JP7446180B2 - 原子力プラントの化学除染方法 - Google Patents

原子力プラントの化学除染方法 Download PDF

Info

Publication number
JP7446180B2
JP7446180B2 JP2020137233A JP2020137233A JP7446180B2 JP 7446180 B2 JP7446180 B2 JP 7446180B2 JP 2020137233 A JP2020137233 A JP 2020137233A JP 2020137233 A JP2020137233 A JP 2020137233A JP 7446180 B2 JP7446180 B2 JP 7446180B2
Authority
JP
Japan
Prior art keywords
piping
decontamination
heat exchanger
pipe
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020137233A
Other languages
English (en)
Other versions
JP2022033390A (ja
Inventor
涼 浜田
剛 伊藤
秀幸 細川
高史 大平
智 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2020137233A priority Critical patent/JP7446180B2/ja
Publication of JP2022033390A publication Critical patent/JP2022033390A/ja
Application granted granted Critical
Publication of JP7446180B2 publication Critical patent/JP7446180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、原子力プラントの化学除染方法に係り、特に、原子力プラントの残留熱除去系に適用するのに好適な原子力プラントの化学除染方法に関する。
例えば、沸騰水型原子力プラント(以下、BWRプラントという。)は、原子炉圧力容器(以下、RPVという。)内に炉心を内蔵した原子炉を有する。再循環ポンプ(またはインターナルポンプ)によって炉心に供給された炉水は、炉心内に装荷された燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気になる。この蒸気は、RPVからタービンに導かれ、タービンを回転させる。タービンから排出された蒸気は、復水器で凝縮され、水になる。この水は、給水として給水配管を通ってRPVに供給される。RPV内での放射性腐食生成物の発生を抑制するため、給水に含まれる金属不純物が、給水配管に設けられたろ過脱塩装置で除去される。炉水とは、RPV内に存在する冷却水である。
また、放射性腐食生成物の元となる腐食生成物は、RPV及び再循環系配管等のBWRプラントの構成部材の、炉水と接する表面で発生するため、主要な一次系の構成部材には腐食の少ないステンレス鋼及びニッケル基合金などが使用される。さらに、低合金鋼製のRPVの内面には、ステンレス鋼の肉盛りが施され、低合金鋼が、直接、炉水と接触することを防いでいる。BWRプラントの一つの構成部材である原子炉浄化系に設けられたろ過脱塩装置(炉水浄化装置)は、炉水の一部を浄化し、炉水に僅かに含まれる金属不純物を積極的に除去している。
しかしながら、上述のような腐食対策を講じても、炉水中における極僅かな金属不純物の存在が避けられないため、一部の金属不純物が、金属酸化物として、燃料集合体に含まれる燃料棒の表面に付着する。燃料棒表面に付着した金属不純物に含まれる金属元素は、燃料棒内の核燃料物質から放出される中性子の照射により原子核反応を起こし、コバルト60、コバルト58、クロム51及びマンガン54等の放射性核種になる。これらの放射性核種は、大部分が酸化物の形態で燃料棒表面に付着したままであるが、一部の放射性核種は、取り込まれている酸化物の溶解度に応じて炉水中にイオンとして溶出したり、クラッドと呼ばれる不溶性固体として炉水中に再放出されたりする。
炉水に含まれる放射性物質は、原子炉浄化系のろ過脱塩装置によって取り除かれる。ろ過脱塩装置で除去されなかった放射性物質は炉水とともに再循環系などを循環している間に、BWRプラントの構成部材の、炉水と接触する表面に蓄積される。その結果、構成部材表面から放射線が放出され、定検作業時における従事者の放射線被曝の原因となる。その従業者の被曝線量は、各人毎に規定値を超えないように管理されている。近年この規定値が引き下げられ、各人の被曝線量を経済的に可能な限り低くする必要が生じている。
運転を経験した原子力プラントの構成部材、例えば、配管の表面には、コバルト60及びコバルト58等の放射性核種を含む酸化皮膜が形成されている。この酸化皮膜は、化学除染方法において、化学薬品を用いた除染液により溶解されて除去される。ステンレス鋼製の構成部材に対して実施される化学除染方法では、還元除染液を用いて、構成部材表面に形成された、放射性核種を含む酸化皮膜を除去する還元除染、及び酸化除染液を用いて、酸化皮膜に含まれるクロムを6価クロムとし酸化溶解する酸化除染が実施される。なお、炭素鋼製の構成部材に対して実施される還元除染方法では、還元除染液を用いて、構成部材表面に形成されたその酸化皮膜を除去する還元除染のみが実施される。
このような化学除染方法に関しては、以下の技術が公開されている。
特開2017-133927号公報は、BWRプラントに設けられた残留熱除去系(RHR系)を対象に化学除染を実施することを記載する。RHR系は、原子炉圧力容器に連絡されるRHR配管には、熱交換器及びポンプを設けられる。熱交換器の胴内には、複数本の伝熱管が配置されている。RHR配管は熱交換器の胴側、すなわち、その胴の内面と各伝熱管の外面との間に形成された領域(以下、胴側領域という)に連絡される。原子力プラントの運転が停止されてRHR系のそのポンプが駆動されているとき、原子炉圧力容器内の高温の炉水が、RHR配管を通して熱交換器内の胴側領域に導かれる。そして、この胴側領域からRHR配管に排出されて原子炉圧力容器に戻される。一方、放射性物質を含んでいない冷却水が、熱交換器内の各伝熱管内に供給される。胴側領域内を流れる高温の炉水は、各伝熱管内を流れる冷却水によって冷却され、温度が低下する。胴側領域から排出された、温度が低下した炉水は、前述のように原子炉圧力容器に戻される。RHR系は、原子炉の停止時において、炉心も装荷された燃料集合体内で発生する崩壊熱を除去するために設けられる。
化学除染装置は、仮設配管によって、例えば、原子炉圧力容器の下端部に設けられた制御棒駆動機構ハウジング、及び再循環系配管に接続され、原子炉圧力容器、制御棒駆動機構ハウジング、化学除染装置、再循環系配管及びRHR系のRHR系配管を含む閉ループの循環経路が形成される。化学除染装置から供給される除染液をその循環経路内で循環させ、RHR配管の内面に形成された、放射性核種を含む酸化皮膜がその除染液によって除去される。
