JP7471519B2 - 発電モジュール - Google Patents

発電モジュール Download PDF

Info

Publication number
JP7471519B2
JP7471519B2 JP2023522032A JP2023522032A JP7471519B2 JP 7471519 B2 JP7471519 B2 JP 7471519B2 JP 2023522032 A JP2023522032 A JP 2023522032A JP 2023522032 A JP2023522032 A JP 2023522032A JP 7471519 B2 JP7471519 B2 JP 7471519B2
Authority
JP
Japan
Prior art keywords
magnet
induction yoke
induction
yoke
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023522032A
Other languages
English (en)
Other versions
JPWO2022244088A1 (ja
JPWO2022244088A5 (ja
Inventor
武史 武舎
泰行 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022244088A1 publication Critical patent/JPWO2022244088A1/ja
Publication of JPWO2022244088A5 publication Critical patent/JPWO2022244088A5/ja
Application granted granted Critical
Publication of JP7471519B2 publication Critical patent/JP7471519B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Electromagnets (AREA)

Description

本開示は、発電モジュールに関する。
従来より、身の回りにあるエネルギーを電力に変換する、エナジーハーベスティングと呼ばれる発電技術が知られている。その中で、人間あるいは機械の振動によって電力を発生させる振動発電技術が知られている。例えば、特許文献1には、一方向に長い円柱状の磁性部材と、磁性部材に巻き付けられたコイルと、磁性部材の長手方向の一端部に対向するように配置された磁石とを備えた発電素子が開示されている。磁石は、磁性部材の長手方向に直交する方向に往復移動可能である。
振動によって磁石が左右方向に往復移動すると、大バルクハウゼン効果により磁性部材内で磁化反転が生じ、コイルにパルス電圧が発生する。
国際公開WO2018/097110号(例えば、段落0027~0031および図1参照)
しかしながら、上記構成では、磁石からの磁束が磁性部材の一端部のみに流入し、磁性部材の全体に行き渡らない。そのため、大バルクハウゼン効果による磁化反転を磁性材料の全体で発生させることができず、発電量が小さい。
本開示は、上記の課題を解決するためになされたものであり、より発電量の大きい発電モジュールを提供することを目的とする。
本開示の発電モジュールは、一方向に長い磁性体コアと、磁性体コアの周囲に巻かれたコイルとを有する発電素子部と、磁性体コアの長手方向の一端部に接触し、磁性体で構成された第1の誘導ヨークと、磁性体コアの長手方向の他端部に接触し、磁性体で構成された第2の誘導ヨークとを有する誘導ヨーク部と、発電素子部に対して当該長手方向と直交する方向に相対的に変位可能であって、その変位方向に第1の磁石と第2の磁石とを有する磁石部とを備える。第1の磁石は、長手方向にN極部とS極部とを有する。第2の磁石は、長手方向にS極部とN極部とを有する。変位方向において第1の磁石のN極部と第2の磁石のS極部とが対向し、第1の磁石のS極部と第2の磁石のN極部とが対向する。磁石部が発電素子部に対して第1の位置にあるときには、第1の磁石のN極部が第1の誘導ヨークに対向すると共に、第1の磁石のS極部が第2の誘導ヨークに対向する。磁石部が発電素子部に対して第2の位置にあるときには、第2の磁石のS極部が第1の誘導ヨークに対向すると共に、第2の磁石のN極部が第2の誘導ヨークに対向する。
本開示によれば、磁石部が発電素子部に対して第1の位置にあるときと第2の位置にあるときとで、磁性体コア内での磁化反転が生じる。磁性体コア内の広い範囲で磁化反転が生じるため、より大きな発電量を得ることができる。
実施の形態1の発電モジュールを示す斜視図である。 実施の形態1の発電モジュールを示す斜視図である。 実施の形態1の発電モジュールの磁石部を示す斜視図である。 実施の形態1の発電モジュールにおける磁石部、誘導ヨーク部および磁性体コアを示す斜視図である。 実施の形態1の発電モジュールにおいて磁石部を位置規制するための構成を示す断面図である。 実施の形態1の発電モジュールにおいて誘導ヨーク部を保持するための構成を示す斜視図である。 実施の形態1の発電モジュールの動作を示す部分断面斜視図である。 実施の形態1の発電モジュールの動作を示す部分断面斜視図である。 実施の形態2の発電モジュールを示す斜視図である。 実施の形態2の発電モジュールの動作を示す部分断面斜視図である。 実施の形態2の発電モジュールの動作を示す部分断面斜視図である。 実施の形態3の発電モジュールを示す斜視図である。 実施の形態3の発電モジュールの動作を示す部分断面斜視図である。 実施の形態3の発電モジュールの動作を示す部分断面斜視図である。 実施の形態3の発電モジュールの誘導ヨーク部および発電素子部の取り付け構造を説明するための模式図である。 実施の形態4の発電モジュールを示す斜視図である。 実施の形態4の発電モジュールの動作を示す部分断面斜視図である。 実施の形態4の発電モジュールの動作を示す部分断面斜視図である。 実施の形態5の発電モジュールを示す斜視図である。 実施の形態5の発電モジュールの動作を示す斜視図である。 実施の形態5の発電モジュールの処理部の一例を示すブロック図である。 実施の形態5の発電モジュールのハウジング形状の例(A),(B)を示す斜視図である。 実施の形態5の発電モジュールの処理部の他の例を示すブロック図である。
実施の形態1.
<発電モジュールの構成>
図1および図2は、実施の形態1の発電モジュール6を示す斜視図である。図1に示すように、発電モジュール6は、磁石部1と、発電素子部2と、誘導ヨーク部3と、筐体部5とを有する。
発電素子部2は、一方向に長い磁性体コア21と、磁性体コア21を囲むように巻かれたコイル22とを有する。磁性体コア21の延在方向を、Y方向とする。磁性体コア21は、磁性体で構成されている。磁性体とは、比透磁率が1を超える物質を言う。
より具体的には、磁性体コア21は、大バルクハウゼン効果が生じる磁性ワイヤで構成されている。大バルクハウゼン効果とは、磁性体の内部の磁化が、磁石のN極とS極との境界付近で一斉に反転する現象である。大バルクハウゼン効果が生じる磁性ワイヤとは、例えば、ヴィーガンドワイヤと呼ばれる合金ワイヤである。
コイル22は、巻軸方向をY方向とし、磁性体コア21を囲むように巻かれている。コイル22には、磁性体コア21内の磁化の反転に伴い、電磁誘導によりパルス電圧が発生する。コイル22から出力されたパルス電圧は、整流部で整流されて蓄電部等に供給される。これについては、図21,23を参照して後述する。
磁石部1は、磁性体コア21の長手方向であるY方向に直交する方向に変位可能である。磁石部1の変位方向を、X方向とする。また、X方向とY方向との両方に直交する方向を、Z方向とする。
磁石部1は、X方向に並んで配置された第1の磁石11と第2の磁石12とを有する。第1の磁石11および第2の磁石12は永久磁石で構成されている。第1の磁石11と第2の磁石12との間には、非磁性体で構成されたスペーサ15が配置されている。非磁性体は、比透磁率が1である物質を言う。
第1の磁石11、第2の磁石12およびスペーサ15は一体的に固定され、磁石部1を構成している。固定方法は、例えば、接着、一体成型、ねじ止め、締結バンドによる締結などであるが、これらに限定されるものではない。
なお、第1の磁石11と第2の磁石12とがX方向に一定の間隔を維持したまま一体的にX方向に変位可能であれば、スペーサ15は空気であってもよい。
筐体部5は、非磁性体、より具体的には樹脂の成形体で構成されている。筐体部5は、XY面に平行な底板53と、底板53のY方向両端に位置する一対の枠部51と、底板53のX方向両端に位置する一対の枠部52とを有する。枠部51,52と底板53に囲まれた凹部50に、磁石部1が保持されている。
