WO2022004603A1 - センシング地図システム及び測位方法 - Google Patents

センシング地図システム及び測位方法 Download PDF

Info

Publication number
WO2022004603A1
WO2022004603A1 PCT/JP2021/024186 JP2021024186W WO2022004603A1 WO 2022004603 A1 WO2022004603 A1 WO 2022004603A1 JP 2021024186 W JP2021024186 W JP 2021024186W WO 2022004603 A1 WO2022004603 A1 WO 2022004603A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
map
space
detection target
point
Prior art date
Application number
PCT/JP2021/024186
Other languages
English (en)
French (fr)
Inventor
仁 西野
直矢 釣上
Original Assignee
株式会社多摩川ホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社多摩川ホールディングス filed Critical 株式会社多摩川ホールディングス
Priority to JP2022533959A priority Critical patent/JPWO2022004603A1/ja
Publication of WO2022004603A1 publication Critical patent/WO2022004603A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map

Definitions

  • the present invention relates to a sensing map system and a measurement method that enable high-speed and high-precision identification of the current location without using artificial satellites.
  • GPS Global Positioning System
  • GNSS Global Navigation Satellite System
  • the signal obtained from the satellite is processed, the latitude, longitude, and altitude are obtained, and the map data is combined.
  • a receiver it is rare for a receiver to have a clock that is time-synchronized with the same accuracy as the atomic clock mounted on an artificial satellite, and usually has four parameters including the time difference from the satellite, latitude, longitude, and altitude. , Calculate the time. This means that four satellites are used, and since the signal contains noise, the number of artificial satellites to be used is usually increased to improve the accuracy of the position. For example, using eight satellites improves accuracy by a factor of ⁇ 2.
  • the signal transmitted by the satellite contains not only time information but also satellite orbit information, which makes it possible to know the position of the satellite. In other words, it is based on the same principle as transmitting radio waves from a reference point whose position is specified, calculating the time to reach it, calculating the distance to each reference point, and calculating the position information of the observation point. be.
  • Patent Document 1 describes a position estimation device using GNSS and SLAM (Simultaneus Localization and Mapping; simultaneous execution of self-position estimation and environmental map creation). Is described.
  • processing 3D map data has a problem that it consumes a large amount of power and is difficult to mount on a communication mobile.
  • GPS signals used in car navigation systems are easy to use in places where there are no obstacles around, such as on the sea or in the desert, but in artificial satellites and building streets, utility pole transformers, electric wires, and arcade streets.
  • the roof blocks radio waves and that GPS signals are reflected on the building, resulting in positioning errors. This problem can be solved by arranging a large number of atomic clocks and time synchronization systems on the ground, but the problem is that the cost increases.
  • the present invention has been made based on such a problem, and it is not necessary to process a large-scale three-dimensional map data, and the current location can be detected at high speed and with high accuracy without using an artificial satellite.
  • the purpose is to provide a sensing map system and a positioning method that can be used.
  • the sensing map system of the present invention has a map information database in which absolute coordinates are scattered in a virtual space and holds map information associated with information for specifying a position in a space and a structure, and a real space and a structure. It is provided with an information collecting means for measuring or grasping the above, and a position detecting means for comparing and analyzing the information acquired by the information collecting means and the map information to detect the position of the position detection target.
  • the positioning method of the present invention measures or grasps an actual space and a structure by using map information in which absolute coordinates are scattered in a virtual space and information for specifying a position is associated with the space and the structure. By comparing and analyzing the information obtained in the above and the map information, the position of the position detection target is detected.
  • the structure itself around the position detection target is used as a reference. Since it is a point, there is no need for a standard such as an artificial satellite. Further, since the reference point is near the position detection target, positioning can be performed at high speed, and the accuracy of positioning can be improved.
  • FIG. 1 shows the configuration of the sensing map system 10 according to the embodiment of the present invention.
  • the sensing map system 10 compares and analyzes the map information database 11 that holds the map information, the information collecting means 12 that measures or grasps the actual space and the structure M, and the information acquired by the information collecting means 12 and the map information. It is provided with a position detecting means 13 for detecting the position of the position detecting target N.
  • the map information stored in the map information database 11 is associated with information for specifying a position in the space and the structure M by interspersing absolute coordinates in the virtual space. Specifically, for example, by interspersing the absolute coordinates in the form of grid dots in the virtual map space, information for specifying the position is associated with the space and the structure M.
  • the position information associated with the space and the structure M includes latitude, longitude, and altitude, and further includes position information acquired by the information collecting means 12.
  • the position information acquired by the information collecting means 12 includes not only the information acquired by the information collecting means 12 of one position detection target N for detecting the position, but also other position detection targets existing around the position detection target N.
