],[令和03年07月16日検索],インターネット<URL:https://www.mlit.go.jp/common/001154531.pdf>
[online],Rakuten Drone,[令和3年07月16日検索],インターネット<URL: https://drone.rakuten.co.jp/>
ドローンを用いた配送システムについては、今後流通業界を中心に社会実装が進んでいくものと考えられる。しかし、マーカベースの配送システムでは、マーカ以外の位置に目的地を設定することはできない。そのため、目的地を柔軟に設定し、精度よく経路を探索する方法が求められている。経路探索技術は、ナビゲーションなどの他の分野でも利用されている。しかし、現状の技術においては、目的地の設定の柔軟性および経路探索の精度については改善の余地がある。
そこで、本開示では、目的地を柔軟に設定し、精度よく経路を探索することが可能な情報処理装置、情報処理方法およびプログラムを提案する。
本開示によれば、SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索するプロセッサを有する、情報処理装置が提供される。また、本開示によれば、前記情報処理装置の情報処理がコンピュータにより実行される情報処理方法、ならびに、前記情報処理装置の情報処理をコンピュータに実現させるプログラムが提供される。
以下に、本開示の実施形態について図面に基づいて詳細に説明する。以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
なお、説明は以下の順序で行われる。
[1.配送システムの概要]
[2.目的地周辺の3Dマップ]
[3.システム構成例]
[4.ダイナミックマップ]
[5.経路探索]
[6.情報処理方法]
[6-1.目的地の設定]
[6-2.経路探索および荷物の配送]
[6-3.マーカの設置]
[6-4.荷物受取人の認証]
[6-5.建物の内部の移動経路の設定]
[7.待ち合わせ場所の探索]
[8.ハードウェア構成例]
[9.効果]
[10.変形例]
[1.配送システムの概要]
[2.目的地周辺の3Dマップ]
[3.システム構成例]
[4.ダイナミックマップ]
[5.経路探索]
[6.情報処理方法]
[6-1.目的地の設定]
[6-2.経路探索および荷物の配送]
[6-3.マーカの設置]
[6-4.荷物受取人の認証]
[6-5.建物の内部の移動経路の設定]
[7.待ち合わせ場所の探索]
[8.ハードウェア構成例]
[9.効果]
[10.変形例]
[1.配送システムの概要]
図1は、配送システムDSの一例を示す図である。
図1は、配送システムDSの一例を示す図である。
配送システムDSは、ドローンDRなどの移動体MBを用いて荷物BGの自動配送を行うシステムである。配送システムDSは、サーバSV、端末TMおよび移動体MBを含む。荷物BGの配送を依頼するクライアントCLは、スマートフォンなどの端末TMを用いて目的地TP(荷物BGの配送先)を設定する。目的地TPの設定には、目的地TPの周辺の3D(three-dimensional)マップMDが用いられる。
例えば、クライアントCLは、カメラ機能を有する端末TMを用いて目的地TPの周辺の映像IMを撮影する。端末TMはGPS(Global Positioning System)機能を備えている。映像IMには、映像IMの記録位置を示すGPSデータPDが埋め込まれる。端末TMは、SLAM(Simultaneous Localization and Mapping)を用いて目的地TPの周辺の3DマップMDを生成する。端末TMは、映像IMおよび3DマップMDをGPSデータPDとともにサーバSVに送信する。
サーバSVは、端末TMから取得した映像IM、3DマップMDおよびGPSデータPDを移動体MBに送信する。移動体MBは、GPSデータPDに基づいて目的地TPの周辺までの経路を探索する。移動体MBは、目的地TPの周辺まで移動すると、目的地TPの周辺の映像IMおよび3DマップMDを用いて、目的地TPまでの詳細な経路を探索する。図1の例では、ベランダのテーブルが目的地TPであり、荷物BGは花瓶である。移動体MBは、花瓶をベランダのテーブルの上に配送する。
[2.目的地周辺の3Dマップ]
図2は、3DマップMDの生成方法の一例を示す図である。
図2は、3DマップMDの生成方法の一例を示す図である。
端末TMは、SLAMを用いて目的地TPの周辺の3Dマップを生成する。3DマップMDは、同じ位置が複数回映るように撮影した目的地TPの周辺の映像IMを用いて生成される。例えば、クライアントCLは、端末TMを持ちながら体を360°回転させて撮影を行う。体を1周させて同じ位置を2回撮影し、その同じ位置の2つの画像データをSLAMのデータとして用いることで、ループ閉じ込みが行われる。ループ閉じ込みによって3DマップMDの精度が高まる。
図2の例では、端末TMを360°回転させて同じ位置が2回映るように撮影が行われる。しかし、同じ位置が撮影される回数は2回に限られない。同じ位置が3回以上映るように撮影が行われてもよい。端末TMがアウトカメラとインカメラを有する場合には、アウトカメラとインカメラを同時に使用して周囲の映像IMを撮影してもよい。この場合、端末TMを180°回転させることで、同じ位置が2回撮影される。
図3は、3DマップMDの一例を示す図である。
端末TMは、タッチパネルに3DマップMDを表示する。クライアントCLは、3DマップMDをタッチ操作することにより、3DマップMD内の任意の位置を配送先として指定する。図3の例では、3DマップMDに表示されたテーブルの中央部がクライアントCLによってタップされる。端末TMは、タップされた位置を解析し、テーブルの中央部を荷物BGの配送先として設定する。端末TMは、配送先となる3DマップMD上の位置を目的地TPとして3DマップMDに登録する。これにより、3DマップMDに目的地TPの位置情報が付与される。
[3.システム構成例]
図4は、配送システムDSのシステム構成例を示す図である。
図4は、配送システムDSのシステム構成例を示す図である。
