JP7452593B2 - 応対ロボット、応対方法及びプログラム - Google Patents

応対ロボット、応対方法及びプログラム Download PDF

Info

Publication number
JP7452593B2
JP7452593B2 JP2022139636A JP2022139636A JP7452593B2 JP 7452593 B2 JP7452593 B2 JP 7452593B2 JP 2022139636 A JP2022139636 A JP 2022139636A JP 2022139636 A JP2022139636 A JP 2022139636A JP 7452593 B2 JP7452593 B2 JP 7452593B2
Authority
JP
Japan
Prior art keywords
user
robot
user information
information
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022139636A
Other languages
English (en)
Other versions
JP2022168015A (ja
Inventor
伸明 川瀬
真 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JP2022168015A publication Critical patent/JP2022168015A/ja
Application granted granted Critical
Publication of JP7452593B2 publication Critical patent/JP7452593B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0005Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/90335Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/50Maintenance of biometric data or enrolment thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/178Human faces, e.g. facial parts, sketches or expressions estimating age from face image; using age information for improving recognition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Robotics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Collating Specific Patterns (AREA)
  • Manipulator (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

本発明は、顔照合を利用した応対装置、応対システム、応対方法、及び記録媒体に関する。
ロボットは、これまでに製造業の製造現場における産業用ロボットとして広く普及している。さらに、近年、小売業、サービス業、娯楽業、医療業等の様々な分野において、利用者に対して会話等の応対を行うロボットの活用が広がりつつある。
特許文献1には、介護等のサービスを提供するサービス提供システムとして、複数の利用者に関する経験情報を各利用者の識別情報に紐付け管理する経験情報データベースと、利用者にサービスの提供を行うサービス提供ロボットとを有するものが記載されている。特許文献1に記載されたシステムでは、サービス提供ロボットが、各利用者に接することにより利用者の識別情報を取得し、経験情報データベースにアクセスし当該利用者の識別情報を用いて当該利用者の経験情報を引き出す。サービス提供ロボットは、この経験情報に基づいて利用者の要求に応えるサービスの提供を行う。
国際公開第2015/093382号
しかしながら、特許文献1に記載されるような技術では、利用者を識別するための識別情報である個人情報を利用者が事前登録しておく必要がある。例えば、ロボットは、利用者の顔画像から抽出される顔特徴量に基づく顔照合により利用者を識別する。この場合、利用者は、顔写真を用意して顔特徴量を含む個人情報を事前登録しておく必要がある。このような個人情報の事前登録は、利用者にとって手間であるため、ロボットを用いた応対システムの普及の障害になっている。
また、特許文献1に記載されるような技術では、利用者を識別するの個人情報がデータベースに事前登録されていない場合、利用者に応じたパーソナルな会話等の応対を行うことは困難である。
本発明の目的は、利用者がその個人情報を事前登録する必要なく、利用者に応じてパーソナルな会話を自然に行うことができる応対装置、応対システム、応対方法、及び記録媒体を提供することにある。
本発明の一観点によれば、利用者の顔情報を取得する顔情報取得部と、前記利用者との会話の内容を含む応対情報を取得する会話処理部と、前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合する顔照合部と、前記顔照合部による前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記利用者情報データベースに登録する利用者情報管理部とを有することを特徴とする応対装置が提供される。
本発明の他の観点によれば、応対装置と、ネットワークを介して前記応対装置と通信可能なサーバとを含み、前記応対装置は、利用者の顔情報を取得する顔情報取得部と、前記利用者との会話の内容を含む応対情報を取得する会話処理部と、前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された第1の利用者情報データベースを格納する第1の記憶部と、前記第1の利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合する顔照合部と、前記顔照合部による前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記第1の記憶部の前記第1の利用者情報データベースに登録する利用者情報管理部とを有し、前記サーバは、複数の前記応対装置で取得された前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された第2の利用者情報データベースを格納する第2の記憶部を有し、前記利用者情報管理部は、前記第1の利用者情報データベースと前記第2の利用者情報データベースとを同期して、前記第1の利用者情報データベースの内容を前記第2の利用者情報データベースの内容と同一内容に更新することを特徴とする応対システムが提供される。
本発明のさらに他の観点によれば、利用者の顔情報を取得し、前記利用者との会話の内容を含む応対情報を取得し、前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合し、前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記利用者情報データベースに登録することを特徴とする応対方法が提供される。
本発明のさらに他の観点によれば、コンピュータに、利用者の顔情報を取得し、前記利用者との会話の内容を含む応対情報を取得し、前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合し、前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記利用者情報データベースに登録することを実行させることを特徴とするプログラムが記録された記録媒体が提供される。
本発明によれば、利用者がその個人情報を事前登録する必要なく、利用者に応じてパーソナルな会話を自然に行うことができる。
図1は、本発明の第1実施形態による応対ロボットを示す概略図である。 図2は、本発明の第1実施形態による応対ロボットの機能構成を示すブロック図である。 図3は、本発明の第1実施形態による応対ロボットにおける記憶部に格納された利用者情報データベースの一例を示す概略図である。 図4は、本発明の第1実施形態による応対ロボットのハードウェア構成の一例を示すブロック図である。 図5は、本発明の第1実施形態による応対方法を示すフローチャートである。 図6は、本発明の第2実施形態による応対システムを示す概略図である。 図7は、本発明の第2実施形態による応対システムの機能構成を示すブロック図である。 図8Aは、本発明の第2実施形態による応対システムにおけるロボットAの記憶部に格納された利用者情報データベースの例を示す概略図である。 図8Bは、本発明の第2実施形態による応対システムにおけるロボットBの記憶部に格納された利用者情報データベースの例を示す概略図である。 図8Cは、本発明の第2実施形態による応対システムにおけるDBサーバの記憶部に格納された利用者情報データベースの例を示す概略図である。 図9は、本発明の第2実施形態による応対ロボットのハードウェア構成の一例を示すブロック図である。 図10は、本発明の第2実施形態によるデータベースサーバのハードウェア構成の一例を示すブロック図である。 図11は、本発明の第3実施形態による応対システムにおける利用者情報データベースの同期を示すシーケンス図である。 図12は、本発明の第4実施形態による応対システムにおける利用者情報データベースの一例を示す概略図である。 図13は、本発明の第4実施形態による応対方法を示すフローチャート(その1)である。 図14は、本発明の第4実施形態による応対方法を示すフローチャート(その2)である。 図15は、本発明の第5実施形態によるコンピュータ装置の例を示す概略図である。 図16は、本発明の他の実施形態による応対装置の機能構成を示すブロック図である。 図17は、本発明の他の実施形態による応対システムの機能構成を示すブロック図である。
[第1実施形態]
本発明の第1実施形態による応対ロボット及び応対方法について図1乃至図5を用いて説明する。
まず、本実施形態による応対ロボットについて図1乃至図4を用いて説明する。図1は、本実施形態による応対ロボットを示す概略図である。図2は、本実施形態による応対ロボットの機能構成を示すブロック図である。図3は、本実施形態による応対ロボットにおける記憶部に格納された利用者情報DBの一例を示す概略図である。図4は、本実施形態による応対ロボットのハードウェア構成の一例を示すブロック図である。
本実施形態による応対ロボット(以下、単に「ロボット」ともいう。)は、例えば店舗に配置され、利用者に対する応対を行って接客する応対装置のひとつである。本実施形態によるロボットが配置される店舗は、特に限定されるものではなく、例えば、顧客である利用者に商品を販売する店舗や、顧客である利用者にサービスを提供する店舗等である。
図1に示すように、本実施形態によるロボット10は、対面した利用者Uと会話を行って利用者に応対するものである。ロボット10は、対面する利用者Uを検知すると、利用者Uとの応対を開始するように構成されている。ロボット10は、後述の撮像部16により撮像される画像に基づき利用者Uを検知するように構成されていてもよいし、利用者Uを検知することができる熱感知センサ等の人検出センサが設けられていてもよい。また、ロボット10は、ロボット10に設けられた不図示の開始ボタンを押下することにより利用者Uとの応対を開始するように構成されていてもよい。なお、ロボット10の外観形状は、図1に示す外観形状に限定されるものではなく、人や動物を模した外観形状等の種々の外観形状を採用することができる。
図2に示すように、本実施形態によるロボット10は、制御部12と、記憶部14と、撮像部16と、音声入力部18と、音声出力部20とを有している。制御部12は、本実施形態によるロボット10の全体の動作を制御する。記憶部14は、利用者に関する情報である利用者情報が匿名で登録される利用者情報データベース(DB、Database)を格納する。撮像部16は、利用者を撮像して利用者の画像を取得し、取得した画像の画像データを制御部12に入力する。音声入力部18は、利用者により発話された音声を音声データに変換し、変換した音声データを制御部12に入力する。音声出力部20は、制御部12により生成された利用者との会話のための音声データを音声に変換して利用者に向けて出力する。これら制御部12、記憶部14、撮像部16、音声入力部18、及び音声出力部20は、ロボット10の筐体内に搭載されている。
制御部12は、例えばCPU(Central Processing Unit)等のプロセッサにより構成される。制御部12は、機能ブロックとして、顔情報処理部22と、会話処理部24と、利用者情報管理部26とを有している。なお、制御部12の全部又は一部は、ネットワークを介してロボット10と通信可能なサーバ上に構成することもできる。
顔情報処理部22は、撮像部16により撮像される利用者の画像を処理して、利用者の顔情報を含む利用者の外見情報の取得、顔情報の照合等を行う。顔情報処理部22は、さらに、機能ブロックとして、顔検出部220と、顔特徴量抽出部222と、年齢推定部224と、性別推定部226と、顔照合部228とを有している。
顔検出部220には、撮像部16により撮影された利用者の画像の画像データが撮像部16から入力される。顔検出部220は、撮像部16から入力された画像データに基づき、利用者の画像について顔検出を行う。これにより、顔検出部220は、撮像部16により撮影される利用者の画像から、利用者の顔画像を検出する。顔検出部220が顔検出に用いるアルゴリズムとしては特に限定されるものではなく、種々のアルゴリズムを用いて顔検出を行うことができる。なお、顔情報処理部22は、顔検出部220による顔検出の後、利用者のプライバシー保護の観点から、顔画像が検出された利用者の画像を廃棄するように構成されていてもよい。なお、撮像部16により撮像された画像には、家族、友人、同僚等の複数人のグループで利用者がロボット10の配置場所に訪れている場合等に、複数の人物が撮像されていることがありうる。この場合、顔検出部220は、口元が動いている人物の顔画像を、発話を行っている利用者の顔画像として検出することができる。
顔特徴量抽出部222は、顔検出部220により検出された顔画像について、顔画像の特徴量である顔特徴量を抽出する。顔特徴量抽出部222は、顔情報である顔特徴量を取得する顔情報取得部として機能する。