  • the information acquired by the information collecting means 12 of N is also included.
  • the fact that there is information in space means information about the position obtained at a point in that space.
  • the structure M itself becomes a reference point due to the scattered absolute coordinates, and the position coordinates of the position detection target N in space are obtained by measuring the distance from the reference point.
  • This position information is recorded in the map information data base 11. Since the information about the position by this measurement is the only point in the space, it can be said that there is information in the point in the space.
  • the position information is, for example, information regarding the position of the world geodetic system or the geodetic system based on a predetermined standard.
  • the map information database 11 is recorded in a computer such as a server. It is preferable to prepare the map information database 11 according to the range of the position to be detected or the area. The same thing can be said for indoor space, and similar positioning can be performed in room space by determining reference points and interspersing absolute coordinates on virtual space.
  • the map information in this case is associated with the information for specifying the position in the indoor space and the indoor structure.
  • Examples of the information collecting means 12 include an image sensor using a camera and a distance sensor using light or millimeter waves.
  • the information collecting means 12 is attached to, for example, the position detection target N.
  • Examples of the position detection target N include moving objects such as a car, a drone, or a person.
  • the information collected by the information collecting means 12 is information about the space around the information collecting means 12 and the structure M.
  • position information attached to a point in space often means information from an image sensor or a distance sensor.
  • the information obtained from the image sensor is the appearance of the structure, that is, the information on the distance and the positional relationship between the position information points attached to the structure and the points.
  • the distance sensor it is the information of the distance between the point of the position information attached to the structure and the observation point, and since the speed of the electromagnetic wave is almost constant in the measurement by millimeter wave or light, it is attached to the structure, not the distance. Information on the round-trip time of the electromagnetic wave between the point of the position information and the observation point can be mentioned.
  • the information collecting means 12 is fixed to the structure, it includes not only the information from the sensor but also the information about the position of the geodetic system based on a predetermined reference.
  • the position detecting means 13 is configured by, for example, a computer.
  • the position detection means 13 may be mounted on the position detection target N, or may be arranged at a position different from the position detection target N.
  • the position detecting means 13 is connected to the map information database 11 via the network 14, for example, and is connected to the information collecting means 12 by wire or wirelessly.
  • FIG. 2A is an example of map information.
  • the position information is scattered in the space or the structure M.
  • P0, P1, P2, P3, P4, P5 are set as representative points.
  • P0 is the position (observation point) of one position detection target N for detecting the position
  • P1, P2, P3, P4, P5 are arbitrary points in the structure M existing around the position detection target N.
  • P1, P2, P3, and P4 are arbitrary points in the fixed structure M
  • P5 is an arbitrary point in the moving structure M, which is a car.
  • P5 is the position information obtained by the information collecting means 12 attached to the car.
  • the position information of P1, P2, P3, P4, P5 includes the information of the latitude X, the longitude Y, and the altitude Z of the world geodetic system, and P1 (X1, Y1, Z1), P2 (X2, Y2, Z2). , P3 (X3, Y3, Z3), P4 (X4, Y4, Z4), P5 (X5, Y5, Z5).
  • the position information of P0 is obtained by the information collecting means 12 attached to the position detection target N, and includes the latitude X, the longitude Y, and the altitude Z of P0 (X0, Y0, Z0), and others. For example, the distance measured by the information collecting means 12 and the measurement time when using the optical sensor are included.
  • the distances are L P0P1 , L P0P2 , L P0P3 , L P0P4 , L P0P5 , and the time is T P0P1 , T P0P2 , T P0P3 , T P0P4 , T P0P5 , respectively.
  • FIG. 2B represents a real space corresponding to FIG. 2A.
  • the observer grasps the approximate position and direction, and measures the distance from the observation point P0 to each point of the surrounding structure M or the round-trip time by the optical sensor in cooperation with the map information. do.
  • a comparative analysis is performed to specify the position.
  • FIG. 3 is an aerial view of the map information shown in FIG. 2 (A).
  • FIG. 4 is an enlarged representation of the peripheral region of P0 shown by hatching with diagonal lines in FIG.
  • P0, P1, P2, P3, P4, and P5 are on the same plane.
  • the round-trip time from the observation point P0 to each point P1, P2, P3, P4, P5 using an optical sensor for example, T'P0P1 , T'P0P2 , T'P0P3 , T'P0P4 , T'P0P5
  • these measurement results are compared with the position information existing around P0 in the map information database 11.
  • each point P00 to P24 is associated with time data for reciprocating the distance between each point P00 to P24 to P1, P2, P3, P4, P5, respectively. Therefore, the measurement result is compared with the data associated with each point P00 to P24, the point with the smallest error is selected, and that point is recognized as the current location. That is, the current position can be grasped by comparing and analyzing the measurement result and the position information scattered around P0 by recognizing the rough position of P0 by the initial setting.
  • the round-trip time of light between P00 and P1, P2, P3, P4, P5 on the map database 11 is T P00P1 , T P00P2 , T P00P3 , T P00P4 , and T P00P5 , respectively.