凹部50のX方向の幅、すなわち枠部52のX方向の間隔は、磁石部1のX方向の幅よりも広い。そのため、磁石部1は、凹部50内でX方向に変位可能である。
図1は、磁石部1が+X方向に変位した状態を示し、図2は、磁石部1が-X方向に変位した状態を示している。磁石部1の変位量は、第1の磁石11と第2の磁石12との間隔の2倍以上である。また、磁石部1の+Z方向への移動は、後述するガイド部54(図5)によって規制されている。
誘導ヨーク部3は、磁石部1の変位する領域(言い換えると移動範囲)に対して+Z側に配置されている。図1に示した状態では、磁石部1の第1の磁石11が誘導ヨーク部3に対向し、図2に示した状態では、第2の磁石12が誘導ヨーク部3に対向する。誘導ヨーク部3は、後述する図6に示すように筐体部5に支持されている。
誘導ヨーク部3は、Z方向に延在する第1の誘導ヨーク31と第2の誘導ヨーク32とを有する。第1の誘導ヨーク31と第2の誘導ヨーク32とは、Y方向に対向している。
第1の誘導ヨーク31および第2の誘導ヨーク32には、磁性体コア21のY方向の両端が接している。ここでは、第1の誘導ヨーク31に形成された穴部31aと、第2の誘導ヨーク32に形成された穴部32aに、磁性体コア21のY方向の両端が固定されている。
第1の誘導ヨーク31および第2の誘導ヨーク32は、磁性体、より具体的には軟磁性体で構成され、比透磁率は1よりも高い。すなわち、第1の誘導ヨーク31および第2の誘導ヨーク32の比透磁率は、空気の比透磁率よりも高い。第1の誘導ヨーク31および第2の誘導ヨーク32は、磁石部1で発生する磁束を磁性体コア21に誘導する作用を有する。
図3は、第1の磁石11と第2の磁石12とを示す斜視図である。図3に示すように、第1の磁石11は、Y方向にN極部111とS極部112とを有する。N極部111は+Y側に配置され、S極部112は-Y側に配置されている。N極部111およびS極部112の磁化方向はZ方向であり、互いに反対方向である。N極部111は+Z側の端面にN極を有し、S極部112は+Z側の端面にS極を有する。
第2の磁石12は、Y方向にS極部121とN極部122とを有する。S極部121は+Y側に配置され、N極部122は-Y側に配置されている。S極部121およびN極部122の磁化方向はZ方向であり、互いに反対方向である。S極部121は+Z側の端面にS極を有し、N極部122は+Z側の端面にN極を有する。
図4は、磁性体コア21および誘導ヨーク31,32と、磁石部1との位置関係を示す斜視図である。第1の磁石11は、Y方向に長さL1を有し、X方向に幅W1を有する。第2の磁石12も同様である。スペーサ15のX方向の幅W2は、磁石11,12間のX方向の間隔と等しい。
各磁石11,12のY方向の長さL1は、磁性体コア21のY方向の長さL2以上であることが望ましい(L1≧L2)。スペーサ15のX方向の幅W2は、各磁石11,12のX方向の幅W1以上であることが望ましい(W2≧W1)。
磁石部1と誘導ヨーク31,32とのZ方向の間隔Hは、各磁石11,12の幅(すなわち、磁石11,12のそれぞれの幅)W1よりも十分に狭く、また、スペーサ15の幅W2よりも十分に狭いことが望ましい。特に、間隔Hは、上記の幅W1の1/2以下であることが望ましい。
また、各誘導ヨーク31,32のX方向の幅は、各磁石11,12の幅W1以下であることが望ましい。本実施の形態では、各誘導ヨーク31,32のX方向の幅が各磁石11,12の幅W1と等しい例を示している。
図5は、筐体部5において磁石部1を位置規制するための構成の一例を示す図である。図5に示すように、筐体部5の一対の枠部51には、磁石部1を+Z方向に移動させないように位置規制するガイド部54が形成されている。なお、ガイド部54に限らず、磁石部1を+Z方向に移動させないように位置規制する部材が設けられていればよい。
図6は、誘導ヨーク31,32を保持するための構成の一例を示す図である。図6に示すように、筐体部5の一対の枠部51には、誘導ヨーク31,32を保持するヨーク保持部55が形成されている。ヨーク保持部55により、誘導ヨーク31,32は、磁石部1がX方向に変位する領域に対して、+Z方向に間隔H(図4)の位置で保持される。なお、ヨーク保持部55に限らず、誘導ヨーク31,32を磁石部1に対して+Z方向に間隔をあけて保持する部材が設けられていればよい。
また、筐体部5に付勢部材としてのバネ56を設け、磁石部1を+X方向または-X方向に付勢してもよい。バネ56を設けることにより、筐体部5が振動した際の磁石部1の変位量を増幅する効果が得られる。なお、バネ56の効果については、実施の形態4でも説明する。
<作用>
次に、発電モジュール6の作用について説明する。図7は、第1の磁石11が誘導ヨーク部3に対向しているときの発電モジュール6を示す部分断面斜視図である。第1の磁石11が誘導ヨーク部3に対向しているときの磁石部1の位置を、第1の位置と称する。
磁石部1が第1の位置にあるときには、第1の磁石11のN極部111が第1の誘導ヨーク31に対向し、第1の磁石11のS極部112が第2の誘導ヨーク32に対向する。
第1の磁石11のN極部111から出た磁束は、空気よりも透磁率の高い第1の誘導ヨーク31に流入し、第1の誘導ヨーク31を経由して磁性体コア21の+Y側の端部に流れる。さらに、磁性体コア21内を磁束が-Y方向に流れ、磁性体コア21の-Y側の端部から第2の誘導ヨーク32に流入し、第2の誘導ヨーク32を経由して第1の磁石11のS極部112に流れる。
図8は、第2の磁石12が誘導ヨーク部3に対向しているときの発電モジュール6を示す部分断面斜視図である。第2の磁石12が誘導ヨーク部3に対向しているときの磁石部1の位置を、第2の位置と称する。
磁石部1が第2の位置にあるときには、第2の磁石12のS極部121が第1の誘導ヨーク31に対向し、第2の磁石12のN極部122が第2の誘導ヨーク32に対向する。
第2の磁石12のN極部122から出た磁束は、空気よりも透磁率の高い第2の誘導ヨーク32に流入し、第2の誘導ヨーク32を経由して磁性体コア21の-Y側の端部に流れる。さらに、磁性体コア21内を磁束が+Y方向に流れ、磁性体コア21の+Y側の端部から第1の誘導ヨーク31に流入し、第1の誘導ヨーク31を経由して第2の磁石12のS極部121に流れる。
このように、磁石部1のX方向の変位によって、磁性体コア21内の磁束の向きが-Y方向と+Y方向とで反転する。そのため、磁性体コア21を流れる磁束、すなわちコイル22内を通過する磁束φの時間当たりの変化dφ/dtが大きくなる。その結果、コイル22から、誘導起電力V=-dφ/dtに相当する高いパルス電圧が出力される。
特に、大バルクハウゼン効果を生じる磁性体を用いた場合、磁性体の内部磁束が全体的に変化するほど、大バルクハウゼン効果による磁化反転量が多くなることが、これまでの実験結果から明らかになっている。この実施の形態1では、磁性体コア21の広範囲で磁化反転が生じるため、磁性体の端部でのみ磁化反転が生じる構成(例えば、特許文献1)と比較して、磁化反転量が多くなり、高いパルス電圧が得られる。
また、各磁石11,12のY方向の長さL1が、磁性体コア21のY方向の長さL2以上であるため、各磁石11,12の磁束が磁性体コア21の全域に流入し易く、より高いパルス電圧を発生することができる。
また、特許文献1のように、磁石と磁性部材との距離が、磁石の変位方向におけるN極とS極との距離よりも広い構成では、N極から出た磁束が磁性部材を通らずにS極に流れる閉磁路が生じ、磁性部材に流れる磁束が少ないという課題がある。
これに対し、実施の形態1では、磁石部1と誘導ヨーク31,32とのZ方向の間隔Hが、磁石11,12のX方向の間隔、すなわちスペーサ15の幅W2よりも狭い。そのため、第1の磁石11のN極部111から出た磁束の多くを誘導ヨーク31に流入させ、また第2の磁石12のN極部122から出た磁束の多くを誘導ヨーク32に流入させることができる。
また、磁石11,12のX方向の間隔が狭過ぎると、図7に示すように第1の磁石11のS極部112が第2の誘導ヨーク32に対向している状態で、第2の磁石12のN極部122からの磁束も第2の誘導ヨーク32に流入する可能性がある。逆向きの磁束は相殺し合うため、磁性体コア21における磁束の変化が小さくなり、大バルクハウゼン効果による磁化反転が小さくなる可能性がある。
実施の形態1では、磁石11,12のX方向の間隔、すなわちスペーサ15の幅W2が、各磁石11,12の幅W1以上である。磁束密度は、磁石からの距離の2乗に反比例するため、誘導ヨーク31,32に非対向の磁石から磁束が流入することを抑制できる。これにより、効率よく磁性体コア21内で磁化反転を生じさせることができ、高いパルス電圧を発生することができる。