端末TMは、センサ部STおよびプロセッサPRTを有する。センサ部STは、SLAMを実施するための複数のセンサを有する。プロセッサPRTは、センサ部STから取得したセンサ情報を用いて、位置検出、方角検出、動き検出、RGB映像取得および3D認識を行う。
例えば、プロセッサPRTは、GPS衛星からの電波、携帯電話基地局の電波および無線LANアクセスポイントとの通信を使用して現在地を検出する。プロセッサPRTは、地磁気センサを用いて方角を検出する。プロセッサPRTは、IMU(Inertial Measurement Unit)を用いて端末TMの動きを検出する。プロセッサPRTは、カメラを用いて周囲の可視光映像を取得する。プロセッサPRTは、ToF(Time of Flight)センサを用いて空間認識を行う。
移動体MBは、センサ部SMおよびプロセッサPRMを有する。移動体MBは、移動機構を備えた装置であれば何でもよい。図4の例では、移動体MBとしてドローンDRおよび配送車DCが示されているが、AIBO(登録商標)などのロボットでもよい。移動体MBは、センサ部SM等から取得した各種情報を処理する情報処理装置として機能する。
センサ部SMは、SLAMおよびナビゲーションを行うための複数のセンサを有する。例えば、プロセッサPRMは、GPS衛星からの電波を使用して現在地を検出する。プロセッサPRMは、地磁気センサを用いて方角を検出する。プロセッサPRMは、IMUを用いて端末TMの動きを検出する。プロセッサPRMは、カメラを用いて周囲の可視光映像を取得する。プロセッサPRMは、Lidar(light detection and ranging)を用いて空間認識を行う。プロセッサPRMは、アクチュエータ(例えば、ドローンDRのプロペラ)に内蔵されたモータの回転数に基づいてアクチュエータの動作を検出する。
端末TMおよび移動体MBは、それぞれ通信部を介してサーバSVと無線通信を行う。サーバSVには、配送サービスを実施するためのクラウドアプリが実装されている。プロセッサPRTは、クライアントCLが生成した配送先情報DIをクラウドアプリを介してサーバSVに送信する。配送先情報DIは、目的地TPの周辺の映像IM、映像IMの記録位置を示すGPSデータPD、および、SLAMを用いてクライアントCLが生成した目的地TPの周辺の3DマップMDを含む。プロセッサPRMは、クラウドアプリを介してサーバSVから配送先情報DIを取得する。
プロセッサPRMは、クラウドアプリを介してサーバSVから交通・天気情報TIを取得する。交通・天気情報TIは、道路交通情報、気象情報および防災情報を含む。道路交通情報は、高速道路および一般道のリアルタイムの渋滞情報および規制情報、ならびに、今後の渋滞予測および予定に関する情報を含む。気象情報は、気象警報、大雨危険度および台風情報を含む。防災情報は、地震や津波などの自然災害に関する情報を含む。プロセッサPRMは、交通・天気情報TIを考慮して、目的地TPまでの移動体MBの経路を探索する。
プロセッサPRMは、サーバSVからダイナミックマップDYを取得する。ダイナミックマップDYは、3次元地図情報と、渋滞情報および通行規制などの位置情報と、を組み合わせたデジタル地図である。ダイナミックマップDYは、移動体MBが道路情報および建物情報を利用して自動運転する際に用いられる。
[4.ダイナミックマップ]
図5は、ダイナミックマップDYの一例を示す図である。
図5は、ダイナミックマップDYの一例を示す図である。
ダイナミックマップDYは、時々刻々と変化する様々な情報を含む。ダイナミックマップDYに含まれる情報は、時間変化のしやすさに応じて複数のレイヤに分類される。例えば、路面、車線および構造物など、比較的時間変化の少ない3次元地図情報は静的情報に分類される。静的情報よりも時間変化が生じやすい情報は動的情報に分類される。3DマップMDは、目的地TPまでの移動時間内に変化する動的情報をフィルタアウトして得られた映像情報(静的情報を示す映像情報)に基づいて生成される。
動的情報は、時間変化のしやすさに応じて複数のレイヤに分類される。図5の例では、道路および交差点の位置に関する情報は静的情報として分類される。動的情報は、3つのレイヤに分類される。例えば、ランドマーク、標識および信号の位置に関する情報は時間変化が比較的少ないレイヤ(準静的情報)に分類される。事故、規制、渋滞、雨および霧に関する情報は、準静的情報の次に時間変化が少ないレイヤ(準動的情報)に分類される。車両の位置および信号の変化に関する情報は、最も時間変化の大きいレイヤに分類される。移動体MBは、静的情報、準静的情報および準動的情報のみを経路探索に利用する。
[5.経路探索]
図6は、移動体MBの移動経路の一例を示す図である。
図6は、移動体MBの移動経路の一例を示す図である。
プロセッサPRMは、目的地TPまでの距離に応じて、経路探索に用いる主要なデータを切り替える。例えば、GPSで測定される現在地の測位データには、数メートル程度の誤差が含まれる。プロセッサPRMは、目的地TPからGPSの測位誤差に応じた距離(例えば10メートル)だけ離れた目的地付近までの経路探索領域をGPS探索領域GNAと規定する。GPS探索領域GNAでは、プロセッサPRMは、目的地付近までの経路を、映像IMの記録位置を示すGPSデータPDを用いて探索する。
移動体MBが目的地付近まで到達すると、プロセッサPRMは、経路探索に用いる主要なデータをGPSデータPDから、映像IMおよび3DマップMDに切り替える。プロセッサPRMは、3DマップMDによって目的地TPまでの経路の探索が可能となる経路探索領域をマップ探索領域MNAと規定し、目的地付近からマップ探索領域MNAまでの経路探索領域を中間探索領域INAと規定する。中間探索領域INAでは、プロセッサPRMは、映像IMを含む補助データを用いて、目的地付近からマップ探索領域MNAまでの経路を探索する。
例えば、補助データは、目的地TPへの誘導対象となる移動体MBが検出する方位情報(コンパス)を含む。プロセッサPRMは、方位情報を用いて移動体MBの移動方向を検出する。プロセッサPRMは、目的地TPに対して好ましい方向から接近するような経路を探索する。例えば、目的地TPが建物の西側に面したベランダにある場合には、建物の西側から接近するような経路が探索される。