  • the sum of the squares of the difference between and TS P0P00 is calculated as shown in the equation (1).
  • TS P0P01 , TS P0P01 , ..., TS P0P24 are obtained in this order, and the point having the smallest TS is recognized as the current position. For example, as shown in FIG. 4, assuming that the observation point P0 is located at P12, the TS of P12 is the smallest value.
  • the information acquired by the information collecting means 12 and the map information to detect the position of the position detection target N for example, the information acquired by the information collecting means 12 at the observation point in the real space. And the information acquired by the information collecting means 12 associated with the position information existing around the observation point in the map information database 11 can be compared, and the point having the position information with the smallest error can be set as the current position. can.
  • the absolute coordinates of the current position can be specified by comparing and analyzing with the absolute coordinates associated with the database 11. This method will be specifically described in the positioning of an automatically traveling vehicle, which will be described later.
  • the position of the observation point P0 not only the position of the observation point P0 but also the position of the moving structure M can be grasped.
  • the distance between P0 and P1, P2, P3, P4, P5 L P0P1 , L P0P2 , L P0P3 , L P0P4 , L P0P5 is measured, for example, the positional relationship of three points P0, P1, P5 is grasped from the positional relationship by the image sensor, and the distance L P0P1 , L P0P5 and L' P0P1 , L' P0P5 , or the time T P0P1 , T P0P5. And T'P0P1 and T'P0P5 are analyzed.
  • the sensing map system 10 also includes display means (not shown) such as a display that displays the position of the position detection target N detected by the position detection means 13.
  • the display means may be mounted on the position detection target N, or may be arranged at a position different from the position detection target N.
  • the display means is connected to the position detection means 13 by wire or wirelessly, for example.
  • positioning can be performed as follows. First, for example, the information collecting means 12 is attached to the position detection target N, the surrounding real space and the structure M are measured or grasped by the information collecting means 12, and information about the surrounding space and the structure M is acquired. This information is sent to the position detection means 13.
  • the position detecting means 13 uses the map information in which the absolute coordinates are scattered in the virtual space and the information for specifying the position is associated with the space and the structure M, and the information acquired by the information collecting means 12 and the map information. By comparing and analyzing with, the position of the position detection target N is detected. Further, the information acquired by the information collecting means 12 is stored in the map information database 11 as map information.
  • the observation point P0 can be measured with P5. It is possible. Further, by storing the information in the map database 11 at the observation point P0, it is possible to measure between P0 and P5 when P5 becomes the observation point, and if there is human information in the information of P0, By sharing the information, safe driving in automatic driving etc. becomes possible.
  • FIG. 5 shows an autonomous vehicle seen from the sky and a route to be passed.
  • the portion shown in white is a road, the vehicle that is the position detection target N is shaded, and the route that the vehicle that is the position detection target N is scheduled to pass is shown by a broken line.
  • the approximate current location of the position detection target N is input to the map information database 11 (initial setting).
  • the approximate current location of the position detection target N may be directly input, or the approximate current location may be detected by using GPS or the like.
  • the information collecting means 12 recognizes the structure M existing around the position detection target N (recognition procedure). For example, image recognition by an image sensor and stereoscopic measurement by an optical sensor can be mentioned.
  • the distance and time between the points on the actual structure M corresponding to the scattered points in the map information database 11 and the current position of the position detection target N are measured (distance / time measurement). procedure).
  • distance / time measurement for example, it is preferable to use a TOF (Time of Light) type optical sensor.
  • the current position of the position detection target N is specified by the position detection means 13 (current position identification procedure).
  • the position detection target N repeats the above-mentioned recognition procedure, distance / time measurement procedure, and current position identification procedure while moving. At that time, it is preferable to estimate the information obtained in the current position specifying procedure in advance, and to drive while comparing the estimated information with the information actually obtained.
  • Point B (Xb, Yb, Zb), point C (Xc, Yc, Zc), and point D (Xd, Yd, Zd) are known coordinates associated with absolute coordinates in the map information database 11.
  • Point A (Xa, Ya, Za) is an unknown coordinate.
  • the optical sensor for example, a TOF (Time of Flight) type sensor is used, a pulse of light is emitted, and the time T until the pulse is reflected and returned is measured. In this case, where C is the speed of light, the distance L is 2C / T.
  • the position detection target N is obtained by using the map information in which the absolute coordinates are scattered in the virtual space and the information for specifying the position is associated with the space and the structure M. Since the surrounding structure M itself serves as a reference point, a reference point such as an artificial satellite becomes unnecessary. Further, since the reference point is near the position detection target N, positioning can be performed at high speed, and the accuracy of positioning can be improved.