特開2007-064634号公報には、RHR系のRHR配管から熱交換器を取り外し、新しい熱交換器をそのRHR配管に取り付ける熱交換器の取り換え工事が記載されている。その工事において、RHR配管から取り外された熱交換器は、放射性廃棄物である使用済熱交換器となる。特開2007-064634号公報では、この使用済熱交換器に対して化学除染を行っている。
特開2000-105295号公報 特開2017-133927号公報 特開2007-064634号公報
これまでの化学除染の知見から、化学除染による除染効果は除染液の流速に依存することが分かっている。特に、炭素鋼製の除染対象では、その除染対称に接触する除染液の流速が低下すると、炭素鋼製の除染対象の表面におけるシュウ酸鉄(II)の形成量が増加し、除染液による、放射性物質を含む酸化皮膜の溶解が阻害される。
これまでの供用中の原子力プラント、例えば、BWRプラントにおける化学除染は、線量が高い原子炉再循環系及び原子炉浄化系などが主な除染ターゲットであった。今後、原子力プラントが廃止措置段階へ移行すると、廃止措置段階での原子力プラントの構成部材に対する除染では、線量が低いRHR系もターゲットとなる。しかし、RHR系は、これまでの除染対象(原子炉再循環系及び原子炉浄化系)よりも配管径が大きく、従来の除染方法では流速が低下し、十分な除染効果が得られない可能性がある。特に、RHR系の熱交換器では、胴の内径が大きいために胴側領域での除染液の流速低下が大きくなり、RHR系の熱交換器において、胴側領域に面する、熱交換器の胴の内面、伝熱管の外面、及び伝熱管が取り付けられた管板の胴側領域側の面等の向上が望まれる。
一般的に、流れる流体の流速を向上させる方法としては、吐出容量の大きいポンプを使用する方法があるが、従来よりも吐出容量の大きいポンプを使用すると、安全性を確保するために、化学除染装置の仮設配管の内径を大きくする必要がある。その結果、化学除染装置自体が大型化し、発生する放射性廃棄物量が増加することになる。さらに、廃止措置の化学除染では、RHR系だけでなく、原子炉再循環系及び原子炉浄化系なども除染対象となるため、RHR系の除染のためだけに吐出容量の大きいポンプを化学除染装置に採用した場合には、この化学除染装置をRHR系以外の他の系統の化学除染に用いた場合には、オーバースペックとなる。
本発明の目的は、原子力プラントの配管系に設けられた熱交換器の胴内の還元除染効果を向上させることができる原子力プラントの化学除染方法を提供することにある。
上記した目的を達成するための本発明の特徴は、容器に対して還元除染を実施する際に、その容器の内部領域の下端部に気体及び還元除染液を供給し、気体を含む還元除染液を、その内部領域の下端部から内部領域の上端部に向かって上昇させることにある。
その容器の内部領域に、シュウ酸水溶液以外に気体を供給するため、内部領域内を流れる、空気及び還元除染液を含む気液二相流の流量が増加する。この結果、容器の内部領域内における還元除染液の流速が増加し、還元除染液だけをその内部領域に供給した場合に比べて容器の内部領域における還元除染効果が向上する。
好ましくは、原子炉圧力容器に連絡されて原子炉圧力容器内の冷却水が供給され、熱交換器が設けられている配管系に対して還元除染を実施するときには、前述の容器が熱交換器の胴であって前述の内部領域がその胴の内部領域であり、その気体及びその還元除染液をその胴のその内部領域の下端部に供給し、その気体を含むその還元除染液を、その胴のその内部領域の下端部から上端部に向かって上昇させることが望ましい。
原子炉圧力容器内の冷却水が内部領域に供給される、熱交換器が設けられている配管系のその熱交換器において、その内部領域に、還元除染液以外に気体を供給するため、内部領域内を流れる、気体含む還元除染液の流量が増加する。この結果、内部領域内における還元除染液の流速が増加し、還元除染液だけをその内部領域に供給した場合に比べて熱交換器の内部領域における還元除染効果が向上する。
好ましくは、その容器が原子炉圧力容器であり、この原子炉圧力容器に対して還元除染を実施するときには、原子炉圧力容器の内部領域の下端部に気体及び還元除染液を供給し、気体を含む前記還元除染液を、その内部領域の下端部から内部領域の上端部に向かって上昇させることが望ましい。
本実施例によれば、原子炉圧力容器の内部領域に、還元除染液以外に気体を供給するため、原子炉圧力容器の内部領域内を流れる、気体を含む還元除染液の流量が増加する。この結果、その内部領域内における還元除染液の流速が増加し、還元除染液だけを原子炉圧力容器内に供給した場合に比べて原子炉圧力容器の内部領域における還元除染効果が向上する。
本発明によれば、原子力プラントの配管系に設けられた熱交換器の胴内の還元除染効果を向上させることができる。
本発明の好適な一実施例である、沸騰水型原子力プラントに適用される実施例1の原子力プラントの化学除染方法の手順を示すフローチャートである。 実施例1の化学除染方法に用いられる化学除染装置を沸騰水型原子力プラントの残留熱除去系の配管に接続した状態を示す説明図である。 図2に示された残留熱除去系の詳細構成図である。 図3に示された各熱交換器の詳細縦断面図である。 図2に示す化学除染装置の詳細構成図である。 炭素鋼製の試験片に対する還元除染の実験に用いた実験装置の説明図である。 炭素鋼製の試験片に接触する還元除染液への気体の注入による、その試験片における除染係数の増加を示す説明図である。 炭素鋼製の試験片に接触する還元除染液への酸素の注入による、その試験片に形成されたシュウ酸鉄の溶解割合を示す説明図である。 本発明の好適な他の実施例である、沸騰水型原子力プラントに適用される実施例2の原子力プラントの化学除染方法を実施している、沸騰水型原子力プラントの残留熱除去系の状態を示す説明図である。 本発明の好適な他の実施例である、沸騰水型原子力プラントに適用される実施例3の原子力プラントの化学除染方法を実施している、沸騰水型原子力プラントの残留熱除去系の状態を示す説明図である。 本発明の好適な他の実施例である、沸騰水型原子力プラントに適用される実施例4の原子力プラントの化学除染方法の手順を示すフローチャートである。 実施例4の化学除染方法に用いられる化学除染装置を沸騰水型原子力プラントの原子炉圧力容器に接続した状態を示す説明図である。
上述したようにRHR系の熱交換器は、胴の内径が大きいためにその胴内の胴側領域(内部領域)での還元除染液の流速が低下する。RHR系では、熱交換器以外の配管部分は従来の化学除染方法で十分な除染効果が得られることから、発明者らは、RHR系でのより効率的に化学除染を実施するために、従来の化学除染方法を採用しつつ、RHR系における熱交換器内の胴側領域での還元除染液の流速を向上させる方法を検討した。