補助データは、目的地TPのフロア情報を含む。フロア情報は、目的地TPがある部屋の位置を示す。フロア情報には、例えば、部屋の階数および部屋番号に関する情報が含まれる。プロセッサPRMは、フロア情報を用いて目的地TPの位置を検出する。例えば、目的地TPが建物の10階の特定の部屋のベランダにある場合には、10階に相当する高度まで上昇し特定の部屋のベランダに向かう経路が探索される。なお、高度は気圧センサなどで検出される。
補助データは、目的地TPの周辺に設置されたマーカMK(図9参照)の情報を含む。プロセッサPRMは、移動体MBのカメラで撮影された映像を用いてマーカMKを探索する。プロセッサPRMは、マーカMKに接近する経路を探索する。
[6.情報処理方法]
以下、配送システムDSが実施する情報処理の一例を説明する。情報処理は、プロセッサPRMおよびプロセッサPRTによって実施される。
以下、配送システムDSが実施する情報処理の一例を説明する。情報処理は、プロセッサPRMおよびプロセッサPRTによって実施される。
[6-1.目的地の設定]
図7は、目的地TPの設定方法の一例を示すフローチャートである。
図7は、目的地TPの設定方法の一例を示すフローチャートである。
クライアントCLが端末TMを用いて商品を購入すると(ステップS1)、プロセッサPRTは、端末TMのインカメラとアウトカメラがどちらもSLAMに対応しているか否かを判定する(ステップS2)。
ステップS2において、インカメラとアウトカメラの双方がSLAMに対応していると判定された場合には(ステップS2:Yes)、プロセッサPRTは、インカメラおよびアウトカメラを含むSLAM実施用の各種センサを起動する(ステップS3)。クライアントCLは、端末TMを持ちながら体を180°回転させて、目的地TPの周辺の映像IMを撮影する。インカメラとアウトカメラの視野を180°回転させながら撮影を行うことで、クライアントCLを中心とした全方向の映像IMが撮影される。プロセッサPRTは、映像IMを用いて空間を認識し、3DマップMDを生成する(ステップS4)。
ステップS2において、アウトカメラのみがSLAMに対応していると判定された場合には(ステップS2:No)、プロセッサPRTは、アウトカメラを含むSLAM実施用の各種センサを起動する(ステップS7)。クライアントCLは、端末TMを持ちながら体を360°回転させて、目的地TPの周辺の映像IMを撮影する。アウトカメラの視野を360°回転させながら撮影を行うことで、クライアントCLを中心とした全方向の映像IMが撮影される。プロセッサPRTは、映像IMを用いて空間を認識し、3DマップMDを生成する(ステップS8)。
ステップS4またはステップS8において3DマップMDが生成されたら、プロセッサPRTは、3DマップMDを端末TMのタッチパネルに表示する。クライアントCLは、3DマップMD上の位置をタップして配送先を指定する(ステップS5)。
プロセッサPRTは、配送先となる3DマップMD上の位置を目的地TPとして3DマップMDに登録する。プロセッサPRTは、目的地TPの位置情報が付与された3DマップMDを映像IMおよびGPSデータPDとともに、購入した商品に紐づける。これにより、商品、3DマップMD、目的地TP、映像IMおよびGPSデータPDを含む注文データが生成される。配送先がクライアントCLの自宅である場合には、クライアントCLの住所データも注文データに付加される。住所データには、フロア情報が含まれる。プロセッサPRTは、注文データをサーバSVにアップロードする(ステップS6)。
[6-2.経路探索および荷物の配送]
図8は、経路探索および荷物BGの配送方法の一例を示すフローチャートである。
図8は、経路探索および荷物BGの配送方法の一例を示すフローチャートである。
プロセッサPRMは、サーバSVから注文データをダウンロードする(ステップS11)。配送者は、クライアントCLが購入した商品を配送用の荷物BGとして準備する。配送者は、荷物BGを移動体MBに取り付け、自動配送を開始する(ステップS12)。
自動配送が開始されると、プロセッサPRMは、目的地TPまでの距離を監視する(ステップS13)。目的地TPまでの距離が10m以上である場合には(ステップS13:Yes)、プロセッサPRMは、主としてGPSデータPDを用いて目的地付近までの経路を探索する(ステップS14)。
目的地TPまでの距離が10mよりも短い場合には(ステップS13:No)、プロセッサPRMは、目的地付近に到達したと判定する。プロセッサPRMは、目的地TPまでの距離に基づいて、経路探索に用いる主要なデータを切り替える(ステップS15)。例えば、目的地TPまでの距離が3m以上である場合には(ステップS15:Yes)、プロセッサPRMは、GPSデータに加えて、目的地周辺の映像IMと方位情報を用いて目的地TPに向けた経路探索を行う(ステップS16)。
注文データに住所データが含まれる場合には、プロセッサPRMは、住所データからフロア情報を抽出する。プロセッサPRMは、フロア情報に基づいて、目的地TPのあるフロアに向かう経路を探索する(ステップS17)。
目的地TPまでの距離が3mよりも短い場合には(ステップS15:No)、プロセッサPRMは、3DマップMDによって目的地TPまでの経路が探索可能なマップ探索領域MNAに到達したと判定する。プロセッサPRMは、SLAMを用いた空間認識を行い(ステップS18)、3DマップMDに登録された目的地TPへ移動する経路を探索する(ステップS19)。移動体MBは、探索された経路にしたがって目的地TPに移動し、荷物BGを目的地TPに配置する(ステップS20)。
荷物BGの配置が完了すると、プロセッサPRMは配送者に配置完了通知を行う(ステップS21)。その後、移動体MBは、配送者の元へ帰還する(ステップS22)。
[6-3.マーカの設置]
図9は、目的地TPの周辺環境ADの一例を示す図である。
図9は、目的地TPの周辺環境ADの一例を示す図である。
図9の左側に示すように、目的地TPの周辺環境ADが識別力のある特徴を十分に備えている場合には、目的地TPのある場所は、注文データに含まれる目的地周辺の映像IMに基づいて精度よく特定される。しかし、図9の右側に示すように、識別力のある特徴が少ない場合には、似たような構造を持つ他の場所(例えば、同一の建物の他のフロア)が目的地TPのある場所として誤認される可能性がある。このような場合には、クライアントCLにマーカMKの設置を促し、周辺環境ADの識別力を高める必要がある。