なお、第1の磁石11のN極部111とS極部112とは必ずしも一体である必要はない。N極部111およびS極部112が誘導ヨーク31,32に対向するように配置されていれば、N極部111とS極部112とが別体であってもよい。同様に、第2の磁石12のS極部121とN極部122とは必ずしも一体である必要はなく、別体であってもよい。
なお、磁性体コア21は、鉄またはパーマロイ(ニッケルと鉄を主成分とする合金)などの一般的な軟磁性体で構成することもできる。上記構成の発電モジュール6では、磁性体コア21内の磁束が急激に変化するため、大バルクハウゼン効果を用いなくても、ある程度のパルス電圧を発生することができる。
但し、大バルクハウゼン効果を利用すれば、磁石部1の変位速度と関係なく一定の磁化反転量が得られ、これに加えて、通常の軟磁性体でも発生する磁石の高速変位時の磁束変化も得られる。そのため、発電モジュール6の磁性体コア21の材料としては、大バルクハウゼン効果を有する磁性ワイヤがより望ましい。
この実施の形態1では、筐体部5の凹部50のX方向の長さを、磁石部1のX方向の長さよりも十分に長くすることで、磁石部1をX方向に変位可能としている。使用者が筐体部5を手で振るなど、筐体部5に振動などの外力が加わることにより、磁石部1がX方向に変位し、パルス電圧が発生する。
しかしながら、実施の形態1の発電モジュール6は、このような構成に限定されるものではなく、筐体部5に振動などの外力が加わることにより磁石部1が変位して誘導ヨーク部3と対向する構成であればよい。例えば、実施の形態5で説明するように筐体部5を円筒状に形成し、磁石部1をZ方向に変位可能としてもよい。
上記の発電モジュール6は、磁石部1が発電素子部2および誘導ヨーク部3に対して変位するように構成したが、発電素子部2および誘導ヨーク部3が磁石部1に対して変位するように構成しても同様の効果を得ることができる。
この場合、発電素子部2および誘導ヨーク部3は、一般に磁石部1よりも比重が小さく重量が軽いため、振動で変位を得るためには、発電素子部2に錘を取り付けて慣性力を大きくすることが望ましい。なお、発電素子部2にはパルス電圧を取り出すための配線を接続する必要があることになるため、配線の断線リスクなどを考慮すると、磁石部1が変位する方が望ましい。
<実施の形態の効果>
以上説明したように、実施の形態1の発電モジュール6は、磁石部1と、発電素子部2と、誘導ヨーク部3とを有する。発電素子部2は、Y方向に長い磁性体コア21と、磁性体コア21の周囲に巻かれたコイル22とを有する。誘導ヨーク部3は、磁性体コア21のY方向の一端部に接触する第1の誘導ヨーク31と、磁性体コア21のY方向の他端部に接触する第2の誘導ヨーク32とを有する。磁石部1は、発電素子部2に対してX方向に相対的に変位可能であり、また、X方向に第1の磁石11と第2の磁石12とを有する。X方向において第1の磁石11のN極部111と第2の磁石12のS極部121とが対向し、第1の磁石11のS極部112と第2の磁石12のN極部122とが対向する。磁石部1が発電素子部2に対して第1の位置にあるときには、第1の磁石11のN極部111が第1の誘導ヨーク31に対向すると共に、第1の磁石11のS極部112が第2の誘導ヨーク32に対向する。磁石部1が発電素子部2に対して第2の位置にあるときには、第2の磁石12のS極部121が第1の誘導ヨーク31に対向すると共に、第2の磁石12のN極部122が第2の誘導ヨーク32に対向する。
このように構成されているため、磁石部1が発電素子部2に対して第1の位置にあるときと第2の位置にあるときとで、発電素子部2の磁性体コア21に流れる磁束の向きを反転させることができる。磁性体コア21の広い範囲で磁束の向きが反転するため、高いパルス電圧を発生させることができる。
また、X方向において第1の磁石11と第2の磁石12との間に、非磁性体で構成されたスペーサ15が設けられているため、誘導ヨーク31,32に対向している磁石の磁束のみを誘導ヨーク31,32を介して磁性体コア21に誘導することができる。
特に、スペーサ15のX方向の幅W2が、磁石11,12のX方向の幅W1よりも広いため、誘導ヨーク31,32に対向していない磁石からの磁束の流入を効果的に抑制することができる。
また、磁石部1と誘導ヨーク部3との最短距離である間隔Hが、スペーサ15のX方向の幅W2よりも狭いため、第1の磁石11または第2の磁石12のN極部から出た磁束が誘導ヨーク部3を通らずにS極部に還流することを抑制することができる。
また、筐体部5が磁石部1をX方向に変位可能に保持し、発電素子部2および誘導ヨーク部3が筐体部5に対して固定され、磁石部1の変位可能な距離が磁石11,12のX方向の間隔の2倍以上であるため、磁石部1の変位によって、第1の磁石11と第2の磁石12のいずれかを誘導ヨーク部3に対向させることができる。
また、磁石部1をX方向の一方の側に付勢するバネ56をさらに備えることにより、振動に伴う磁石部1の変位量を増幅し、より高いパルス電圧を発生させることができる。
また、磁石11,12のN極部111,122およびS極部112,121のいずれにおいても磁化方向がZ方向であり、誘導ヨーク部3の第1の誘導ヨーク31および磁石部1に対してZ方向の一方の側に配置されている。そのため、N極部111,122から出た磁束が誘導ヨーク31,32に流入しやすい。
実施の形態2.
次に、実施の形態2について説明する。図9は、実施の形態2の発電モジュール6Aを示す斜視図である。発電モジュール6Aは、磁石部1Aと、発電素子部2と、誘導ヨーク部3Aと、筐体部5とを有する。実施の形態2では、磁石部1Aおよび誘導ヨーク部3Aの構成が実施の形態1と異なる。
磁石部1Aは、X方向に、第1の磁石18と、第2の磁石19と、これらの間のスペーサ15とを有する。第1の磁石18の磁化方向はY方向であり、第2の磁石19の磁化方向もY方向である。スペーサ15の構成は、実施の形態1で説明した通りである。
図10は、発電モジュール6Aを示す部分断面斜視図である。図10に示すように、第1の磁石18は、+Y方向の端部がN極部181となり、-Y方向の端部がS極部182となるようにY方向に磁化されている。
図11は、磁石部1Aが図9に示した位置から-X方向に変位したときの発電モジュール6Aを示す部分断面斜視図である。図11に示すように、第2の磁石19は、+Y方向の端部がS極部191となり、-Y方向の端部がN極部192となるようにY方向に磁化されている。
図9に示すように、誘導ヨーク部3Aの第1の誘導ヨーク31は、磁石部1Aの+Y方向端部に、枠部51を介して対向するように配置されている。誘導ヨーク部3Aの第2の誘導ヨーク32は、磁石部1Aの-Y方向端部に、枠部51を介して対向するように配置されている。
第1の誘導ヨーク31および第2の誘導ヨーク32は共にZ方向に延在する。第1の誘導ヨーク31および第2の誘導ヨーク32には穴部31a,32aが形成されており、発電素子部2の磁性体コア21のY方向両端が固定されている。発電素子部2の構成は、実施の形態1で説明した通りである。
図10では、磁石部1Aの第1の磁石18が誘導ヨーク31,32に対向している。すなわち、磁石部1Aが第1の位置にある。このとき、第1の磁石18のN極部181が第1の誘導ヨーク31に対向し、第1の磁石18のS極部182が第2の誘導ヨーク32に対向する。
第1の磁石18のN極部181から出た磁束は、第1の誘導ヨーク31に流入し、第1の誘導ヨーク31を経由して磁性体コア21の+Y側の端部に流れる。さらに、磁性体コア21内を磁束が-Y方向に流れ、磁性体コア21の-Y側の端部から第2の誘導ヨーク32に流入し、第2の誘導ヨーク32を経由して第1の磁石18のS極部182に流れる。
図11では、磁石部1Aの第2の磁石19が誘導ヨーク31,32に対向している。すなわち、磁石部1Aが第2の位置にある。このとき、第2の磁石19のS極部191が第1の誘導ヨーク31に対向し、第2の磁石19のN極部192が第2の誘導ヨーク32に対向する。
第2の磁石19のN極部192から出た磁束は、第2の誘導ヨーク32に流入し、第2の誘導ヨーク32を経由して磁性体コア21の-Y側の端部に流れる。さらに、磁性体コア21内を磁束が+Y方向に流れ、磁性体コア21の+Y側の端部から第1の誘導ヨーク31に流入し、第1の誘導ヨーク31を経由して第2の磁石19のS極部191に流れる。
このように、磁石部1AのX方向の変位によって磁性体コア21内の磁束の向きが-Y方向と+Y方向とで交互に反転するため、実施の形態1と同様、コイル22から高いパルス電圧を出力することができる。
