JP7459875B2 - 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置の製造方法及び炭化珪素半導体装置 Download PDF

Info

Publication number
JP7459875B2
JP7459875B2 JP2021533073A JP2021533073A JP7459875B2 JP 7459875 B2 JP7459875 B2 JP 7459875B2 JP 2021533073 A JP2021533073 A JP 2021533073A JP 2021533073 A JP2021533073 A JP 2021533073A JP 7459875 B2 JP7459875 B2 JP 7459875B2
Authority
JP
Japan
Prior art keywords
film
silicon carbide
semiconductor device
alloy layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021533073A
Other languages
English (en)
Other versions
JPWO2021010382A1 (ja
Inventor
秀人 玉祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2021010382A1 publication Critical patent/JPWO2021010382A1/ja
Application granted granted Critical
Publication of JP7459875B2 publication Critical patent/JP7459875B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本開示は、炭化珪素半導体装置の製造方法及び炭化珪素半導体装置に関する。
本出願は、2019年7月17日出願の日本出願第2019-131806号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
炭化珪素半導体装置の製造工程においては、ソース電極を形成する工程がある。ソース電極を形成する工程は、例えば、最初に、炭化珪素基板の表面に、酸化シリコン等により絶縁膜を形成し、絶縁膜の一部を炭化珪素基板の表面が露出するまで除去することにより、コンタクトホールを形成する。次に、炭化珪素基板の表面及び絶縁膜の上面を含む全面に、Ni(ニッケル)膜を成膜し、熱処理をすることにより、炭化珪素基板に含まれるSi(シリコン)とNiとによりNiSi合金を形成し、オーミック電極を形成する。このように形成されたオーミック電極により、ソース電極が形成される。
日本国特開2005-276978号公報 日本国特開2017-175115号公報 日本国特開2012-99598号公報
本開示の炭化珪素半導体装置の製造方法は、炭化珪素基板を準備する工程と、炭化珪素基板の一方の主面の上に絶縁膜を成膜する工程と、絶縁膜にコンタクトホールを形成し、コンタクトホールの底面において、一方の主面を露出させる工程と、コンタクトホールの底面及び側面、絶縁膜の上面にSi膜を形成する工程と、コンタクトホールの底面におけるSi膜を除去し、一方の主面を露出させる工程と、コンタクトホールの底面及びSi膜の上にNi膜を成膜する工程と、Ni膜を成膜した後、熱処理を行う工程と、を有する。熱処理により、コンタクトホールの底面には、炭化珪素基板に含まれるSiとNi膜によりオーミック電極となる第1の合金層が形成され、絶縁膜の上面には、Si膜とNi膜により第2の合金層が形成される。
図1は、半導体装置の製造方法の工程図(1)である。 図2は、半導体装置の製造方法の工程図(2)である。 図3は、Ni膜を成膜して熱処理を行った後の状態のSEM像(1)である。 図4は、Ni膜を成膜して熱処理を行った後の状態のSEM像(2)である。 図5は、半導体装置の製造方法の工程図(3)である。 図6は、本開示の実施形態の半導体装置の製造方法のフローチャートである。 図7は、本開示の実施形態の半導体装置の製造方法の工程図(1)である。 図8は、本開示の実施形態の半導体装置の製造方法の工程図(2)である。 図9は、本開示の実施形態の半導体装置の製造方法の工程図(3)である。 図10は、本開示の実施形態の半導体装置の製造方法の工程図(4)である。 図11は、本開示の実施形態の半導体装置の製造方法の工程図(5)である。 図12は、本開示の実施形態の半導体装置の製造方法の工程図(6)である。 図13は、本開示の実施形態の半導体装置の製造方法においてNi膜を成膜して熱処理を行った後の状態のSEM像である。 図14は、本開示の実施形態の半導体装置の製造方法の工程図(7)である。 図15は、本開示の実施形態の半導体装置の製造方法の説明図である。 図16は、本開示の実施形態の半導体装置の構造図である。
[本開示が解決しようとする課題]