そのため、クライアントCLが目的地TPの周辺の映像IMを撮影した後、プロセッサPRTは、映像IMに識別力のある特徴が十分に含まれているか判定する。映像IMに識別力のある特徴が十分に含まれていないと判定した場合には、プロセッサPRTは、目的地TPの周辺にマーカMKを設置し、再度目的地TPの周辺の映像IMを撮影することをクライアントCLに促す。
図10は、マーカMKの設置要求処理の一例を示すフローチャートである。
プロセッサPRTは、クライアントCLが撮影した目的地TPの周辺の映像IMを取得する(ステップS31)。プロセッサPRTは、映像IMを解析し、周辺環境ADが所定の識別基準を満たすか否かを判定する(ステップS32)。例えば、周辺環境ADが所定の閾値を超える十分な特徴量を備えている場合には、識別基準を満たすと判定される。
周辺環境ADが識別基準を満たすと判定された場合には(ステップS32:Yes)、プロセッサPRTは、映像IMを用いて3DマップMDを生成し、配送先(目的地TP)の設定処理を実施する(ステップS34)。配送先の設定処理は、図7のステップS5に示したものと同様である。
周辺環境ADが識別基準を満たしていないと判定された場合には(ステップS32:No)、プロセッサPRTは、映像または音声を用いてクライアントCLにマーカMKの設置を促す。マーカMKは、識別力を高めるものであれば何でもよい。例えば、マーカMKは、絵、文字および色彩の組み合わせによって識別力を高めた平面的または立体的な構造物として提供される。
クライアントCLは、マーカMKが設置された目的地TPの周辺の映像IMを撮影する。プロセッサPRTは、マーカMK設置後の映像IMを画像解析し、周辺環境ADが識別基準を満たすか否かを判定する(ステップS32)。プロセッサPRTは、周辺環境ADが識別基準を満たすまで上述の処理を繰り返す。
[6-4.荷物受取人の認証]
図11は、配送先にパブリックスペースPSが指定された例を示す図である。
図11は、配送先にパブリックスペースPSが指定された例を示す図である。
クライアントCLは、荷物BGの配送先をパブリックスペースPSに指定することができる。パブリックスペースPSには、荷物BGの受取人RC(例えばクライアントCL)以外の多数の人が存在する。そのため、プロセッサPRMは、目的地TPに配送される荷物BGの受取人RCの認証を行う。
図12は、認証処理の仕組みを示す図である。
受取人RCは、認証処理に必要な個人情報PIをサーバSVに登録する。個人情報PIには、端末TMのID、パスワード、身体的特徴(生体器官)および行動的特徴(癖)に関する情報が含まれる。身体的特徴には、指紋、掌形、網膜、虹彩、顔、血管、音声および耳形の特徴などが含まれる。行動的特徴には、歩行の特徴などが含まれる。
センサ部SMは、認証処理に必要なセンサを含む。プロセッサPRMは、センサ部SMから取得したセンサ情報をサーバSVに登録された個人情報PIと照合して認証を行う。認証が行われると、移動体MBは荷物BGを受取人RCに引き渡す。
なお、荷物BGの種類によっては認証処理を省略してもよい。例えば、雑誌などの比較的金額の低い商品については、認証できずに荷物BGを持ち帰ることとすると、再配達等に要する時間とコストが商品の金額に比べて大きくなる。このような場合は、認証処理を行わずに、目的地TPにそのまま荷物BGを置いてくるという処理も可能である。
図13は、受取人RCの認証処理の一例を示すフローチャートである。
移動体MBが目的地付近に到達すると、プロセッサPRMは受取人RCの認証処理を開始する(ステップS41)。まず、プロセッサPRMは、Bluetooth(登録商標)を用いて端末TMのIDを取得する。取得したIDを個人情報PIとして登録されたIDと照合することで受取人RCの端末TMを探索する(ステップS42)。
受取人RCの端末TMが検出された場合には(ステップS42:Yes)、プロセッサPRMは、荷物BGの引き渡し処理を行う(ステップS43)。まず、プロセッサPRMは、移動体MBを受取人RC(端末TM)の位置まで移動させる。そして、プロセッサPRMは、移動体MBから荷物BGを切り離して受取人RCに引き渡す。引き渡しが完了したら、プロセッサPRMは配送者に引き渡し完了通知を行う。引き渡し完了通知後、移動体MBは配送者の元へ帰還する。
所定時間以内に受取人RCの端末TMが検出されない場合には(ステップS42:No)、プロセッサPRMは、顔認証によって、目的地TPの近くにいる人間の中から受取人RCを探す(ステップS44)。受取人RCが検出されたら(ステップS44:Yes)、プロセッサPRMは、荷物BGの引き渡し処理を行う(ステップS43)。
所定時間以内に顔認証によって受取人RCが検出されない場合には(ステップS44:No)、プロセッサPRMは、目的地TPに移動し、誰かが指紋認証用のセンサを操作するのを待つ。プロセッサPRMは、指紋認証によって、センサを操作した人間の中から受取人RCを探す(ステップS45)。受取人RCが検出されたら(ステップS45:Yes)、プロセッサPRMは、荷物BGの引き渡し処理を行う(ステップS43)。
所定時間以内に指紋認証によって受取人RCが検出されない場合には(ステップS45:No)、プロセッサPRMは、荷物BGの引き渡しができないと判定する(ステップS46)。プロセッサPRMは配送者に引き渡し不可通知を行う。引き渡し不可通知後、移動体MBは、荷物BGを保持したまま配送者の元へ帰還する。
[6-5.建物の内部の移動経路の設定]
図14は、建物BLの内部に目的地TPが設定された例を示す図である。
図14は、建物BLの内部に目的地TPが設定された例を示す図である。
建物BLの内部ではGPSを用いた自律移動を行うことはできない。そのため、プロセッサPRMは、建物BLの内部を映した映像IMに基づいて、目的地TPまでの経路を探索する。映像IMには、建物BLの入り口ETから建物BL内に設定された目的地TPまでの移動経路RTが映される。
図15は、映像IMの撮影方法の一例を示すフローチャートである。