その他の点では、実施の形態2の発電モジュール6Aは、実施の形態1の発電モジュール6と同様に構成されている。
この実施の形態2では、磁石部1Aに対して方向の両側に誘導ヨーク31,32が配置されているため、図11に示すように、磁石部1AのY方向の長さL1を、磁性体コア21のY方向の長さL2よりも短くすることができる。可動部である磁石部1Aを小型化、軽量化することにより、発電モジュール6Aの小型化を実現することができる。また、より小さい力で磁石部1Aが変位するため、より小さい振動の力(すなわち発電エネルギー)での発電が可能となる。
実施の形態1でも説明したように、磁性体コア21は、鉄、パーマロイなどの軟磁性体で構成してもよいが、大バルクハウゼン効果を有する磁性ワイヤがより望ましい。また、磁石部1Aが発電素子部2および誘導ヨーク部3Aに対して変位する代わりに、発電素子部2および誘導ヨーク部3Aが磁石部1Aに対して変位するように構成しても、同様の効果を得ることができる。
実施の形態3.
次に、実施の形態3について説明する。図12は、実施の形態3の発電モジュール6Bを示す斜視図である。発電モジュール6Bは、磁石部1と、発電素子部2と、誘導ヨーク部3Bと、筐体部5とを有する。実施の形態3では、誘導ヨーク部3Bの構成が実施の形態1と異なる。
実施の形態3では、誘導ヨーク部3Bが、第1の誘導ヨーク33、第2の誘導ヨーク34、第3の誘導ヨーク35および第4の誘導ヨーク36を有する。誘導ヨーク33,34,35,36はいずれも、磁性体、より具体的には軟磁性体で構成されている。
第1の誘導ヨーク33および第2の誘導ヨーク34は、磁性体コア21のY方向両端に接するように配置されている。第3の誘導ヨーク35は、第1の誘導ヨーク33の-Z側に配置されている。第4の誘導ヨーク36は、第2の誘導ヨーク34の-Z側に配置されている。
ここでは、第1の誘導ヨーク33および第2の誘導ヨーク34はいずれも、磁性体コア21を中心とする円筒形状を有する。第1の誘導ヨーク33および第2の誘導ヨーク34は、磁性体コア21の両端が固定される穴部33a,34aを有する。また、第3の誘導ヨーク35および第4の誘導ヨーク36はいずれも、直方体形状を有する。
また、第1の誘導ヨーク33および第3の誘導ヨーク35は、+Y側の誘導ヨークユニット37を構成する。第2の誘導ヨーク34および第4の誘導ヨーク36は、-Y側の誘導ヨークユニット38を構成する。
図13は、第1の磁石11と誘導ヨーク部3Bとが対向している状態を示す部分断面斜視図である。図13では、磁石部1は第1の位置にある。このとき、第1の磁石11のN極部111は第3の誘導ヨーク35に対向し、第1の磁石11のS極部112は第4の誘導ヨーク36に対向する。
第1の磁石11のN極部111から出た磁束は、空気よりも透磁率の高い第3の誘導ヨーク35に流入し、次いで第1の誘導ヨーク33に流入し、そこから磁性体コア21の+Y側の端部に流れる。さらに、磁性体コア21内を磁束が-Y方向に流れ、磁性体コア21の-Y側の端部から第2の誘導ヨーク34に流入し、次いで第4の誘導ヨーク36の流入し、そこから第1の磁石11のS極部112に流れる。
図14は、磁石部1が図13に示した位置から-X方向に移動し、第2の磁石12と誘導ヨーク部3Bとが対向している状態を示す部分断面斜視図である。図14では、磁石部1は第2の位置にある。このとき、第2の磁石12のS極部121は第3の誘導ヨーク35に対向し、第2の磁石12のN極部122は第4の誘導ヨーク36に対向する。
第2の磁石12のN極部122から出た磁束は、空気よりも透磁率の高い第4の誘導ヨーク36に流入し、次いで第2の誘導ヨーク34に流入し、そこから磁性体コア21の-Y側の端部に流れる。さらに、磁性体コア21内を磁束が+Y方向に流れ、磁性体コア21の+Y側の端部から第1の誘導ヨーク33に流入し、次いで第3の誘導ヨーク35に流入し、そこから第2の磁石12のS極部121に流れる。
このように、磁石部1のX方向の変位によって磁性体コア21内の磁束の向きが-Y方向と+Y方向とで交互に反転するため、実施の形態1と同様、コイル22から高いパルス電圧を出力することができる。
この実施の形態3では、誘導ヨーク部3Bを、第1の誘導ヨーク33、第2の誘導ヨーク34、第3の誘導ヨーク35および第4の誘導ヨーク36で構成しているため、以下のような効果がある。
磁石部1の寸法および形状(以下、寸法形状と称する)は、発電モジュール6Bの寸法制約に応じて比較的自由に設計可能である。これに対し、磁石部1に対向する誘導ヨーク部3Bの寸法形状は、磁石部1の寸法形状に応じて最適化する必要がある。
また、筐体部5は誘導ヨーク部3Bを保持する部分を有するため、筐体部5の寸法形状は、誘導ヨーク部3Bの寸法形状を考慮して決定する必要がある。そのため、磁石部1の寸法形状毎に、筐体部5を成形するための成形金型を用意しなければならない。
実施の形態3では、誘導ヨーク部3Bを4つの誘導ヨーク33~36で構成している。そのため、図15に一例を示すように、発電素子部2と第1の誘導ヨーク33と第2の誘導ヨーク34とを1つのパッケージ30に収容し、これとは別に、第3の誘導ヨーク35と第4の誘導ヨーク36とを筐体部5に取り付けることができる。
磁石部1に対向する部分である第3の誘導ヨーク35と第4の誘導ヨーク36の寸法形状は、磁石部1の寸法形状に応じて最適化される。これに対し、発電素子部2と第1の誘導ヨーク33と第2の誘導ヨーク34とを含むパッケージ30は、磁石部1の寸法および形状によらず、1種類の寸法および形状だけ用意しておけばよい。
そのため、1種類のパッケージ30で磁石部1の複数形状に対応可能な発電モジュール6Bを実現することができる。これにより、発電モジュール6Bの低コスト化が可能になる。
なお、第3の誘導ヨーク35および第4の誘導ヨーク36の筐体部5への取り付けは、図15では破線Aで示しているが、図6のヨーク保持部55等を用いることができる。
また、誘導ヨーク部3Bを4つの誘導ヨーク33~36で構成しているため、第1の誘導ヨーク33および第2の誘導ヨーク34をフェライトビーズで構成することができる。フェライトビーズは安価に市販されているため、誘導ヨーク部3Bの部品コストを低減することができる。
第1の誘導ヨーク33および第2の誘導ヨーク34は円筒状であり、一般的なフェライトビーズも円筒状であるため、フェライトビーズを加工せずに使用することができる。また、フェライトビーズは中央に穴を有するのが一般的であるため、磁性体コア21を挿入する穴部33a,34aを加工する必要がない。
第3の誘導ヨーク35および第4の誘導ヨーク36は、例えば直方体状であるため、加工が簡単である。第3の誘導ヨーク35および第4の誘導ヨーク36には、磁性体コア21を挿入する穴部を加工する必要がないため、さらなる低コスト化が可能となる。
その他の点では、実施の形態3の発電モジュール6Bは、実施の形態1の発電モジュール6と同様に構成されている。
この実施の形態3によれば、第1の誘導ヨーク33および第2の誘導ヨーク34を安価な材料で構成し、第3の誘導ヨーク35および第4の誘導ヨーク36を磁石部1の寸法形状に合わせて直方体などの簡単な形状に構成することができる。そのため、発電モジュール6Bの低コスト化が可能となる。
実施の形態4.
次に、実施の形態4について説明する。図16は、実施の形態4の発電モジュール6Cを示す斜視図である。発電モジュール6Cは、磁石部1Cと、発電素子部2と、誘導ヨーク部3Cと、遮蔽部4と、筐体部5とを有する。実施の形態4では、磁石部1Cの構成、および遮蔽部4を備える点が、実施の形態3と異なる。
磁石部1Cは、X方向に、第1の磁石11、第2の磁石12、第3の磁石13および第4の磁石14を有する。各磁石11,12,13,14のX方向の幅(すなわち磁石11,12,13,14のそれぞれのX方向の幅)W3は、実施の形態1の各磁石11,12のX方向の幅W1よりも狭く、例えば幅W1の1/2である。
図17は、磁石部1Cと磁性体コア21と誘導ヨーク部3Cとを示す図である。図17に示すように、第1の磁石11は、実施の形態1の第1の磁石11と同様に、+Y側にN極部111を有し、-Y側にS極部112を有する。第2の磁石12は、実施の形態1の第2の磁石12と同様に、+Y側にS極部121を有し、-Y側にN極部122を有する。
第3の磁石13は、第1の磁石11と同様に、+Y側にN極部131を有し、-Y側にS極部132を有する。第4の磁石14は、第2の磁石12と同様に、+Y側にS極部141を有し、-Y側にN極部142を有する。
第1の磁石11と第2の磁石12との間にはスペーサ15が配置され、第2の磁石12と第3の磁石13との間にはスペーサ16が配置され、第3の磁石13と第4の磁石14との間にはスペーサ17が配置されている。
