JP7482445B2 - 固体撮像装置およびカメラ - Google Patents

固体撮像装置およびカメラ Download PDF

Info

Publication number
JP7482445B2
JP7482445B2 JP2021527423A JP2021527423A JP7482445B2 JP 7482445 B2 JP7482445 B2 JP 7482445B2 JP 2021527423 A JP2021527423 A JP 2021527423A JP 2021527423 A JP2021527423 A JP 2021527423A JP 7482445 B2 JP7482445 B2 JP 7482445B2
Authority
JP
Japan
Prior art keywords
circuit
transistor
buffer
solid
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021527423A
Other languages
English (en)
Other versions
JPWO2020261746A1 (ja
Inventor
祐介 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2020261746A1 publication Critical patent/JPWO2020261746A1/ja
Application granted granted Critical
Publication of JP7482445B2 publication Critical patent/JP7482445B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/673Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/011Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • H03M1/1295Clamping, i.e. adjusting the DC level of the input signal to a predetermined value
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本開示は、固体撮像装置およびカメラに関する。
特許文献1は、画素信号をA/D(Analog / Digital)変換するための参照電圧を生成するデジタルアナログ変換回路(DAC)に外付け容量素子を付加し、同外付け容量素子をプリチャージアンプでプリチャージする技術を提案している。
特許第6152992号公報
本開示は、バッファ回路の製造ばらつきに起因するノイズを低減する固体撮像装置およびカメラを提供する。
本開示の一態様に係る固体撮像装置は、入射光の量に対応する画素信号を出力する画素部と、前記画素信号をA/D変換するA/D変換部と、前記A/D変換部で用いられる参照信号を生成するD/A変換回路と、を備え、前記D/A変換回路は、前記参照信号生成用の基準電圧を出力する第1バッファ回路を含み、前記第1バッファ回路は、第1トランジスタおよび第2トランジスタを含む差動対回路と、前記第1トランジスタおよび前記第2トランジスタの特性の差を相殺することにより前記基準電圧のバラつきを抑制する抑制回路と、を含む。
また、本開示の一態様に係るカメラは、上記の固体撮像装置を備える。
本開示の固体撮像装置およびカメラによれば、バッファ回路の製造ばらつきに起因するノイズを低減することができる。
図1は、実施の形態1における固体撮像装置の構成例を示すブロック図である。 図2は、実施の形態1における固体撮像装置のさらに具体的な構成例を示すブロック図である。 図3は、実施の形態1におけるD/A変換回路の構成例を示すブロック図である。 図4は、実施の形態1における参照信号(ランプ波形)とプリチャージ期間とを示すタイムチャートである。 図5は、実施の形態1におけるバッファ回路のより詳細な構成例を示す回路図である。 図6は、実施の形態1におけるバッファ回路のチョッパー動作を示す説明図である。 図7は、実施の形態1におけるバッファ回路のチョッパー動作およびランプ波形を示す説明図である。 図8は、実施の形態1におけるバッファ回路のシミュレーション結果の一例を示す説明図である。 図9は、実施の形態2におけるD/A変換回路の構成例を示すブロック図である。 図10は、実施の形態2におけるオートゼロ回路の構成例を含むバッファ回路のブロック図である。 図11は、実施の形態2におけるオートゼロ回路のオフセットサンプリングモードを示す説明図である。 図12は、実施の形態2におけるオートゼロ回路のオフセットキャンセルモードを示す説明図である。 図13は、実施の形態2におけるオートゼロ回路を有する差動対回路の出力波形の一例を示す図である。 図14は、実施の形態3におけるカメラの構成例を示すブロック図である。 図15は、特許文献1の図4にほぼ相当するD/A変換回路を示す回路図である。 図16は、D/A変換回路の変換特性を示す図である。 図17は、D/A変換回路の変換特性のばらつきを示す説明図である。
(本発明の基礎となった知見)
本発明者は、「背景技術」の欄において記載した、特許文献1のデジタルアナログ変換回路に関し、内部に備えるバッファ回路の製造ばらつきによって画像にノイズが発生し得る、特に、暗い時に撮像された画像には製造ばらつきに起因するノイズが生じ易いという問題が生じることを見出した。
以下、この問題について図15~図17を用いて説明する。
図15は、特許文献1の図4にほぼ相当するD/A変換回路901を示す回路図である。
このD/A変換回路901は、固体撮像装置(つまりイメージセンサ)に備えられ、画素信号のA/D変換に用いられる参照電圧を生成する。そのため、D/A変換回路901は、プリチャージ回路905、基準電圧生成回路911、バッファ回路913、バッファ回路914、DAC本体916、およびバッファ回路917を備える。ここで、参照電圧は、例えばランプ波形を有する三角波信号である。
プリチャージ回路905は、D/A変換回路901に外付けされた容量素子313をプリチャージする回路である。
特許文献1の段落0050以降の記載によると、D/A変換回路901で基準電圧VTOPを伝達するバッファ回路913の出力端に外付け容量素子313を具備することで低ノイズを実現する。しかしながら外付け容量素子313の容量は大きいため(例えば数μF)、バッファ回路913では充分な速度で充電することが出来ない。そこで、高速駆動に特化したプリチャージ回路905を必要なタイミングで駆動することで、外付け容量素子313の高速充電を実現している。