Abstract

【課題】人工衛星を使用せずに現在地を高速かつ高精度に位置を検出することができるセンシング地図システム及び測位方法を提供する。 【解決手段】センシング地図システム(10)は、仮想空間に絶対座標を点在させて、空間及び構造物(M)に位置を特定するための情報を関連付けた地図情報を保持する地図情報データベース(11)と、現実の空間及び構造物(M)を測定もしくは把握する情報収集手段(12)と、情報収集手段(12)で取得した情報と、地図情報とを比較解析し、位置検出対象(N)の位置を検出する位置検出手段(13)とを備える。

Description

センシング地図システム及び測位方法
 本発明は、人工衛星を使用せずに現在地を高速かつ高精度に特定可能とするセンシング地図システム及び測定方法に関する。
 近年広く利用されている測位システムに、GPS(Global Positioning System)がある。これは、人工衛星を利用した測位システムで、地上約2万km上空を飛行している衛星からの電波に乗せられた時刻情報を受信して計算することで地球上における位置(緯度・経度・高度)を知ることができる。このシステムの一般名称は、GNSS(Global Navigation Satellite System)で、「全地球測位システム」と呼ばれる。
 実際にナビゲーションとして機能させるためには、衛星から得た信号を処理し、緯度、経度、高度を得て、地図データを組み合わせる。受信機では人工衛星に搭載されている原子時計と同じ精度でさらに時刻同期した時計は持っていることはまれで、通常は衛星との時刻の差を含めた4つのパラメータ、緯度、経度、高度、時刻を計算処理する。これは4つの衛星を利用することを意味し、信号にはノイズが含まれているので、通常、利用する人工衛星の数を増して、位置の精度を向上させる。例えば、8個の衛星を利用すると、精度は√2倍に向上する。
 衛星の発信する信号には、時刻の情報の他、衛星の軌道の情報が含まれており、それにより衛星の位置を知ることができる。つまり、位置が特定されている基準点から電波を発信し、到達するまでの時間を計算して各基準点との距離を計算し、そして、観測点の位置情報を計算することと同じ原理である。GPS通信を用いた測量は様々あり、一台の受信機を使う単独測位、二台以上の受信機を使い、衛星からの電波信号が受信機に到達する時間差を測定し、二点間の相対的な位置関係を求める相対測位等がある。
 また、近年では、自動運転技術の開発が進められており、特許文献1には、GNSSと、SLAM(Simultaneous Localization and Mapping;自己位置推定と環境地図作成の同時実行)とを利用した位置推定装置が記載されている。
特許第6354556号公報
 しかしながら、3次元の地図データを処理することは、消費電力が大きくなり、通信移動体に搭載することは困難な問題がある。また、カーナビゲーションシステム等に用いられているGPS信号は、海の上や砂漠など周囲に障害物がない所では利用しやすいが、人工衛星やビル街では、電柱のトランスや電線、アーケード街の屋根が電波を遮断することや、ビルにGPS信号が反射して測位誤差となるという問題がある。この問題については、地上に大量の原子時計と時刻同期システムを配置することにより解決できるが、費用が大きくなることが問題としてある。
 本発明は、このような問題に基づきなされたものであり、大規模な3次元の地図データを処理する必要がなく、また、人工衛星を使用せずに現在地を高速かつ高精度に位置を検出することができるセンシング地図システム及び測位方法を提供することにある。
 本発明のセンシング地図システムは、仮想空間に絶対座標を点在させて、空間及び構造物に位置を特定するための情報を関連付けた地図情報を保持する地図情報データベースと、現実の空間及び構造物を測定もしくは把握する情報収集手段と、情報収集手段で取得した情報と、地図情報とを比較解析し、位置検出対象の位置を検出する位置検出手段とを備えたものである。
 本発明の測位方法は、仮想空間に絶対座標を点在させて、空間及び構造物に位置を特定するための情報を関連付けた地図情報を用い、現実の空間及び構造物を測定もしくは把握することにより得た情報と、地図情報とを比較解析することにより、位置検出対象の位置を検出するものである。
 本発明によれば、仮想空間に絶対座標を点在させて、空間及び構造物に位置を特定するための情報を関連付けた地図情報を用いることにより、位置検出対象の周囲の構造物自体が基準点となるため、人工衛星等の基準となるものが不要となる。また、基準点が位置検出対象の近くにあるため、高速に測位することができ、測位の精度も向上させることができる。
本発明の一実施の形態に係るセンシング地図システムの構成を表す概念図である。 地図情報と現実の空間とを対比して表す概念図である。 図2に示した地図情報を上空から見た概念図である。 図3に示した地図情報のP0周辺を拡大して表すものである。 自動走行における車の通過予定の経路を示すものである。 現在位置特定手段の計算例を説明するための図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