その結果、発明者らは、熱交換器の胴側領域内の還元除染液の流動方向と同じ方向になるように、その胴側領域内の還元除染液に気体を注入することにより、胴側領域内での還元除染液の流速を増加させることができることを見出した。気体注入により胴側領域内の除染液の流速の増加は、RHR系の熱交換器の、胴側領域内の除染液に接触する構成部材の除染効果の向上に貢献する。
さらに、発明者らは、胴側領域内の還元除染液に注入する気体として酸化性の気体(例えば、酸素)を用いることにより、胴側領域内の還元除染液と接触する、熱交換器の炭素鋼製の構成部材の表面に形成されるシュウ酸鉄(II)を除去できると考えた。その構成部材の、還元除染液と接触する表面にシュウ酸鉄(II)が形成されると、その構成部材の除染効率が低下する。胴側領域内の還元除染液に酸化性の気体を注入することによって、構成部材の、還元除染液と接触する表面に形成されたシュウ酸鉄(II)を、注入された酸化性の気体の作用により、除染液に溶解しやすいシュウ酸鉄(III)に変えることができる。このため、熱交換器の、還元除染液と接触する構成部材の表面に形成されたシュウ酸鉄(II)を溶解させて除去することができ、還元除染液と接触する構成部材の表面の除染を促進させる。
上記知見を見出した、炭素鋼製の試験片を用いた還元除染の実験について説明する。セパラブルフラスコ102を使用したその実験を、図6を用いて詳細に説明する。
散気管104がセパラブルフラスコ102内の底部に配置され、セパラブルフラスコ102の外部からその内部に伸びるガス供給管103が散気管104に接続される。加熱器105が、セパラブルフラスコ102の外側に配置され、セパラブルフラスコ102の側面に対向している。
発明者らは、還元除染の実験を開始する前に、この実験に使用する炭素鋼製の試験片106を準備した。すなわち、炉水条件の280℃、7MPaの高温水に試験片を浸漬させ、この高温水にCo-60を添加した。試験片にはその高温水中で表面に酸化皮膜が形成され、その際に、高温水中に存在するCo-60が形成された酸化皮膜に取り込まれる。この結果、Co-60が取り込まれた酸化皮膜が表面に形成されたその試験片106が、準備された。
3Lの、2000ppmのシュウ酸を含む水溶液(シュウ酸水溶液)107がセパラブルフラスコ102内に充填される。加熱器105によって、セパラブルフラスコ102内のシュウ酸水溶液107を90℃になるまで加熱する。準備された試験片106が、セパラブルフラスコ102の上端部から吊り下げられ、90℃のシュウ酸水溶液107に浸漬される。気体として窒素ガスが、ガス供給管103を通して10mL/minで散気管104に供給され、散気管104に形成された多数の噴出口からシュウ酸水溶液107に噴射される。この状態が4時間維持される。試験片106の表面がシュウ酸水溶液107のシュウ酸によって還元除染され、試験片106の表面に形成された、Co-60を含む酸化皮膜が溶解される。
窒素ガスがシュウ酸水溶液107に噴射されてから4時間が経過したとき、その試験片106をセパラブルフラスコ102から外部に取り出す。そして、取り出された試験片106のCo-60付着量を測定し、実験開始前における試験片106におけるCo-60付着量と比較することにより、窒素ガスを噴射した状態で還元除染を実施した試験片106の除染係数(DF)を求めた。
さらに、散気管104から窒素ガスを噴射させない状態で、試験片106をセパラブルフラスコ102内のシュウ酸水溶液に107に浸漬させ、この浸漬を開始してから4時間が経過したとき、試験片106をセパラブルフラスコ102内から外部に取り出した。取り出されたその試験片106のCo-60付着量を測定し、実験開始前における試験片106におけるCo-60付着量と比較することにより、窒素ガスを噴射しない状態で還元除染を実施した試験片106の除染係数(DF)を求めた。
図7は、気体である窒素ガスを注入した場合における除染係数(DF)、及びその窒素ガスを注入しなかった場合におけるDFを示している。この結果、シュウ酸水溶液に気体を注入して、還元除染液(例えば、シュウ酸水溶液)の流速を加速させることにより、試験片106のDFを向上できることが分かった。
また、表面にシュウ酸鉄を形成した試験片106に酸素を接触させた場合における試験片106の表面のシュウ酸鉄(II)二水和物の残存量、及び酸素を接触させなかった場合における試験片106の表面のシュウ酸鉄(II)二水和物の残存量のそれぞれを図8に示す。実験には90℃、2000ppmのシュウ酸水溶液に4時間浸漬してシュウ酸鉄(II)二水和物を形成させた炭素鋼製の試験片106を使用した。こうして作製した試験片106を用いて、図6に示した実験装置のセパラブルフラスコ102内のシュウ酸水溶液107内に試験片106を浸漬させ、窒素ガスの替りに酸素ガスを、ガス供給管103を通して散気管104に供給し、散気管104の各噴出口からシュウ酸水溶液107中に噴射した。酸素ガスの噴射から4時間後に試験片106をセパラブルフラスコ102の外部に取り出した。還元除染後に試験片106の表面に残存するシュウ酸鉄(II)二水和物の量を定量し、それぞれのケースにおける、試験片106の表面に残存するシュウ酸鉄(II)二水和物の量を図8に示した。シュウ酸鉄(II)二水和物に接触するシュウ案水溶液107に酸素を注入することにより、約95%のシュウ酸鉄が除去できることが分かった。
以上の試験結果より、RHR熱交換器胴側の除染の際は、RHRの熱交換器の下部に気体注入装置を取り付け、注入した気体の流動により還元除染液の流速を向上させることで除染効果を向上できる。さらに、注入する気体を酸素とすることで、熱交換器表面に形成したシュウ酸鉄(II)を溶解度の高いシュウ酸鉄(III)に酸化し、溶解して除去可能であるため、除染効果をさらに向上できる。
以上の検討結果を反映した、RHRの化学除染方法の好ましい実施例を以下に説明する。
本発明の好適な一実施例である実施例1の原子力プラントの化学除染方法を、図1、図2、図3、図4及び図5を用いて説明する。本実施例の化学除染方法は、沸騰水型原子力発電プラント(BWRプラント)のRHR系に適用される。
このBWRプラントの概略構成を、図2を用いて説明する。BWRプラント1は、原子炉2、高圧タービン9A、低圧タービン9B、復水器10、RHR系19、湿分分離加熱器112、再循環系、原子炉浄化系及び給水系等を備えている。原子炉2は、蒸気発生装置であり、炉心4を内蔵する原子炉圧力容器(以下、RPVという)3を有し、RPV3内で炉心4を取り囲む炉心シュラウド(図示せず)の外面とRPV3の内面との間に形成される環状のダウンカマ内に複数のジェットポンプ5を設置している。炉心4には多数の燃料集合体(図示せず)が装荷されている。燃料集合体は、核燃料物質で製造された複数の燃料ペレットが充填された複数の燃料棒を含む。原子炉2は、原子炉建屋(図示せず)内に配置された原子炉格納容器22内に設置される。
再循環系は、ステンレス鋼製の再循環系配管6、及び再循環系配管6に設置された再循環系ポンプ7を有する。再循環系配管6の一端部はRPV3に接続され、再循環系配管6の一端部はRPV3内でジェットポンプ5のノズル(図示せず)に接続される。複数の制御棒駆動機構ハウジング(CRDハウジング)23及び複数の中性子計測ハウジング(ICMハウジング)24が、図2に示すように、RPV3の底部を貫通してその底部に取り付けられる。炉心4内に挿入される制御棒(図示せず)を操作する制御棒駆動機構(CRD)(図示せず)がCRDハウジング23内に配置される。