スペーサ15,16,17も非磁性体で構成されている。各スペーサ15,16,17のX方向の幅は、各磁石11,12,13,14の幅W3(図16)以上であればよい。
図16に示すように、磁石11~14は、スペーサ15~17を介して一体的に固定され、磁石部1Cを構成している。磁石部1Cは、筐体部5の凹部50内に収容されている。凹部50のX方向の長さは磁石部1CのX方向の長さよりも長く、磁石部1Cは凹部50内でX方向に変位可能である。
誘導ヨーク部3Cは、実施の形態3の誘導ヨーク部3Bと同様、第1の誘導ヨーク33と、第2の誘導ヨーク34と、第3の誘導ヨーク35と、第4の誘導ヨーク36とを有する。
各誘導ヨーク35,36のX方向の幅は、各磁石11,12,13,14の幅W3以下であることが望ましい。本実施の形態では、各誘導ヨーク35,36のX方向の幅が各磁石11,12,13,14の幅W3と等しい例を示している。
誘導ヨーク部3CのX方向両側には、遮蔽ヨーク41,42が設けられている。遮蔽ヨーク41,42は、磁石部1Cに対して+Z側に配置され、遮蔽部4を構成している。遮蔽ヨーク41,42は磁性体、より具体的には軟磁性体で構成される。
遮蔽ヨーク41,42は、X方向に厚さを有し、Y方向に長さを有し、Z方向に幅を有する平板状である。但し、遮蔽ヨーク41,42は、このような形状に限定されるものではなく、例えば角柱状であってもよい。
各遮蔽ヨーク41,42のY方向の長さは、各磁石11~14のN極部とS極部とを合わせたY方向の長さ以上であることが望ましい。
遮蔽ヨーク41と誘導ヨーク部3CとのX方向の間隔は、磁石11~14の形状および磁力に応じて調整可能である。ここでは、誘導ヨーク部3Cと遮蔽ヨーク41との間隔は、各磁石11~14の幅W3の1/2である。誘導ヨーク部3Cと遮蔽ヨーク42との間隔も同様である。
図17に示した状態では、磁石部1Cの第1の磁石11が誘導ヨーク部3Cに対向しており、磁石部1Cは第1の位置にある。このとき、第1の磁石11のN極部111が第3の誘導ヨーク35に対向し、第1の磁石11のS極部112が第4の誘導ヨーク36に対向する。
第1の磁石11のN極部111から出た磁束は、第3の誘導ヨーク35に流入し、次いで第1の誘導ヨーク33に流入し、そこから磁性体コア21の+Y側の端部に流れる。さらに、磁性体コア21内を磁束が-Y方向に流れ、磁性体コア21の-Y側の端部から第2の誘導ヨーク34に流入し、次いで第4の誘導ヨーク36に流入し、そこから第1の磁石11のS極部112に流れる。
図18は、第2の磁石12が誘導ヨーク部3Cに対向しているときの、磁石部1Cと磁性体コア21と誘導ヨーク部3Cとを示す図である。磁石部1Cは第2の位置にある。このとき、第2の磁石12のS極部121(図17)が第3の誘導ヨーク35に対向し、第2の磁石12のN極部122(図17)が第4の誘導ヨーク36に対向する。
第2の磁石12のN極部122から出た磁束は、第4の誘導ヨーク36に流入し、次いで第2の誘導ヨーク34に流入し、そこから磁性体コア21の-Y側の端部に流れる。さらに、磁性体コア21内を磁束が+Y方向に流れ、磁性体コア21の+Y側の端部から第1の誘導ヨーク33に流入し、次いで第3の誘導ヨーク35に流入し、そこから第2の磁石12のS極部121に流れる。
同様に、第3の磁石13が誘導ヨーク部3Cに対向しているときには、磁束が磁性体コア21内を-Y方向に流れる。また、第4の磁石14が誘導ヨーク部3Cに対向しているときには、磁束が磁性体コア21内を+Y方向に流れる。
この実施の形態4では、磁石11~14のX方向の幅および間隔が実施の形態1よりも狭い。そのため、磁性体コア21内に磁化反転を生じさせるために必要な磁石部1Cの変位量は、実施の形態1よりも少なく、例えば半分である。すなわち、磁石部1Cのより微小な変位量で発電を行うことができる。
但し、X方向におけるN極とS極との間隔が狭くなると、誘導ヨーク部3Cに非対向の磁極部からの磁束の流入が生じる可能性がある。例えば、図18において、誘導ヨーク部3Cの第3の誘導ヨーク35に、第1の磁石11のN極部111あるいは第3の磁石13のN極部131(図7)から磁束が流入する可能性がある。隣接する磁石11,13からの磁束の流入が発生すると、磁性体コア21を流れる磁束が減少する。
隣接する磁石11,13への磁束の流入を抑制するためには、誘導ヨーク部3CをZ方向において磁石部1Cに接近させることも考えられる。しかしながら、誘導ヨーク部3Cと磁石部1Cの間には磁力による吸引力が働くため、磁石部1Cと誘導ヨーク部3Cの間に蓋あるいはガイドを設ける場合があり、誘導ヨーク部3Cを磁石部1Cに接近させるには限界がある。
そこで、実施の形態4では、誘導ヨーク部3CのX方向の両側に、上述した遮蔽ヨーク41,42を配置している。
図18に示したように、第2の磁石12が誘導ヨーク部3Cに対向しているときには、第1の磁石11のN極部111から出た磁束は、誘導ヨーク部3Cよりも近くにある第1の遮蔽ヨーク41に流入する。第1の遮蔽ヨーク41に流入した磁束は-Y方向に流れ、第1の磁石11のS極部112に流れる。
同様に、第3の磁石13のN極部131(図17)からの磁束も、第2の遮蔽ヨーク42を経由してS極部132に流れる。すなわち、第1の磁石11および第3の磁石13からの磁束は、誘導ヨーク部3Cには流れない。
このように、誘導ヨーク部3Cと対向している第2の磁石12からの磁束のみが、誘導ヨーク部3Cを介して磁性体コア21に流れる。
同様に、第1の磁石11が誘導ヨーク部3Cに対向しているときには(図17)、隣接する第2の磁石12から誘導ヨーク部3Cへの磁束の流入は、遮蔽ヨーク42によって遮断される。
また、第3の磁石13が誘導ヨーク部3Cに対向しているときには、隣接する磁石12,14から誘導ヨーク部3Cへの磁束の流入は、遮蔽ヨーク41,42によって遮断される。第4の磁石14が誘導ヨーク部3Cに対向しているときには、隣接する第3の磁石13から誘導ヨーク部3Cへの磁束の流入は、遮蔽ヨーク41によって遮断される。
その結果、磁石部1CのX方向の変位により、効率よく磁性体コア21内の磁化反転を生じさせ、コイル22に高いパルス電圧を発生させることができる。
また、特許文献1のように、磁性部材の長手方向の一端部側に磁石を配置し、この磁石を磁性部材の長手方向に直交する方向に往復移動させる構成では、磁石の1往復につき、磁性部材の内部に磁界の反転は1回しか生じないため、発電回数が少ない。
磁石の1往復で複数回発電するためには、磁石の極数を多くすることが考えられる。しかしながら、磁石の極数を多くすると、磁性部材に対向していない磁極からの磁束も磁性部材に流入することになるため、磁石の変位に対して磁性部材内の磁束の反転が生じにくくなる。
実施の形態4では、磁石11~14の間隔を狭くすると共に、誘導ヨーク部3CのX方向両側に遮蔽ヨーク41,42を設けているため、磁石部1Cの微小な変位で磁性体コア21内の磁化反転を生じさせることができる。すなわち、発電回数を大くし、高いパルス電圧を発生させることができる。
その他の点では、実施の形態4の発電モジュール6Cは、実施の形態1の発電モジュール6と同様に構成されている。
ここでは、磁石11~14の間にスペーサ15~17を配置したが、遮蔽ヨーク41,42の配置によっては、スペーサ15~17を配置せずに、磁石11~14を隣接させることも可能である。この場合、より小さい磁石部1Cの変位で発電を行うことが可能となる。
誘導ヨーク部3Cの構成は、ここでは実施の形態3の誘導ヨーク部3Bと同じとしたが、実施の形態1の誘導ヨーク部3と同じでもよく、実施の形態2の誘導ヨーク部3Aと同じでもよい。
また、磁石部1Cは、実施の形態1,3と同様に、磁化方向をZ方向とする2つの磁極部(例えばN極部111とS極部112)をY方向に配置した磁石11~14を有していたが、実施の形態2の磁石18,19(図10,11)のように、磁化方向をY方向とする磁石を用いてもよい。
また、ここでは誘導ヨーク部3Cの両側に遮蔽ヨーク41,42を設けているが、遮蔽ヨーク41,42の少なくとも一方が設けられていれば一定の効果は得られる。また、ここでは、磁石部1Cが4つの磁石11,12,13,14を有していたが、さらに多くの磁石を有していてもよい。
図16に示すように、磁石部1Cには、付勢部材としてのバネ56を取り付けても良い。バネ56は、そのバネ56が取り付けられた振動体の変位量を増幅する役割を有する。振動体すなわち磁石部1Cの振動周波数が既知の場合には、バネ56の固有周波数が磁石部1Cの振動周波数と等しくなるようにバネ定数を設定することで、磁石部1Cの微小振動による磁石部1Cの変位量を最大化することができる。また、スペーサ15に比重の重い材料を使用し、あるいは磁石部1Cに錘を取り付けることにより、慣性力を大きくしてバネ56の変位量を大きくすることも有効である。