 図1は、本発明の一実施の形態に係るセンシング地図システム10の構成を表すものである。センシング地図システム10は、地図情報を保持する地図情報データベース11と、現実の空間及び構造物Mを測定もしくは把握する情報収集手段12と、情報収集手段12で取得した情報と地図情報とを比較解析し、位置検出対象Nの位置を検出する位置検出手段13とを備えている。
 地図情報データベース11に保持される地図情報は、仮想空間に絶対座標を点在させることにより、空間及び構造物Mに位置を特定するための情報を関連付けたものである。具体的には、例えば、仮想地図空間に格子ドット状の絶対座標を点在させることにより、空間及び構造物Mに位置を特定するための情報が関連付けられている。空間及び構造物Mに関連付けられる位置情報としては、緯度、経度、および、高度が挙げられ、更に、情報収集手段12により取得した位置情報も含まれる。情報収集手段12により取得した位置情報には、位置を検出する1つの位置検出対象Nの情報収集手段12により取得したもののみでなく、その位置検出対象Nの周囲に存在する他の位置検出対象Nの情報収集手段12により取得したものも含まれる。
 空間上に情報があるということは、つまり、その空間の点において得られる位置に関する情報を意味する。このセンシング地図システム10においては、絶対座標が点在されることにより構造物M自体が基準点となり、その基準点との距離の計測により、位置検出対象Nの空間上の位置座標が得られ、この位置情報は地図情報テータベース11に記録される。この計測による位置に関する情報がその空間の点唯一のもののため、空間の点に情報があるということができる。なお、位置情報は、例えば、世界測地系あるいは所定の基準をもとにした測地系の位置に関する情報である。地図情報データベース11は、例えば、サーバーなどのコンピュータに記録されている。地図情報データベース11は、検出する位置の範囲又は地域に応じて用意することが好ましい。室内空間でも同様のことが言え、部屋の空間においても、基準点を決め、仮想空間上に絶対座標を点在させることにより、同様の測位をすることができる。この場合の地図情報は、室内空間及び室内の構造物に位置を特定するための情報を関連付けたものとなる。
 情報収集手段12としては、例えば、カメラを利用した画像センサー、および、光やミリ波を利用した距離センサーが挙げられる。情報収集手段12は、例えば、位置検出対象Nに対して取り付けられる。位置検出対象Nとしては、例えば、車、ドローン、又は、人のように、移動するものが挙げられる。情報収集手段12により収集する情報は、情報収集手段12の周囲の空間及び構造物Mに関する情報である。具体的には、例えば、空間上の点につけられた位置情報では、多くの場合、画像センサーや距離センサーからの情報を意味する。画像センサーから得られる情報とは、構造物の見え方、つまり、構造物につけられた位置情報の点との距離や位置関係の情報になる。距離センサーについては、構造物につけられた位置情報の点と観測地点との距離の情報になり、ミリ波や光による計測では電磁波の速度はほぼ一定のため、距離ではなく、構造物につけられた位置情報の点と観測地点との電磁波の往復の時間の情報が挙げられる。また、情報収集手段12が構造物に固定されている場合は、センサーからの情報だけでなく、所定の基準をもとにした測地系の位置に関する情報も含む。
 位置検出手段13は、例えば、コンピュータにより構成されている。位置検出手段13は、位置検出対象Nに搭載されてもよく、位置検出対象Nと異なる場所に配置されてもよい。位置検出手段13は、例えば、地図情報データベース11とネットワーク14を介して接続され、情報収集手段12と有線又は無線により接続されている。
 図2を用いて、情報収集手段12で取得した情報と、地図情報とを比較解析して位置を検出する手法について具体的にご説明する。図2(A)は地図情報の一例である。図2(A)に示したように、地図情報では、空間や構造物Mに位置情報が点在されている。代表点として、P0,P1,P2,P3,P4,P5を設定する。P0は位置を検出する1つの位置検出対象Nの位置(観測地点)であり、P1,P2,P3,P4,P5は、位置検出対象Nの周りに存在する構造物Mにおける任意点である。P1,P2,P3,P4は固定されている構造物Mにおける任意点であるが、P5は移動する構造物Mである車の任意点である。P5は、車に取り付けられた情報収集手段12により得られた位置情報である。
 P1,P2,P3,P4,P5の位置情報としては、世界測地系の緯度X、経度Y、高度Zの情報を含ませ、P1(X1,Y1,Z1),P2(X2,Y2,Z2),P3(X3,Y3,Z3),P4(X4,Y4,Z4),P5(X5,Y5,Z5)とする。P0の位置情報としては、位置検出対象Nに取り付けられた情報収集手段12により得られたものであり、P0(X0,Y0,Z0)の緯度X、経度Y、高度Zが含まれ、その他、例えば、情報収集手段12により測定した距離と光センサー利用時の測定時間が含まれている。それらを、距離については、それぞれ、LP0P1,LP0P2,LP0P3,LP0P4,LP0P5とし、時間については、TP0P1,TP0P2,TP0P3,TP0P4,TP0P5とする。