給水系は、復水器10とRPV3を連絡する給水配管11に、復水ポンプ12、復水浄化装置(例えば、復水脱塩器)13、低圧給水加熱器14、給水ポンプ15及び高圧給水加熱器16を、復水器10からRPV3に向って、この順に設置して構成される。給水配管11の一端部は、RPV3に設けられた給水ノズル11Aに接続される。
高圧タービン9Aは主蒸気配管8AによってRPV3に接続される。蒸気止め弁108及び蒸気加減弁109が主蒸気配管8Aに設けられる。蒸気止め弁108が蒸気加減弁109の上流に配置される。低圧タービン9Bは主蒸気配管8Bによって高圧タービン9Aに接続される。湿分分離加熱器112が主蒸気配管8Bに設けられる。湿分分離加熱器112は、図示されていないが、内部に湿分分離器(図示せず)及び加熱器(図示せず)を有する。加熱蒸気止め弁111が設けられた加熱蒸気配管110の一端部が、蒸気止め弁108よりも上流側で主蒸気配管8Aに接続され、加熱蒸気配管110の他端部が湿分分離加熱器112の加熱器に接続される。湿分分離加熱器112に接続されたドレン水配管113が低圧給水加熱器14に接続される。高圧タービン9Aに接続された抽気配管17Aが高圧給水加熱器16に接続される。低圧タービン9Bに接続された抽気配管17B及びその加熱器に接続されたドレン水配管113のそれぞれが、低圧給水加熱器14に接続される。
RHR系19は、炭素鋼製のRHR配管20、熱交換器22A及び22B、ポンプ21を有する。RHR配管20の一端部は、図2に示すように、再循環系ポンプ7よりも上流で再循環系配管6に接続される。RHR配管20の他端部は、RPV3に接続される。このように、RHR配管20は、RPV3内に設置された炉心シュラウド内で炉心よりも上方で炉心シュラウドの上端部に設けられた、複数の炉心スプレイノズル(図示せず)を有する炉心スプレイスパージャ(図示せず)に連絡されている。炉心スプレイノズル及び炉心スプレイスパージャは、高圧スプレイ系を構成する構成要素の一部である。RHR系19は、図2においてRPV3の右側と左側とに示すように、一系統ずつ、配置される。これらの二系統のRHR系19は、同じ構成を有する。
RHR系19の詳細な構成を。図3を用いて説明する。図3は、RHR系19の一つの系統、例えば、図2に示された、化学除染装置35が接続されているRPV3の右側に配置されたRHR系19の構成を詳細に示している。
RHR系19のRHR配管20は、配管20A,20C,20D,20E,20F,20K,20G,20H,20I,20J,20L及び20Bを有する。配管20Aの一端部は、再循環系ポンプ7とRPV3の間で再循環系配管6に接続される。弁91(図2参照)が配管20Aに設けられる。配管20Aの他端部は配管20C及び配管20Gのそれぞれの一端部に接続される。並列に配置された配管20D及び20Eのそれぞれの一端部が、配管20Cの他端部に接続される。配管20Fの一端部が配管20D及び20Eのそれぞれの他端部に接続され、配管20Fの他端部が熱交換器22Aの頂部に接続される。配管20Kの一端部が、熱交換器22Aの胴94、具体的には、図4に示すように、熱交換器22Aの管板96付近で胴94に接続される。配管20Kの他端部が配管20Bの一端部に接続される。配管20Bの他端部は、前述の炉心スプレイスパージャに連絡される。弁92(図2参照)が配管20Bに設けられる。配管20C,20D,20E,20F及び20Kは、熱交換器22Aを有する、RHR配管20のA系を構成する。
並列に配置された配管20H及び20Iのそれぞれの一端部が、配管20Gの他端部に接続される。配管20Jの一端部が配管20H及び20Iのそれぞれの他端部に接続され、配管20Jの他端部が熱交換器22Bの頂部に接続される。配管20Lの一端部が、図4に示された熱交換器22Aと同じ構成を有する熱交換器22Bの胴94、具体的には、熱交換器22Bの管板96付近で胴94に接続される。配管20Lの他端部が、一端部がRPV3に接続された配管20Bの他端部に接続される。配管20G,20H,20I,20J及び20Lは、熱交換器22Bを有する、RHR配管20のB系を構成する。RHR配管20のB系は、RHR配管20のA系と並列に配置される。
弁25Aが配管20Cに設けられる。弁27A、ポンプ21A及び弁28Aが、上流から下流に向かってこの順番で配管20Dに設けられる。弁27B、ポンプ21B及び弁28Bが、上流から下流に向かってこの順番で配管20Eに設けられる。弁32A及び自動排気弁23Aが配管20Fに設けられる。自動排気弁23Aは、弁32Aよりも熱交換器22A側に配置される。排気管93Aが自動排気弁23Aに接続される。弁34A及び30Aが配管20Kに設けられる。弁32A、自動排気弁23A、熱交換器22A及び弁34Aをバイパスする、弁29Aが設けられた配管31Aが、配管20Dと配管20Eの接続点と弁32Aの間で配管20Fに接続され、弁34Aと弁30Aの間で配管20Kに接続される。
弁25Bが配管20Gに設けられる。弁27C、ポンプ21C及び弁28Cが、上流から下流に向かってこの順番で配管20Hに設けられる。弁27D、ポンプ21D及び弁28Dが、上流から下流に向かってこの順番で配管20Iに設けられる。弁32B及び自動排気弁23Bが配管20Jに設けられる。自動排気弁23Bは、弁32Bよりも熱交換器22B側に配置される。排気管93Bが自動排気弁23Bに接続される。弁34B及び30Bが配管20Lに設けられる。弁32B、自動排気弁23B、熱交換器22B及び弁34Bをバイパスする、弁29Bが設けられた配管31Bが、配管20Hと配管20Iの接続点と弁32Bの間で配管20Jに接続され、弁34Bと弁30Bの間で配管20Lに接続される。なお、図3に示されたポンプ21A,21B,21C及び21Dは、図2に示されたポンプ21に相当する。
エアコンプレッサ24Aが、弁26Cが設けられた配管26Aによって、熱交換器22Aと弁34Aの間で配管20Kに接続される。エアコンプレッサ24Bが、弁26Dが設けられた配管26Bによって、熱交換器22Bと弁34Bの間で配管20Lに接続される。
ここで、RHR系19の熱交換器の構成を、図4に示すA系の熱交換器22Aを例に挙げて説明する。なお、B系の熱交換器22Bは、熱交換器22Aと同じ構成を有する。熱交換器22Aは、胴94、複数本の伝熱管95、管板96及び隔壁99を有する。胴94は、容器の一種である。管板96が、胴94内で胴94の下端部に配置され、胴94の内面に設置される。U字状の複数本の伝熱管95が、胴94内で管板96よりも上方に形成された胴側領域98内に配置される。それぞれの伝熱管95の両端部が管板96に取り付けられる。胴側領域98内には、熱交換器22Aの軸方向に、複数の邪魔板97が所定の間隔を置いて配置される。各邪魔板97は、熱交換器22Aの中心軸に対して直角に配置されて胴94の内面に取り付けられており、円弧を有する。邪魔板97の円弧は、胴94の内面に接触しており、胴94の内面の円周の一部である。邪魔板97の横断面は、直線と前述の円弧で囲まれた形状をしている。