顔特徴量抽出部222により抽出される顔特徴量は、ベクトル量であり、顔画像の特徴を表現するスカラ量の成分の組み合わせである。顔特徴量の成分としては、特に限定されるものではなく、種々の種類のものを用いることができる。例えば、顔特徴量の成分として、目、鼻、口等の顔の器官の中心又は端点に設定した特徴点間の距離や角度等の位置関係、顔の輪郭線の曲率、顔表面の色分布や濃淡値等を用いることができる。顔特徴量の成分数も、特に限定されるものではなく、要求される照合精度、処理速度等に応じて適宜設定することができる。顔特徴量抽出部222により抽出された顔特徴量は、利用者の外見情報の一部を構成する。なお、利用者の外見情報は、利用者情報の一部を構成する。なお、顔情報処理部22は、顔特徴量抽出部222による顔特徴量の抽出の後、利用者のプライバシー保護の観点から、顔特徴量が抽出された顔画像を廃棄するように構成されていてもよい。また、顔特徴量は、その抽出元の顔画像を再構成することができない不可逆なデータである。このため、本実施形態によるロボット10は、後述するように顔特徴量が利用者情報DBに登録されることになるが、利用者のプライバシー保護が配慮されたものになっている。
年齢推定部224は、顔特徴量抽出部222により抽出された顔特徴量に基づき、利用者の年齢を推定する。年齢推定部224が年齢推定に用いる顔特徴量の成分及びアルゴリズムはそれぞれ特に限定されるものではなく、種々の顔特徴量の成分及びその成分に応じたアルゴリズムを用いて年齢推定を行うことができる。年齢推定部224により推定された利用者の推定年齢は、利用者の外見情報の一部を構成する。
性別推定部226は、顔特徴量抽出部222により抽出された顔特徴量に基づき、利用者の性別を推定する。性別推定部226が性別推定に用いる顔特徴量の成分及びアルゴリズムはそれぞれ特に限定されるものではなく、種々の顔特徴量の成分及びその成分に応じたアルゴリズムを用いて性別推定を行うことができる。性別推定部226により推定された利用者の推定性別は、利用者の外見情報の一部を構成する。
顔特徴量抽出部222により抽出された顔特徴量、年齢推定部224により推定された推定年齢、及び性別推定部226により推定された推定性別は、後述するように、利用者情報管理部26により記憶部14の利用者情報DBに登録される。
顔照合部228は、撮像部16により撮像された応対中の利用者の顔画像の顔特徴量と、記憶部14の利用者情報DBに登録されている利用者情報の顔特徴量とを顔照合エンジンにより照合する。顔照合部228は、このような照合を、利用者情報DBに登録されている複数の利用者情報について順次行う。これにより、顔照合部228は、応対中の利用者と同一人物を、利用者情報DBに登録されている利用者情報の利用者の中から検索して、同一人物の発見を試みる。この際、顔照合部228は、照合する顔特徴量の間の類似度に応じて照合スコアを算出する。照合スコアは、顔特徴量の間の類似度が高いほど大きな値となる。顔照合部228は、照合スコアが所定の閾値以上である場合に照合が一致したと判定し、照合が一致した利用者情報DBに登録されている利用者情報の利用者を、応対中の利用者と同一人物であると判定する。一方、顔照合部228は、照合スコアが所定の閾値未満である場合に照合が一致しないと判定し、照合が一致しない利用者情報DBに登録されている利用者情報の利用者を、応対中の利用者とは別人物であると判定する。
顔照合部228は、応対中の利用者と同一人物が、利用者情報DBに登録されている利用者情報の利用者の中から検索により発見されたか否かの照合結果を、利用者情報管理部26及び会話処理部24の会話生成部242に伝達する。すなわち、顔照合部228は、照合が一致であるか不一致であるかの照合結果を、利用者情報管理部26及び会話処理部24の会話生成部242に伝達する。顔照合部228は、照合が一致して同一人物が発見された場合、同一人物として発見された利用者の匿名IDを照合結果とともに利用者情報管理部26及び会話生成部242に伝達する。
顔照合部228による照合の結果、同一人物が発見された応対中の利用者は、過去にもロボット10が応対を行ったことがある者である。一方、同一人物が発見されなかった応対中の利用者は、過去にロボット10が応対を行ったことがなく、ロボット10が初めて応対を行う者である。
会話処理部24は、応対中の利用者に応じた会話を構成する音声データを生成する。会話処理部24は、機能ブロックとして、さらに、音声認識部240と、会話生成部242とを有している。
音声認識部240には、音声入力部18から、利用者が発話した音声の音声データが入力される。音声認識部240は、音声入力部18から入力された音声信号に基づき、利用者が発話した音声を認識し、その音声に対応する文字データを生成する。音声認識部240が音声認識に用いるアルゴリズムは特に限定されるものではなく、種々のアルゴリズムを用いて音声認識を行うことができる。
会話生成部242は、利用者との会話を構成する文字データを会話エンジンにより生成し、その文字データに対応する音声の音声データを生成する。具体的には、会話生成部242は、音声認識部240により生成された文字データに基づき、利用者が発話した音声の内容に応じた応答音声の音声データを生成することができる。また、会話生成部242は、利用者に対して話題を投げかける音声の音声データを生成することもできる。会話生成部242により生成された音声データは、利用者に向けて音声出力部20から音声として出力される。
また、会話生成部242は、利用者との会話内容を含む会話履歴を取得する。会話生成部242が取得する会話履歴は、利用者が発話した音声に対応する文字データの内容と、会話生成部242が生成した文字データの内容とにより構成される会話内容を含んでいる。さらに、会話生成部242は、利用者との応対が行われた応対日時を取得する。会話履歴及び応対日時は、応対情報を構成する。会話生成部242により取得された会話履歴と応対日時とを含む応対情報は、利用者情報の一部を構成する。なお、会話履歴に含まれる会話内容は、会話内容そのものであってもよいし、会話内容の要約、会話内容に含まれるキーワード等であってもよい。また、応対日時は、例えば、応対を開始した日時であってもよいし、応対を終了した日時であってもよいし、これら両日時を含んでいてもよい。また、応対日時は、撮像部16により利用者の画像を撮像した日時であってもよい。また、会話生成部242は、応対日時とあわせて、利用者との応対の開始から終了までに要した応対時間を応対情報として取得することもできる。
また、会話生成部242は、顔情報処理部22の顔照合部228から同一人物を発見した旨の照合結果が伝達されると、照合結果とともに伝達された匿名IDに基づき、同一人物として発見された利用者の利用者情報を記憶部14の利用者情報DBから取得する。なお、会話生成部242は、利用者情報のすべてを取得する必要は必ずしもなく、利用者情報に含まれる推定年齢、推定性別、会話履歴、及び応対日時のうちの少なくともいずれかを取得すればよい。ただし、会話生成部242は、よりパーソナルな会話を実行するため、少なくとも会話履歴を取得することが好ましい。
会話生成部242は、利用者情報DBから取得した利用者情報に応じて、応対中の利用者に対して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。すなわち、会話生成部242は、取得した利用者情報に含まれる会話履歴及び応対日時を利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。また、会話生成部242は、会話生成部242は、取得した利用者情報に含まれる推定年齢及び推定性別をも利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成することもできる。例えば、過去の会話履歴において誕生日を特定する会話内容が含まれており、利用者に応対している日がその誕生日に近い場合、会話生成部242は、会話を構成する文字データとして「そろそろ誕生日ですかね。」といった文字データを生成することができる。なお、会話生成部242は、会話を構成する文字データの生成に際して、会話履歴、応対日時、推定年齢、及び推定性別のすべてを利用する必要は必ずしもなく、会話履歴、応対日時、推定年齢、及び推定性別のうちの一部又は全部を適宜利用することができる。
利用者情報管理部26は、顔情報処理部22及び会話処理部24で自動的に取得される利用者情報を、記憶部14に格納されている利用者情報DBに登録する。上記のように、顔情報処理部22及び会話処理部24では、応対した利用者の利用者情報として、顔特徴量、推定年齢、推定性別が取得される。また、会話処理部24では、応対した利用者の利用者情報として、会話履歴及び応対日時が取得される。利用者情報管理部26は、これらの利用者情報を、記憶部14に格納されている利用者情報DBに登録する。なお、利用者情報管理部26は、利用者情報DBに登録されてから一定期間を経過した利用者情報を利用者情報DBから削除することができる。一定期間経過後に利用者情報を削除することにより、本実施形態によるロボット10を、利用者のプライバシー保護をさらに配慮したものとすることができる。
図3は、記憶部14に格納されている利用者情報DBの一例を示している。利用者情報DBには、過去に応対が行われた利用者の利用者情報が登録されている。図3に示すように、利用者情報DBのレコードには、応対が行われた利用者ごとに付与された匿名の識別子である匿名ID(Identification)と関連付けられて、利用者情報が登録されている。登録された利用者情報には、その利用者について取得された顔特徴量、推定年齢、推定性別、会話履歴、及び応対日時が含まれている。顔特徴量、推定年齢、及び推定性別は、利用者の外見情報を構成する。会話履歴及び応対日時は、応対情報を構成する。利用者情報DBは、登録された利用者が誰であるかがわからない匿名のDBになっている。すなわち、利用者情報DBの各レコードには外見情報と応対情報とを含む利用者情報が登録されているものの、その利用者情報からは、各レコードに登録された利用者個人が誰であるかを特定することはできない。なお、図3並びに後述の図8A、図8B、図8C及び図12に示す利用者情報DBの例では、便宜上、顔特徴量を数字列で示している。
利用者情報管理部26は、利用者ごとに匿名IDを生成して付与する。利用者情報管理部26は、利用者に付与した匿名IDと関連付けて、その利用者について取得された利用者情報である顔特徴量、推定年齢、推定性別、及び応対日時を利用者情報DBのレコードに登録する。
利用者情報管理部26は、顔情報処理部22の顔照合部228から同一人物を発見しなかった旨の照合結果、すなわち不一致の照合結果が伝達されると、利用情報の新規登録を自動的に行う。この場合、利用者情報管理部26は、同一人物が発見されなかった利用者に新規の匿名IDを付与して、その利用者情報を登録する。
一方、利用者情報管理部26は、顔照合部228から同一人物を発見した旨の照合結果、すなわち一致の照合結果が伝達されると、利用者情報の追加登録を自動的に行う。この場合、利用者情報管理部26は、同一人物であるとされた利用者の匿名IDと同一の匿名ID、又は同一人物であるとされた利用者の匿名IDと関連付けられた新規の匿名IDを、同一人物が発見された応対中の利用者に付与して、利用者情報を追加登録する。例えば、推定年齢が変化している場合には推定年齢を追加登録する。また、新たな会話履歴を追加登録する。
撮像部16は、ロボット10の前方を撮像可能に設けられており、ロボット10に対面する利用者を撮像することができるように構成されている。撮像部16は、例えばデジタルスチルカメラ又はデジタルビデオカメラにより構成され、上述のように、応対中の利用者を撮像して利用者の画像を取得する。撮像部16は、例えば、利用者との応対を開始した際に、その利用者を撮像することができる。撮像部16は、利用者の上半身等、利用者の顔を含む画像を撮像する。撮像部16は、取得した画像の画像データを制御部12に入力する。
音声入力部18は、例えばマイクロフォンにより構成され、上述のように、応対中の利用者により発話された音声を音声データに変換する。音声入力部18は、利用者との応対が行われている間、利用者により発話された音声を音声データに変換する。音声入力部18は、変換した音声データを制御部12に入力する。
音声出力部20は、例えばスピーカにより構成され、上述のように、制御部12の会話処理部により生成された利用者との会話のための音声データを音声に変換して利用者に向けて出力する。
上述したロボット10は、例えばコンピュータ装置により構成される。ロボット10のハードウェア構成の一例について図4を用いて説明する。なお、ロボット10は、単一の装置により構成されていてもよいし、有線又は無線で接続された2つ以上の物理的に分離された装置により構成されていてもよい。
ロボット10は、図4に示すように、CPU1002と、ROM(Read Only Memory)1004と、RAM(Random Access Memory)1006と、HDD(Hard Disk Drive)1008とを有している。また、ロボット10は、カメラ1010と、マイクロフォン1012と、スピーカ1014とを有している。CPU1002、ROM1004、RAM1006、HDD1008、カメラ1010、マイクロフォン1012、及びスピーカ1014は、共通のバスライン1016に接続されている。
CPU1002は、ロボット10の全体の動作を制御する。また、CPU1002は、上記顔情報処理部22における顔検出部220、顔特徴量抽出部222、年齢推定部224、性別推定部226、及び顔照合部228の各部の機能を実現するプログラムを実行する。また、CPU1002は、上記会話処理部24における音声認識部240及び会話生成部242の各部の機能を実現するプログラムを実行する。CPU1002は、HDD1008等に記憶されたプログラムをRAM1006にロードして実行することにより、顔情報処理部22及び会話処理部24における各部の機能を実現する。
ROM1004は、ブートプログラム等のプログラムが記憶されている。RAM1006は、CPU1002がプログラムを実行する際のワーキングエリアとして使用される。また、HDD1008には、CPU1002が実行するプログラムが記憶されている。
また、HDD1008は、上記記憶部14の機能を実現する記憶装置である。なお、記憶部14の機能を実現する記憶装置は、HDD1008に限定されるものではない。種々の記憶装置を記憶部14の機能を実現するものとして用いることができる。
カメラ1010は、上記撮像部16の機能を実現する撮像装置である。マイクロフォン1012は、上記音声入力部18の機能を実現する音声入力装置である。スピーカ1014は、上記音声出力部20の機能を実現する音声出力装置である。
なお、ロボット10のハードウェア構成は、上述した構成に限定されるものではなく、種々の構成とすることができる。
本実施形態によるロボット10は、利用者が個人情報を事前登録する必要なく、応対中の利用者が、過去の利用者と同一人物であるか否かを識別することができる。さらに、本実施形態によるロボット10は、応対中の利用者と同一人物であると判定された過去の利用者の会話履歴、応対日時、推定年齢、及び推定性別を含む利用者情報を利用して、応対中の利用者に応じてパーソナルな会話を自然に行うことができる。
以下、上記本実施形態によるロボット10を用いた本実施形態による応対方法についてさらに図5を用いて説明する。図5は、本実施形態による応対方法を示すフローチャートである。
例えば店舗等に配置されたロボット10は、顧客である利用者が店舗に来店してロボット10に対面すると、対面した利用者を検知してその利用者との応対を開始する(ステップS102)。ロボット10は、利用者との応対の中で、会話処理部24により利用者との会話を行う。