図16は、D/A変換回路901の変換特性を示す図である。同図の縦軸はアナログ出力である電圧を、横軸は時間を示す。同図の(a)は撮像対象が明るいとき、(b)は撮像対象が暗いときに対応する。D/A変換回路901が出力する参照電圧(ランプ波形)は下向きのランプ波形となる。ここでは高い電圧を暗時電圧、低い電圧を明時電圧としている。イメージセンサのアナログデジタル変換回路は、画素部から読み出された画素信号の電圧とランプ波形の電圧とが交わった時刻をコンパレータで検知し、その時刻を所定のクロック信号で動作するカウンタのカウント値をデジタル値として出力することでAD変換を行う。同図の(b)は、(a)と比べて、カメラのアナログゲインを増強している。つまり、アナログゲインの増強は、同図(b)に示すようにランプ波形の傾きを寝かせることで対応する。
ところが、プリチャージ回路905の実際の回路特性には、製造ばらつきが存在する。例えば、プリチャージ回路905を構成するトランジスタのしきい値電圧に製造ばらつきが生じる。特に、トランジスタのサイズが小さい場合には、大きい場合と比べて、製造ばらつきが生じやすい。
図17は、プリチャージ回路905の変換特性のばらつきを示す説明図である。図16と同様に、図17の縦軸は、アナログ出力の電圧を、横軸は時間を示す。また、横軸は、デジタル信号のカウント値に対応する。同図の破線A0は、図16の(b)と同じであり、製造ばらつきによるずれ(オフセット)が0であるときの波形を示す。同図の太線A1は、製造ばらつきによる正のずれ(オフセット)が存在するときの波形を示す。同図の太線A2は、製造ばらつきによる負のずれ(オフセット)が存在するときの波形を示す。参照信号に太線A1、A2のようなばらつきが存在する場合は、参照信号を用いるAD変換にノイズを生じさせる。このノイズは画像にノイズとして現れ、画質を劣化させる。
さらに、固体撮像装置のコスト要請により、プリチャージ回路905は基準電圧VTOPを伝達するバッファ回路913よりも小面積で実現する必要がある。つまり、プリチャージ回路905を構成するトランジスタのサイズは、バッファ回路913を構成するトランジスタのサイズよりも小さくする必要がある。そのため、プリチャージ回路905は、バッファ回路913よりも製造ばらつきが大きくなりやすい。
この点は、特にアナログゲインを増強した場合に重大な問題となる。
図17に記載しているが、高アナログゲイン時は元々ランプ波形のダイナミックレンジが狭いため、製造ばらつきによる誤差でも大きな誤差となる。例えば、一般的に+30dBの高アナログゲイン時のランプ波形のダイナミックレンジは数10mVであるのに対して、プリチャージ回路の製造ばらつきは数mV以上である。つまり、ダイナミックレンジがプラスマイナス数10%程度ずれることとなり、AD変換結果が適切でないことがある。
このような問題を解決するために、本開示の一態様に係る固体撮像装置は、入射光の量に対応する画素信号を出力する画素部と、前記画素信号をA/D変換するA/D変換部と、前記A/D変換部で用いられる参照信号を生成するD/A変換回路と、を備え、前記D/A変換回路は、前記参照信号生成用の基準電圧を出力する第1バッファ回路を含み、前記第1バッファ回路は、第1トランジスタおよび第2トランジスタを含む差動対回路と、前記第1トランジスタおよび前記第2トランジスタの特性の差を相殺することにより前記基準電圧のばらつきを抑制する抑制回路と、を含む。
これにより、バッファ回路の製造ばらつきに起因するノイズを低減することができる。また、第1トランジスタおよび第2トランジスタの特性の差を相殺するので、第1トランジスタのサイズおよび第2トランジスタのサイズを小型化することができる。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも一包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本開示の一形態に係る実現形態を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。本開示の実現形態は、現行の独立請求項に限定されるものではなく、他の独立請求項によっても表現され得る。
(実施の形態1)
実施の形態1では、バッファ回路の製造ばらつきをキャンセルするために、チョッパー動作による経路切替機構を持つ抑制回路を備える固体撮像装置1の例について説明する。
[1.1 固体撮像装置1の構成例]
まず、固体撮像装置の構成例について説明する。
図1は、実施の形態1における固体撮像装置1の構成例を示すブロック図である。
同図において固体撮像装置1は、D/A変換回路101、画素部102、およびA/D変換部103を備える。
D/A変換回路101は、A/D変換部103で用いられる参照信号を生成する。参照信号はランプ波形または三角波形を有する。D/A変換回路101は、参照信号生成用の基準電圧を出力するバッファ回路104を備える。
画素部102は、入射光の量に対応する画素信号を出力する。
A/D変換部103は、画素部102から出力される画素信号をA/D(Analog / Digital)変換する。
バッファ回路104は、差動対回路105と抑制回路106とを含む。
差動対回路105は、第1トランジスタおよび第2トランジスタからなるトランジスタ対を有する差動増幅器(いわゆるオペアンプ)であり、バッファとして用いられる。
抑制回路106は、第1トランジスタおよび第2トランジスタの特性の差を相殺することにより、参照信号生成用の基準電圧のばらつきを抑制する。これにより、バッファ回路の製造ばらつきに起因するノイズを低減することができる。
次に、固体撮像装置1のより具体的な構成例について説明する。
図2は、実施の形態1における固体撮像装置1のさらに具体的な構成例を示すブロック図である。
同図において、固体撮像装置1は、CMOSイメージセンサであり、D/A変換回路101、画素部102、A/D変換部(読出回路)103、垂直走査回路(行走査回路)303、水平転送走査回路(列走査回路)304、タイミング制御回路305、および出力回路306を備える。
D/A変換回路101は、A/D変換部103で用いられる参照信号を生成する。D/A変換回路101は、図1に示したようにバッファ回路104を備える。バッファ回路104は、既に説明したように、差動対回路105および抑制回路106を備える。なお、D/A変換回路101には、固体撮像装置1の外部に設けられた容量素子313が接続されている。
画素部102は、光電変換を行う複数の画素回路3が行列状に配列された撮像部である。
読出回路(A/D変換部)103は、列毎に設けられたA/D変換回路107を有し、複数の画素回路単位で画素部102から画素信号を読み出し、読み出した画素信号をA/D変換する。
A/D変換回路107は、比較器307、カウンタ308およびデジタルメモリ309を有する。