胴94内の胴側領域98では、熱交換器22Aの軸方向において隣り合う各邪魔板97の相互間に、水平通路を形成している。そして、各邪魔板97の直線部と胴94の内面との間に、それぞれ上昇通路を形成している。各上昇通路は、図4に示すように、180°異なる位置に形成される。その水平通路とその上昇通路は連絡されており、このため、連絡された水平通路と上昇通路によって、熱交換器22Aの底部から熱交換器22Aの頂部に向かって、図4に示すように、胴側領域98内に蛇行通路が形成される。RHR配管20の、配管20Bに接続された配管20Kが、胴側領域98内で最も下方に位置する水平通路に連絡される。
各伝熱管95は、それぞれの邪魔板97を貫通しており、各邪魔板97によって水平方向の位置を保持される。胴側領域98内の各水平通路は、それぞれの伝熱管95と交差している。
熱交換器22Aでは、胴94内で管板96の下方に、二つのヘッダー室、すなわち、ヘッダー室100A及び100Bが形成される。ヘッダー室100A及び100Bは、隔壁99によって仕切られている。この隔壁99は、上端が管板96の下面に取り付けられ、下端が胴94の底面に取り付けられる。冷却水入口配管101Aが、胴94に接続され、ヘッダー室100Aに連絡される。冷却水出口配管101Bが、胴94に接続され、ヘッダー室100Bに連絡される。管板96に取り付けられた各伝熱管95は、これらの一端部側でヘッダー室100Aに連絡される。また、管板96に取り付けられた各伝熱管95は、これらの他端部側でヘッダー室100Bに連絡される。
BWRプラント1の運転中、RPV3内の冷却水(以下、炉水という)は、再循環系ポンプ7で昇圧され、再循環系配管6を通ってジェットポンプ5内に噴射される。ダウンカマ内でジェットポンプ5のノズルの周囲に存在する炉水も、ジェットポンプ5内に噴射される炉水によって、ジェットポンプ5内に吸引され、その噴射された炉水と共に炉心4に供給される。炉心4に供給された炉水は、燃料集合体内の燃料棒内の核燃料物質の核分裂で発生する熱によって加熱され、その一部が蒸気になる。この蒸気は、RPV3から主蒸気配管8Aを通って高圧タービン9Aに導かれ、高圧タービン9Aを回転させる。主蒸気配管8Aに設けられた蒸気止め弁108及び蒸気加減弁109が開いており、高圧タービン9Aに供給される蒸気量が所定量になるように、蒸気加減弁109の開度が調節される。回転軸(図示せず)によって高圧タービン9Aに連結された低圧タービン9Bも回転する。
加熱蒸気止め弁111が開いているため主蒸気配管8A内を流れる高圧の蒸気の一部が、抽気されて加熱蒸気として加熱蒸気配管110に流入する。加熱蒸気配管110内を流れる蒸気は、湿分分離加熱器112の加熱器に供給される。圧力が低下して高圧タービン9Aから主蒸気配管8Bに排出された蒸気は、主蒸気配管8Bを通して湿分分離加熱器112の湿分分離器に供給される。排出されたその蒸気に含まれる湿分は、上記の湿分分離器で除去される。湿分が除去された蒸気は、上記の加熱器内で加熱蒸気により加熱されて温度が上昇する。その加熱器内で、高圧タービン9Aから排出された蒸気を加熱した加熱蒸気は、温度が低下して凝縮され、ドレン水となる。このドレン水は、加熱器から排出され、ドレン水配管113により、低圧給水加熱器14の、伝熱管の外側の領域である胴側に導かれる。
湿分分離加熱器112から排出された、湿分が除去されて温度が上昇した蒸気は、主蒸気配管8Bを通して低圧タービン9Bに供給され、低圧タービン9Bに回転力をさらに付与する。低圧タービン9Bに連結された発電機(図示せず)が回転し、電力が発生する。低圧タービン9Bから排出された蒸気は、復水器10で凝縮されて水になる。この水は、給水として、給水配管11を通りRPV3内に供給される。
給水配管11内を流れる給水は、復水ポンプ12で昇圧され、復水浄化装置13で不純物が除去され、給水ポンプ15でさらに昇圧される。この給水は、低圧給水加熱器14において抽気配管17Bによりタービン9から抽気された抽気蒸気及びドレン水配管113で湿分分離加熱器112の加熱器から導かれたドレン水により加熱され、高圧給水加熱器16において抽気配管17Aにより高圧タービン9Aから抽気された抽気蒸気により加熱されてRPV3内に導かれる。高圧給水加熱器16及び低圧給水加熱器14に接続されドレン水回収配管18が、復水器10に接続される。高圧給水加熱器16内で、抽気配管17Aにより導かれた抽気蒸気から発生したドレン水、低圧給水加熱器14内で、抽気配管17Bにより導かれた抽気蒸気から発生したドレン水、及びドレン水配管113で低圧給水加熱器14に導かれたドレン水は、ドレン水回収配管18により復水器10に導かれる。
BWRプラント1の運転が停止された後、2系統のRHR系19のそれぞれにおいて、通常の運転が行われる。RHR系19の通常の運転では、RPV3内の炉水がRHR配管20内を弁91から弁92に向かって流れる。具体的には、ポンプ21A,21B,21C及び21Dのそれぞれが駆動され、RPV3内のダウンカマに存在する炉水が再循環系配管6を経て配管20Aに流入する。このとき、図3に示された弁のうち、A系統における弁29A及び26C、B系統における弁29B及び26Dのそれぞれは閉じており、これらの弁以外の他の各弁は開いている。配管20Aに流入した炉水は、A系のそれぞれの配管、及びB系のそれぞれの配管に導かれる。
A系では、配管20Aから配管20Cに流入した炉水は、配管20D及び20Eのそれぞれに導かれ、さらに、配管20Fを通して熱交換器22Aに流入する。熱交換器22Aの胴94内を通過した炉水は、熱交換器22Aで冷却された後に配管20Kに流出され、配管20BによりRPV3内に戻される。
RHR系19の熱交換器、例えば、熱交換器22A内での炉水の流動状態を、具体的に説明する。配管20F内を流れる炉水は、上部から熱交換器22Aの胴94内の領域、すなわち、胴側領域98に流入する。RHR系19の通常の運転では、胴側領域98に流入した炉水は、複数の水平通路及び複数の上昇通路を含む蛇行通路を、胴側領域98の上部から下部に向かって流れ、配管20Kに排出される。
冷却水入口配管101Aによってヘッダー室100Aに供給された冷却水(例えば、海水)は、各伝熱管95内に導かれ、各伝熱管95の頂部に向かって上昇する。頂部に達した冷却水は、反転して各伝熱管95内を下降し、ヘッダー室100Bに達する。冷却水は、ヘッダー室100Bから冷却水出口配管101Bに排出される。各伝熱管95内を流れる冷却水は、各水平通路を流れる高温の炉水を冷却する。このため、胴側領域98から配管20Kに排出される炉水の温度が低下する。
本実施例の原子力プラントの化学除染方法に用いられる化学除染装置35の詳細な構成を、図5を用いて説明する。
化学除染装置35は、循環配管36、循環ポンプ47、冷却器64、混床樹脂塔63、カチオン樹脂塔62、フィルタ61、加熱器60、分解装置52、サージタンク49、酸化剤注入装置55、酸化除染剤注入装置42及び還元剤注入装置37、を備える。