利用者との会話において、音声認識部240には、音声入力部18から、利用者が発話した音声の音声データが入力される。音声認識部240は、音声入力部18から入力された音声信号に基づき、利用者が発話した音声を認識し、その音声に対応する文字データを生成する。会話生成部242は、音声認識部240により生成された文字データに基づき、利用者の発話に対する応答として、利用者が発話した音声の内容に応じた応答音声の音声データを生成する。また、会話生成部242は、利用者の発話に対する応答のみならず、利用者に対して話題を投げかける音声の音声データを生成することもできる。会話生成部242により生成された音声データは、利用者に向けて音声出力部20から音声として出力される。
会話生成部242は、利用者との応対の間、利用者との会話内容を含む会話履歴を取得する。また、会話生成部242は、利用者との応対が行われた応対日時を取得する。
利用者との応対が開始されると、撮像部16は、応対中の利用者を撮像して利用者の画像を取得する(ステップS104)。続いて、撮像部16は、取得した画像の画像データを制御部12の顔検出部220に入力する。
顔検出部220は、利用者の画像の画像データが撮像部16から入力されると、入力された画像データに基づき、利用者の画像について顔検出を行う(ステップS106)。これにより、顔検出部220は、撮像部16により撮影される利用者の画像から、利用者の顔画像を検出する。
顔特徴量抽出部222は、顔検出部220により検出された顔画像について、顔画像の特徴量である顔特徴量を抽出する(ステップS108)。
年齢推定部224は、顔特徴量抽出部222により抽出された顔特徴量に基づき、利用者の年齢を推定して、利用者の推定年齢を取得する。また、性別推定部226は、顔特徴量抽出部222により抽出された顔特徴量に基づき、利用者の性別を推定して、利用者の推定性別を取得する。こうして、顔情報処理部22は、利用者の顔特徴量、推定年齢、及び推定性別を含む利用者の外見情報を取得する(ステップS110)。
顔照合部228は、応対中の利用者の顔画像から検出された顔画像の顔特徴量と、記憶部14の利用者情報DBに登録されている利用者の顔特徴量とを顔照合エンジンにより照合する。これにより、顔照合部228は、応対中の利用者と同一人物を、利用者情報DBに登録されている利用者の中から検索する(ステップS112)。顔照合部228は、同一人物が発見されたか否か、すなわち照合が一致であるか不一致であるかの照合結果を、利用者情報管理部26及び会話処理部24の会話生成部242に伝達する。顔照合部228は、照合が一致して同一人物が発見された場合、同一人物として発見された利用者の匿名IDを照合結果とともに利用者情報管理部26及び会話生成部242に伝達する。
顔照合部228による照合の結果、照合結果が不一致であり同一人物が発見されない場合(ステップS114、NO)、利用者情報管理部26は、利用者情報の登録を行う(ステップS116)。この場合、利用者情報管理部26は、同一人物が発見されなかった利用者に新規の匿名IDを付与して、その利用者について取得された利用者情報を記憶部14の利用者情報DBに登録する。登録される利用者情報は、ステップS108で取得された顔特徴量、並びにステップS110で取得された推定年齢及び推定性別を含んでいる。また、登録される利用者情報は、利用者との応対の間に会話生成部242により取得された会話履歴及び応対日時を含んでいる。ここで登録される会話履歴には、ステップS102の応対の開始からステップS118の応対の終了までの間に行われた利用者との会話の内容が含まれる。
ステップS116の後、応対を終了する(ステップS118)。なお、応対を終了するステップS118の後に、利用者情報を登録するステップS116を行ってもよい。
一方、顔照合部228による照合の結果、照合結果が一致であり同一人物が発見された場合(ステップS114、YES)、会話生成部242は、同一人物として発見された利用者の利用者情報を記憶部14の利用者情報DBから取得する(ステップS120)。このとき、会話生成部242は、顔情報処理部22の顔照合部228から照合結果とともに伝達された匿名IDに基づき、利用者情報DBから利用者情報を取得する。
会話生成部242は、ステップS120で取得した利用者情報に含まれる会話履歴、応対日時、推定年齢、及び推定性別を利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。さらに、会話生成部242は、生成した文字データに対応する音声データを生成する。会話生成部242により生成された音声データは、対応中の利用者に向けて音声出力部20から音声として出力される。
こうして、ロボット10は、利用者情報に応じたパーソナルな会話を利用者との間で実行する(ステップS122)。パーソナルな会話は、応対が終了するまで間に随時実行される。利用者情報に応じたパーソナルな会話を利用者との間で実行することにより、応対中の利用者に応じてパーソナルな会話を自然に行うことができる。
また、顔照合部228による照合の結果、照合結果が一致であり同一人物が発見された場合(ステップS114、YES)、利用者情報管理部26は、利用者情報の追加登録を行う(ステップS124)。利用者情報管理部26は、同一人物であるとされた利用者の匿名IDと同一の匿名ID、又は同一人物であるとされた利用者の匿名IDと関連付けられた新規の匿名IDを、同一人物が発見された応対中の利用者に付与して、利用者情報を追加登録する。ここで追加登録される利用者情報には、応対中に行われた新たな会話内容を含む新たな会話履歴及び応対日時が含まれ、ステップS110で取得された推定年齢が変化していればその変化した推定年齢が含まれる。また、追加登録される会話履歴には、ステップS102の応対の開始からステップS118の応対の終了までの間に行われた利用者との会話の内容が含まれる。
ステップS124の後、応対を終了する(ステップS118)。なお、応対を終了するステップS118の後に、ステップS124を行ってもよい。
このように、本実施形態によれば、利用者が個人情報を事前登録する必要なく、応対中の利用者が、過去の利用者と同一人物か識別することができる。さらに、本実施形態によれば、同一人物であると判定された過去の利用者の会話履歴、応対日時、推定年齢、及び推定性別を含む利用者情報を利用して、応対中の利用者に応じてパーソナルな会話を自然に行うことができる。
[第2実施形態]
本発明の第2実施形態による応対システム及び応対方法について図6乃至図10を用いて説明する。なお、上記第1実施形態よる応対ロボット及び応対方法と同様の構成要素については同一の符号を付し説明を省略し又は簡略にする。
まず、本実施形態による応対システムについて図6乃至図10を用いて説明する。図6は、本実施形態による応対システムを示す概略図である。図7は、本実施形態による応対システムの機能構成を示すブロック図である。図8A、図8B及び図8Cは、本実施形態による応対システムにおける各部の記憶部に格納された利用者情報DBの例を示す概略図である。図9は、本実施形態による応対ロボットのハードウェア構成の一例を示すブロック図である。図10は、本実施形態によるデータベースサーバのハードウェア構成の一例を示すブロック図である。
本実施形態による応対システム30は、図6及び図7に示すように、ロボットA10aと、ロボットB10bと、データベース(DB)サーバ40とを含んでいる。ロボットA10a及びロボットB10bは、それぞれ第1実施形態によるロボット10と同様に、例えば店舗に配置され、利用者に対する応対を行って接客するものである。ロボットA10a及びロボットB10bは、例えば、同一事業者の互いに異なる店舗に配置されている。また、DBサーバ40は、例えば、ロボットA10a及びロボットB10bが配置された店舗とは異なる地に所在するデータセンタ内に設置されている。なお、ロボットの数は、ロボットA10a及びロボットB10bの2台に限定されるものではなく、3台以上の複数台であってもよい。
ロボットA10a、ロボットB10b、及びDBサーバ40は、それぞれネットワーク50に接続されている。ロボットA10aとDBサーバ40とは、ネットワーク50を介して通信可能になっている。また、ロボットB10bとDBサーバ40とは、ネットワーク50を介して通信可能になっている。ネットワーク50は、その種別が特に限定されるものではないが、例えば、WAN(Wide Area Network)、LAN(Local Area Network)である。
ロボットA10a及びロボットB10bは、それぞれ第1実施形態によるロボット10と同様の基本的構成を有している。ロボットA10a及びロボットB10bは、それぞれ通信部28をさらに有している。ロボットA10a及びロボットB10bにおける通信部28は、ネットワーク50に接続されており、各ロボットとDBサーバ40との通信を可能にする。ロボットA10a及びロボットB10bの記憶部14は、それぞれ第1の利用者情報データベースを格納する第1の記憶部として機能する。
DBサーバ40は、制御部42と、記憶部44と、通信部46とを有している。
制御部42は、DBサーバ40の動作を制御する。
記憶部44には、利用者情報が登録された利用者情報DBが格納されている。DBサーバ40の記憶部44は、第2の利用者情報データベースを格納する第2の記憶部として機能する。
通信部46は、ネットワーク60に接続されており、DBサーバ40とロボットA10a及びロボットB10bとの通信を可能にする。
ロボットA10aは、第1実施形態と同様に、利用者との応対を行う。これにより、ロボットA10aの利用者情報管理部26は、第1実施形態と同様に、応対が行われた利用者の利用者情報を記憶部14の利用者情報DBに登録していく。ロボットB10bも、第1実施形態と同様に、利用者との応対を行う。これにより、ロボットB10bの利用者情報管理部26も、第1実施形態と同様に、応対が行われた利用者の利用者情報を記憶部14の利用者情報DBに登録していく。ここにいう利用者情報の登録は、図5に示すフローチャートのステップS116での利用者情報の登録のみならず、ステップS124での利用者情報の追加登録を含みうる。
本実施形態では、さらに、ロボットA10a及びロボットB10bにおける利用者情報の登録に際して、それぞれの利用者情報管理部26は、第1実施形態において説明した利用者情報に加えて、利用者情報の一部として応対ロボット情報を登録する。応対装置情報である応対ロボット情報は、登録する利用者情報の利用者について応対を行ったロボットに関する情報である。具体的には、応対ロボット情報は、応対を行ったロボットを特定する情報であり、応対を行ったロボットのIDであるロボットIDを含んでいる。また、応対ロボット情報は、さらに、応対を行ったロボットの配置場所を特定する情報であり、応対を行ったロボットが配置された店舗名、並びにその店舗が所在する基礎自治体である市区町村の名称、及び広域自治体である都道府県の名称を含むことができる。
さらに、ロボットA10aにおいて、利用者情報管理部26は、通信部28を介してDBサーバ40と通信を行い、記憶部14の利用者情報DBに登録された利用者情報をDBサーバ40にアップロードして送信する。また、ロボットB10bにおいても、利用者情報管理部26は、通信部28を介してDBサーバ40と通信を行い、記憶部14の利用者情報DBに登録された利用者情報をDBサーバ40にアップロードして送信する。こうして、ロボットA10a及びロボットB10bは、それぞれ利用者情報をDBサーバ40に送信する。なお、ロボットA10a及びロボットB10bが利用者情報をアップロードするタイミングは、特に限定されるものではない。ロボットA10a及びロボットB10bは、定期又は不定期に利用者情報をアップロードすることができる。
一方、DBサーバ40において、制御部42は、通信部46を介してロボットA10aと通信を行い、ロボットA10aから送信された利用者情報を受信する。また、制御部42は、通信部46を介してロボットA10aと通信を行い、ロボットA10aから送信された利用者情報を受信する。
さらに、制御部42は、ロボットA10a及びロボットB10bから受信した利用者情報を、記憶部44の利用者情報DBに登録する。これにより、制御部42は、記憶部44の利用者情報DBを更新する。
こうして、ロボットA10a及びロボットB10bにおける利用者情報管理部26は、それぞれ自ロボットで取得した利用者情報を、ネットワーク50を介してDBサーバ40の利用者情報DBに登録する。
図8A、図8B及び図8Cは、本実施形態による応対システム30における各部の記憶部に格納された利用者情報DBの例を示す概略図である。図8Aは、ロボットA10aの記憶部14に格納された利用者情報DBの例を示す概略図である。図8Bは、ロボットB10bの記憶部14に格納された利用者情報DBの例を示す概略図である。図8Cは、DBサーバ40の記憶部44に格納された利用者情報DBの例を示す概略図である。
図8Aに示すように、ロボットA10aの利用者情報DBのレコードには、匿名IDと関連付けられて、その利用者について取得された顔特徴量、推定年齢、推定性別、会話履歴、及び応対日時が利用者情報として登録されている。さらに、ロボットA10aの利用者情報DBのレコードには、匿名IDと関連付けられて、その利用者との応対を行ったロボットがロボットA10aであることを示す応対ロボ情報として、応対ロボIDが登録されている。
図8Bに示すように、ロボットB10bの利用者情報DBのレコードには、匿名IDと関連付けられて、その利用者について取得された顔特徴量、推定年齢、推定性別、会話履歴、及び応対日時が利用者情報として登録されている。さらに、ロボットB10bの利用者情報DBのレコードには、匿名IDと関連付けられて、その利用者との応対を行ったロボットがロボットB10bであることを示す応対ロボ情報として、応対ロボIDが登録されている。
DBサーバ40の利用者情報DBは、上記ロボットA10a及びロボットB10bそれぞれの利用者情報DBに登録された利用者情報がアップロードされることにより構築される。このため、DBサーバ40の利用者情報DBは、図8Cに示すように、ロボットA10aの利用者情報DBのレコードと、ロボットB10bの利用者情報DBのレコードとを含むものになっている。
ロボットA10a及びロボットB10bは、同一人物の検索及びパーソナルな会話実行のための利用者情報の取得に用いる利用者情報DBに関する点を除き、第1実施形態と同様に図5に示すフローチャートに従って、それぞれ利用者との応対を行う。
本実施形態において、ロボットA10a及びロボットB10bは、DBサーバ40との間の通信環境の良否に応じて、図5に示すステップS112の同一人物の検索、及びステップS120の利用者情報の取得に用いる利用者情報DBを選択する。利用者情報DBを選択に際して、ロボットA10a及びロボットB10bは、自己の利用者情報DB、及びDBサーバ40の利用者情報DBのうちのいずれか一方を選択する。ロボットA10a及びロボットB10bの制御部12は、DBサーバ40との間の通信速度を監視し、DBサーバ40との間の通信速度に基づき、DBサーバ40との間の通信環境の良否を判定することができる。