比較器307は、D/A変換回路101からの参照電圧と、対応する列の画素回路3から出力されるアナログの画素信号の電位とを比較し、一致したときに出力信号を反転するする。
カウンタ308は、対応する比較器307における比較時間をカウントする回路であって、当該比較器307の出力信号が反転するとカウントを停止する。停止したときのカウント値が、アナログの画素信号に対応するデジタルの画素信号である。
デジタルメモリ309は、対応するカウンタ308のカウント値を保持する。このカウント値は、デジタル化された画素信号である。
垂直走査回路(行走査回路)303は、行単位で画素回路3を走査する。この走査により、画素回路3における露光および画素信号の出力を制御する。
水平転送走査回路(列走査回路)304は、A/D変換回路107を列単位に走査する。具体的には、水平転送走査回路304は、デジタルメモリ309に保持されたデジタルの画素信号を列単位で選択する。
タイミング制御回路305は、D/A変換回路101、A/D変換部103、および垂直走査回路303の動作タイミングを制御する。
出力回路306は、水平転送走査回路304によって選択されたデジタルの画素信号を外部に出力する出力バッファである。
次に、D/A変換回路101の構成例について説明する。
図3は、実施の形態1におけるD/A変換回路101の構成例を示すブロック図である。
同図のD/A変換回路101は、バッファ回路104、バッファ回路113、バッファ回路114、基準電圧生成回路111、スイッチ115、DAC本体116、およびバッファ回路117を備える。なお、バッファ回路113の出力線には、固体撮像装置1に外付けされた容量素子313が接続される。
バッファ回路104は、D/A変換回路101に外付けされる容量素子313を基準電圧VTOPにプリチャージするプリチャージ回路の例を示している。このバッファ回路104は、差動対回路105と第1回路11と第2回路12とを備える。差動対回路105は、バッファとして用いられる差動増幅器(いわゆるオペアンプ)である。第1回路11および第2回路12は、図1に示した抑制回路106を構成する。第1回路11および第2回路12は、差動対回路105における第1トランジスタおよび第2トランジスタの接続関係を交互に繰り返し入れ替えるための経路切替機構として構成される。第1回路11は、差動対回路105の入力側において差動信号を交互に繰り返し入れ替えるチョッパー動作を行う。第2回路12は、差動対回路105の出力側において差動信号を交互に繰り返し入れ替えるチョッパー動作を行う。ここで、「差動対回路105の入力側において」というのは、「差動対回路105に入力される」または「差動対回路105内部の」を意味する。また、「差動対回路105の出力側において」というのは、「差動対回路105から出力される」または「差動対回路105内部であって第1回路11よりも後段の」を意味する。上記の第1回路11および第2回路12は、交互に繰り返し入れ替えるチョッパー動作を同じタイミングで行う。
基準電圧生成回路111は、基準電圧VTOPおよび基準電圧VBTMを生成する。
バッファ回路113は、基準電圧生成回路111により生成された基準電圧VTOPをバッファしてDAC本体116に出力する。
バッファ回路114は、基準電圧生成回路111により生成された基準電圧VBTMをバッファしてDAC本体116に出力する。
スイッチ115は、バッファ回路104による容量素子313のプリチャージをオンおよびオフするためのスイッチである。
DAC本体116は、基準電圧VTOPと基準電圧VBTMとが入力される抵抗ラダーと、入力されたデジタル信号に応じてオンおよびオフするスイッチ群とを有する。これにより、DAC本体116は、基準電圧VTOPから基準電圧VBTMまでの範囲でデジタル信号に応じた電圧を生成することにより、後段のA/D変換に用いられる参照電圧(ランプ波形)を出力する。
バッファ回路117は、DAC本体116で生成された参照信号をバッファし出力する。
次に、バッファ回路104による容量素子313のプリチャージのタイミング例について説明する。
図4は、実施の形態1における参照信号(ランプ波形)とプリチャージ期間とを示すタイムチャートである。
同図では、2H(2水平走査)期間における参照信号の電圧波形(ランプ波形)と、スイッチ115のオンオフ動作を示す波形とが示されている。
1H期間においてA/D変換回路107はCDS(相関二重検出)を行うためにA/D変換を2回行う。そのため、1H期間の参照信号は、2回のA/D変換に対応してRST(リセット)レベルA/D変換期間と、信号レベルA/D変換期間とを有する。
スイッチ115は、1H期間の先頭でオンになり、プリチャージ期間経過後にオフになる。スイッチ115がオンの期間はプリチャージ期間であり、バッファ回路104により容量素子313が基準電圧VTOPにプリチャージされる。
[1.2 バッファ回路104の構成例]
次に、バッファ回路104のさらに詳細な構成例について説明する。
図5は、実施の形態1におけるバッファ回路104のより詳細な構成例を示す回路図である。
同図のバッファ回路104は、第1トランジスタ509、第2トランジスタ510、トランジスタ515、トランジスタ516、電流源517、トランジスタ518、電流源519、抵抗520、および容量素子521を差動対回路105として備える。この差動対回路105は、初段アンプとしての差動増幅回路と2段目アンプとしてのソースフォロワ回路とからなる2段アンプ構成の例を示している。
さらに、バッファ回路104は、インバーター503、第1回路11、および第2回路12を抑制回路106として備える。この抑制回路106は、チョッパー動作する経路切替機構として機能する。この経路切り替え機構は、差動対回路105における2段アンプ構成の初段側アンプに具備されている。
インバーター503は、第1回路11および第2回路12にチョッパー動作用のクロック信号を供給する。クロック信号は、非反転クロック信号C_Pと、反転クロック信号C_Nとの2種類ある。非反転クロック信号C_Pと、反転クロック信号C_Nとは、180度異なる位相をもつ、つまり互いに反転した関係にある。
第1回路11は、4つのNMOS型のトランジスタ505~508を有し、初段アンプの入力側における経路切替機構を構成する。この第1回路11は、2つの入力端子と2つの出力端子とを有し、2つの入力端子と2つの出力端子との間でストレート接続とクロス接続とを切り替える。
第2回路12は、4つのNMOS型のトランジスタ511~514を有し、初段アンプの出力側の経路切替機構を構成する。この第2回路12は、2つの入力端子と2つの出力端子とを有し、2つの入力端子と2つの出力端子との間でストレート接続とクロス接続とを切り替える。なお、トランジスタ511~514は、副次的にカスコードトランジスタの役割を持たせて、初段アンプ全体のゲイン増強に寄与することもできる。