Niはドライエッチングが困難であることから微細加工が難しく、Ni膜が層間絶縁膜の上に形成されたままの状態で熱処理を行うと、Niが凝集してしまう。このようなNiが凝集した状態のものの上に、TiN等によりバリア層を成膜しても、バリア層にひびや割れが生じ、バリア層のひびや割れが生じている部分を通り、外部より、Na(ナトリウム)やK(カリウム)が、炭化珪素半導体装置に進入する場合がある。このようなNaやKが、炭化珪素半導体装置に進入すると、炭化珪素半導体装置の信頼性の低下を招くため、好ましくない。
このため、信頼性の低下を招くことなく、層間絶縁膜のコンタクトホールに、オーミック電極を形成できる炭化珪素半導体装置の製造方法が求められている。
[本開示の効果]
本開示によれば、信頼性の低下を招くことなく、層間絶縁膜のコンタクトホールに、オーミック電極を形成できる。
実施するための形態について、以下に説明する。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
〔1〕 本開示の一態様に係る半導体装置の製造方法は、炭化珪素基板を準備する工程と、前記炭化珪素基板の一方の主面の上に絶縁膜を成膜する工程と、前記絶縁膜にコンタクトホールを形成し、前記コンタクトホールの底面において、前記一方の主面を露出させる工程と、前記コンタクトホールの底面及び側面、前記絶縁膜の上面にSi膜を形成する工程と、前記コンタクトホールの底面における前記Si膜を除去し、前記一方の主面を露出させる工程と、前記コンタクトホールの底面及び前記Si膜の上にNi膜を成膜する工程と、前記Ni膜を成膜した後、熱処理を行う工程と、を有し、前記熱処理により、前記コンタクトホールの底面には、前記炭化珪素基板に含まれるSiと前記Ni膜によりオーミック電極となる第1の合金層が形成され、前記絶縁膜の上面には、前記Si膜と前記Ni膜により第2の合金層が形成される。
これにより、信頼性の低下を招くことなく、層間絶縁膜のコンタクトホールに、オーミック電極を形成できる。
〔2〕 前記熱処理の温度は、800℃以上、1100℃以下である。
これにより、信頼性の低下を招くことなく、層間絶縁膜のコンタクトホールに、オーミック電極を形成できる。
〔3〕 前記Ni膜を成膜する工程の後で前記熱処理を行う工程の前の状態において、前記絶縁膜の上面の前記Si膜及び前記Ni膜に含まれる単位面積あたりのSi原子の数とNi原子の数との和に対するSi原子の数の比率は、33%以上、67%以下である。
一般に、前記熱処理温度までには、NiSi、NiSi、NiSiのいずれかが形成される。もとのSiとNiの比率がこの範囲に入っていれば、これらの化合物の組み合わせにより、未反応なNiやSiをなくすことができるからである。
〔4〕 前記Ni膜の膜厚は、5nm以上、100nm以下である。
これにより、所望のオーミック電極を形成できるからである。
〔5〕 前記Si膜の膜厚は、5nm以上、100nm以下であり、前記Ni膜の膜厚は、5nm以上、100nm以下である。
これにより、所望のオーミック電極を形成できるからである。
〔6〕 前記熱処理を行う工程の後、前記Ni膜のうち前記炭化珪素基板及び前記Si膜のどちらとも反応していない部分をウェットエッチングにより除去する工程を有する。
これにより、後工程でNiが他の金属と反応し変形することを防げる。
〔7〕 前記第2の合金層は、前記コンタクトホールの側面にも形成される。
コンタクトホールの側面はエッチングダメージを受けやすいため、この領域を安定的なニッケルシリサイドで保護できるからである。
〔8〕 本開示の一態様に係る半導体装置は、第1主面と、前記第1主面とは反対側の第2主面とを有する炭化珪素基板と、前記第1主面上に設けられた絶縁膜と、前記絶縁膜に設けられたコンタクトホールと、前記コンタクトホールの底面において前記炭化珪素基板と接触しているNiとSiとを含む第1の合金層と、前記絶縁膜の上面に設けられたNiとSiとを含む第2の合金層と、を有し、前記第1の合金層は、前記炭化珪素基板とオーミックコンタクトしている。
これにより、層間絶縁膜のコンタクトホールに、オーミック電極が形成されている半導体装置において、信頼性の低下を防げる。
〔9〕 前記第2の合金層に含まれるSiの濃度は、前記第1の合金層に含まれるSiの濃度よりも高い。
第1の合金層は、前記熱処理時にニッケルと炭化珪素が反応することにより形成されるため、主にNiSiと未反応のカーボンにより構成されている。そのため、Siの比率は少なくとも33%以下となっているためである。
〔10〕 前記第2の合金層は、前記コンタクトホールの側面にも設けられている。
コンタクトホールの側面はエッチングダメージを受けやすいため、この領域を安定的なニッケルシリサイドで保護できるからである。
〔11〕 前記第2の合金層に含まれるSi原子とNi原子の和に対するSi原子の比率は、33%以上、67%以下である。
一般に、前記熱処理温度までには、NiSi、NiSi、NiSiのいずれかが形成される。もとのSiとNiの比率がこの範囲に入っていれば、これらの化合物の組み合わせにより、未反応なNiやSiをなくすことができるからである。