例えば、ロボットA10aとDBサーバ40との間の通信環境が良好である場合、ロボットA10aは、利用者情報DBとして、DBサーバ40の記憶部44に格納された利用者情報DBを用いる。この場合、ロボットA10aにおける顔照合部228は、ステップS112で、応対中の利用者と同一人物を、DBサーバ40の記憶部44に格納された利用者情報DBに登録されている利用者の中から検索する。また、この場合、ロボットA10aにおける会話生成部242は、ステップS120で、同一人物として発見された利用者の利用者情報を、DBサーバ40の記憶部44に格納された利用者情報DBから取得する。顔照合部228及び会話生成部242は、それぞれ通信部28を介してDBサーバ40の利用者情報DBにアクセスしてその利用者情報DBを用いることができる。
一方、ロボットA10aとDBサーバ40との間の通信環境が良好でない場合、ロボットA10aは、利用者情報DBとして、自己の記憶部14に格納された利用者情報DBを用いる。この場合、ロボットA10aにおける顔照合部228は、ステップS112で、応対中の利用者と同一人物を、自己の記憶部14に格納された利用者情報DBに登録されている利用者の中から検索する。また、この場合、ロボットA10aにおける会話生成部242は、ステップS120で、同一人物として発見された利用者の利用者情報を、自己の記憶部14に格納された利用者情報DBから取得する。
ロボットB10bも、上記ロボットA10aと同様に、DBサーバ40との間の通信環境の良否に応じて、利用者情報DBを選択することができる。
上述のように、DBサーバ40の利用者情報DBは、ロボットA10aの利用者情報DBのレコードと、ロボットB10bの利用者情報DBのレコードとを含むものになっている。すなわち、DBサーバ40の利用者情報DBは、ロボットA10a及びロボットB10bのそれぞれにとって、自装置である自ロボットが取得した利用者情報のほか、別装置である別ロボットが取得した利用者情報を含んでいる。このようなDBサーバ40の利用者情報DBを用いることにより、より多くの利用者情報から応対中の利用者と同一人物を検索することができる。また、別ロボットが取得した利用者情報をも利用して利用者との会話を行いうるので、利用者に応じたパーソナルな会話を行う機会を増やすことができる。
また、上述のように、ロボットA10a及びロボットB10bは、通信環境に応じて、自己の利用者情報DB及びDBサーバ40の利用者情報DBのいずれかを選択して用いる。したがって、ロボットA10a及びロボットB10bは、通信環境が良好でない場合であっても、自己の利用者情報DBを用いて、利用者に応じてパーソナルな会話を自然に行うことができる。
このように、本実施形態によれば、別ロボットが取得した利用者情報をも含むDBサーバ40の利用者情報DBを用いることができるので、利用者に応じたパーソナルな会話を行う機会を増やすことができる。また、本実施形態によれば、通信環境に応じて、自ロボットの利用者情報DB及びDBサーバ40の利用者情報DBのいずれかを選択して用いるので、通信環境の良否によらず、利用者に応じてパーソナルな会話を自然に行うことができる。
なお、上述したロボットA10a及びロボットB10bは、それぞれ例えばコンピュータ装置により構成される。ロボットA10a及びロボットB10bのハードウェア構成は、図4に示す第1実施形態によるハードウェア構成とほぼ同様である。ロボットA10a及びロボットB10bは、さらに、図9に示すように、通信部28の機能を実現する通信I/F1018を有している。
通信I/F1018は、ネットワーク50に接続されている。通信I/F1018は、ネットワーク50に接続されたDBサーバ40との間のデータの通信を制御する。
また、上述したDBサーバ40は、例えばコンピュータ装置により構成される。DBサーバ40のハードウェア構成の一例について図10を用いて説明する。なお、DBサーバ40は、単一の装置により構成されていてもよいし、有線又は無線で接続された2つ以上の物理的に分離された装置により構成されていてもよい。
DBサーバ40は、図10に示すように、CPU4002と、ROM4004と、RAM4006と、HDD4008とを有している。また、DBサーバ40は、通信I/F4010を有している。CPU4002、ROM4004、RAM4006、HDD4008、及び通信I/F4010は、共通のバスライン4012に接続されている。
CPU4002は、DBサーバ40の全体の動作を制御する。また、CPU4002は、上記制御部42の機能を実現するプログラムを実行する。CPU4002は、HDD4008等に記憶されたプログラムをRAM4006にロードして実行することにより、制御部42の機能を実現する。
ROM4004は、ブートプログラム等のプログラムが記憶されている。RAM4006は、CPU4002がプログラムを実行する際のワーキングエリアとして使用される。また、HDD4008には、CPU4002が実行するプログラムが記憶されている。
また、HDD4008は、上記記憶部44の機能を実現する記憶装置である。なお、記憶部44の機能を実現する記憶装置は、HDD4008に限定されるものではない。種々の記憶装置を記憶部44の機能を実現するものとして用いることができる。
通信I/F4010は、ネットワーク50に接続されている。通信I/F4010は、ネットワーク50に接続されたロボットA10a及びロボットB10bとの間のデータの通信を制御する。
なお、DBサーバ40のハードウェア構成は、上述した構成に限定されるものではなく、種々の構成とすることができる。
[第3実施形態]
本発明の第3実施形態による応対システム及び応対方法について図11を用いて説明する。なお、上記第2実施形態よる応対システム及び応対方法と同様の構成要素については同一の符号を付し説明を省略し又は簡略にする。
本実施形態による応対システムの基本的構成は、上記第2実施形態による応対システムの構成と同様である。本実施形態による応対システムでは、ロボットA10a及びロボットB10bのそれぞれが、自己の記憶部14に格納された利用者情報DBを、DBサーバ40の記憶部44に格納された利用者情報DBと同期して更新する。
以下、本実施形態による応対システムにおける利用者情報DBの同期について図11を用いて説明する。図11は、本実施形態による応対システムにおける利用者情報DBの同期を示すシーケンス図である。
図11に示すように、ロボットA10aは、第2実施形態と同様に、利用者との応対を行う。これにより、ロボットA10aの利用者情報管理部26は、第2実施形態と同様に、利用者情報を記憶部14の利用者情報DBに登録していく(ステップS202)。なお、ここにいう利用者情報の登録は、図5に示すフローチャートのステップS116での利用者情報の登録のみならず、ステップS124での利用者情報の追加登録を含みうる。
さらに、ロボットA10aにおいて、利用者情報管理部26は、通信部28を介してDBサーバ40と通信を行い、記憶部14の利用者情報DBに登録された利用者情報をDBサーバ40にアップロードする(ステップS204)。
DBサーバ40では、制御部42が、ロボットA10aから受信した利用者情報を、記憶部44の利用者情報DBに登録する。これにより、制御部42は、記憶部44の利用者情報DBを更新する(ステップS206)。
一方、ロボットB10bにおいて、利用者情報管理部26は、記憶部14の利用者情報DBと、DBサーバ40の利用者情報DBとを同期する(ステップS208)。これにより、ロボットB10bの利用者情報管理部26は、記憶部14の利用者情報DBの内容を、DBサーバ40の利用者情報DBの内容と同一内容に更新する。
また、ロボットB10bは、第2実施形態と同様に、利用者との応対を行う。これにより、ロボットB10bの利用者情報管理部26は、第2実施形態と同様に、利用者情報を記憶部14の利用者情報DBに登録していく(ステップS210)。なお、ここにいう利用者情報の登録は、図5に示すフローチャートのステップS116での利用者情報の登録のみならず、ステップS124での利用者情報の追加登録を含みうる。
さらに、ロボットB10bにおいて、利用者情報管理部26は、通信部28を介してDBサーバ40と通信を行い、記憶部14の利用者情報DBに登録された利用者情報をDBサーバ40にアップロードする(ステップS212)。
DBサーバ40では、制御部42が、ロボットB10bから受信した利用者情報を、記憶部44の利用者情報DBに登録する。これにより、制御部42は、記憶部44の利用者情報DBを更新する(ステップS214)。
一方、ロボットA10aにおいて、利用者情報管理部26は、記憶部14の利用者情報DBと、DBサーバ40の利用者情報DBとを同期する(ステップS216)。これにより、ロボットA10aの利用者情報管理部26は、記憶部14の利用者情報DBの内容を、DBサーバ40の利用者情報DBの内容と同一内容に更新する。
こうして、ロボットA10a及びロボットB10bのそれぞれにおいて、利用者情報DBが同期更新される。これにより、各ロボットにおける利用者情報DBの内容は、別ロボットが取得した利用情報をも含むDBサーバ40の利用者情報DBの内容と同一内容となる。
本実施形態による応対システムでは、ロボットA10a及びロボットB10bによる利用者情報のアップロード、DBサーバ40での利用者情報DBの更新、及びロボットA10a及びロボットB10bでの利用者情報DBの同期更新が繰り返して行われる。なお、ロボットA10a及びロボットB10bによる利用者情報のアップロードのタイミングは特に限定されるものではなく、定期又は不定期に利用者情報のアップロードを行うことができる。また、DBサーバ40での利用者情報DBの更新のタイミングも特に限定されるものではなく、定期又は不定期に利用者情報DBの更新を行うことができる。また、ロボットA10a及びロボットB10bでの利用者情報DBの同期更新のタイミングも特に限定されるものではなく、定期又は不定期に利用者情報DBの同期更新を行うことができる。
ロボットA10a及びロボットB10bは、それぞれ上記のように同期更新される自己の利用者情報DBを用いて、図5に示すステップS112の同一人物の検索、及びステップS120の利用者情報の取得を行うことができる。
上述のように同期更新されたロボットA10a及びロボットB10bの利用者情報DBは、それぞれ、ロボットA10aにより取得された利用者情報と、ロボットB10bにより取得された利用者情報とを含むものになっている。すなわち、同期更新された各ロボットの利用者情報DBは、自ロボットが取得した利用者情報のほか、別ロボットが取得した利用者情報を含んでいる。このようなロボットの利用者情報DBを用いることにより、より多くの利用者情報から応対中の利用者と同一人物を検索することができる。また、別ロボットが取得した利用者情報をも利用して利用者との会話を行いうるので、利用者に応じたパーソナルな会話を行う機会を増やすことができる。
また、同期更新されて別ロボットが取得した利用者情報をも含む自ロボットの利用者情報DBを用いるため、DBサーバ40の利用者情報DBを用いる場合とは異なり、通信環境の影響を受けることがない。
このように、本実施形態によれば、同期更新されて別ロボットが取得した利用者情報をも含む自ロボットの利用者情報DBを用いるので、利用者に応じたパーソナルな会話を行う機会を増やすことができる。
[第4実施形態]
本発明の第4実施形態による応対システム及び応対方法について図12乃至図14を用いて説明する。なお、上記第2及び第3実施形態による応対システム及び応対方法と同一の構成要素については同一の符号を付し説明を省略し又は簡略にする。
本実施形態による応対システムの基本的構成は、上記第2実施形態による応対システムの構成と同様である。本実施形態では、自ロボットが取得した利用者情報のみならず、別ロボットが取得した利用者情報をも含むDBサーバ40の利用者情報DBを用いて利用者との応対を行う場合の応対方法について詳述する。
以下、本実施形態による応対方法について図12乃至図14を用いて説明する。図12は、本実施形態による応対システムにおける利用者情報DBの一例を示す概略図である。図13及び図14は、本実施形態による応対方法を示すフローチャートである。
図12は、DBサーバ40の利用者情報DBの一例を示している。図12に示すように、DBサーバ40の利用者情報DBは、ロボットA10aにより取得された利用者情報と、ロボットB10bにより取得された利用者情報とを含んでいる。さらに、DBサーバ40の利用者情報DBは、ロボットA10a及びロボットB10bと同様の他のロボットCにより取得された利用者情報を含んでいる。
各ロボットにより取得された利用者情報のそれぞれには、応対ロボット情報として、応対ロボIDのほか、応対したロボットが配置された店舗名、並びにその店舗が所在する市区町村の名称、及び都道府県の名称が含まれている。
各ロボットは、上記のようなDBサーバ40の利用者情報DBを用いて利用者との応対を行う。以下、例として、ロボットA10aにより応対が行われる場合について説明する。
ロボットA10aは、図13に示すフローチャートに従って、利用者との応対を行う。図13に示すフローチャートは、第1実施形態の図5に示すフローチャートと基本的に同様である。ただし、ロボットA10aは、ステップS112の同一人物の検索で用いる利用者情報DBとして、DBサーバ40の利用者情報DBを用いる。また、ロボットA10aは、ステップS120の利用者情報の取得で用いる利用者情報DBとして、DBサーバ40の利用者情報DBを用いる。
ステップS112の同一人物の検索において、ロボットA10aの顔照合部228は、DBサーバ40の利用者情報DBの利用者情報に含まれる応対ロボット情報に基づき、利用者情報DBの利用者情報について検索優先度を決定する。顔照合部228は、決定した検索優先度の高低に従って、検索優先度の高い利用者情報から順に、利用者情報の顔特徴量を順次照合していく。このように検索優先度を決定することにより、同一人物の検索を効率よく行うことができる。
具体的には、例えば、ロボットA10aの顔照合部228は、DBサーバ40の利用者情報DBに登録された利用者情報のうち、自ロボット、すなわちロボットA10aにより取得された利用者情報の検索優先度を最も高く設定する。また、顔照合部228は、利用者情報DBの利用者情報のうち、ロボットA10aとは別のロボットであって、同一店舗に配置されたロボットにより取得された利用者情報の検索優先度を2番目に高く設定する。また、顔照合部228は、利用者情報DBの利用者情報のうち、ロボットA10aとは別のロボットであって、同一市区町村内の別店舗に配置されたロボットにより取得された利用者情報の検索優先度を3番目に高く設定する。また、顔照合部228は、利用者情報DBの利用者情報のうち、ロボットA10aとは別のロボットであって、同一市区町村内ではないが同一都道府県内の別店舗に配置されたロボットにより取得された利用者情報の検索優先度を4番目に高く設定する。
こうして、ロボットA10aとは別のロボットにより取得された利用者情報について、ロボットA10aの顔照合部228は、その別ロボットとロボットA10aとの間の距離的関係又は地理的関係に基づき、検索優先度を決定することができる。具体的には、ロボットA10aの顔照合部228は、その別ロボットの配置場所とロボットA10aの配置場所との間の遠近関係に基づき、別ロボットにより取得された利用者情報について検索優先度を決定することができる。