クライアントCLは、端末TMのカメラ機能を用いて目的地TPの周辺を撮影する(ステップS51)。プロセッサPRTは、撮影された映像IMを解析して、現在地が室内であるか否かを判定する(ステップS52)。現在地が室内であると判定された場合には(ステップS52:Yes)、プロセッサPRTは、映像または音声を用いて、撮影を継続しながら屋外へ移動することをクライアントCLに促す(ステップS53)。
クライアントCLは、プロセッサPRTの誘導にしたがって、目的地TPの周辺の撮影を行った後、そのまま撮影を継続しながら建物BLの入り口ETに向けて移動する。プロセッサPRTは、クライアントCLが建物BLの内部を移動する間、SLAMによる空間認識処理を継続する(ステップS54)。
プロセッサPRTは、クライアントCLが建物BLの内部を移動する間、撮影された映像IMに基づいて、現在地が室内であるか否かを判定する(ステップS52)。現在地が屋外であると判定された場合には(ステップS52:No)、プロセッサPRTは撮影を終了する。プロセッサPRTは、撮影が終了した位置(例えば、建物BLの入り口の位置)のGPSデータPDを、映像IMの記録位置として取得する(ステップS55)。
プロセッサPRTは、図7のステップS5およびステップS6と同様の方法を用いて注文データを生成し、サーバSVにアップロードする(ステップS56)。
[7.待ち合わせ場所の探索]
図16は、3DマップMDを用いた経路探索手法を友人FRとの待ち合わせに応用した例を示す図である。
図16は、3DマップMDを用いた経路探索手法を友人FRとの待ち合わせに応用した例を示す図である。
図16の例では、待ち合わせ場所が目的地TPとして設定される。クライアントCLは、SLAMを用いて、待ち合わせ場所の周辺の映像IMから3DマップMDを生成する。クライアントCLは、端末TMに表示された3DマップMD上の位置をタップして待ち合わせ場所を指定する。プロセッサPRTは、3DマップMD、目的地TP、映像IMおよびGPSデータPDを含む待ち合わせデータを生成し、サーバSVにアップロードする。
人通りの多い場所では、映像IMに通行人が映り込む可能性がある。その場合、同じ場所を複数回撮影するなどして、通行人などの動的情報をフィルタアウトすることが望ましい。これにより、精度のよい3DマップMDが生成される。
友人FRは、AR(Augmented Reality)グラスなどの端末をナビゲーション機器として用いる。ナビゲーション機器は、前述したプロセッサPRMを有する。プロセッサPRMは、サーバSVから待ち合わせデータを取得し、前述した方法と同様の方法で待ち合わせ場所までの経路を探索する。経路探索には、ダイナミックマップDYの静的情報、準静的情報および準動的情報を利用することができる。プロセッサPRMは、探索された経路を友人FRに提示し、友人FRを待ち合わせ場所まで案内する。
[8.ハードウェア構成例]
図17は、プロセッサPRMのハードウェア構成例を示す図である。
図17は、プロセッサPRMのハードウェア構成例を示す図である。
プロセッサPRMは、例えば図17に示すような構成のコンピュータ1000によって実現される。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500および入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300またはHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。
ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
HDD1400は、CPU1100によって実行されるプログラム、および当該プログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な非一時的記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る情報処理プログラムを記録する記録媒体である。
通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介してキーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
例えば、コンピュータ1000がプロセッサPRMとして機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた情報処理プログラムを実行することにより、プロセッサPRMの機能を実現する。また、HDD1400には、本開示に係る情報処理プログラムや、各種情報処理に用いるパラメータ情報などが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
[9.効果]
移動体MBは、プロセッサPRMを有する。プロセッサPRMは、SLAMを用いてクライアントCLが生成した目的地TPの周辺の3DマップMDを用いて目的地TPまでの経路を探索する。本開示の処理方法は、移動体MBの処理がコンピュータにより実行される。本開示のプログラムは、移動体MBの処理をコンピュータに実現させる。
移動体MBは、プロセッサPRMを有する。プロセッサPRMは、SLAMを用いてクライアントCLが生成した目的地TPの周辺の3DマップMDを用いて目的地TPまでの経路を探索する。本開示の処理方法は、移動体MBの処理がコンピュータにより実行される。本開示のプログラムは、移動体MBの処理をコンピュータに実現させる。
この構成によれば、経路の探索は高精度な3DマップMDを用いて行われる。そのため、精度のよい経路の探索が行われる。目的地TPの指定は3DマップMDを用いて行われる。そのため、任意の位置を目的地TPとして設定することができる。
3DマップMDは、同じ位置が複数回映るように撮影した目的地TPの周辺の映像IMを用いて生成される。
この構成によれば、ループ閉じ込みにより精度のよい3DマップMDが生成される。そのため、目的地TPまでの経路が精度よく探索される。
映像IMには、建物BLの入り口ETから建物BL内に設定された目的地TPまでの移動経路RTが映される。