〔12〕 前記第2の合金層の上のバリア層と、前記バリア層の上の配線層と、を有する。
第2の合金層は表面が平坦であるため、第2の合金層の上にバリア層を形成し、バリア層の上に配線層を形成した構造であっても、バリア層がひびや割れることはなく、外部よりNaやKが進入することを防げる。
〔13〕 前記バリア層は、TiNまたはTaNである。
バリア層がTiNまたはTaNにより形成されている場合であっても、外部よりNaやKが進入することを防げる。
〔14〕 前記配線層は、Alを含む金属である。
配線層がAlにより形成されている場合であっても、外部よりNaやKが進入することを防げる。
[本開示の実施形態の詳細]
以下、本開示の一実施形態について詳細に説明するが、本実施形態はこれらに限定されるものではない。
最初に、炭化珪素半導体装置の製造方法において、層間絶縁膜に形成されたコンタクトホールに、オーミック電極を形成する工程について説明する。
図1に示されるように、炭化珪素基板10の表面となる主面10aの上に、コンタクトホール21を有する層間絶縁膜となる絶縁膜20を形成し、更に、スパッタリングにより、Ni膜30を成膜する。これにより、絶縁膜20の上面20a、コンタクトホール21の側面21b、コンタクトホール21の底面21aにおいて露出している炭化珪素基板10の主面10aに、Ni膜30が形成される。
一般的に、Ni膜30のドライエッチングは困難であり、ウェットエッチングでは絶縁膜20の上面20aのNi膜30のみを除去することは容易ではないことから、絶縁膜20の上面20aにNi膜30が形成されたままの状態で、後の工程の熱処理が行われる。
具体的には、図2に示されるように、800℃~1100℃の温度で、熱処理を行うことにより、オーミック電極を形成する。具体的には、800℃~1100℃の温度で、熱処理を行うことにより、コンタクトホール21の底面に形成されたNi膜に含まれるNiと炭化珪素基板10に含まれるSiとにより、NiSi合金層31が形成される。このように形成されたNiSi合金層31がオーミック電極となる。この際、熱処理により、絶縁膜20の上面20aのNi膜30は、凝集しNi凝集部30aが形成される。
図3及び図4は、この状態の上面をSEM(Scanning Electron Microscope:走査型電子顕微鏡)により観察したSEM像であり、図3における倍率は、500倍であり、図4における倍率は、20000倍である。図3及び図4において、白い部分がNi凝集部30aであり、黒い部分が絶縁膜20である。
次に、図5に示されるように、バリアメタルとなるTiN膜40を形成し、更に、TiN膜40の上にAl(アルミニウム)を成膜することにより、配線層50を形成する。絶縁膜20の上面20aには、部分的にNi凝集部30aが形成されているため、絶縁膜20の上面20a及びNi凝集部30aの上に成膜されたTiN膜40は、ひびや割れ等が生じやすい。
配線層50を形成しているAlは、外部より侵入したNa、Kを通しやすいため、TiN膜40に、ひびや割れ等が生じていると、配線層50及びTiN膜40のひびや割れ等を通り、炭化珪素半導体装置の内部に侵入する場合がある。このようなNaやKが、炭化珪素半導体装置の内部に進入すると、炭化珪素半導体装置の信頼性の低下を招くため、好ましくない。
尚、図1に示される工程の後、絶縁膜20の上面20aに形成されているNi膜30を除去することができれば、上記のようなNi凝集部30aは形成されない。しかしながら、上記のように、Ni膜30のドライエッチングは困難であり、ウェットエッチングでは絶縁膜20の上面20aのNi膜30のみを除去することは容易ではない。このため、絶縁膜20の上面20aの上のNi膜30が形成されたままの状態で、オーミック電極を形成するための熱処理が行われる。
(半導体装置の製造方法)
次に、本実施形態における半導体装置の製造方法について、図6から図14に基づき説明する。図6は、本開示の実施形態の半導体装置の製造方法のフローチャートである。図7~図14は、本開示の実施形態の半導体装置の製造方法の工程図である。
最初に、図7に示されるように、一方の主面10aと、他方の主面10bとを有する炭化珪素基板10を準備し(ステップS1)、炭化珪素基板10の一方の主面10aに、層間絶縁膜となる膜厚が0.8μmの絶縁膜20をCVD(chemical vapor deposition)法により形成する(ステップS2)。絶縁膜20は、酸化シリコンにより形成されている。
次に、図8に示されるように、絶縁膜20にコンタクトホール21を形成する(ステップS3)。具体的には、絶縁膜20の上面20aに、フォトレジストを塗布し、露光装置による露光及び現像を行うことにより、コンタクトホール21が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、RIE(Reactive Ion Etching)等のドライエッチングにより、レジストパターンの形成されていない領域の絶縁膜20を除去し、炭化珪素基板10の主面10aを露出させることによりコンタクトホール21を形成する。この後、不図示のレジストパターンは、有機溶剤等により除去する。これにより、底面21aが炭化珪素基板10の主面10aとなり、側面21bが絶縁膜20となるコンタクトホール21が形成される。