このように、ロボットA10aの顔照合部228は、別ロボットで取得された利用者情報の検索優先度よりも、自ロボットで取得された利用者情報の検索優先度を高く設定することができる。また、ロボットA10aとは別のロボットにより取得された利用者情報について、ロボットA10aの顔照合部228は、その別ロボットとロボットA10aとの間の距離的関係又は地理的関係に基づき、検索優先度を決定することができる。
また、本実施形態では、ステップS122のパーソナルな会話の実行に際して、会話生成部242が、その会話に利用する利用者情報の応対ロボット情報を考慮する。以下、本実施形態におけるステップS122のパーソナルな会話の実行の詳細について図14を用いて説明する。図14は、本実施形態におけるステップS122のパーソナルな会話の実行の詳細を示すフローチャートである。
まず、ロボットA10aの会話生成部242は、ステップS120で利用者情報DBから取得した利用者情報が、ロボットA10aで取得されたものであるか否か、すなわち自ロボットで取得されたものであるか否かを判定する(ステップS302)。
利用者情報が自ロボットで取得されたものである場合(ステップS302、YES)、ロボットA10aの会話生成部242は、ステップS120で取得した利用者情報を直接的に利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。さらに、会話生成部242は、生成した文字データに対応する音声データを生成する。会話生成部242により生成された音声データは、利用者に向けて音声出力部20から音声として出力される。なお、同一店舗等の同一の場所に複数台のロボットが配置さていることもあり、顔特徴量の照合が一致した利用者情報が、同一の場所に配置された別ロボットにより取得されたものである場合もありうる。この場合も、利用者情報が自ロボットで取得されたものである場合と同様に、同一場所に配置された別ロボットにより取得された利用者情報を直接的に利用して、会話生成部242は、パーソナルな会話を構成する文字データを会話エンジンにより生成することができる。
こうして、ロボットA10aは、自ロボットで取得された利用者情報を直接的に利用して、パーソナルな会話を利用者との間で実行する(ステップS304)。例えば、自ロボットで取得した利用者情報に、利用者の誕生日が4月2日である旨の会話内容の会話履歴が含まれているとする。この場合、応対時の日付が4月2日に近接している場合、ロボットA10aは、例えば、「たしかそろそろ誕生日ですよね。」との発話を行うことができる。このように自ロボットで取得された利用者情報を直接的に利用することにより、会話履歴の会話内容と直接関連するパーソナルな会話、又は会話履歴の会話内容との関連性の高いパーソナルな会話を実行することができる。また、ロボットA10aとパーソナルな会話を行う利用者は、ロボットA10aと過去に会話したことを認識している可能性が高い。このため、会話履歴の内容と直接関連するパーソナルな会話が行われたとしても、利用者が、その会話の内容に対して不自然さ、違和感を覚える可能性は低い。
このように、ロボットA10aの会話生成部242は、顔特徴量の照合が一致した利用者情報に含まれる応対装置情報により特定されるロボットが自ロボットであるか別ロボットであるかに応じて、利用者と行うパーソナルな会話の内容を変更する。なお、応対装置情報により特定されるロボットが別ロボットである場合、利用者と行うパーソナルな会話の内容は以下のようになる。
一方、利用者情報が自ロボットで取得されたものでない場合、すなわち別ロボットで取得されたものである場合(ステップS302、NO)、ロボットA10aの会話生成部242は、ロボットA10aと別ロボットとの間の距離的関係又は地理的関係を判定する。ロボットA10aの会話生成部242は、判定された距離的関係又は地理的関係に応じて、別ロボットで取得された利用者情報を用いたパーソナルな会話の内容を変更する。なお、ここにいう距離的関係又は地理的関係とは、具体的には、例えば、ロボットA10aの配置場所と別ロボットの配置場所との間の遠近関係である。
具体的には、例えば、ロボットA10aの会話生成部242は、ステップS120で利用者情報DBから取得した利用者情報が、同一市区町村内の別ロボットで取得されたものであるか否かを判定する(ステップS306)。
利用者情報が同一市区町村内の別ロボットで取得されたものである場合(ステップS306、YES)、ロボットA10aの会話生成部242は、ステップS120で取得した利用者情報を間接的に利用する。すなわち、会話生成部242は、ステップS120で取得した利用者情報を間接的に利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。さらに、会話生成部242は、生成した文字データに対応する音声データを生成する。会話生成部242により生成された音声データは、利用者に向けて音声出力部20から音声として出力される。
こうして、ロボットA10aは、同一市区町村内の別ロボットで取得された利用者情報を間接的に利用して、パーソナルな会話を利用者との間で実行する(ステップS308)。例えば、同一市区町村内の別ロボットで取得された利用者情報に、利用者が黄色好きである旨の会話内容の会話履歴が含まれるとする。この場合、ロボットA10aは、例えば、黄色の服を提示しつつ、「こういった服が流行していますがいかがでしょうか。」との発話を行うことができる。このように別ロボットで取得された利用者情報を間接的に利用することにより、会話履歴の会話内容との関連性を希釈化した内容のパーソナルな会話を実行することができる。別ロボットで取得された利用者情報を間接的に利用したパーソナルな会話の内容は、自ロボットで取得された利用者情報を直接的に利用したパーソナルな会話の内容と比較して、会話履歴の会話内容との関連性が低いものとなる。
利用者情報が同一市区町村内の別ロボットで取得されたものでない場合(ステップS306、NO)、ロボットA10aの会話生成部242は、さらに、距離的関係又は地理的関係を判定する。すなわち、ロボットA10aの会話生成部242は、ステップS120で利用者情報DBから取得した利用者情報が、同一都道府県内の別ロボットで取得されたものであるか否かを判定する(ステップS310)。
利用者情報が同一都道府県内の別ロボットで取得されたものである場合(ステップS310、YES)、ロボットA10aの会話生成部242は、ステップS120で取得した利用者情報をさらに間接的に利用する。すなわち、会話生成部242は、ステップS120で取得した利用者情報をさらに間接的に利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。さらに、会話生成部242は、生成した文字データに対応する音声データを生成する。会話生成部242により生成された音声データは、利用者に向けて音声出力部20から音声として出力される。
こうして、ロボットA10aは、同一市区町村内ではないが同一度道府県内の別ロボットで取得された利用者情報をさらに間接的に利用して、パーソナルな会話を利用者との間で実行する(ステップS312)。例えば、同一市区町村内ではないが同一都道府県内の別ロボットで取得された利用者情報に、利用者が旅行好きである旨の会話内容の会話履歴が含まれるとする。この場合、ロボットA10aは、例えば、「暖かくなってきたので、どこかに行きたいですよね。」との発話を行うことができる。このように別ロボットで取得された利用者情報をさらに間接的に利用することにより、会話履歴の会話内容との関連性をさらに希釈化した内容のパーソナルな会話を実行することができる。別ロボットで取得された利用者情報をさらに間接的に利用したパーソナルな会話の内容は、別ロボットで取得された利用者情報を間接的に利用したパーソナルな会話の内容と比較して、会話履歴の会話内容との関連性がより低いものとなる。
利用者情報が同一都道府県内の別ロボットで取得されたものでない場合(ステップS310、NO)、ロボットA10aの会話生成部242は、ステップS120で取得した利用者情報をよりさらに間接的に利用する。すなわち、会話生成部242は、ステップS120で取得した利用者情報をよりさらに間接的に利用して、パーソナルな会話を構成する文字データを会話エンジンにより生成する。さらに、会話生成部242は、生成した文字データに対応する音声データを生成する。会話生成部242により生成された音声データは、利用者に向けて音声出力部20から音声として出力される。
こうして、ロボットA10aは、同一都道府県内外の別ロボットで取得された利用者情報をよりさらに間接的に利用して、パーソナルな会話を利用者との間で実行する(ステップS314)。また、この場合は、同一都道府県内外の別ロボットで取得された利用者情報を利用することなく、一般的な会話を利用者との間で実行してもよい。このように別ロボットで取得された利用者情報をよりさらに間接的に利用することにより、会話履歴の会話内容との関連性をよりさらに希釈化した内容のパーソナルな会話を実行することができる。別ロボットで取得された利用者情報をよりさらに間接的に利用したパーソナルな会話の内容は、別ロボットで取得された利用者情報をさらに間接的に利用したパーソナルな会話の内容と比較して、会話履歴の会話内容との関連性がより低いものとなる。
このように、ロボットA10aの会話生成部242は、顔特徴量の照合が一致した利用者情報に含まれる応対ロボット情報により特定されるロボットが別ロボットである場合に、別ロボットと自ロボットとの距離的関係又は地理的関係に応じて、利用者と行うパーソナルな会話の内容を変更する。
上述のように、別ロボットで取得された利用者情報を利用してパーソナルな会話を実行する場合、パーソナルな会話の内容は、会話履歴の会話内容との関連性が希釈化されている。したがって、パーソナルな会話の内容に対して利用者が覚える不自然さ、違和感を軽減し、さらには、不自然さ、違和感を覚えさせないようにすることができる。
このように、本実施形態によれば、パーソナルな会話の実行に用いる利用者情報に含まれる応対ロボット情報に応じて、パーソナルな会話の会話内容を変更するので、パーソナルな会話をより自然に行うことができる。
なお、上記では、DBサーバ40の利用者情報DBを用いる場合について説明したが、第3実施形態のようにDBサーバ40の利用者情報DBと同一内容に同期更新された自ロボットの利用者情報DBを用いる場合も、上記と同様に処理することができる。
[第5実施形態]
本発明の第5実施形態によるコンピュータ装置について図15を用いて説明する。本実施形態では、上記第1乃至第4実施形態による応対ロボット及び応対システムにおける各部の処理を実現するために用いられるコンピュータ装置について説明する。
図15は、上記第1乃至第4実施形態による応対ロボット及び応対システムにおける各部の処理を実現するために用いられるコンピュータ装置の例を示している。図15に示すコンピュータ装置2000は、特に限定されるものではなく、様々な種類、形態のものであってよい。例えば、コンピュータ装置2000は、ラップトップ型コンピュータ、デスクトップ型コンピュータ、ワークステーション、パーソナルデジタルアシスタント、サーバ、ブレードサーバ、メインフレーム、組み込みシステム等である。例えば、ロボット10には、組み込みシステムとしてコンピュータ装置2000を搭載することができる。
コンピュータ装置2000は、プロセッサ2002と、メモリ2004と、記憶装置2006とを有している。また、コンピュータ装置2000は、高速インターフェースを含む高速コントローラ2008、及び低速インターフェースを含む低速コントローラ2010を有している。高速コントローラ2008には、メモリ2004及び高速拡張ポート2012が接続されている。また、高速コントローラ2008には、ディスプレイ等の外部入出力装置が接続されている。一方、低速コントローラ2010には、低速拡張ポート2014及び記憶装置2006が接続されている。
ロボット10における各部の処理を実現するためにコンピュータ装置2000が用いられる場合、低速拡張ポート2014には、カメラモジュール2016と、マイクロフォンモジュール2018と、スピーカモジュール2020とが接続されている。さらに、この場合、低速拡張ポート2014には、アクチュエータモジュール2022が接続されている。カメラモジュール2016は、撮像部16として機能する。マイクロフォンモジュール2018は、音声入力部18として機能する。スピーカモジュール2020は、音声出力部20として機能する。アクチュエータモジュール2022は、ロボット10における可動部を駆動する駆動部として機能する。なお、これらモジュールは、高速拡張ポート2012に接続されうる。
プロセッサ2002、メモリ2004、記憶装置2006、高速コントローラ2008、低速コントローラ2010、及び高速拡張ポート2012は、種々のバスにより相互に接続されている。また、プロセッサ2002、メモリ2004、記憶装置2006、高速コントローラ2008、低速コントローラ2010、及び高速拡張ポート2012は、共通のマザーボード上に実装することもできるし、また、他の形態で適宜実装することもできる。
プロセッサ2002は、例えばCPUであり、コンピュータ装置2000内で実行する命令を処理することができる。そのような命令には、ディスプレイ等の外部入出力装置上にGUI(Graphical User Interface)のグラフィック情報を表示するための、メモリ2004内又は記憶装置2006内に格納された命令が含まれる。
また、複数のプロセッサ、複数のバス、又は複数のプロセッサ及び複数のバスを、複数のメモリ及び複数のタイプのメモリとともに適宜使用することができる。また、複数のコンピュータ装置2000を、必要な処理の一部を行う各装置と接続することができる。例えば、複数のコンピュータ装置2000を、サーババンク、ブレードサーバのグループ、又はマルチプロセッサシステムとして互いに接続することができる。
メモリ2004は、コンピュータ装置2000内の情報を格納する。例えば、メモリ2004は、揮発性メモリユニット、不揮発性メモリユニットである。メモリ2004は、他のコンピュータ可読媒体であってもよく、例えば、磁気ディスク、光ディスク等であってもよい。
記憶装置2006は、コンピュータ装置2000用のマスストレージを構成することができる。記憶装置2006は、例えば、フロッピー(登録商標)ディスク装置、ハードディスク装置、光ディスク装置、テープ装置、フラッシュメモリその他のソリッドステートメモリ装置、ディスクアレイ等のコンピュータ可読媒体である。または、記憶装置2006は、そのようなコンピュータ可読媒体を含むことができる。記憶装置2006は、ストレージエリアネットワーク、他の構成の装置を含む。コンピュータプログラム製品は、情報担体において明確に具現化されうる。コンピュータプログラム製品は、実行されると上述のような1つまたは複数の処理を実行する命令も格納することができる。情報担体は、メモリ2004、記憶装置2006、プロセッサ2002上のメモリ、又は伝搬信号等のコンピュータ可読媒体若しくは機械可読媒体である。