開閉弁65、弁34,循環ポンプ47,弁66,67,68及び69、加熱器60、弁70及び71、及び開閉弁72が、上流よりこの順に循環配管36に設けられている。循環ポンプ47をバイパスして両端が循環配管36に接続される配管88には、弁89及び90が設置される。pH計87が弁68と弁69の間で配管88に取り付けられる。循環配管36内では除染水溶液(例えば、過マンガン酸水溶液またはシュウ酸水溶液)の流速が速いために、pH計87を循環配管36に設置した場合には、除染水溶液のpHを精度良く計測できなくなる。このため、そのpH計87に対応した設定流量に調節可能な、循環ポンプ47をバイパスする配管88にpH計87を設置している。配管88内を流れる除染水溶液の流量は、弁89(または弁90)の開度を制御することにより調節される。
弁66をバイパスして両端が循環配管36に接続される配管84には、冷却器64及び弁85及び86が設置される。両端が循環配管36に接続されて弁67をバイパスする配管81に、混床樹脂塔63及び弁82及び83が設置される。両端が循環配管36に接続されて弁68をバイパスする配管78に、カチオン樹脂塔62及び弁79及び80が設置される。カチオン樹脂塔62は陽イオン交換樹脂を充填しており、混床樹脂塔63は陽イオン交換樹脂及び陰イオン交換樹脂を充填している。弁69をバイパスする配管75が循環配管36に接続され、弁77、フィルタ61及び弁76が配管75に設置される。
加熱器60よりも下流に位置する分解装置52が設置される配管54が、弁70をバイパスして循環配管36に接続される。分解装置52は、内部に、例えば、ルテニウムを活性炭の表面に添着した活性炭触媒を充填している。弁71をバイパスする配管73の両端が循環配管36に接続され、サージタンク49が配管73に接続される。加熱器51がサージタンク49内に配置される。配管73の、サージタンク49よりも上流に、弁83A及びエゼクタ50が設けられる。エゼクタ50は弁83Aとサージタンク49の間に配置される。シュウ酸等の薬剤を投入するホッパ(図示せず)が、エゼクタ50に接続される。配管73の、サージタンク49よりも下流に、ポンプ48及び弁74が設けられる。ポンプ48はサージタンク49と弁74の間に配置される。
酸化除染剤注入装置42は、薬液タンク43、注入ポンプ44及び注入配管45を有する。薬液タンク43は、注入ポンプ44及び弁41が設けられた注入配管45によって循環配管36に接続される。酸化除染剤である過マンガン酸の水溶液(過マンガン酸水溶液)が、薬液タンク43内に充填される。
還元剤注入装置37は、薬液タンク38、注入ポンプ39及び注入配管40を有する。薬液タンク38は、注入ポンプ39及び弁41が設けられた注入配管40によって循環配管36に接続される。還元剤であるヒドラジンの水溶液(ヒドラジン水溶液)が、薬液タンク38内に充填される。
注入配管45及び40が、この順番で、弁71から開閉弁72の間で循環配管36に接続される。
酸化剤注入装置55は、薬液タンク56、注入ポンプ57及び注入配管58を有する。薬液タンク56は、注入ポンプ57及び弁59が設けられた注入配管58によって、分解装置52と弁53の間で配管54に接続される。酸化剤である過酸化水素が薬液タンク56内に充填される。この過酸化水素は、分解装置52内における、シュウ酸及び還元剤(例えば、ヒドラジン)の分解に用いられる化学物質である。
本実施例の原子力プラントの化学除染方法を、図1に示す手順に基づいて以下に説明する。本実施例では、化学除染方法として、例えば、特開2000-105295号公報に記載された化学除染方法を用いる。本実施例の原子力プラントの化学除染方法では、化学除染装置35が用いられ、図1に示されるステップS1~S10の各工程が実施される。
まず、化学除染対象の配管系に化学除染装置を接続する(ステップS1)。BWRプラント1の運転が停止された後に、化学除染装置35を、化学除染対象の一つの配管系である、RHR系19のRHR配管20に接続する。例えば、RHR配管20の配管20Bに設置された弁92のボンネットを開放してこのボンネットのRPV3側を封鎖する。化学除染装置35の循環配管36の開閉弁72側の一端部が弁92のフランジに接続される。さらに、RHR配管20の配管20Aに設置された弁91のボンネットを開放してこのボンネットの再循環系配管6側を封鎖する。循環配管36の開閉弁65側の他端部が、弁91のフランジに接続される。循環配管36の両端が、RHR配管20、すなわち、配管20B及び20Aのいずれかに接続され、RHR配管20の化学除染対象領域、及び循環配管36を含む閉ループ(以下、第1閉ループという)が形成される。
弁92のボンネットのRPV3側を封鎖することにより、後述するように、化学除染装置35の循環配管36から配管20Bに除染水溶液が供給されるとき、この除染水溶液が、弁92のボンネットからRPV3に流入することを防止することができる。また、弁91のボンネットの再循環系配管6側を封鎖することにより、後述するように、配管20Aから化学除染装置35の循環配管36に除染水溶液が戻されるとき、この除染水溶液が、弁91のボンネットから再循環系配管6に流入することを防止することができる。
次に、RHR系19の熱交換器22Aに接続された配管20Kの、熱交換器22Aと弁34Aの間の部分に、エアコンプレッサ24Aに接続された配管26Aを接続する。熱交換器22Bに接続された配管20Lの、熱交換器22Bと弁34Bの間の部分に、エアコンプレッサ24Bに接続された配管26Bを接続する。そして、熱交換器22Aの上方で配管20Fに自動排気弁23Aを取り付ける。さらに、熱交換器22Bの上方で配管20Jに自動排気弁23Bを取り付ける。このため、各熱交換器の管板付近から熱交換器の胴側領域98内に注入された空気が、胴側領域98の上端部に移動し、各自動排気弁から排気されるという経路が形成される。熱交換器の胴側領域98に供給する気体として、空気、窒素、ヘリウム、アルゴン、酸素及びオゾンのうちの少なくとも一種を用いる。本実施例では、酸素を含む空気を注入するエアコンプレッサを用いたが、エアコンプレッサの替りに、酸素が封入されたガスボンベまたはその他の気体(例えば、窒素、ヘリウム、アルゴン及びオゾン等)が封入されたガスボンベを用いても良い。
次に、化学除染に使用する水を昇温する(ステップS2)。まず、化学除染装置35の循環配管36、及びRHR配管20(RHR配管20の弁91と弁92の間の部分)内の水張りを行う。この水張りは、例えば、原子炉補機冷却水系(図示せず)を用いて行う。開閉弁65,弁66,67,68,69,70,74及び83A、及び開閉弁72をそれぞれ開き、他の弁を閉じた状態で、原子炉補機冷却水系から、RHR配管20の弁91と弁92の間の部分に冷却水が供給され、RHR配管20の弁91と弁92の間の部分、循環配管36及びサージタンク49が水で満たされる。そして、循環ポンプ47が駆動され、水が、RHR配管20の弁91と弁92の間の部分及び循環配管36を含む第1閉ループ内を循環する。この第1閉ループ内を循環する水は、加熱器51及び60により90℃に加熱される。加熱器51及び60によりその第1閉ループ内を循環する水を加熱するため、この水の90℃までの昇温をより短時間で行うことができる。