次に、図9に示されるように、コンタクトホール21の底面21a及び側面21b、絶縁膜20の上面20aを覆うSi膜130をスパッタリングにより成膜する(ステップS4)。成膜されるSi膜130の膜厚は、5nm以上、100nm以下である。Si膜130の膜厚は、Si膜130のうち絶縁膜20の上面20aを覆う部分の厚さである。
次に、図10に示されるように、コンタクトホール21の底面21aのSi膜130を除去する。具体的には、コンタクトホール21の底面21aの形状に対応する開口部を有する不図示のレジストパターンを形成し、RIE等のドライエッチングにより、レジストパターンの形成されていない領域のSi膜130を除去する。エッチングガスには、フッ素系、または、塩素系のエッチングガスを用いる。この後、レジストパターンは有機溶剤等により除去する。これにより、コンタクトホール21の底面におけるSi膜130が除去され、炭化珪素基板10の主面10aが露出する(ステップS5)。尚、絶縁膜20の上面20a及びコンタクトホール21の側面21bに形成されたSi膜130は、そのまま残る。
次に、図11に示されるように、コンタクトホール21の底面21aの炭化珪素基板10の主面10a、Si膜130の上に、Ni膜140をスパッタリングにより成膜する(ステップS6)。成膜されるNi膜140の膜厚は、5nm以上、100nm以下である。Ni膜140の膜厚は、Ni膜140のうち、Si膜130を介して絶縁膜20の上面20aを覆う部分の厚さである。Si膜130及びNi膜140は、コンタクトホール21の底面21aにおいて、成膜されたSi膜130及びNi膜140の厚さ方向に積算される単位面積当たりのNiとSiとの原子の数が、Ni>Si/2となるような膜厚で形成する。尚、厚さ方向とは、Si膜130及びNi膜140の膜厚方向を意味するものとし、Si膜130及びNi膜140の膜面に対し垂直な方向である。
次に、図12に示されるように、800℃以上、1100℃以下、例えば、約1000℃の温度で熱処理を行う(ステップS7)。これにより、コンタクトホール21の底面21aにおいては、炭化珪素基板10に含まれるSiとNi膜140のNiとが反応し、NiSi合金による第1の合金層141が形成される。また、コンタクトホール21の側面21b及び絶縁膜20の上面20aにおいては、Si膜130に含まれるSiとNi膜140のNiとが反応し、NiSi合金による第2の合金層142が形成される。即ち、第1の合金層141は、炭化珪素基板10を形成しているSiCに含まれるSiとNi膜140のNiとの反応により形成されており、第2の合金層142は、Si膜130のSiとNi膜140のNiとの反応により形成されている。よって、この熱処理により、第1の合金層141と、第2の合金層142とが同時に形成される。この熱処理の温度は炭化珪素基板10の温度である。例えば、この熱処理は炉を用いて行われ、炭化珪素基板10の温度は炉内温度と実質的に等しい。
このため、Siの濃度は、第2の合金層142は、第1の合金層141よりも高い。第1の合金層141は、熱処理時にニッケルと炭化珪素が反応することにより形成されるため、主にNiSiと未反応のカーボンにより構成されている。そのため、Siの比率は少なくとも33%以下となっているためである。また、Cの濃度は、第1の合金層141は、第2の合金層142よりも高い。第1の合金層141は、炭化珪素基板10に含まれるCが第1の合金層141に進入する場合があるのに対し、第2の合金層142は、そのようなCの進入はないからである。
このように形成された第2の合金層142においては、Ni膜140に含まれるNiは、Si膜130に含まれるSiと反応し、NiSi合金が形成されるため、Ni凝集部が形成されることはない。このため、絶縁膜20の上面20aの第2の合金層142の表面は平坦である。
図13は、この状態の上面をSEMにより観察したSEM像であり、倍率は20000倍である。
次に、図14に示されるように、絶縁膜20の上面20aの第2の合金層142の上に、バリアメタルによりバリア層151を形成し、更に、バリア層151の上にAlにより配線層152を形成する。配線層152はAl以外には、銅(Cu)等の金属により形成してもよい。また、バリア層151は、TiNまたはTaNにより形成されている。
本実施形態においては、第2の合金層142の表面は平坦であるため、第2の合金層の142の上にバリア層151を形成しても、バリア層151において、割れやひびが発生することはない。よって、外部からのNaやKの進入を防ぐことができ、炭化珪素半導体装置の信頼性を向上できる。