高速コントローラ2008は、コンピュータ装置2000に対する帯域幅を集中的に使用する処理を管理する。一方、低速コントローラ2010は、帯域幅を集中的に使用する程度の低い処理を管理する。ただし、このような機能の割り振りは、例示的なものにすぎず、これに限定さえるものではない。また、高速コントローラ2008の一部又は全部は、プロセッサ2002に内蔵されていてもよい。
高速コントローラ2008は、メモリ2004、及び種々の拡張カードを受け入れることができる高速拡張ポート2012に接続されている。また、高速コントローラ2008は、例えばグラフィックスプロセッサ又はアクセラレータを介して、ディスプレイ等の外部入出力装置に接続されている。
また、低速コントローラ2010は、記憶装置2006及び低速拡張ポート2014に接続されている。低速拡張ポート2014は、例えば、USB(Universal Serial Bus)、Bluetooth(登録商標)、有線又は無線のイーサネット(登録商標)等の種々の規格の通信ポートを含むことができる。低速拡張ポート2014には、キーボード、ポインティングデバイス、スキャナ等の一又は複数の入出力装置を接続することができる。また、低速拡張ポート2014には、例えば、ネットワークアダプタを介して、スイッチ、ルータ等の一又は複数のネットワーク機器を接続することができる。
コンピュータ装置2000は、数多くの異なる形態で実施することができる。例えば、コンピュータ装置2000は、標準的なサーバ、又はそのようなサーバのグループの形態の複数台で実施することができる。また、コンピュータ装置2000は、ラックサーバシステムの一部としても実施することもできる。さらに、コンピュータ装置2000は、ラップトップ型コンピュータ、デスクトップ型コンピュータ等のパーソナルコンピュータの形態で実施することができる。
上述したコンピュータ装置2000は、上記実施形態におけるロボット10の一部として機能することができる。この場合、コンピュータ装置2000のプロセッサ2002は、ロボット10の制御部12の機能を実現するプログラムを実行することにより、制御部12として機能することができる。また、コンピュータ装置2000の記憶装置2006は、ロボット10の記憶部14として機能することができる。
また、コンピュータ装置2000は、上記実施形態におけるDBサーバ40として機能することができる。この場合、コンピュータ装置2000のプロセッサ2002は、DBサーバ40における制御部42の機能を実現するプログラムを実行することにより、制御部42として機能することができる。また、コンピュータ装置2000の記憶装置2006は、DBサーバ40の記憶部44として機能することができる。
なお、コンピュータ装置2000のプロセッサ2002に実行させるプログラムの一部又は全部は、これを記録したDVD-ROM(Digital Versatile Disc-Read Only Memory)、CD-ROM(Compact Disc-Read Only Memory)、USBメモリその他のフラッシュメモリ等のコンピュータ読み取り可能な記録媒体により提供することができる。
[他の実施形態]
上記各実施形態において説明した応対ロボットとして機能しうる応対装置は、他の実施形態によれば、図16に示すように構成することもできる。図16は、他の実施形態による応対装置の機能構成を示すブロック図である。
図16に示すように、他の実施形態による応対装置5000は、応対を行う一の利用者の顔情報を取得する顔情報取得部5002と、一の利用者と会話を行い、会話の内容を含む応対情報を取得する会話処理部5004とを有している。また、応対装置500は、応対が行われた利用者の顔情報と応対情報とを含む利用者情報が登録された利用者情報データベースに登録された顔情報と、一の利用者の顔情報とを照合する顔照合部5006を有している。さらに、応対装置5000は、顔照合部5006による顔情報の照合結果が不一致である場合に、一の利用者の利用者情報を利用者情報データベースに登録する利用者情報管理部5008を有している。
他の実施形態による応対装置5000によれば、利用者がその個人情報を事前登録する必要なく、利用者に応じてパーソナルな会話を自然に行うことができる。
また、上記各実施形態において説明した応対システムは、他の実施形態によれば、図17に示すように構成することもできる。図17は、他の実施形態による応対システムの機能構成を示すブロック図である。
図17に示すように、他の実施形態による応対システム6000は、応対装置7000と、サーバ8000とを含んでいる。応対装置7000とサーバ8000とはネットワーク9000を介して通信可能になっている。
応対装置7000は、応対を行う一の利用者の顔情報を取得する顔情報取得部7002と、一の利用者と会話を行い、会話の内容を含む応対情報を取得する会話処理部7004とを有している。また、応対装置7000は、第1の利用者情報データベースを格納する第1の記憶部7006を有している。第1の利用者情報データベースは、応対が行われた利用者の顔情報と応対情報とを含む利用者情報が登録されている。また、応対装置7000は、第1の利用者情報データベースに登録された顔情報と、一の利用者の顔情報とを照合する顔照合部7008を有している。さらに、応対装置7000は、顔照合部7008による顔情報の照合結果が不一致である場合に、一の利用者の利用者情報を第1の記憶部7006の第1の利用者情報データベースに登録する利用者情報管理部7010を有している。
サーバ8000は、第2の利用者情報データベースを格納する第2の記憶部8002を有している。第2の利用者情報データベースには、複数の応対装置7000で応対が行われた利用者の顔情報と応対情報とを含む利用者情報が登録されている。
応対装置7000の利用者情報管理部7010は、第1の利用者情報データベースと第2の利用者情報データベースとを同期する。これにより、利用者情報管理部7010は、第1の利用者情報データベースの内容を第2の利用者情報データベースの内容と同一内容に更新する。
他の実施形態による応対システム6000によれば、利用者がその個人情報を事前登録する必要なく、利用者に応じてパーソナルな会話を自然に行うことができる。
[変形実施形態]
本発明は、上記実施形態に限らず、種々の変形が可能である。
例えば、上記実施形態では、応対を行う応対装置としてロボット10、ロボットA10a、ロボットB10bを例に説明したが、応対装置は、必ずしもロボットである必要はない。応対装置は、ロボットのほか、スマートフォン、タブレット端末、コンピュータ端末等の利用者との応対を行いうる装置であればよい。
また、上記実施形態では、ロボット10、ロボットA10a、ロボットB10bを店舗に配置する場合を例に説明したが、これらロボットが配置される場所は店舗に限定されるものではない。ロボットは、店舗のほか、応対を必要としうる利用者が訪れるあらゆる場所に配置することができる。
また、上記実施形態では、撮像部16により撮像される利用者の画像から、推定年齢、推定性別を利用者情報として取得して登録する場合を例に説明したが、他の情報を利用者情報として取得して登録することができる。例えば、撮像部16により撮像される利用者の画像から、利用者の服装に関する服装情報、利用者と帯同する帯同者の人数、利用者がいる場所の天気、混雑具合等の場所の様子に関する場所情報を利用者情報として取得して登録することができる。
また、上記実施形態では、ロボット10、ロボットA10a、ロボットB10bが利用者との会話を行う場合を例に説明したが、これらロボットは、会話のみを行うものに限定されるものではない。これらロボットは、会話に加えて、利用者との会話内容等に応じて動作したり移動したりするように構成することができる。
また、上記実施形態では、ロボット10、ロボットA10a、ロボットB10bが音声により利用者と会話を行う場合を例に説明したが、これらロボットは、音声により会話を行うものに限定されるものではない。これらロボットは、例えば、会話生成部242により生成された利用者との会話を構成する文字データを内蔵ディスプレイ又は外部ディスプレイに表示することにより、利用者との会話を行ってもよい。
上記実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
利用者の顔情報を取得する顔情報取得部と、
前記利用者との会話の内容を含む応対情報を取得する会話処理部と、
前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合する顔照合部と、
前記顔照合部による前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記利用者情報データベースに登録する利用者情報管理部と
を有することを特徴とする応対装置。
(付記2)
前記利用者情報データベースは、別の前記応対装置で取得された前記利用者情報が登録されていることを特徴とする付記1記載の応対装置。
(付記3)
前記会話処理部は、前記顔照合部による前記顔情報の照合結果が一致である場合に、前記顔情報の照合が一致した前記利用者情報データベースの前記利用者情報を利用して、前記一の利用者と会話を行うことを特徴とする付記2記載の応対装置。
(付記4)
前記利用者情報は、前記利用者に応対した応対装置を特定する応対装置情報を含み、
前記会話処理部は、前記顔情報の照合が一致した前記利用者情報データベースの前記利用者情報に含まれる前記応対装置情報により特定される応対装置が自装置であるか前記別の応対装置であるかに応じて、前記一の利用者と行う前記会話の内容を変更することを特徴とする付記3記載の応対装置。
(付記5)
前記会話処理部は、前記顔情報の照合が一致した前記利用者情報データベースの前記利用者情報に含まれる前記応対装置情報により特定される応対装置が前記別の応対装置である場合に、前記別の応対装置と自装置との距離的関係に応じて、前記一の利用者と行う前記会話の内容を変更することを特徴とする付記4記載の応対装置。
(付記6)
前記顔照合部は、前記利用者情報データベースに登録された前記利用者情報のうち、自装置で取得された前記利用者情報の前記顔情報を、前記別の応対装置で取得された前記利用者情報よりも高い優先度で前記一の利用者の前記顔情報と照合することを特徴とする付記3乃至5のいずれかに記載の応対装置。
(付記7)
前記利用者情報データベースを格納する記憶部を有し、
前記利用者情報管理部は、前記記憶部に格納された前記利用者情報データベースと、ネットワークを介して通信可能なサーバの他の記憶部に格納された他の利用者情報データベースであって、複数の前記応対装置で取得された前記利用者の前記顔情報と前記応対情報とを含む前記利用者情報が登録された他の利用者情報データベースとを同期して、前記利用者情報データベースの内容を前記他の利用者情報データベースの内容と同一内容に更新することを特徴とする付記1乃至6のいずれかに記載の応対装置。
(付記8)
前記利用者情報データベースは、ネットワークを介して通信可能なサーバの記憶部に格納されていることを特徴とする付記1乃至6のいずれかに記載の応対装置。
(付記9)
前記利用者を撮像する撮像部を有し、
前記顔情報取得部は、前記撮像部により撮像された前記利用者の顔画像から前記顔情報として顔特徴量を抽出することを特徴とする付記1乃至8のいずれかに記載の応対装置。
(付記10)
前記利用者情報データベースは、登録された前記利用者情報の利用者が誰であるかわからない匿名のデータベースであることを特徴とする付記1乃至9のいずれかに記載の応対装置。
(付記11)
応対装置と、ネットワークを介して前記応対装置と通信可能なサーバとを含み、
前記応対装置は、
利用者の顔情報を取得する顔情報取得部と、
前記利用者との会話の内容を含む応対情報を取得する会話処理部と、
前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された第1の利用者情報データベースを格納する第1の記憶部と、
前記第1の利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合する顔照合部と、
前記顔照合部による前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記第1の記憶部の前記第1の利用者情報データベースに登録する利用者情報管理部とを有し、
前記サーバは、
複数の前記応対装置で取得された前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された第2の利用者情報データベースを格納する第2の記憶部を有し、
前記利用者情報管理部は、前記第1の利用者情報データベースと前記第2の利用者情報データベースとを同期して、前記第1の利用者情報データベースの内容を前記第2の利用者情報データベースの内容と同一内容に更新することを特徴とする応対システム。
(付記12)
前記応対装置の前記利用者情報管理部は、前記第1の利用者情報データベースに登録された前記利用者情報を前記サーバに送信し、
前記サーバは、前記応対装置の前記利用者情報管理部から送信された前記利用者情報を前記第2の利用者情報データベースに登録する
ことを特徴とする付記11記載の応対システム。
(付記13)
利用者の顔情報を取得し、
前記利用者との会話の内容を含む応対情報を取得し、
前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合し、
前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記利用者情報データベースに登録する
ことを特徴とする応対方法。
(付記14)
前記顔情報の照合結果が一致である場合に、前記顔情報の照合が一致した前記利用者情報データベースの前記利用者情報を利用して、前記一の利用者と会話を行うことを特徴とする付記13記載の応対方法。
(付記15)
コンピュータに、
利用者の顔情報を取得し、
前記利用者との会話の内容を含む応対情報を取得し、
前記利用者の前記顔情報と前記応対情報とを含む利用者情報が登録された利用者情報データベースに登録された前記顔情報と、一の利用者の前記顔情報とを照合し、
前記顔情報の照合結果が不一致である場合に、前記一の利用者の前記利用者情報を前記利用者情報データベースに登録する
ことを実行させることを特徴とするプログラムが記録された記録媒体。
(付記16)
前記プログラムが、前記コンピュータに、
前記顔情報の照合結果が一致である場合に、前記顔情報の照合が一致した前記利用者情報データベースの前記利用者情報を利用して、前記一の利用者と会話を行う
ことを実行させる付記15記載の記録媒体。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2016年6月13日に出願された日本出願特願2016-117396を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10…ロボット
10a…ロボットA
10b…ロボットB
12…制御部
14…記憶部
16…撮像部
18…音声入力部
20…音声出力部
22…顔情報処理部
24…会話処理部
26…利用者情報管理部
30…応対システム
40…DBサーバ
42…制御部
44…記憶部
50…ネットワーク
220…顔検出部
222…顔特徴量抽出部
228…顔照合部
240…音声認識部
242…会話生成部