 図2(B)は図2(A)に対応する現実の空間を表すものである。ここでは、観測者は、おおよその位置と方位を把握し、地図情報と連携して、観測地点P0から、例えば、周囲の構造物Mの各点との距離もしくは光センサーによる往復の時間を測定する。情報収集手段12から得られた情報を、距離に関しては、それぞれ、L’P0P1,L’P0P2,L’P0P3,L’P0P4,L’P0P5とし、時間については、T’P0P1,T’P0P2,T’P0P3,T’P0P4,T’P0P5とする。そして、比較解析を行い、位置を特定する。
 比較解析について、図3及び図4を用いて具体的に説明する。図3は、図2(A)に示した地図情報を上空から見たものである。図4は、図3において斜線のハッチングで示したP0の周辺領域を拡大して表すものである。ここでは、説明を簡略化するためにP0,P1,P2,P3,P4,P5は同一平面上にあるとする。まず、観測地点P0から、例えば、光センサーを用いて、各点P1,P2,P3,P4,P5までの往復の時間T’P0P1,T’P0P2,T’P0P3,T’P0P4,T’P0P5を測定する。次いで、これらの計測結果を、地図情報データベース11におけるP0周辺に存在する位置情報と比較する。
 例えば、図4に拡大して示したように、P0の周辺には、地図情報として位置情報を有する点、例えば、P00~P24が存在している。各点P00~P24には、それぞれ、各点P00~P24からP1,P2,P3,P4,P5までのそれぞれの間の距離を往復する時間のデータが関連付けられている。よって、計測結果と、各点P00~P24に関連付けられているデータとを比較し、最も誤差の小さい点を選び、その点を現在地として認識する。すなわち、初期設定でP0の大まかな位置を認識させることにより、計測結果と、P0の周辺に点在する位置情報とを比較解析することで、現在位置を把握することができる。
 一例を示すと、地図データベース11上のP00とP1,P2,P3,P4,P5との光の往復の時間を、TP00P1,TP00P2,TP00P3,TP00P4,TP00P5とし、それぞれの計測時間との差の2乗の和TSP0P00を式(1)に示したように計算する。同様にして、TSP0P01,TSP0P01,・・・,TSP0P24と順番に求め、もっとも最小なTSをもつ点を現在位置と認識する。例えば、図4に示したように、観測地点P0がP12に位置しているとすると、P12のTSが最も小さい値となる。
Figure JPOXMLDOC01-appb-M000001
 このように、情報収集手段12で取得した情報と地図情報とを比較解析し、位置検出対象Nの位置を検出する手法としては、例えば、現実空間における観測地点において情報収集手段12で取得した情報と、地図情報データベース11において観測地点の周辺に存在する位置情報として関連付けられた情報収集手段12により取得された情報とを比較し、最も誤差の小さい位置情報を有する点を現在位置とすることができる。また、他の手法としては、例えば、情報収集手段12により現実の構造物の任意の点との関係で取得した情報と、情報収集手段12により情報を取得した構造物の任意の点の地図情報データベース11において関連付けられた絶対座標とを比較解析し、現在位置の絶対座標を特定することができる。この手法については、後述する自動走行する自動車の測位において具体的に説明する。
 なお、位置の測位では、観測地点P0の位置だけでなく、移動する構造物Mの位置も把握することができる。例えば、観測地点P0が移動する構造物Mの任意点P5の位置を測定するには、P0とP1,P2,P3,P4,P5との距離LP0P1,LP0P2,LP0P3,LP0P4,LP0P5を測定し、例えば、画像センサーによる位置関係から3点P0,P1,P5の位置関係を把握し、距離LP0P1,LP0P5とL’P0P1,L’P0P5、もしくは、時間TP0P1,TP0P5と、T’P0P1,T’P0P5を解析する。
 このセンシング地図システム10は、また、位置検出手段13により検出した位置検出対象Nの位置を表示するディスプレイなどの表示手段(図示せず)を備えていることが好ましい。表示手段は、位置検出対象Nに搭載されてもよく、位置検出対象Nと異なる場所に配置されてもよい。表示手段は、例えば、位置検出手段13と有線又は無線により接続されている。
 このセンシング地図システム10を用い、次のようにして測位することができる。まず、例えば、情報収集手段12を位置検出対象Nに取り付け、情報収集手段12により周囲の現実の空間及び構造物Mを測定もしくは把握し、周囲の空間及び構造物Mに関する情報を取得する。この情報は位置検出手段13に送られる。位置検出手段13は、仮想空間に絶対座標を点在させて、空間及び構造物Mに位置を特定するための情報を関連付けた地図情報を用い、情報収集手段12で取得した情報と、地図情報とを比較解析することにより、位置検出対象Nの位置を検出する。また、情報収集手段12により取得された情報は、地図情報として地図情報データベース11に保存される。