本実施形態においては、第1の合金層141におけるSiの濃度は、33原子数%以下であることが好ましく、第2の合金層142におけるSiの濃度は、33原子数%以上、67原子数%以下であることが好ましい。一般に、熱処理温度までには、NiSi、NiSi、NiSiのいずれかが形成される。もとのSiとNiの比率がこの範囲に入っていれば、これらの化合物の組み合わせにより、未反応なNiやSiをなくすことができるからである。また、絶縁膜20の上面20aのSi膜130及びNi膜140に含まれる単位面積あたりのSi原子の数とNi原子の数との和に対するSi原子の数の比率は、33原子数%以上、67原子数%以下が好ましい。
尚、Ni膜140の膜厚が厚い場合には、約1000℃の温度で熱処理を行っても、図15に示されるように、第1の合金層141及び第2の合金層142の上に、未反応のNi膜140が残ってしまう。この場合には、未反応のNi膜140、すなわちNi膜140のうち炭化珪素基板10及びSi膜130のどちらとも反応していない部分をウェットエッチングにより除去した後、図14に示されるように、バリア層151の成膜、配線層152の形成を行う。
また、本実施形態においては、図11に示される状態では、コンタクトホール21の側面21bは、Si膜130により覆われているため、コンタクトホール21の側面21bを形成する酸化シリコンとNi膜140とは直接接触していない。よって、約1000℃の温度で熱処理を行っても、絶縁膜20にNiが進入することはなく、絶縁膜20が劣化することはない。尚、酸化シリコンにより形成された絶縁膜にNi膜が直接接触している場合には、加熱温度が500℃程度で、絶縁膜にNiが進入するため、絶縁膜が劣化する。
(半導体装置)
次に、本実施形態における半導体装置の一例について説明する。本実施形態における半導体装置は、図16に示されるように、例えば、縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。具体的には、本実施形態における半導体装置は、炭化珪素基板10と、第1の合金層141と、第2の合金層142と、配線層152と、ゲート絶縁膜25と、ゲート電極71とを有する。ゲート電極71は、層間絶縁膜となる絶縁膜20に覆われており、絶縁膜20の上面20a等には、第2の合金層142が形成されている。炭化珪素基板10は、第1のn層11、第2のn層12、pボディ層13、nソース領域14、p領域18を有する。第1のn層11及びnソース領域14は、第2のn層12よりも多く不純物元素がドープされている。p領域18は、pボディ層13よりも多くの不純物元素がドープされている。
第1の合金層141は、ソース電極であり、本実施形態における製造方法により製造したものであり、炭化珪素基板10の一方の主面10a(図中の上面)上において、nソース領域14にオーミックコンタクトしている。第1の合金層141の厚さは、例えば、100~200nm程度である。また、配線層152は、ソース配線を形成する層である。
ゲート電極71は、炭化珪素基板10の一方の主面10a(図中の上面)上にゲート絶縁膜25を介して設けられており、pボディ層13の表面側であるチャネル領域13aに対向している。また炭化珪素基板10の他方の主面10b(図中の下面)上にはドレイン電極72が設けられている。
尚、炭化珪素基板10のドレイン電極72に面する側にpコレクタ層が形成されることによって、縦型MOSFETの代わりに縦型IGBT(Insulated Gate Bipolar Transistor)が構成されてもよい。また炭化珪素基板に形成されたトレンチ内にゲート絶縁膜を介してゲート電極が埋め込まれる構造(トレンチゲート構造)が用いられてもよい。
以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
10 炭化珪素基板
10a 一方の主面
10b 他方の主面
11 第1のn層
12 第2のn層
13 pボディ層
13a チャネル領域
14 nソース領域
18 p領域
20 絶縁膜
20a 上面
21 コンタクトホール
21a 底面
21b 側面
25 ゲート絶縁膜
30 Ni膜
30a Ni凝集部
31 NiSi合金層
40 TiN膜
50 配線層
71 ゲート電極
72 ドレイン電極
130 Si膜
140 Ni膜
141 第1の合金層
142 第2の合金層
151 バリア層
152 配線層

Claims (13)

  1. 炭化珪素基板を準備する工程と、
    前記炭化珪素基板の一方の主面の上に絶縁膜を成膜する工程と、
    前記絶縁膜にコンタクトホールを形成し、前記コンタクトホールの底面において、前記一方の主面を露出させる工程と、
    前記コンタクトホールの底面及び側面、前記絶縁膜の上面にSi膜を形成する工程と、
    前記コンタクトホールの底面における前記Si膜を除去し、前記一方の主面を露出させる工程と、
    前記コンタクトホールの底面及び前記Si膜の上にNi膜を成膜する工程と、
    前記Ni膜を成膜した後、熱処理を行う工程と、
    を有し、
    前記熱処理により、前記コンタクトホールの底面には、前記炭化珪素基板に含まれるSiと前記Ni膜によりオーミック電極となる第1の合金層が形成され、前記絶縁膜の上面には、前記Si膜と前記Ni膜により第2の合金層が形成される炭化珪素半導体装置の製造方法。