非反転クロック信号C_PがH(ハイレベル)のときは、トランジスタ505、508、511、514がオン状態であり、トランジスタ506、507、512、513がオフ状態である。すなわち、基準電圧VTOPが入力される初段アンプのプラス入力端子とトランジスタ509のゲートとが接続され、初段アンプのマイナス入力端子とトランジスタ510とが接続される。つまり、第1回路11および第2回路12は、ともにストレート接続の状態である。
反対に、非反転クロック信号C_PがL(ローレベル)ときは、トランジスタ506、507、512、513がオン状態であり、トランジスタ505、508、511、514がオフ状態である。すなわち、基準電圧VTOPが入力される初段アンプのプラス入力端子とトランジスタ510とが接続され、初段アンプのマイナス入力端子とトランジスタ509とが接続される。すなわち、CHPがHのときとちょうど逆の関係になる。つまり、第1回路11および第2回路12は、ともにクロス接続の状態である。
非反転クロック信号C_Pが反転する度に接続関係が入れ替わりつつバッファとして動作し、その出力がスイッチ115を介して外付け容量素子313に蓄積される。すなわち、第1トランジスタ509と第2トランジスタ510とで構成される入力差動対にばらつきがあっても、その平均値が容量素子313に蓄積される。バッファ回路104のばらつきは入力差動対が支配的であるため、図5の第1回路11および第2回路12で構成される経路切替機構で強力なばらつき相殺効果を発揮する。
なお、図5のバッファ回路104の構成例では、NMOS型のトランジスタを用いているが、PMOS型のトラジスタを用いてもよいし、CMOS型のトランジスタを用いてもよい。
次に、ばらつきの相殺効果について説明する。
図6は、実施の形態1におけるバッファ回路104のチョッパー動作を示す説明図である。同図の横軸は時間を示し、縦軸はバッファ回路104の出力電圧と、非反転クロック信号C_Pの信号波形とを示す。ΔVは、入力差動対のばらつきによる出力電圧のずれ(オフセット)を示す。同図のように、バッファ回路104の出力電圧は、破線B1、B2に示すように、非反転クロック信号C_Pによるチョッパー動作が進むにつれて、オフセットΔVに対するキャンセル効果が強まっていき、出力電圧は最終的に基準電圧VTOPに平均化されていく。
さらに、固体撮像装置1のAD変換特性の改善について説明する。
図7は、実施の形態1におけるバッファ回路104のチョッパー動作およびランプ波形を示す説明図である。同図の横軸および縦軸は図6と同じである。図7に示すように、抑制回路106は、実際のAD変換動作(実線B3のランプ波形)に移る前に、チョッパー動作によりばらつきを相殺する(破線B1、B2)ことができる。チョッパー動作を停止させた状態で実際のAD変換を行うことで、ばらつきが削減された理想特性に近いAD変換特性を得ることができる。
次に、固体撮像装置1のAD変換のシミュレーション結果について説明する。
図8は、実施の形態1におけるバッファ回路104のシミュレーション結果の一例を示す説明図である同図の横軸は時間を示し、縦軸はバッファ回路104の出力電圧を示す。このシミュレーション例では、抑制回路106のチョッパー動作開始前にオフセットΔV=20mVが現れていた。チョッパー動作期間の経過に連れてオフセットΔVが平均化されて小さくなっている。チョッパー動作期間の終了時にはオフセットΔV=177μVまで小さくなり、元のオフセットΔVを強力にキャンセルできている。このように、抑制回路106は、入力差動対の製造ばらつきに起因するノイズを大きく低減することができる。また、第1トランジスタおよび第2トランジスタの特性の差(例えば、しきい値電圧Vtのばらつき)を相殺するので、第1トランジスタおよび第2トランジスタの特性の差の存在を積極的に許容することができ、言い換えれば、第1トランジスタのサイズおよび第2トランジスタのサイズを小型化することができる。第1トランジスタのサイズおよび第2トランジスタのサイズは、バッファ回路113またはバッファ回路114を構成するトランジスタのサイズよりも小さくてもよく、例えば1/2以下であってもよい。あるいは、第1トランジスタのサイズおよび第2トランジスタのサイズは、バッファ回路113の差動対回路を構成するトランジスタのサイズよりも小さくてもよく、例えば1/2以下であってもよい。あるいは、第1トランジスタのサイズおよび第2トランジスタのサイズは、DA変換回路101に含まれる他のバッファ回路、すなわちバッファ回路113、バッファ回路114およびバッファ回路117のそれぞれの差動対回路を構成するトランジスタのサイズよりも小さくてもよく、例えば1/2以下であってもよい。ここでいう「トランジスタのサイズ」とはゲート幅とゲート長との積を意味する。
以上説明してきたように、実施の形態1における固体撮像装置1は、入射光の量に対応する画素信号を出力する画素部102と、画素信号をA/D変換するA/D変換部103と、A/D変換部で用いられる参照信号を生成するD/A変換回路101と、を備え、D/A変換回路101は、参照信号生成用の基準電圧VTOPを出力するバッファ回路104を含み、バッファ回路104は、第1トランジスタ509および第2トランジスタ510を含む差動対回路105と、第1トランジスタ509および第2トランジスタ510の特性の差を相殺することにより基準電圧のバラつきを抑制する抑制回路106と、を含む。
これによれば、バッファ回路の製造ばらつきに起因するノイズを低減することができる。また、第1トランジスタおよび第2トランジスタの特性の差を相殺するので、第1トランジスタのサイズおよび第2トランジスタのサイズを小型化することができる。
ここで、抑制回路106は、差動対回路105における第1トランジスタ509および第2トランジスタ510の接続関係を交互に繰り返し入れ替えてもよい。
これによれば、上記の接続関係を交互に繰り返し入れ替えることにより、ばらつきを平均化する。つまり、ばらつきの平均化によって、上記の特性の差を相殺することができる。
ここで、差動対回路105は、基準電圧VTOPに対応する差動信号が入力され、抑制回路106は、差動対回路105の入力側において差動信号を交互に繰り返し入れ替える第1回路11と、差動対回路105の出力側において差動信号を交互に繰り返し入れ替える第2回路12と、を含み、第1回路11および第2回路12は、交互に繰り返し入れ替える動作を同じタイミングで行ってもよい。
これによれば、第1回路は差動対回路の入力側に、第2回路は差動対回路の出力側に挿入される。第1回路および第2回路によって、上記接続関係を交互に繰り返し入れ替えることができる。
ここで、第1回路11は、2つの入力端子と2つの出力端子とを有し、2つの入力端子と2つの出力端子との間でストレート接続とクロス接続とを切り替え、第2回路12は、2つの入力端子と2つの出力端子とを有し、2つの入力端子と2つの出力端子との間でストレート接続とクロス接続とを切り替えてもよい。