実施の形態5.
次に、実施の形態5について説明する。図19は、実施の形態5の発電モジュール6Dを示す部分切欠き斜視図である。発電モジュール6Dは、磁石部1Dと、発電素子部2と、誘導ヨーク部3Dと、筐体部5Dと、ハウジング8とを有する。
実施の形態5の発電モジュール6Dでは、磁石部1Dの変位方向はZ方向である。筐体部5Dは、Z方向の軸を中心とする円筒状である。
磁石部1Dは、いずれも円板状の磁石101,102,103,104を有し、これらはZ方向に配列されている。磁石101,102,103,104はいずれも、実施の形態2の磁石18,19(図10,11)のように、磁化方向がY方向である。
ここでは、第1の磁石101の磁化方向は+Y方向であり、第2の磁石102の磁化方向は-Y方向であり、第3の磁石103の磁化方向は+Y方向であり、第4の磁石104の磁化方向は+Y方向である。
磁石101,102の間にはスペーサ105が配置され、磁石102,103の間にはスペーサ106が配置され、磁石103,104の間にはスペーサ107が配置されている。スペーサ105~107はいずれも円板状であり、非磁性体で構成されている。
磁石101~104およびスペーサ105~107は一体的に固定され、円柱状の磁石部1Dを構成している。各磁石101~104のZ方向の幅および各スペーサ105~107のZ方向の幅は、実施の形態4で説明した通りである。
筐体部5Dは、上記の通り、Z方向の軸を中心とする円筒状の容器であり、磁石部1Dを外周側から囲んでいる。筐体部5Dは、周壁部57と、底部59と天井部58とを有する。底部59から天井部58までのZ方向の距離は、磁石部1DのZ方向の長さよりも長く、磁石部1Dは筐体部5D内でZ方向に変位可能となっている。筐体部5Dは、非磁性体で構成されている。
誘導ヨーク部3Dは、第1の誘導ヨーク33と、第2の誘導ヨーク34と、第3の誘導ヨーク35と、第4の誘導ヨーク36とを有する。第3の誘導ヨーク35と第4の誘導ヨーク36とは、筐体部5Dの+Y側と-Y側にそれぞれ配置され、周壁部57に固定されている。
第1の誘導ヨーク33は、第3の誘導ヨーク35の先端から+Z方向に延在している。第2の誘導ヨーク34は、第4の誘導ヨーク36の先端から+Z方向に延在している。誘導ヨーク33,34には、発電素子部2の磁性体コア21のY方向両端が固定されている。
発電素子部2は、実施の形態1で説明した通り、磁性体コア21と、磁性体コア21を囲むように巻かれたコイル22とを有する。
ハウジング8は、磁石部1D、発電素子部2、誘導ヨーク部3Dおよび筐体部5Dを囲む円筒状の容器である。ハウジング8は、非磁性体であることが望ましい。ハウジング8の内部には、コイル22に接続された回路基板7が設けられている。
図20は、磁石部1Dが図19から+Z方向に移動し、第1の磁石101が誘導ヨーク部3Dのヨーク35,36に対向した状態を示す。磁石部1Dは、第1の位置にある。このとき、第1の磁石101のN極部が第3の誘導ヨーク35に対向し、S極部が第4の誘導ヨーク36に対向する。
第1の磁石101のN極部から出た磁束は、第3の誘導ヨーク35に流入し、第1の誘導ヨーク33を経由して磁性体コア21の+Y側の端部に流れる。さらに、磁性体コア21内を磁束が-Y方向に流れ、磁性体コア21の-Y側の端部から第2の誘導ヨーク34に流入し、第4の誘導ヨーク36を経由して第1の磁石101のS極部に流れる。
上述した図19では、第2の磁石102が誘導ヨーク部3Dのヨーク35,36に対向している。磁石部1Dは、第2の位置にある。このとき、第2の磁石102のN極部が第4の誘導ヨーク36に対向し、S極部が第3の誘導ヨーク35に対向する。
第2の磁石102のN極部から出た磁束は、第4の誘導ヨーク36に流入し、第2の誘導ヨーク34を経由して磁性体コア21の-Y側の端部に流れる。さらに、磁性体コア21内を磁束が+Y方向に流れ、磁性体コア21の+Y側の端部から第1の誘導ヨーク33に流入し、第3の誘導ヨーク35を経由して第2の磁石102のS極部に流れる。
同様に、第3の磁石103が誘導ヨーク部3Dのヨーク35,36に対向しているときには、磁性体コア21内を磁束が-Y方向に流れる。第4の磁石104が誘導ヨーク部3Dのヨーク35,36に対向しているときには、磁性体コア21内を磁束が+Y方向に流れる。
このように、磁石部1DのZ方向の変位により、磁性体コア21内の磁束の向きが-Y方向と+Y方向とで交互に変化し、コイル22からパルス電圧が出力される。すなわち、実施の形態1~4では、発電モジュール6~6Cを水平に振ることで発電が行われたが、実施の形態5では、発電モジュール6Dを上下に振ることで発電が行われる。
コイル22から出力されたパルス電圧は、図示しない配線を介して、回路基板7に搭載された処理部70(図21)に送られる。
図21は、処理部70の一例を示すブロック図である。処理部70は、コイル22からのパルス電圧を整流する整流素子71と、整流素子71で整流された電圧を蓄積する蓄電部72とを有する。これにより、発電素子部2で発生した電力が蓄電部72に充電される。蓄電部72に蓄積された電力は、端子E1,E2から取り出すことができる。この場合、発電モジュール6Dは、充電池として利用される。
図22(A)は、発電モジュール6Dのハウジング8の形状の一例を示す図である。図22(A)に示すハウジング8は、軸方向長さが直径よりも長い円筒状である。ハウジング8は、例えば、単1形、単2形、単3形あるいは単4形の乾電池の形状と同一の形状を有することが望ましい。単1形、単2形、単3形あるいは単4形の乾電池の形状とは、JIS規格(JIS_C8500:2017)に準拠するR20、R14、R6、R03でそれぞれ規定された形状である。
図22(B)は、ハウジング8の形状の他の例を示す図である。図22(B)に示すハウジング8は、軸方向長さが直径よりも短い扁平な円筒状である。ハウジング8は、ボタン電池の形状と同一の形状を有することが望ましい。ボタン電池の形状とは、JIS規格(JIS_C8500:2017)に準拠するR41、R43、R44、R48、R54、R55、R70などで規定された形状を言う。
このように構成にすることにより、人間若しくは機械の動作の振動、または風力などの環境における振動によって充電が行われる充電池が、乾電池またはボタン電池と互換して使用可能となる。
ここでは、処理部70を発電モジュール6Dのハウジング8の内部に設けているが、処理部70をハウジング8の外側に設け、ハウジング8の外側に市販の2次電池などの充電池を取り付けるようにしてもよい。
この場合、図23に示すように、処理部70は、コイル22からのパルス電圧を整流する整流素子71と、整流素子71で整流された電圧を端子E1,E2から2次電池等の充電池に供給する出力処理部73とを有する。これにより、発電素子部2で発生した電力が2次電池9に供給される。この場合、発電モジュール6Dは、充電器として利用される。
なお、実施の形態5の発電モジュール6Dに、実施の形態1,4で説明したバネ56を設けてもよい。これにより、例えば、定常的に振動している機械類の微小振動をバネ56で増幅し、定常的に充電を行うようにしてもよい。
各実施の形態の特徴は、互いに組み合わせることができる。例えば、実施の形態1~4の発電モジュール6,6A,6B,6Cを用いて、実施の形態5のような充電池または充電器を構成してもよい。
以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。
1,1A,1B,1C,1D 磁石部、 2 発電素子部、 3,3A,3B,3C,3D 誘導ヨーク部、 4 遮蔽部、 5,5D 筐体部、 6,6A,6B,6C,6D 発電モジュール、 7 回路基板、 8 蓄電池、 9 筐体部、 11 第1の磁石、 12 第2の磁石、 13 第3の磁石、 14 第4の磁石、 15,16,17 スペーサ、 18 第1の磁石、 19 第2の磁石、 21 磁性体コア、 22 コイル、 30 パッケージ、 31,33 第1の誘導ヨーク、 32,34 第2の誘導ヨーク、 35 第3の誘導ヨーク、 36 第4の誘導ヨーク、 41 第1の遮蔽ヨーク、 42 第2の遮蔽ヨーク、 50 凹部、 56 バネ、 70 処理部、 71 整流素子、 72 蓄電部、 73 信号処理回路、 81 筐体部、 101 第1の磁石、 102 第2の磁石、 103 第3の磁石、 104 第4の磁石、 105,106,107 スペーサ、 111、121,131,141、181,191 N極部、 112、122,132,142 182,192 S極部。