Claims (14)

  1. 利用者の顔情報を取得する顔情報取得部と、
    取得された前記利用者の顔情報と、登録済の利用者情報との照合結果に基づいて、前記利用者情報に応じた応対を行う処理部と、
    他の応対ロボットが前記利用者への応対を行った履歴を含む利用者情報がアップロードされたサーバと通信を行う通信部と、
    を備え、
    前記処理部は、当該応対ロボットと、前記利用者への応対を行った前記他の応対ロボットとの距離的関係又は地理的関係に基づき、当該応対ロボットの動作を制御する
    応対ロボット。
  2. 前記利用者の顔情報と前記利用者情報との照合の結果、前記利用者の顔情報と、登録済の前記利用者情報とが一致するか否かに応じて、前記処理部は、互いに異なる応対を行う
    請求項1に記載の応対ロボット。
  3. 前記照合結果が不一致である場合に、前記利用者が操作することなく、前記利用者の利用者情報を登録する登録部を有する
    請求項1又は2に記載の応対ロボット。
  4. 前記照合結果が不一致である場合に、前記利用者が匿名のまま、前記利用者の利用者情報を登録する登録部を有する
    請求項1又は2に記載の応対ロボット。
  5. 前記処理部は、前記利用者の発話に基づいて、音声データを出力する
    請求項1から4のいずれか1項に記載の応対ロボット。
  6. 前記処理部は、当該応対ロボットと、前記利用者への応対を行った前記他の応対ロボットとの間の距離的関係又は地理的関係に基づき、当該応対ロボットの前記音声データを変更する
    請求項5に記載の応対ロボット。
  7. 当該応対ロボットと前記他の対応ロボットとは、互いに同時刻に、前記利用者情報に応じてそれぞれ応対可能である
    請求項1から6のいずれか1項に記載の応対ロボット。
  8. 前記利用者情報は、互いに独立して動作可能な当該応対ロボット及び前記他の応対ロボットにより共有される
    請求項1から7のいずれか1項に記載の応対ロボット。
  9. 前記利用者情報を記憶する記憶部を有し、
    前記処理部は、前記サーバとの間の通信環境に応じて前記記憶部に記憶された前記利用者情報又は前記サーバにアップロードされた前記利用者情報を用いて前記応対を行う
    請求項1から8のいずれか1項に記載の応対ロボット。
  10. 前記処理部は、応対を行ったロボットの配置場所を特定する情報を含む応対ロボット情報を用いて、当該応対ロボットの配置場所と、前記利用者への応対を行った前記他の応対ロボットの配置場所との間の距離的関係又は地理的関係に基づき、当該応対ロボットの前記音声データを変更する
    請求項5に記載の応対ロボット。
  11. 前記顔情報取得部が取得した前記利用者の顔情報と、登録済の利用者情報とを照合する照合部を更に含み、
    前記照合部は、前記サーバにアップロードされる、応対を行ったロボットの配置場所を特定する情報を含む応対ロボット情報を用いて特定された、当該応対ロボットと前記他の応対ロボットとの間の距離的関係又は地理的関係が近い場合は、遠い場合に比べて、前記他の応対ロボットが取得した利用者情報から検索する優先度を高くする
    請求項1から10のいずれか1項に記載の応対ロボット。
  12. 利用者への応対を行う応対ロボットと、
    前記利用者への応対を行う他の応対ロボットと
    前記応対ロボットと前記他の応対ロボットとが、前記利用者への応対を行った履歴を含む利用者情報をアップロードするサーバと、を備え、
    前記他の応対ロボットは、前記利用者の顔情報を取得し、取得された前記利用者の顔情報と、登録済の利用者情報との照合結果に基づいて、前記利用者情報に応じた応対を行い、前記利用者への応対を行った履歴を含む利用者情報を前記サーバにアップロードし、
    前記応対ロボットが有する処理部は、前記応対ロボットと、前記利用者への応対を行った前記他の応対ロボットとの位置を示す位置情報から得られる距離的関係又は地理的関係と、前記応対ロボットが前記利用者への応対を行った際に生成された前記利用者情報と、前記他の応対ロボットが前記利用者情報に応じた応対を行った際に生成されて前記応対ロボットにより前記サーバから取得された前記利用者情報とに基づき、前記応対ロボットの動作を制御する、
    情報処理システム。
  13. コンピュータが、利用者の顔情報を取得し、
    前記コンピュータが、取得された前記利用者の顔情報と、登録済の利用者情報との照合結果に基づいて、前記利用者情報に応じた応対を行い、
    前記コンピュータが、他のコンピュータが前記利用者への応対を行った履歴を含む利用者情報がアップロードされたサーバと通信を行い、
    当該コンピュータと、前記利用者への応対を行った前記他のコンピュータとの距離的関係又は地理的関係に基づき、当該コンピュータの動作を制御する
    応対方法。
  14. コンピュータに、
    利用者の顔情報を取得し、
    取得された前記利用者の顔情報と、登録済の利用者情報との照合結果に基づいて、前記利用者情報に応じた応対を行い、
    他のコンピュータが前記利用者への応対を行った履歴を含む利用者情報がアップロードされたサーバと通信を行い、
    当該コンピュータと、前記利用者への応対を行った前記他のコンピュータとの位置関係に基づき、当該コンピュータの動作を制御する
    ことを実行させるプログラム。
JP2022139636A 2016-06-13 2022-09-02 応対ロボット、応対方法及びプログラム Active JP7452593B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016117396 2016-06-13
JP2016117396 2016-06-13
JP2020187663A JP2021047873A (ja) 2016-06-13 2020-11-11 応対ロボット、応対方法及びプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020187663A Division JP2021047873A (ja) 2016-06-13 2020-11-11 応対ロボット、応対方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2022168015A JP2022168015A (ja) 2022-11-04
JP7452593B2 true JP7452593B2 (ja) 2024-03-19