酸化除染を実施する(ステップS3)。第1閉ループ内を循環する水の温度が90℃になったとき、酸化除染剤注入装置42の弁46を開いて、注入ポンプ44を起動する。薬液タンク43内の過マンガン酸水溶液が注入配管45を通して循環配管36内を流れる水に注入され、循環配管36及びRHR配管20内で酸化除染液(過マンガン酸水溶液)が生成される。生成された過マンガン酸水溶液の過マンガン酸濃度は、例えば、200ppmである。過マンガン酸濃度が設定値になった後、注入ポンプ44を停止して弁46を閉じ、薬液タンク43から循環配管36への過マンガン酸水溶液の注入を停止する。過マンガン酸水溶液が第1閉ループ内で循環され、RHR配管20及び熱交換器22A及び22Bのそれぞれの胴94の内面等に対する酸化除染が実施される。RHR系19に対する酸化除染時間が所定時間を経過したとき、酸化除染を終了する。
BWRプラント1の、再循環系配管6等のステンレス鋼部材から溶出した微量のクロムイオンを含む炉水が、再循環系配管6から炭素鋼製のRHR配管20内に流入する。このため、RHR配管20の内面に形成される酸化皮膜は、放射性核種以外に、僅かであるが、クロム酸化物を含んでいる。RHR配管20内に過マンガン酸水溶液を供給することによって、その酸化皮膜に含まれるクロム酸化物が過マンガン酸水溶液中に溶出する。
RHR配管20の内面に対する酸化除染を、図3を用いて具体的に説明する。化学除染装置35の循環配管36の開閉弁72側の端部からRHR配管20に設けられて弁92のボンネット内に供給された過マンガン酸水溶液は、配管20Bに導かれる。配管20Bに導かれた過マンガン酸水溶液の一部は、配管20Kを通って熱交換器22Aの胴側領域98内に供給される。このとき、弁29Aは閉じている。その胴側領域98では、過マンガン酸水溶液が、熱交換器22Aの胴側領域98内の、複数の邪魔板97によって形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。過マンガン酸水溶液は、その胴側領域から配管20Fに排出され、並列に配置された配管20D及び20Eのそれぞれを通過して配管20Cを経て配管20Aに達する。
過マンガン酸水溶液は、配管20B,20K,20F,20D,20E及び20Cのそれぞれの内面と接触し、各内面に対して酸化除染が実施される。また、熱交換器22Aの胴側領域98内に供給された過マンガン酸水溶液は、熱交換器22Aの胴94の内面、各邪魔板97の表面及び各伝熱管95の外面に接触し、それらの内面、表面及び外面に対して酸化除染が実施される。
配管20Bに導かれた過マンガン酸水溶液の残りは、配管20Lを通って熱交換器22Bの胴側領域98内に供給される。このとき、弁29Bは閉じている。その胴側領域98では、過マンガン酸水溶液が、熱交換器22Aと同様に、胴側領域98内の、複数の邪魔板97で形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。過マンガン酸水溶液は、熱交換器22Bの胴側領域98から配管20Jに排出され、並列に配置された配管20H及び20Iのそれぞれを通過して配管20Gを経て配管20Aに達する。
過マンガン酸水溶液は、配管20L,20J,20H,20I及び20Gのそれぞれの内面と接触し、各内面に対して酸化除染が実施される。また、熱交換器22Bの胴側領域98内に供給された過マンガン酸水溶液は、熱交換器22Bの胴94の内面、各邪魔板97の表面及び各伝熱管95の外面に接触し、それらの内面、表面及び外面に対して酸化除染が実施される。
配管20C及び20Gのそれぞれから供給されて配管20Aで合流した過酸化マンガン水溶液は、配管20Aの内面に対して酸化除染を実施しながら配管20A内を流動し、弁91のボンネット内に流入し、循環配管36に戻される。
このように、過酸化マンガン水溶液は、第1閉ループ内を循環され、RHR配管20内、及び熱交換器22A及び22B内の胴側領域98での酸化除染が実施される。
酸化除染工程(ステップS3)では、過マンガン酸水溶液は、RHR系19の通常運転時における炉水の流れとは逆で、RHR配管20内を弁92から弁91に向かって流れる。熱交換器22A及び22Bのそれぞれの胴側領域98内では、過マンガン酸水溶液が、胴側領域98内に形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。
なお、ステップS3における酸化除染では、酸化除染に要する時間が短いため、後述の還元除染工程(ステップS5)で実施される熱交換器22A及び22Bのそれぞれの胴94内の胴側領域98への、気体供給装置(例えば、エアコンプレッサ)による気体(例えば、空気)の供給は、実施しなくてもよい。しかしながら、酸化除染水溶液(例えば、過マンガン酸水溶液)と共にその気体を胴側領域98に供給することは、熱交換器22A及び22Bのそれぞれの胴94の内面における酸化除染の効果を高めるためにも好ましいと言える。
酸化除染液に含まれる酸化除染剤を分解する(ステップS4)。弁74及び83Aを開いて弁71を閉じ、ポンプ48を駆動する。循環配管36内を流れている過マンガン酸水溶液が、配管73を通してサージタンク49内に流入し、弁74を通って循環配管36に戻される。RHR配管20の内面に対する還元除染に用いられるシュウ酸(還元除染剤)が、ホッパに投入されてエゼクタ50から配管73内を流れる過マンガン酸水溶液に供給される。シュウ酸は、循環配管36、及びRHR配管20の、弁91と弁92の間の部分を含む第1閉ループ内に存在する過マンガン酸水溶液に含まれる過マンガン酸を分解させるために必要な量だけ、エゼクタ50から配管73に供給される。その量のシュウ酸の供給は、その第1閉ループ内に存在する過マンガン酸水溶液にシュウ酸が均等に混ざるように、過マンガン酸水溶液を配管73内に流しながら行われる。
還元除染剤としては、シュウ酸、マロン酸、ギ酸、アスコルビン酸のうちの少なくとも一種を用いる。
供給されたシュウ酸は、サージタンク49内で溶解される。溶解されたシュウ酸によって、過マンガン酸水溶液に含まれる過マンガン酸が分解される。RHR配管20から循環配管36に戻ってきた過マンガン酸水溶液が紫色から無色透明になったことを確認し、酸化除染剤の分解工程を終了する。
還元除染を実施する(ステップS5)。ステップS5の工程は、気体供給工程及び還元除染液供給工程を含む。気体供給工程は、還元除染液供給工程の前に開始することが望ましい。なお、気体供給工程は、還元除染液供給工程が実施されているときにも継続して実施される。
気体供給工程を実施する前に、弁79及び80を開いて、弁68を閉じることにより、過マンガン酸が分解されて生じた水が、カチオン樹脂塔62に供給される。その水には、エゼクタ50からのシュウ酸の供給量によっては、極低濃度のシュウ酸が含まれている可能性もある。カチオン樹脂塔62に充填された陽イオン交換樹脂は、その水に含まれた陽イオンを吸着し、除去する。過マンガン酸の分解後においても、その水の温度は、加熱器60によって90℃に保持される。