これによれば、第1回路および第2回路は、ストレート接続とクロス接続とを切り替える切り替え回路として簡単に構成できる。
ここで、第1トランジスタ509および第2トランジスタ510のサイズは、D/A変換回路101内の他のトランジスタのサイズよりも小さくてもよい。
これによれば、バッファ回路が占める回路面積を小さくすることができ、バッファ回路による回路コストを抑制することができる。
ここで、バッファ回路104は、D/A変換回路101に外付けされる容量素子313を基準電圧VTOPにプリチャージするプリチャージ回路であってもよい。
これによれば、バッファ回路のプリチャージにより、固体撮像装置における複数回のA/D変換の処理時間を短縮することができる。つまり、固体撮像装置の撮像動作の高速化を容易にする。
ここで、D/A変換回路101は、バッファ回路104に並列に接続されるバッファ回路113を含み、バッファ回路113は抑制回路106を含まなくてもよい。
これによれば、簡易な回路構成により、バッファ回路の製造ばらつきに起因するノイズを効率的に低減することができる。
ここで、D/A変換回路101は、バッファ回路104を含む複数のバッファ回路を含み、複数のバッファ回路のうちバッファ回路104以外のバッファ回路、すなわちバッファ回路113、バッファ回路114およびバッファ回路117は、抑制回路106を含まなくてもよい。
これによれば、簡易な回路構成により、バッファ回路の製造ばらつきに起因するノイズを効率的に低減することができる。
ここで、D/A変換回路101は、バッファ回路104に並列に接続されるバッファ回路113を含み、第1トランジスタ509および第2トランジスタ510のサイズは、バッファ回路113の差動対回路を構成するトランジスタのサイズよりも小さくてもよい。
これによれば、バッファ回路が占める回路面積を小さくすることができ、バッファ回路による回路コストを抑制することができる。
ここで、D/A変換回路101は、バッファ回路104を含む複数のバッファ回路を含み、第1トランジスタ509および第2トランジスタ510のサイズは、複数のバッファ回路のうちバッファ回路104以外のバッファ回路、すなわちバッファ回路113、バッファ回路114およびバッファ回路117の差動対回路を構成するトランジスタのサイズよりも小さくてもよい。
これによれば、バッファ回路が占める回路面積を小さくすることができ、バッファ回路による回路コストを抑制することができる。
(実施の形態2)
実施の形態1では、バッファ回路の製造ばらつきをキャンセルするために、チョッパー動作による経路切替機構を持つ抑制回路106を備える固体撮像装置の例について説明した。実施の形態2では、バッファ回路の製造ばらつきをキャンセルするために、入力差動対のオフセットをキャンセルするオートゼロ回路を抑制回路106として備える固体撮像装置の例について説明する。
[2.1 固体撮像装置1の構成例]
実施の形態2における固体撮像装置1の構成は、実施の形態1に示した図1および図2と同様である。ただし、D/A変換回路101内の抑制回路106の構成が異なっている。以下、異なる点を中心に説明する。
図9は、実施の形態2におけるD/A変換回路101の構成例を示すブロック図である。
同図は、図3と比べて、バッファ回路104において第1回路11および第2回路12の代わりにオートゼロ回路20を備える点が異なっている。言い換えれば、抑制回路106としてオートゼロ回路20を備える点が異なっている。以下、異なる点を中心に説明する。
オートゼロ回路20は、差動対回路105に発生するオフセットをキャンセルする回路である。
図10は、実施の形態2におけるオートゼロ回路20の構成例を含むバッファ回路104のブロック図である。
同図のように、オートゼロ回路20は、スイッチ21~23と、容量素子24とを備え、オフセットサンプリングモードおよびオフセットキャンセルモードで動作する。
次に、オフセットサンプリングモードおよびオフセットキャンセルモードについて図11および図12を用いて説明する。なお、以下の説明中、(オン、オフ、オン)の表記は、この順でスイッチ21、22、23の状態を意味する。
図11は、実施の形態2におけるオートゼロ回路20のオフセットサンプリングモードを示す説明図である。
オフセットサンプリングモードではスイッチ21~23は、(オン、オフ、オン)状態であり、これにより容量素子24にオフセットΔVをサンプリングする。オフセットΔVは、差動対回路105の正転入力端子と、出力端子に接続された反転入力端子との間に発生するずれ電圧である。オフセットは、本来理想的には0Vであるが差動対回路105の入力差動対の製造ばらつきによって発生する。このとき、差動対回路105の出力は、ΔVの影響を受けて基準電圧VTOPよりもオフセットΔVだけ低い電圧(VTOP-ΔV)になる。容量素子24には、図11の矢線に示す極性のオフセット電圧ΔVがサンプリングつまり保持される。なお、このとき、出力端子に接続されたスイッチ115は、負荷を切り離す観点からオフであることが好ましいが、必ずしもオフである必要はない。
図12は、実施の形態2におけるオートゼロ回路20のオフセットキャンセルモードを示す説明図である。
オフセットキャンセルモードにおいてスイッチ21~23は、(オフ、オン、オフ)状態であり、容量素子24にサンプリングしたオフセットΔVを、差動対回路105のオフセットΔVの逆極性で供給する。つまり、正転入力端子には基準電圧VTOPにサンプリングしたΔVを加えた電圧(VTOP+ΔV)が供給される。これにより、差動対回路105の正転入力端子と反転入力端子との間に発生するオフセットΔVは、キャンセルされる。このとき出力端子の電圧は基準電圧VTOPになる。なお、スイッチ21、22、23の動作については、互いに同時にオン状態が重なることが無いノンオーバーラップ動作である必要がある。
次に、オートゼロ回路20の動作例について説明する。
図13は、実施の形態2におけるオートゼロ回路20を有する差動対回路105の出力波形の一例を示す図である。同図の横軸は時間を、縦軸は差動対回路105の出力端子の電圧を示す。破線は基準電圧VTOPを示す。
同図において、まず、オフセットサンプリングモードにおいてΔVだけ誤差をもった電圧が出力される。オフセットキャンセルモードへの切り替え時には、実際には出力電圧にスイッチングノイズが重畳されることになる。スイッチ21~23のオンおよびオフ動作には必ずスイッチングノイズが伴い、スイッチングノイズがゼロであることは物理的にはあり得ない。さらに、回路面積の制約から容量素子24の回路面積を十分に確保できない場合があり、オフセットキャンセルモードにおいて、同図に示すようなスイッチングノイズは無視できない電圧、例えば数mVになることがある。
このように多少のスイッチングノイズが伴うけれども、オートゼロ回路20は、製造ばらつきによるずれ(オフセット電圧)をサンプルし、サンプルした電圧によりオフセット電圧をキャンセルする。つまり、差動対回路105の入力差動対の特性の差を簡単に相殺することができる。