  2. 前記熱処理の温度は、800℃以上、1100℃以下である請求項1に記載の炭化珪素半導体装置の製造方法。
  3. 前記Ni膜を成膜する工程の後で前記熱処理を行う工程の前の状態において、前記絶縁膜の上面の前記Si膜及び前記Ni膜に含まれる単位面積あたりのSi原子の数とNi原子の数との和に対するSi原子の数の比率は、33%以上、67%以下である請求項1または請求項2に記載の炭化珪素半導体装置の製造方法。
  4. 前記Ni膜の膜厚は、5nm以上、100nm以下である請求項1から請求項3のいずれか一項に記載の炭化珪素半導体装置の製造方法。
  5. 前記Si膜の膜厚は、5nm以上、100nm以下であり、前記Ni膜の膜厚は、5nm以上、100nm以下である請求項1から請求項3のいずれか一項に記載の炭化珪素半導体装置の製造方法。
  6. 前記熱処理を行う工程の後、前記Ni膜のうち前記炭化珪素基板及び前記Si膜のどちらとも反応していない部分をウェットエッチングにより除去する工程を有する請求項1から請求項5のいずれか一項に記載の炭化珪素半導体装置の製造方法。
  7. 前記第2の合金層は、前記コンタクトホールの側面にも形成される請求項1から請求項6のいずれか一項に記載の炭化珪素半導体装置の製造方法。
  8. 第1主面と、前記第1主面とは反対側の第2主面とを有する炭化珪素基板と、
    前記第1主面上に設けられた絶縁膜と、
    前記絶縁膜に設けられたコンタクトホールと、
    前記コンタクトホールの底面において前記炭化珪素基板と接触しているNiとSiとを含む第1の合金層と、
    前記絶縁膜の上面に設けられたNiとSiとを含む第2の合金層と、
    を有し、
    前記第2の合金層に含まれるSiの濃度は、前記第1の合金層に含まれるSiの濃度よりも高く、
    前記第1の合金層は、前記炭化珪素基板とオーミックコンタクトしている炭化珪素半導体装置。
  9. 前記第2の合金層は、前記コンタクトホールの側面にも設けられている請求項8に記載の炭化珪素半導体装置。
  10. 前記第2の合金層に含まれるSi原子とNi原子の和に対するSi原子の比率は、33%以上、67%以下である請求項8または請求項9に記載の炭化珪素半導体装置。
  11. 前記第2の合金層の上のバリア層と、
    前記バリア層の上の配線層と、
    を有する請求項8から請求項1のいずれか一項に記載の炭化珪素半導体装置。
  12. 前記バリア層は、TiNまたはTaNである請求項1に記載の炭化珪素半導体装置。
  13. 前記配線層は、Alを含む金属である請求項1または請求項1に記載の炭化珪素半導体装置。
JP2021533073A 2019-07-17 2020-07-13 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置 Active JP7459875B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019131806 2019-07-17
JP2019131806 2019-07-17
PCT/JP2020/027284 WO2021010382A1 (ja) 2019-07-17 2020-07-13 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置

Publications (2)

Publication Number Publication Date
JPWO2021010382A1 JPWO2021010382A1 (ja) 2021-01-21
JP7459875B2 true JP7459875B2 (ja) 2024-04-02

Family

ID=74210798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021533073A Active JP7459875B2 (ja) 2019-07-17 2020-07-13 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置

Country Status (3)

Country Link
US (1) US20220231129A1 (ja)
JP (1) JP7459875B2 (ja)
WO (1) WO2021010382A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010405A1 (ja) * 2019-07-17 2021-01-21

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185507A (ja) 1999-12-24 2001-07-06 New Japan Radio Co Ltd 半導体装置及びその製造方法
JP2003158259A (ja) 2001-09-07 2003-05-30 Toshiba Corp 半導体装置及びその製造方法