 図2で示したように、位置検出対象NがP0だけでなく、P5にもある場合、P5からの情報を地図情報データベース11に保存することで、観測地点P0はP5との間で計測が可能になっている。また、観測地点P0が地図データベース11に情報を保存することで、P5が観測地点となる場合に、P0とP5との間で計測が可能のほか、P0の情報に人の情報があれば、その情報を共有し、自動運転等における安全走行も可能となる。
 以下、自動走行する自動車の測位について具体的に説明する。このセンシング地図システム10では、特に、道路沿いの視線誘導施設や街灯に位置情報をつけることで、夜間でも高精度な位置の測位と走行を支援することができる。図5に、上空から見た自動走行車と通過予定の経路を示す。図5において、白色で示した個所が道路であり、位置検出対象Nである自動車を網掛けで示し、位置検出対象Nである自動車の通過予定の経路を破線で示した。
 自動走行においては、まず、例えば、位置検出対象Nのおおよその現在地を地図情報データベース11に入力する(初期設定)。この際、位置検出対象Nのおおよその現在地が分かる場合には直接入力してもよく、また、GPSなどを用いておおよその現在地を検出してもよい。次いで、情報収集手段12により位置検出対象Nの周囲に存在する構造物Mを認識する(認識手順)。例えば、画像センサーによる画像認識や、光センサーによる立体計測が挙げられる。
 続いて、地図情報データベース11にある点在している点に対応している現実の構造物M上の点と、位置検出対象Nの現在位置との距離や時間を測定する(距離・時間測定手順)。測定には、例えば、TOF(Time of Flight)型の光センサーを用いることが好ましい。次に、位置検出手段13により位置検出対象Nの現在位置を特定する(現在位置特定手順)。その後、位置検出対象Nは、移動しながら上述した認識手順、距離・時間測定手順、現在位置特定手順を繰り返す。その際、現在位置特定手順で得られる情報をあらかじめ推定しておき、その推定した情報と、実際に得られる情報とを比較しながら走行するようにすることが好ましい。
 また、現在位置特定手順における計算例を具体的に説明する。ここでは、図6に示したように、位置検出対象Nの点Aから情報収集手段12である光センサーにより、構造物Mの任意の点B,C,Dまでの距離を計測するものとする。点B(Xb,Yb,Zb)、点C(Xc,Yc,Zc)、点D(Xd,Yd,Zd)は、地図情報データベース11において絶対座標が関連付けられた既知の座標である。点A(Xa,Ya,Za)は、未知の座標である。光センサーには、例えば、TOF(Time of Flight)型のものを用い、光のパルスを発光し、そのパルスが反射して戻ってくるまでの時間Tを計測する。この場合、光の速度をCとすると、距離Lは2C/Tとなる。
 点Aから光センサーで測定した各点B,C,Dで反射して戻ってくるまでの時間をTAB,TAC,TADとし、点Aから光センサーで各点B,C,Dまでの距離LAB,LAC,LADを求めると、下記式(2)~式(4)となる。
Figure JPOXMLDOC01-appb-M000002
 更に、L=2C/Tより下記式(5)~式(7)となる。
Figure JPOXMLDOC01-appb-M000003
 この式(5)~(7)の連立方程式を解くことにより、Xa,Ya,Zaが求められ、点Aの座標が求められる。しかしながら、上記の連立方程式を解く必要はなく、空間上の点Aにおける位置に関する情報として、TAB,TAC,TADを与えれば、時間を比較するのみで、座標を特定することができる。これは、光の速度が一定のため、光センサーによる時間の測定結果が同じになるためである。
 このように本実施の形態によれば、仮想空間に絶対座標を点在させて、空間及び構造物Mに位置を特定するための情報を関連付けた地図情報を用いることにより、位置検出対象Nの周囲の構造物M自体が基準点となるため、人工衛星等の基準となるものが不要となる。また、基準点が位置検出対象Nの近くにあるため、高速に測位することができ、測位の精度も向上させることができる。
 以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態及び変形例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、各構成要素について具体的に説明したが、全ての構成要素を備えなくてもよく、また、他の構成要素を備えていてもよい。また、各構成要素における具体的な構成は一例を示したものであり、異なっていてもよい。
 10…センシング地図システム、11…地図情報データベース、12…情報収集手段、13…位置検出手段、M…基準対象物、N…位置検出対象