この構成によれば、目的地TPが複雑な内部構造を有する建物BLの内部に設定されても、目的地TPまでの経路が精度よく探索される。
3DマップMDは、目的地TPまでの移動時間内に変化する動的情報をフィルタアウトして得られた映像情報に基づいて生成される。
この構成によれば、動的情報による探索精度の低下が生じにくい。
プロセッサPRMは、映像IMの記録位置を示すGPSデータPDを用いて目的地TPの周辺までの経路を探索する。
この構成によれば、目的地TPまでの経路探索が、探索方式を切り替えながら段階的に実施される。GPSデータPDを用いた経路探索では、測位精度は低いが、プロセッサPRMの処理負荷は小さい。3DマップMDを用いた経路探索では、測位精度は高いが、プロセッサPRMの処理負荷は大きい。探索方式を目的地TPまでの距離に応じて切り替えることで、プロセッサPRMの処理負荷を抑えながら経路探索の精度を高めることができる。
プロセッサPRMは、映像IMを含む補助データを用いて、目的地TPの周辺からマップ探索領域MNAまでの経路を探索する。マップ探索領域MNAは、3DマップMDによって目的地TPまでの経路の探索が可能となる領域である。
この構成によれば、マップ探索領域MNAまでの経路が精度よく探索される。
補助データは、目的地TPへの誘導対象となる移動体MBが検出する方位情報を含む。
この構成によれば、目的地TPの周辺の映像IMと方位情報に基づいて、目的地TPへ接近する経路が精度よく探索される。
補助データは、目的地TPのフロア情報を含む。
この構成によれば、目的地TPの位置が精度よく特定される。
補助データは、目的地TPの周辺に設置されたマーカMKの情報を含む。
この構成によれば、マーカMKを目印としてマップ探索領域MNAまでの経路が精度よく探索される。
プロセッサPRMは、目的地TPに配送される荷物BGの受取人RCの認証を行う。
この構成によれば、目的地TPがパブリックスペースPSに設定された場合でも、確実に受取人RCに荷物BGを引き渡すことができる。
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
[10.変形例]
上述の実施形態では、経路探索に関わる情報処理が移動体MBで行われた。しかし、こ経路探索に関わる情報処理は、サーバSVで行われてもよい。例えば、端末TMからアップロードされた各種情報に基づいて、サーバSVが経路探索を行い、探索された経路を移動体MBに送信してもよい。
上述の実施形態では、経路探索に関わる情報処理が移動体MBで行われた。しかし、こ経路探索に関わる情報処理は、サーバSVで行われてもよい。例えば、端末TMからアップロードされた各種情報に基づいて、サーバSVが経路探索を行い、探索された経路を移動体MBに送信してもよい。
[付記]
なお、本技術は以下のような構成も採ることができる。
(1)
SLAMを用いてクライアントが生成した目的地周辺のマップを用いて前記目的地までの経路を探索するプロセッサを有する、情報処理装置。
(2)
前記3Dマップは、同じ位置が複数回映るように撮影した前記目的地の周辺の映像を用いて生成される、
上記(1)に記載の情報処理装置。
(3)
前記3Dマップは、建物の入り口から前記建物の内部に設定された前記目的地までの移動経路を撮影した前記映像を用いて生成される、
上記(2)に記載の情報処理装置。
(4)
前記3Dマップは、前記目的地までの移動時間内に変化する動的情報をフィルタアウトして得られた情報に基づいて生成される、
上記(2)または(3)に記載の情報処理装置。
(5)
前記プロセッサは、前記映像の記録位置を示すGPSデータを用いて前記目的地の周辺までの経路を探索する、
上記(2)ないし(4)のいずれか1つに記載の情報処理装置。
(6)
前記プロセッサは、前記映像を含む補助データを用いて、前記目的地の周辺から、前記3Dマップによって前記目的地までの経路の探索が可能となるマップ探索領域までの経路を探索する、
上記(5)に記載の情報処理装置。
(7)
前記補助データは、前記目的地への誘導対象となる移動体が検出する方位情報を含む、
上記(6)に記載の情報処理装置。
(8)
前記補助データは、前記目的地のフロア情報を含む、
上記(6)または(7)に記載の情報処理装置。
(9)
前記補助データは、前記目的地の周辺に設置されたマーカの情報を含む、
上記(6)ないし(8)のいずれか1つに記載の情報処理装置。
(10)
前記プロセッサは、前記目的地に配送される荷物の受取人の認証を行う、
上記(1)ないし(9)のいずれか1つに記載の情報処理装置。
(11)
SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索することを有する、コンピュータにより実行される情報処理方法。
(12)
SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索することをコンピュータに実現させるプログラム。
なお、本技術は以下のような構成も採ることができる。
(1)
SLAMを用いてクライアントが生成した目的地周辺のマップを用いて前記目的地までの経路を探索するプロセッサを有する、情報処理装置。
(2)
前記3Dマップは、同じ位置が複数回映るように撮影した前記目的地の周辺の映像を用いて生成される、
上記(1)に記載の情報処理装置。
(3)
前記3Dマップは、建物の入り口から前記建物の内部に設定された前記目的地までの移動経路を撮影した前記映像を用いて生成される、
上記(2)に記載の情報処理装置。
(4)
前記3Dマップは、前記目的地までの移動時間内に変化する動的情報をフィルタアウトして得られた情報に基づいて生成される、
上記(2)または(3)に記載の情報処理装置。
(5)
前記プロセッサは、前記映像の記録位置を示すGPSデータを用いて前記目的地の周辺までの経路を探索する、
上記(2)ないし(4)のいずれか1つに記載の情報処理装置。
(6)
前記プロセッサは、前記映像を含む補助データを用いて、前記目的地の周辺から、前記3Dマップによって前記目的地までの経路の探索が可能となるマップ探索領域までの経路を探索する、
上記(5)に記載の情報処理装置。
(7)
前記補助データは、前記目的地への誘導対象となる移動体が検出する方位情報を含む、