また、本実施の形態におけるオートゼロ回路20を有するバッファ回路104のメリットの1つは、低消費電力性である。差動対回路105には充分に長いセトリング期間を与えることができるので、動作周波数を下げることができる。ここでセトリング期間は、DACにデジタル信号が入力されてからアナログ信号出力が最終的に確定するまでの期間をいう。
また、実施の形態2のバッファ回路104は、実施の形態1の抑制回路106を有するバッファ回路104と比べて、チョッパー動作をしないので動作周波数を下げる設計が容易であることから低消費電力性に優れている。
以上説明してきたように、実施の形態2における固体撮像装置1は、抑制回路106は、差動対回路105に接続されるオートゼロ回路20を含む。
これによれば、オートゼロ回路は、製造ばらつきによるずれ(オフセット電圧)をサンプルし、サンプルした電圧によりオフセット電圧をキャンセルする。つまり、上記の特性の差を簡単に相殺することができる。
ここで、第1トランジスタ509および第2トランジスタ510のサイズは、D/A変換回路101内の他のトランジスタのサイズよりも小さくてもよい。
これによれば、バッファ回路が占める回路面積を小さくすることができ、バッファ回路による回路コストを抑制することができる。
ここで、バッファ回路104は、D/A変換回路101に外付けされる容量素子を基準電圧にプリチャージするプリチャージ回路であってもよい。
これによれば、バッファ回路のプリチャージにより、固体撮像装置における複数回のA/D変換の処理時間を短縮することができる。つまり、固体撮像装置の撮像動作の高速化を容易にする。
ここで、D/A変換回路101は、バッファ回路104に並列に接続されるバッファ回路113を含み、バッファ回路113は抑制回路106であるオートゼロ回路20を含まなくてもよい。
これによれば、簡易な回路構成により、バッファ回路の製造ばらつきに起因するノイズを効率的に低減することができる。
ここで、D/A変換回路101は、バッファ回路104を含む複数のバッファ回路を含み、複数のバッファ回路のうちバッファ回路104以外のバッファ回路、すなわちバッファ回路113、バッファ回路114およびバッファ回路117は、抑制回路106であるオートゼロ回路20を含まなくてもよい。
これによれば、簡易な回路構成により、バッファ回路の製造ばらつきに起因するノイズを効率的に低減することができる。
ここで、D/A変換回路101は、バッファ回路104に並列に接続されるバッファ回路113を含み、第1トランジスタ509および第2トランジスタ510のサイズは、バッファ回路113の差動対回路を構成するトランジスタのサイズよりも小さくてもよい。
これによれば、バッファ回路が占める回路面積を小さくすることができ、バッファ回路による回路コストを抑制することができる。
ここで、D/A変換回路101は、バッファ回路104を含む複数のバッファ回路を含み、第1トランジスタ509および第2トランジスタ510のサイズは、複数のバッファ回路のうちバッファ回路104以外のバッファ回路、すなわちバッファ回路113、バッファ回路114およびバッファ回路117の差動対回路を構成するトランジスタのサイズよりも小さくてもよい。
これによれば、バッファ回路が占める回路面積を小さくすることができ、バッファ回路による回路コストを抑制することができる。
(実施の形態3)
本実施の形態では、実施の形態1または実施の形態2の固体撮像装置1を備えるカメラの構成例について説明する。上述した実施の形態1および2に係る固体撮像装置1は、デジタルビデオカメラやデジタルスチルカメラ等の撮像装置において、その撮像デバイス(画像入力装置)として適用できる。
図14は、実施の形態3におけるカメラ400の構成例を示すブロック図である。
同図においてカメラ400は、固体撮像装置1と、固体撮像装置1の撮像面に入射光を導く(被写体像を結像する)光学系として、たとえば入射光(像光)を撮像面上に結像させるレンズ401を有する。さらに、このカメラ400は、固体撮像装置1を駆動するシステムコントローラ404と、固体撮像装置1の出力信号を処理する信号処理部403と、を備える。
固体撮像装置1は、レンズ401によって撮像面に結像された像光を画素単位で電気信号に変換して得られる画像信号を出力する。この固体撮像装置1として、実施の形態1または実施の形態2に係る固体撮像装置が用いられる。
信号処理部403は、固体撮像装置1から出力される画像信号に対して種々の信号処理を行う。システムコントローラ404は、固体撮像装置1や信号処理部403に対する制御を行う。
信号処理部403で処理された画像信号は、たとえばメモリなどの記録媒体に記録される。記録媒体に記録された画像情報は、プリンタなどによってハードコピーされる。また、信号処理部403で処理された画像信号を液晶ディスプレイ等からなるモニターに動画として映し出される。
上述したように、デジタルスチルカメラ等の撮像装置としてのカメラ400は、固体撮像装置1を搭載することで、バッファ回路の製造ばらつきに起因するノイズを低減することができ、高画質の画像を得ることができる。また、第1トランジスタおよび第2トランジスタの特性の差を相殺するので、第1トランジスタのサイズおよび第2トランジスタのサイズを小型化することができる。これにより、バッファ回路の回路面積を小型化して製造コストを抑制することができる。
また、本開示は、以上の実施形態に限定されることなく、種々の変更が可能であり、それらも本開示の範囲内に包含されるものであることは言うまでもない。
なお、本開示に係る固体撮像装置は、上記実施の形態に限定されるものではない。各実施形態における任意の構成要素を組み合わせて実現される別の実施の形態や、各実施の形態に対して本開示の趣旨を逸脱しない範囲で当業者が思いつく、有機積層膜センサや裏面照射型センサなどの各種変形を施して得られる変形例や、本開示に係る固体撮像装置を内蔵した各種機器も本開示に含まれる。
なお、実施の形態1および2において、抑制回路106がプリチャージ回路としてのバッファ回路104に備えられる構成例について説明したが、これに限らない。例えば、抑制回路106は、図3および図9のバッファ回路113、バッファ回路114およびバッファ回路117のうちの少なくとも1つに備えられてもよい。
また、抑制回路106は、差動対回路105のようなオペアンプを有する他のバッファ回路に備えられてもよい。
本開示における固体撮像装置およびカメラは、デジタルビデオカメラ、デジタルスチルカメラ及び携帯機器等への利用において有用である。
1 固体撮像装置
3 画素回路
101 D/A変換回路
102 画素部
103 A/D変換部
104、112~114 バッファ回路
105 差動対回路
106 抑制回路
107 A/D変換回路