Claims (16)

  1. 一方向に長い磁性体コアと、前記磁性体コアの周囲に巻かれたコイルとを有する発電素子部と、
    前記磁性体コアの長手方向の一端部に接触し、磁性体で構成された第1の誘導ヨークと、前記磁性体コアの前記長手方向の他端部に接触し、磁性体で構成された第2の誘導ヨークとを有する誘導ヨーク部と、
    前記発電素子部に対して前記長手方向に直交する方向に相対的に変位可能であって、その変位方向に第1の磁石と第2の磁石とを有する磁石部と
    を備え、
    前記第1の磁石は、前記長手方向にN極部とS極部とを有し、
    前記第2の磁石は、前記長手方向にS極部とN極部とを有し、
    前記変位方向において前記第1の磁石の前記N極部と前記第2の磁石の前記S極部とが対向し、前記第1の磁石の前記S極部と前記第2の磁石の前記N極部とが対向し、
    前記磁石部が前記発電素子部に対して第1の位置にあるときには、前記第1の磁石の前記N極部が前記第1の誘導ヨークに対向すると共に、前記第1の磁石の前記S極部が前記第2の誘導ヨークに対向し、
    前記磁石部が前記発電素子部に対して第2の位置にあるときには、前記第2の磁石の前記S極部が前記第1の誘導ヨークに対向すると共に、前記第2の磁石の前記N極部が前記第2の誘導ヨークに対向する
    ことを特徴とする発電モジュール。
  2. 前記変位方向において前記第1の磁石と前記第2の磁石との間に、非磁性体で構成されたスペーサを備える
    ことを特徴とする請求項1に記載の発電モジュール。
  3. 前記変位方向における前記スペーサの幅は、前記変位方向における前記第1の磁石の幅よりも広く、前記変位方向における前記第2の磁石の幅よりも広い
    ことを特徴とする請求項2に記載の発電モジュール。
  4. 前記磁石部と前記誘導ヨーク部との最短距離は、前記変位方向における前記スペーサの幅よりも狭い
    ことを特徴とする請求項2または3に記載の発電モジュール。
  5. 前記誘導ヨーク部の前記変位方向における少なくとも一方の側に、磁性体で構成された遮蔽ヨークを備える
    ことを特徴とする請求項1から4までのいずれか1項に記載の発電モジュール。
  6. 前記遮蔽ヨークは、前記長手方向において、前記第1の磁石の前記N極部と前記S極部とを合わせた長さ以上の長さを有する
    ことを特徴とする請求項5に記載の発電モジュール。
  7. 前記誘導ヨーク部は、
    前記第1の誘導ヨークに対して前記磁石部の側に、第3の誘導ヨークを有し、
    前記第2の誘導ヨークに対して前記磁石部の側に、第4の誘導ヨークを有する
    ことを特徴とする請求項1から4までのいずれか1項に記載の発電モジュール。
  8. 前記磁石部を前記変位方向に変位可能に保持する筐体部をさらに備え、
    前記発電素子部および前記誘導ヨーク部は、前記筐体部に対して固定されており、
    前記筐体部における前記磁石部の変位可能な距離が、前記変位方向における前記第1の磁石と前記第2の磁石との間隔の2倍以上である
    ことを特徴とする請求項1から7までのいずれか1項に記載の発電モジュール。
  9. 前記磁石部を前記変位方向における一方の側に付勢するバネをさらに備える
    ことを特徴とする請求項1から8までのいずれか1項に記載の発電モジュール。
  10. 前記第1の磁石および前記第2の磁石はいずれも、前記長手方向および前記変位方向の両方に直交する方向に磁化方向を有し、
    前記第1の誘導ヨークおよび前記第2の誘導ヨークは、前記磁石部に対して前記磁化方向の一方の側に配置されている
    ことを特徴とする請求項1から9までのいずれか1項に記載の発電モジュール。
  11. 前記第1の磁石および前記第2の磁石はいずれも、前記長手方向に磁化方向を有し、
    前記誘導ヨーク部は、前記磁石部に対し、前記長手方向および前記変位方向の両方に直交する方向の一方の側に配置されている
    前記第1の誘導ヨークおよび前記第2の誘導ヨークは、前記磁石部に対して前記長手方向の一方の側に配置されている
    ことを特徴とする請求項1から9までのいずれか1項に記載の発電モジュール。
  12. 前記磁石部は、前記変位方向に、さらに、第3の磁石および第4の磁石を有する
    ことを特徴とする請求項1から11までのいずれか1項に記載の発電モジュール。
  13. 前記発電素子部の前記コイルに接続され、前記発電素子部で発生したパルス電圧による電荷を蓄積する蓄電部をさらに備える
    ことを特徴とする請求項1から12までのいずれか1項に記載の発電モジュール。
  14. 前記発電素子部の前記コイルに接続され、前記発電素子部で発生したパルス電圧を整流する整流素子をさらに備える
    ことを特徴とする請求項1から13までのいずれか1項に記載の発電モジュール。
  15. 前記整流素子に接続され、前記発電素子部で発生したパルス電圧を2次電池に出力する出力部をさらに備える
    ことを特徴とする請求項14に記載の発電モジュール。
  16. 前記発電素子部、前記磁石部および前記誘導ヨーク部を収容するハウジングを備え、
    前記ハウジングが、単1形、単2形、単3形、若しくは単4形の電池と同一の形状、またはボタン電池と同一の形状を有する
    ことを特徴とする請求項1から15までのいずれか1項に記載の発電モジュール。
JP2023522032A 2021-05-18 2021-05-18 発電モジュール Active JP7471519B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018721 WO2022244088A1 (ja) 2021-05-18 2021-05-18 発電モジュール