上記(6)に記載の情報処理装置。
(8)
前記補助データは、前記目的地のフロア情報を含む、
上記(6)または(7)に記載の情報処理装置。
(9)
前記補助データは、前記目的地の周辺に設置されたマーカの情報を含む、
上記(6)ないし(8)のいずれか1つに記載の情報処理装置。
(10)
前記プロセッサは、前記目的地に配送される荷物の受取人の認証を行う、
上記(1)ないし(9)のいずれか1つに記載の情報処理装置。
(11)
SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索することを有する、コンピュータにより実行される情報処理方法。
(12)
SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索することをコンピュータに実現させるプログラム。
BG 荷物
BL 建物
CL クライアント
ET 入り口
IM 映像
MB 移動体(情報処理装置)
MD 3Dマップ
MK マーカ
MNA マップ探索領域
PD GPSデータ
PRM プロセッサ
RC 受取人
RT 移動経路
TP 目的地
BL 建物
CL クライアント
ET 入り口
IM 映像
MB 移動体(情報処理装置)
MD 3Dマップ
MK マーカ
MNA マップ探索領域
PD GPSデータ
PRM プロセッサ
RC 受取人
RT 移動経路
TP 目的地
Claims (12)
- SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索するプロセッサを有する、情報処理装置。
- 前記3Dマップは、同じ位置が複数回映るように撮影した前記目的地の周辺の映像を用いて生成される、
請求項1に記載の情報処理装置。 - 前記映像には、建物の入り口から前記建物の内部に設定された前記目的地までの移動経路が映される、
請求項2に記載の情報処理装置。 - 前記3Dマップは、前記目的地までの移動時間内に変化する動的情報をフィルタアウトして得られた映像情報に基づいて生成される、
請求項2に記載の情報処理装置。 - 前記プロセッサは、前記目的地からGPSの測位誤差に応じた距離だけ離れた目的地付近までの経路を、前記映像の記録位置を示すGPSデータを用いて探索する、
請求項2に記載の情報処理装置。 - 前記プロセッサは、前記映像を含む補助データを用いて、前記目的地付近から、前記3Dマップによって前記目的地までの経路の探索が可能となるマップ探索領域までの経路を探索する、
請求項5に記載の情報処理装置。 - 前記補助データは、前記目的地への誘導対象となる移動体が検出する方位情報を含む、
請求項6に記載の情報処理装置。 - 前記補助データは、前記目的地のフロア情報を含む、
請求項6に記載の情報処理装置。 - 前記補助データは、前記目的地の周辺に設置されたマーカの情報を含む、
請求項6に記載の情報処理装置。 - 前記プロセッサは、前記目的地に配送される荷物の受取人の認証を行う、
請求項1に記載の情報処理装置。 - SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索することを有する、コンピュータにより実行される情報処理方法。
- SLAMを用いてクライアントが生成した目的地の周辺の3Dマップを用いて前記目的地までの経路を探索することをコンピュータに実現させるプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/682,980 US20240345592A1 (en) | 2021-09-08 | 2022-03-04 | Information processing apparatus, information processing method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021146347 | 2021-09-08 | ||
JP2021-146347 | 2021-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037594A1 true WO2023037594A1 (ja) | 2023-03-16 |
Family
ID=85507312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009307 WO2023037594A1 (ja) | 2021-09-08 | 2022-03-04 | 情報処理装置、情報処理方法およびプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240345592A1 (ja) |
WO (1) | WO2023037594A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038402A1 (ja) * | 2003-10-21 | 2005-04-28 | Waro Iwane | ナビゲーション装置 |
JP2018081685A (ja) * | 2016-11-04 | 2018-05-24 | ダブルフロンティア株式会社 | 配送管理システム |
JP2018095366A (ja) * | 2016-12-09 | 2018-06-21 | 株式会社タダノ | 移動式クレーンの共吊り制御システム |
JP2018525756A (ja) * | 2015-05-22 | 2018-09-06 | ピーター・ミカリック | ドローンと携帯ハンドヘルドデバイス間の通信システムおよびプロセス |
US20210125369A1 (en) * | 2019-10-23 | 2021-04-29 | Alarm.Com Incorporated | Drone-assisted sensor mapping |
-
2022
- 2022-03-04 WO PCT/JP2022/009307 patent/WO2023037594A1/ja active Application Filing