JP2013058587A (ja) 2011-09-08 2013-03-28 Seiko Epson Corp 半導体素子の製造方法
JP2019075472A (ja) 2017-10-17 2019-05-16 富士電機株式会社 半導体装置及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705231B2 (ja) * 2016-03-16 2020-06-03 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185507A (ja) 1999-12-24 2001-07-06 New Japan Radio Co Ltd 半導体装置及びその製造方法
JP2003158259A (ja) 2001-09-07 2003-05-30 Toshiba Corp 半導体装置及びその製造方法
JP2013058587A (ja) 2011-09-08 2013-03-28 Seiko Epson Corp 半導体素子の製造方法
JP2019075472A (ja) 2017-10-17 2019-05-16 富士電機株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
WO2021010382A1 (ja) 2021-01-21
JPWO2021010382A1 (ja) 2021-01-21
US20220231129A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JPH11330002A (ja) 半導体装置およびその製造方法
US7344978B2 (en) Fabrication method of semiconductor device
JP2000150652A (ja) 半導体装置およびその製造方法
JP7459875B2 (ja) 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置
JP6787212B2 (ja) 半導体装置の製造方法
US9905434B2 (en) Method for fabricating array substrate, array substrate and display device
JPH06260446A (ja) 配線構造の製造方法
JP5186701B2 (ja) 半導体装置の製造方法
TWI512843B (zh) 包含鍺爲主的通道層之電晶體裝置的製作方法與微電子裝置
US9412861B2 (en) Semiconductor device having structure capable of suppressing oxygen diffusion and method of manufacturing the same
WO2021010405A1 (ja) 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置
KR100558037B1 (ko) 실리콘나노와이어를 이용한 반도체 소자의 콘택 형성 방법
JP4546054B2 (ja) 半導体装置の製造方法
TWI819592B (zh) 半導體裝置及其製作方法
WO2016169202A1 (zh) 一种制作阵列基板的方法及其阵列基板和显示装置
KR100630769B1 (ko) 반도체 소자 및 그 소자의 제조 방법
JP2012064882A (ja) 半導体装置およびその製造方法
US20230009078A1 (en) Method of manufacturing silicon carbide semiconductor device
TW473835B (en) Method for forming polycide gate electrode of metal oxide semiconductor field effect transistor
JPH0878358A (ja) 半導体装置の製造方法
JPH09162392A (ja) 半導体装置
JP2007080937A (ja) 半導体装置およびその製造方法
TW200905747A (en) Thin film and method for manufacturing semiconductor device using the thin film
US20080067612A1 (en) Semiconductor Device Including Nickel Alloy Silicide Layer Having Uniform Thickness and Method of Manufacturing the Same
JP2022146600A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7459875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150