Publications (3)

Publication Number Publication Date
JPWO2022244088A1 JPWO2022244088A1 (ja) 2022-11-24
JPWO2022244088A5 JPWO2022244088A5 (ja) 2023-08-07
JP7471519B2 true JP7471519B2 (ja) 2024-04-19

Family

ID=84141367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023522032A Active JP7471519B2 (ja) 2021-05-18 2021-05-18 発電モジュール

Country Status (4)

Country Link
JP (1) JP7471519B2 (ja)
CN (1) CN117280582A (ja)
DE (1) DE112021007700T5 (ja)
WO (1) WO2022244088A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033645A (ja) 2000-07-18 2002-01-31 Hirose Electric Co Ltd パルス信号発生装置
US20050082912A1 (en) 2003-01-15 2005-04-21 Andreas Junger Power supply device for a tire-pressure sensor
JP2012044851A (ja) 2010-08-13 2012-03-01 Katsuhiro Sakai 自動自立式エネルギー発生システム
WO2014128937A1 (ja) 2013-02-22 2014-08-28 三菱電機株式会社 回転数検出器
JP2015115970A (ja) 2013-12-09 2015-06-22 パナソニックIpマネジメント株式会社 発電装置
JP2016144335A (ja) 2015-02-03 2016-08-08 浜松光電株式会社 起電力発生装置
WO2018097110A1 (ja) 2016-11-28 2018-05-31 日本電産株式会社 発電素子、およびスマートキー
US20190148043A1 (en) 2016-04-08 2019-05-16 Thomas Theil Wiegand wire arrangement and method for the production thereof
US20190386554A1 (en) 2017-03-09 2019-12-19 Servosense (Smc) Ltd. Pulse generator harvesting energy from a moving element
WO2020250439A1 (ja) 2019-06-14 2020-12-17 三菱電機株式会社 回転数検出器
WO2021200361A1 (ja) 2020-04-01 2021-10-07 三菱電機株式会社 発電素子、これを用いた磁気センサ、エンコーダおよびモータ
JP7109713B1 (ja) 2021-01-12 2022-07-29 三菱電機株式会社 発電素子、磁気センサ、エンコーダおよびモータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611776B2 (ja) * 2000-07-10 2005-01-19 ヒロセ電機株式会社 パルス信号発生装置
JP2013220003A (ja) * 2012-03-13 2013-10-24 Panasonic Corp エネルギ変換装置
JP5921005B2 (ja) * 2012-05-02 2016-05-24 三菱電機エンジニアリング株式会社 振動発電機
JP2016025762A (ja) * 2014-07-22 2016-02-08 スター精密株式会社 振動発電装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033645A (ja) 2000-07-18 2002-01-31 Hirose Electric Co Ltd パルス信号発生装置
US20050082912A1 (en) 2003-01-15 2005-04-21 Andreas Junger Power supply device for a tire-pressure sensor
JP2012044851A (ja) 2010-08-13 2012-03-01 Katsuhiro Sakai 自動自立式エネルギー発生システム
WO2014128937A1 (ja) 2013-02-22 2014-08-28 三菱電機株式会社 回転数検出器
JP2015115970A (ja) 2013-12-09 2015-06-22 パナソニックIpマネジメント株式会社 発電装置
JP2016144335A (ja) 2015-02-03 2016-08-08 浜松光電株式会社 起電力発生装置
US20190148043A1 (en) 2016-04-08 2019-05-16 Thomas Theil Wiegand wire arrangement and method for the production thereof
WO2018097110A1 (ja) 2016-11-28 2018-05-31 日本電産株式会社 発電素子、およびスマートキー
US20190386554A1 (en) 2017-03-09 2019-12-19 Servosense (Smc) Ltd. Pulse generator harvesting energy from a moving element
WO2020250439A1 (ja) 2019-06-14 2020-12-17 三菱電機株式会社 回転数検出器
WO2021200361A1 (ja) 2020-04-01 2021-10-07 三菱電機株式会社 発電素子、これを用いた磁気センサ、エンコーダおよびモータ
JP7109713B1 (ja) 2021-01-12 2022-07-29 三菱電機株式会社 発電素子、磁気センサ、エンコーダおよびモータ

Also Published As

Publication number Publication date
WO2022244088A1 (ja) 2022-11-24
JPWO2022244088A1 (ja) 2022-11-24
CN117280582A (zh) 2023-12-22
DE112021007700T5 (de) 2024-03-14

Similar Documents

Publication Publication Date Title
JP4704093B2 (ja) 振動発電機
CA2975155C (en) Personal cleaning care appliance
US8941272B2 (en) Linear vibrator and method of manufacturing the same
JP5418485B2 (ja) 振動発電機
WO2012014649A1 (ja) 振動発電機
US20190314860A1 (en) Linear vibration motor
US10971984B2 (en) Linear vibration motor
JP2012039824A (ja) 振動発電機
JP3302777B2 (ja) 可動磁石式アクチュエータ
ES2329574T3 (es) Dispositivo activo amortiguacion de vibraciones de un elemento vibrante.
JP7471519B2 (ja) 発電モジュール
WO2014207974A1 (ja) エネルギ変換装置
WO2018097110A1 (ja) 発電素子、およびスマートキー
KR101427335B1 (ko) 다축방향 전기 발생 장치
US10868464B2 (en) Linear vibration motor
JP2014050204A (ja) 振動発電機
WO2011040284A1 (ja) 電磁誘導型発電装置
JP2004112937A (ja) 磁気アクチュエータ及び触覚呈示装置
WO2022006938A1 (zh) 一种线性振动马达
JP2019115200A (ja) 振動発電装置
JP2012205451A (ja) 振動発電機
JP2019115196A (ja) 振動発電装置
CN109302041A (zh) 一种互嵌式抗干扰大推力音圈马达
JP7444550B2 (ja) 振動アクチュエータ及び触覚デバイス
US10840790B2 (en) Vibration power generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7471519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150