- 2022-03-04 US US18/682,980 patent/US20240345592A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038402A1 (ja) * | 2003-10-21 | 2005-04-28 | Waro Iwane | ナビゲーション装置 |
JP2018525756A (ja) * | 2015-05-22 | 2018-09-06 | ピーター・ミカリック | ドローンと携帯ハンドヘルドデバイス間の通信システムおよびプロセス |
JP2018081685A (ja) * | 2016-11-04 | 2018-05-24 | ダブルフロンティア株式会社 | 配送管理システム |
JP2018095366A (ja) * | 2016-12-09 | 2018-06-21 | 株式会社タダノ | 移動式クレーンの共吊り制御システム |
US20210125369A1 (en) * | 2019-10-23 | 2021-04-29 | Alarm.Com Incorporated | Drone-assisted sensor mapping |
Also Published As
Publication number | Publication date |
---|---|
US20240345592A1 (en) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10818188B2 (en) | Method for dispatching a vehicle to a user's location | |
US10740863B2 (en) | Location signaling with respect to an autonomous vehicle and a rider | |
US10949712B2 (en) | Information processing method and information processing device | |
US20180196417A1 (en) | Location Signaling with Respect to an Autonomous Vehicle and a Rider | |
US9294873B1 (en) | Enhanced guidance for electronic devices using objects within in a particular area | |
US11415986B2 (en) | Geocoding data for an automated vehicle | |
CN103827634B (zh) | 用于室内定位的徽标检测 | |
KR102362117B1 (ko) | 지도 정보를 제공하기 위한 전자 장치 | |
US11399137B2 (en) | Object-tracking system | |
US20180196415A1 (en) | Location Signaling with Respect to an Autonomous Vehicle and a Rider | |
KR20180003393A (ko) | 실시간 동적으로 결정된 감지에 기초하여 무인 운전 차량에서 콘텐츠를 제공하는 시스템 및 방법 | |
EP3848674B1 (en) | Location signaling with respect to an autonomous vehicle and a rider | |
CN111222408A (zh) | 用于基于周围环境改进的位置决策的方法和设备 | |
JP2004102835A (ja) | 情報提供方法およびそのシステム、携帯型端末装置、頭部装着装置、並びにプログラム | |
Basiri et al. | Seamless pedestrian positioning and navigation using landmarks | |
EP4019898A1 (en) | Method, apparatus, and system for capturing an image sequence for a visual positioning service request | |
US11947354B2 (en) | Geocoding data for an automated vehicle | |
US11670051B1 (en) | Augmenting transmitted video data | |
US20220412741A1 (en) | Information processing apparatus, information processing method, and program | |
WO2023037594A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
CN115963814A (zh) | 向配送机器人提供最后一英里辅助的系统和方法 | |
JP6959305B2 (ja) | 生成装置、生成方法、および生成プログラム | |
US10735902B1 (en) | Method and computer program for taking action based on determined movement path of mobile devices | |
Rajpurohit et al. | A Review on Visual Positioning System | |
EP3962118A1 (en) | Interaction method employing optical communication apparatus, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22866929 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18682980 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22866929 Country of ref document: EP Kind code of ref document: A1 |