Family

ID=60664585

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017562085A Active JP6365915B2 (ja) 2016-06-13 2017-06-08 応対装置、応対システム、応対方法、及び記録媒体
JP2018128061A Pending JP2018165998A (ja) 2016-06-13 2018-07-05 応対装置、応対システム、応対方法、及び記録媒体
JP2020187663A Pending JP2021047873A (ja) 2016-06-13 2020-11-11 応対ロボット、応対方法及びプログラム
JP2022139636A Active JP7452593B2 (ja) 2016-06-13 2022-09-02 応対ロボット、応対方法及びプログラム

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2017562085A Active JP6365915B2 (ja) 2016-06-13 2017-06-08 応対装置、応対システム、応対方法、及び記録媒体
JP2018128061A Pending JP2018165998A (ja) 2016-06-13 2018-07-05 応対装置、応対システム、応対方法、及び記録媒体
JP2020187663A Pending JP2021047873A (ja) 2016-06-13 2020-11-11 応対ロボット、応対方法及びプログラム

Country Status (4)

Country Link
US (3) US11430207B2 (ja)
EP (2) EP4086791A1 (ja)
JP (4) JP6365915B2 (ja)
WO (1) WO2017217314A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878657B2 (en) 2018-07-25 2020-12-29 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
US11521460B2 (en) 2018-07-25 2022-12-06 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
KR20210099217A (ko) * 2019-01-03 2021-08-12 엘지전자 주식회사 로봇 시스템의 제어 방법
KR20210024861A (ko) 2019-08-26 2021-03-08 삼성전자주식회사 대화 서비스를 제공하는 방법 및 전자 디바이스
CN111401433B (zh) * 2020-03-12 2023-10-17 腾讯科技(深圳)有限公司 用户信息获取方法、装置、电子设备及存储介质
JP7533579B2 (ja) * 2020-06-10 2024-08-14 日本電気株式会社 画像提供装置、画像提供システム、画像提供方法及び画像提供プログラム
US20230214469A1 (en) * 2020-06-11 2023-07-06 Nec Corporation Information processing apparatus, information processing method, and storage medium
JP2023152116A (ja) * 2022-04-01 2023-10-16 ソニーグループ株式会社 移動体、制御装置、および制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111603A (ja) 2003-10-07 2005-04-28 Lazona Inc ロボットおよびロボット管理装置
JP2005279828A (ja) 2004-03-29 2005-10-13 Victor Co Of Japan Ltd 情報共有可能なロボット
JP2006208964A (ja) 2005-01-31 2006-08-10 Yec Co Ltd 会話装置
JP2007190659A (ja) 2006-01-20 2007-08-02 Advanced Telecommunication Research Institute International ロボット遠隔操作システム
JP2010156741A (ja) 2008-12-26 2010-07-15 Yamaha Corp サービス提供装置
JP2012213828A (ja) 2011-03-31 2012-11-08 Fujitsu Ltd ロボット制御装置及びプログラム

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175432A (ja) * 2000-12-06 2002-06-21 Gala Inc 配信仲介サービス装置の介在によりコンセプトメールを多数のターゲットに配信する方法およびその配信仲介サービス装置
JP3843740B2 (ja) * 2001-03-09 2006-11-08 独立行政法人科学技術振興機構 ロボット視聴覚システム
JP2004101901A (ja) * 2002-09-10 2004-04-02 Matsushita Electric Works Ltd 音声対話装置及び音声対話プログラム
JP3951235B2 (ja) * 2003-02-19 2007-08-01 ソニー株式会社 学習装置及び学習方法並びにロボット装置
JP2004302645A (ja) 2003-03-28 2004-10-28 Sony Corp 顔登録装置、顔登録方法、記録媒体、及びロボット装置
US6931862B2 (en) 2003-04-30 2005-08-23 Hamilton Sundstrand Corporation Combustor system for an expendable gas turbine engine
JP4303602B2 (ja) 2004-01-09 2009-07-29 本田技研工業株式会社 顔面像取得システム
JP4779114B2 (ja) 2005-11-04 2011-09-28 株式会社国際電気通信基礎技術研究所 コミュニケーションロボット
JP2007324978A (ja) 2006-06-01 2007-12-13 Megachips System Solutions Inc ドアホンシステム
JP2010176510A (ja) 2009-01-30 2010-08-12 Sanyo Electric Co Ltd 情報表示装置
JP2011188342A (ja) * 2010-03-10 2011-09-22 Sony Corp 情報処理装置、情報処理方法及びプログラム
US20110257985A1 (en) * 2010-04-14 2011-10-20 Boris Goldstein Method and System for Facial Recognition Applications including Avatar Support
JP2011257959A (ja) 2010-06-08 2011-12-22 Toshiba Corp 差分検索システム
JP4677051B1 (ja) 2010-07-29 2011-04-27 アット・イー・デザイン株式会社 会話システム及び会話文章処理方法
US8595857B2 (en) * 2010-12-28 2013-11-26 Verizon Patent And Licensing Inc. Persona-based identity management system
US9026248B1 (en) * 2011-05-06 2015-05-05 Google Inc. Methods and systems for multirobotic management
US10096198B2 (en) * 2011-11-29 2018-10-09 Igt Anonymous biometric player tracking
CA2804468C (en) 2012-01-30 2016-03-29 Accenture Global Services Limited System and method for face capture and matching
US8861866B2 (en) 2012-06-20 2014-10-14 Hewlett-Packard Development Company, L.P. Identifying a style of clothing based on an ascertained feature
JP6254785B2 (ja) * 2012-07-24 2017-12-27 サイトセンシング株式会社 視聴率調査システム、並びに表情情報生成装置及び表情情報生成プログラム
US9881058B1 (en) * 2013-03-14 2018-01-30 Google Inc. Methods, systems, and media for displaying information related to displayed content upon detection of user attention
JP2014206683A (ja) 2013-04-15 2014-10-30 株式会社ニコン 消音装置および消音方法
WO2015093382A1 (ja) 2013-12-20 2015-06-25 Re & Do 株式会社 サービス提供管理システム
JP6147198B2 (ja) 2014-01-10 2017-06-14 富士ソフト株式会社 ロボット
CN106133773A (zh) 2014-03-25 2016-11-16 南洋理工大学 用于自动化顾客奖励的计算机化方法和系统
US20150371260A1 (en) 2014-06-19 2015-12-24 Elwha Llc Systems and methods for providing purchase options to consumers
US20190325379A1 (en) 2014-10-24 2019-10-24 Fellow, Inc. Intelligent inventory management using cleaning machines
US10373116B2 (en) 2014-10-24 2019-08-06 Fellow, Inc. Intelligent inventory management and related systems and methods
US10311400B2 (en) 2014-10-24 2019-06-04 Fellow, Inc. Intelligent service robot and related systems and methods
US20190370738A1 (en) 2014-10-24 2019-12-05 Fellow, Inc. Methods and apparatus for wireless inventory determinations
US9796093B2 (en) 2014-10-24 2017-10-24 Fellow, Inc. Customer service robot and related systems and methods
JP6195554B2 (ja) 2014-12-20 2017-09-13 浜田 義明 海上位置保持方法
US9696930B2 (en) 2015-06-10 2017-07-04 International Business Machines Corporation Reducing new extent failures on target device during non-disruptive logical data set migration
EP3389043A4 (en) * 2015-12-07 2019-05-15 Yamaha Corporation VOICE INTERACTION DEVICE AND VOICE INTERACTION METHOD
US10486313B2 (en) * 2016-02-09 2019-11-26 Cobalt Robotics Inc. Mobile robot map generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111603A (ja) 2003-10-07 2005-04-28 Lazona Inc ロボットおよびロボット管理装置
JP2005279828A (ja) 2004-03-29 2005-10-13 Victor Co Of Japan Ltd 情報共有可能なロボット
JP2006208964A (ja) 2005-01-31 2006-08-10 Yec Co Ltd 会話装置
JP2007190659A (ja) 2006-01-20 2007-08-02 Advanced Telecommunication Research Institute International ロボット遠隔操作システム
JP2010156741A (ja) 2008-12-26 2010-07-15 Yamaha Corp サービス提供装置
JP2012213828A (ja) 2011-03-31 2012-11-08 Fujitsu Ltd ロボット制御装置及びプログラム

Also Published As

Publication number Publication date
US11850728B2 (en) 2023-12-26
JPWO2017217314A1 (ja) 2018-06-21
US20190095750A1 (en) 2019-03-28
WO2017217314A1 (ja) 2017-12-21
US11514663B2 (en) 2022-11-29
JP2022168015A (ja) 2022-11-04
JP2018165998A (ja) 2018-10-25
US11430207B2 (en) 2022-08-30
US20190180138A1 (en) 2019-06-13
EP3418912B1 (en) 2022-08-03
EP3418912A4 (en) 2019-02-06
US20230025776A1 (en) 2023-01-26
JP6365915B2 (ja) 2018-08-01
JP2021047873A (ja) 2021-03-25
EP4086791A1 (en) 2022-11-09
EP3418912A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP7452593B2 (ja) 応対ロボット、応対方法及びプログラム
US20190220933A1 (en) Presence Granularity with Augmented Reality
US10789458B2 (en) Human behavior recognition apparatus and method
US9530067B2 (en) Method and apparatus for storing and retrieving personal contact information
TW201905895A (zh) 聲音識別特徵的優化、動態註冊方法、客戶端和伺服器
CN104254859B (zh) 建立社交网络组
WO2020007129A1 (zh) 基于语音交互的上下文获取方法及设备
JP2015534306A5 (ja)
JP2013088906A (ja) 画像認識システムを備えた知識情報処理サーバシステム
CN104170374A (zh) 在视频会议期间修改参与者的外观
US20120313964A1 (en) Information processing apparatus, information processing method, and program
CN105960674A (zh) 信息处理装置
CN107097234A (zh) 机器人控制系统
JP2021015443A (ja) 補完プログラム、補完方法、および補完装置
JP7172705B2 (ja) 感情推定装置、感情推定方法、プログラム、及び感情推定システム
CN110737885A (zh) 豢养物的身份认证方法及装置
CN109906466B (zh) 信息处理设备和信息处理方法
WO2019142664A1 (ja) 情報処理装置、情報処理方法、及び、プログラム
JP2019028744A (ja) データ処理システム、データ処理方法およびプログラム
WO2019084963A1 (zh) 机器人及其服务方法和装置
WO2021260840A1 (ja) 信頼性分析システム,信頼性分析方法及び非一時的なコンピュータ可読媒体
JP7182842B1 (ja) プログラム、情報処理装置、情報処理システム及び情報処理方法
WO2020230589A1 (ja) 情報処理装置、情報処理方法および情報処理プログラム
KR20240016815A (ko) 얼굴 인식 기반 상호작용 상대방에 대한 사용자의 관계 감정 지수를 측정하는 시스템 및 방법
JP2024084340A (ja) システム、方法、サーバ装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R151 Written notification of patent or utility model registration

Ref document number: 7452593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151