111 基準電圧生成回路
115 スイッチ
116 DAC本体
117 バッファ回路
11 第1回路
12 第2回路
20 オートゼロ回路
21~24 スイッチ
24 容量素子
303 垂直走査回路
304 水平転送走査回路
305 タイミング制御回路
306 出力回路
307 比較器
308 カウンタ
309 デジタルメモリ
312 出力部
313 容量素子
400 カメラ
401 レンズ
403 信号処理回路
404 システムコントローラ
503 インバーター
505~516、518 トランジスタ
517 電流源
519 電流源
520 抵抗
521 容量素子

Claims (14)

  1. 入射光の量に対応する画素信号を出力する画素部と、
    前記画素信号をA/D変換するA/D変換部と、
    前記A/D変換部で用いられる参照信号を生成するD/A変換回路と、
    を備え、
    前記D/A変換回路は、前記参照信号生成用の基準電圧を出力する第1バッファ回路を含み、
    前記第1バッファ回路は、
    第1トランジスタおよび第2トランジスタを含む差動対回路と、
    前記第1トランジスタおよび前記第2トランジスタの特性の差を相殺することにより前記基準電圧のばらつきを抑制する抑制回路と、を含む
    固体撮像装置。
  2. 前記抑制回路は、前記差動対回路における前記第1トランジスタおよび前記第2トランジスタの接続関係を交互に繰り返し入れ替える、
    請求項1に記載の固体撮像装置。
  3. 前記差動対回路は、前記基準電圧に対応する差動信号が入力され、
    前記抑制回路は、
    前記差動対回路の入力側において差動信号を交互に繰り返し入れ替える第1回路と、
    前記差動対回路の出力側において差動信号を交互に繰り返し入れ替える第2回路と、を含み、
    前記第1回路および前記第2回路は、交互に繰り返し入れ替える動作を同じタイミングで行う、
    請求項1または2に記載の固体撮像装置。
  4. 前記第1回路は、2つの入力端子と2つの出力端子とを有し、前記2つの入力端子と前記2つの出力端子との間でストレート接続とクロス接続とを切り替え、
    前記第2回路は、2つの入力端子と2つの出力端子とを有し、前記2つの入力端子と前記2つの出力端子との間でストレート接続とクロス接続とを切り替える、
    請求項3に記載の固体撮像装置。
  5. 前記第1トランジスタおよび前記第2トランジスタのサイズは、前記D/A変換回路内の他のトランジスタよりも小さい、
    請求項1~4の何れか1項に記載の固体撮像装置。
  6. 前記第1バッファ回路は、前記D/A変換回路に外付けされる容量素子を前記基準電圧にプリチャージするプリチャージ回路である、
    請求項1~5の何れか1項に記載の固体撮像装置。
  7. 前記抑制回路は、前記差動対回路に接続されるオートゼロ回路を含む、
    請求項1に記載の固体撮像装置。
  8. 前記第1トランジスタおよび前記第2トランジスタのサイズは、前記D/A変換回路内の他のトランジスタのサイズよりも小さい、
    請求項7に記載の固体撮像装置。
  9. 前記第1バッファ回路は、前記D/A変換回路に外付けされる容量素子を前記基準電圧にプリチャージするプリチャージ回路である請求項7または8に記載の固体撮像装置。
  10. 前記D/A変換回路は、前記第1バッファ回路に並列に接続される第2バッファ回路を含み、
    前記第2バッファ回路は、前記抑制回路を含まない、
    請求項1~9の何れか1項に記載の固体撮像装置。
  11. 前記D/A変換回路は、前記第1バッファ回路を含む複数のバッファ回路を含み、
    前記複数のバッファ回路のうち前記第1バッファ回路以外のバッファ回路は、前記抑制回路を含まない、
    請求項1~10の何れか1項に記載の固体撮像装置。
  12. 前記D/A変換回路は、前記第1バッファ回路と並列に接続される第2バッファ回路を含み、
    前記第1トランジスタおよび前記第2トランジスタのサイズは、前記第2バッファ回路の差動対回路を構成するトランジスタのサイズよりも小さい、
    請求項1~11の何れか1項に記載の固体撮像装置。
  13. 前記D/A変換回路は、前記第1バッファ回路を含む複数のバッファ回路を含み、
    前記第1トランジスタおよび前記第2トランジスタのサイズは、前記複数のバッファ回路のうち前記第1バッファ回路以外のバッファ回路の差動対回路を構成するトランジスタのサイズよりも小さい、
    請求項1~12の何れか1項に記載の固体撮像装置。
  14. 請求項1~13の何れか1項に記載の固体撮像装置を備えるカメラ。
JP2021527423A 2019-06-25 2020-04-27 固体撮像装置およびカメラ Active JP7482445B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019117538 2019-06-25
JP2019117538 2019-06-25
PCT/JP2020/017887 WO2020261746A1 (ja) 2019-06-25 2020-04-27 固体撮像装置およびカメラ

Publications (2)

Publication Number Publication Date
JPWO2020261746A1 JPWO2020261746A1 (ja) 2020-12-30
JP7482445B2 true JP7482445B2 (ja) 2024-05-14

Family

ID=74060519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021527423A Active JP7482445B2 (ja) 2019-06-25 2020-04-27 固体撮像装置およびカメラ

Country Status (3)

Country Link
US (1) US11647306B2 (ja)
JP (1) JP7482445B2 (ja)
WO (1) WO2020261746A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189461A1 (en) 2002-04-05 2003-10-09 Huijsing Johan Hendrik Chopper chopper-stabilized operational amplifiers and methods
JP2009038834A (ja) 2008-10-31 2009-02-19 Sony Corp 固体撮像装置、撮像装置
JP2009260490A (ja) 2008-04-14 2009-11-05 Omron Corp 差動増幅回路及びそれを用いた電源回路