Claims (3)

  1.  仮想空間に絶対座標を点在させて、空間及び構造物に位置を特定するための情報を関連付けた地図情報を保持する地図情報データベースと、
     現実の空間及び構造物を測定もしくは把握する情報収集手段と、
     前記情報収集手段で取得した情報と、前記地図情報とを比較解析し、位置検出対象の位置を検出する位置検出手段と
     を備えたことを特徴とするセンシング地図システム。
  2.  前記地図情報には、前記情報収集手段で取得した情報も含まれることを特徴とする請求項1記載のセンシング地図システム。
  3.  仮想空間に絶対座標を点在させて、空間及び構造物に位置を特定するための情報を関連付けた地図情報を用い、現実の空間及び構造物を測定もしくは把握することにより得た情報と、前記地図情報とを比較解析することにより、位置検出対象の位置を検出することを特徴とする測位方法。
PCT/JP2021/024186 2020-07-01 2021-06-25 センシング地図システム及び測位方法 WO2022004603A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022533959A JPWO2022004603A1 (ja) 2020-07-01 2021-06-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-114448 2020-07-01
JP2020114448 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022004603A1 true WO2022004603A1 (ja) 2022-01-06

Family

ID=79316011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024186 WO2022004603A1 (ja) 2020-07-01 2021-06-25 センシング地図システム及び測位方法

Country Status (2)

Country Link
JP (1) JPWO2022004603A1 (ja)
WO (1) WO2022004603A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038402A1 (ja) * 2003-10-21 2005-04-28 Waro Iwane ナビゲーション装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038402A1 (ja) * 2003-10-21 2005-04-28 Waro Iwane ナビゲーション装置

Also Published As

Publication number Publication date
JPWO2022004603A1 (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
Wen et al. GNSS NLOS exclusion based on dynamic object detection using LiDAR point cloud
CN110609570A (zh) 一种基于无人机的自主避障巡检方法
CN106461402B (zh) 用于确定相对于数字地图的位置的方法及系统
Borenstein et al. Mobile robot positioning: Sensors and techniques
CN110873570B (zh) 用于位置信息的定源、生成并且更新表示位置的地图的方法和装置
JP5145735B2 (ja) 測位装置及び測位システム
JP7113611B2 (ja) 位置特定装置、位置特定プログラム及び位置特定方法、並びに、撮影画像登録装置、撮影画像登録プログラム及び撮影画像登録方法
KR101886932B1 (ko) 지리정보시스템과 노면영상정보의 동시간 활용을 통한 지표레이더탐사 위치확인 시스템
CN106501829A (zh) 一种无人机导航方法和装置
WO2019136390A1 (en) Tracked distance measuring devices, systems, and methods
KR20180094493A (ko) 실내지도 생성시스템 및 생성방법
CN109937341A (zh) 自己的位置的估计
KR20190032791A (ko) 실시간 위치 측위 시스템 및 이를 이용한 콘텐츠 제공 서비스 시스템
KR20160027605A (ko) 사용자기기의 실내 위치를 측정하기 위한 측위방법 및 이를 구현하기 위한 장치
US20160299229A1 (en) Method and system for detecting objects
JP2018116014A (ja) 自車位置推定装置、制御方法、プログラム及び記憶媒体
CN109282813B (zh) 一种无人艇全局障碍物识别的方法
Suzuki et al. Precise UAV position and attitude estimation by multiple GNSS receivers for 3D mapping
KR101764222B1 (ko) 고정밀 측위 시스템 및 방법
KR101720097B1 (ko) 사용자 기기의 측위방법
KR20160099336A (ko) 모바일 매핑 시스템
WO2022004603A1 (ja) センシング地図システム及び測位方法
KR20230083409A (ko) 고밀집 실내 환경에 적합한 무인비행체 위치 결정 시스템
Sonnessa et al. Indoor Positioning Methods–A Short Review and First Tests Using a Robotic Platform for Tunnel Monitoring
KR101209285B1 (ko) 기준점 및 수준점 확인을 통한 지표면의 지리정보 측지 데이터 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833613

Country of ref document: EP

Kind code of ref document: A1