JP2012147339A (ja) 2011-01-13 2012-08-02 Panasonic Corp 固体撮像装置、固体撮像装置を備えたカメラ及び固体撮像装置の駆動方法
JP6152992B2 (ja) 2012-05-30 2017-06-28 パナソニックIpマネジメント株式会社 固体撮像装置およびカメラ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157578A (en) * 1981-03-23 1982-09-29 Sumitomo Electric Ind Ltd Active crystalline silicon thin film photovoltaic element
WO2000030249A1 (en) 1998-11-12 2000-05-25 Koninklijke Philips Electronics N.V. Circuit comprising means for reducing the dc-offset and the noise produced by an amplifier
US7528752B1 (en) * 2007-04-13 2009-05-05 Link—A—Media Devices Corporation Offset compensation scheme using a DAC
WO2012144234A1 (ja) * 2011-04-21 2012-10-26 パナソニック株式会社 電圧発生回路、アナログ・デジタル変換回路、固体撮像装置、及び撮像装置
JP6112306B2 (ja) 2011-11-25 2017-04-12 パナソニックIpマネジメント株式会社 固体撮像装置及びそれを備える撮像装置
JP6421341B2 (ja) 2014-01-22 2018-11-14 パナソニックIpマネジメント株式会社 固体撮像装置及び撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189461A1 (en) 2002-04-05 2003-10-09 Huijsing Johan Hendrik Chopper chopper-stabilized operational amplifiers and methods
JP2009260490A (ja) 2008-04-14 2009-11-05 Omron Corp 差動増幅回路及びそれを用いた電源回路
JP2009038834A (ja) 2008-10-31 2009-02-19 Sony Corp 固体撮像装置、撮像装置
JP2012147339A (ja) 2011-01-13 2012-08-02 Panasonic Corp 固体撮像装置、固体撮像装置を備えたカメラ及び固体撮像装置の駆動方法
JP6152992B2 (ja) 2012-05-30 2017-06-28 パナソニックIpマネジメント株式会社 固体撮像装置およびカメラ

Also Published As

Publication number Publication date
US11647306B2 (en) 2023-05-09
JPWO2020261746A1 (ja) 2020-12-30
WO2020261746A1 (ja) 2020-12-30
US20220070397A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US8760213B2 (en) Ramp signal output circuit, analog-to-digital conversion circuit, imaging device, method for driving ramp signal output circuit, method for driving analog-to-digital conversion circuit, and method for driving imaging device
US7875842B2 (en) Solid state image pickup element and camera system
JP4978795B2 (ja) 固体撮像装置、駆動制御方法、および撮像装置
JP2006101479A (ja) 固体撮像装置及びそれを用いたカメラ
US20150138411A1 (en) Comparator circuit, imaging apparatus using the same, and method of controlling comparator circuit
US9344652B2 (en) Photoelectric conversion apparatus and image pickup system including an ad conversion unit to convert a signal into a digital signal
US10044964B2 (en) Column signal processing unit with driving method for photoelectric conversion apparatus, photoelectric conversion apparatus, and image pickup system
US11601610B2 (en) Image sensor
US9497398B2 (en) Solid-state imaging device and camera for reducing random row noise
JP2014050019A (ja) 撮像装置の駆動方法、撮像システムの駆動方法、撮像装置、撮像システム
US9860468B2 (en) Solid-state image pickup device, and image pickup device which provides for enhanced image quality
US20220210364A1 (en) Solid-state imaging device, ad-converter circuit and current compensation circuit
JP7482445B2 (ja) 固体撮像装置およびカメラ
WO2018020858A1 (ja) 撮像素子および撮像装置
JP5262791B2 (ja) Ad変換器及びこれを用いた固体撮像素子
JP6422319B2 (ja) 撮像装置、及びそれを用いた撮像システム
WO2017168502A1 (ja) Ad変換器およびイメージセンサ
WO2017179113A1 (ja) ノイズ除去回路およびイメージセンサ
WO2015111370A1 (ja) 固体撮像装置及び撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240417