そして、気体供給工程が実施される。弁26C及び26Dのそれぞれが開いた後、エアコンプレッサ24A及び24Bのそれぞれが起動される。各エアコンプレッサの起動によって、熱交換器22A及び22Bのそれぞれの胴側領域98内に空気が注入される。エアコンプレッサ24Aから排出された空気は、配管26A及び20Kを通って熱交換器22Aの胴側領域98に供給される。エアコンプレッサ24Bから排出された空気は、配管26B及び20Lを通って熱交換器22Bの胴側領域98に供給される。
熱交換器22A及び22B内、具体的には、各熱交換器の胴側領域98内への空気(気体)の注入は、還元除染液であるシュウ酸水溶液をそれらの胴側領域98に供給する前、すなわち、還元除染液供給工程を実施する前に行われる。熱交換器22Aの胴側領域98に供給された空気は、胴側領域98内を上昇し、胴94の頂部から排出されて自動排気弁23Aの作用により排気管93Aに排気される。熱交換器22Bの胴側領域98に供給された空気は、胴側領域98内を上昇し、胴94の頂部から排出されて自動排気弁23Bの作用により排気管93Bに排気される。
還元除染液供給工程が実施される。ステップS4と同様に、弁74及び83Aが開いた状態で、シュウ酸がエゼクタ50から配管73内に供給され、サージタンク49内に導かれる。サージタンク49内で、そのシュウ酸が水に溶解してシュウ酸水溶液(還元除染液)が生成される。ポンプ48の駆動によってサージタンク49内のシュウ酸水溶液が配管73を通って循環配管36に供給される。所定量のシュウ酸がエゼクタ50から配管73に供給されてサージタンク49内で生成された所定量のシュウ酸水溶液が循環配管36に供給された後、弁71を開いてポンプ48を停止し、そして、弁74及び83Aを閉じる。これにより、サージタンク49から循環配管36へのシュウ酸水溶液の注入が停止される。
シュウ酸水溶液のpH調整のために、弁41を開いて注入ポンプ39を駆動することにより、還元剤注入装置37の薬液タンク38内のヒドラジン水溶液が、注入配管40を通して循環配管36内のシュウ酸水溶液に注入される。弁89及び90のそれぞれが開き、循環配管36内を流れるシュウ酸水溶液の一部が配管88に導かれる。配管88内を流れるシュウ酸水溶液のpHがpH計87で計測される。この測定されたpH値に基づいて注入ポンプ39の回転数(または弁41の開度)を制御し、循環配管36へのヒドラジン水溶液の注入量を調節する。このヒドラジン水溶液の注入量の調節により、シュウ酸水溶液のpHが2.5に調節される。
pHが2.5で90℃のヒドラジンを含むシュウ酸水溶液が循環配管36及びRHR配管20を含む前述の第1閉ループ内を循環し、還元除染が実施される。
RHR配管20の内面に対するその還元除染を、図3を用いて具体的に説明する。化学除染装置35の循環配管36の開閉弁72側の端部からRHR配管20に設けられて弁92のボンネット内に供給されたシュウ酸水溶液は、配管20Bに導かれる。配管20Bに導かれたシュウ酸水溶液の一部は、配管20Kを通って熱交換器22Aの胴側領域98内に供給される。このとき、弁29Aは閉じている。前述したように、エアコンプレッサ24Aからの空気が配管20Kに供給されている、すなわち、気体供給工程が実施されているため、実際には、その空気を含むシュウ酸水溶液が、熱交換器22A内の胴側領域98に供給される。配管20Kから熱交換器22Aの胴側領域98に供給されるシュウ酸水溶液の流量は、例えば40m/hであり、配管20Kからその胴側領域98に供給される空気流量は、シュウ酸水溶液の流量の1/100である、例えば0.4m/hである。このとき、熱交換器22Aの胴側領域98における上昇するシュウ酸水溶液の線流速は空気なしで約2cm/sであり、空気を含むシュウ酸水溶液をその胴側領域98に供給した場合において気泡の上昇速度は約70cm/sである。このため、熱交換器22Aの胴側領域98内において、空気を含むシュウ酸水溶液の上昇速度は、空気を含まないシュウ酸水溶液の上昇速度の約30倍になる。なお、後述の熱交換器22Bの胴側領域98に供給されるシュウ酸水溶液の流量及び空気流量は、前述の熱交換器22Aの胴側領域98におけるそれらの流量と同じである。この結果、熱交換器22Bの胴側領域98内においても、空気を含むシュウ酸水溶液の上昇速度は、空気を含まないシュウ酸水溶液の上昇速度の約30倍になる。
熱交換器22A及び22Bのそれぞれの胴側領域98に供給される気体(例えば、空気)の流量を0m/hよりも多くすることにより、その胴側領域98における、気体を含む還元除染水溶液(例えば、シュウ酸水溶液)の流速を、気体を含まず還元除染水溶液だけの場合における還元除染水溶液の流速よりも速くすることができ、熱交換器22A及び22Bのそれぞれの胴94内での還元除染の効果を高めることができる。各胴側領域98に供給される気体の流量は、胴側領域98に供給される還元除染水溶液(例えば、シュウ酸水溶液)の流量の1/100以下にすることが望ましい。胴側領域98に供給される気体の流量が、その胴側領域98に供給される還元除染水溶液の流量の1/100を超えた場合には、RHR系19の熱交換器の胴側領域98に供給された気体が、その胴側領域98から自動排気弁が設けられた排気管に排出し難くなり、胴側領域98の上部に気体が溜まってしまう。胴側領域98の上部に気体が溜まると、胴側領域98内で、還元除染水溶液が流れなくなる。このため、RHR系19の熱交換器の胴側領域98に供給される気体の流量は、0m/hよりも多くし、その胴側領域98に供給される還元除染水溶液の流量の1/100以下にする。
RHR系19の熱交換器の胴側領域98に供給される気体(例えば、空気)の流量は、その胴側領域98に供給される還元除染水溶液(例えば、シュウ酸水溶液)の流量の1/1000以上にするとよい。その胴側領域98に供給される気体の流量をその還元除染水溶液の流量の1/1000以上にすることによって、その熱交換器の胴94の内面に対する還元除染を効率良く且つより短時間に行うことができる。このため、RHR系19の熱交換器の胴側領域98に供給される気体の流量は、その胴側領域98に供給される還元除染水溶液の流量の1/1000以上1/100以下の範囲にすることが望ましい。
その胴側領域98では、空気を含むシュウ酸水溶液であるシュウ酸及び空気を含む気液二相流(水溶液)が、熱交換器22Aの胴側領域98内の、複数の邪魔板97によって形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。胴側領域98を上昇する気液二相流の流速は、空気を含んでいるため、シュウ酸水溶液のみが上昇する場合におけるシュウ酸水溶液の流速よりも速くなる。気液二相流は、その胴側領域98から配管20Fに排出される。排出された気液二相流に含まれた空気は、自動排気弁23Aによって気液二相流に含まれたシュウ酸水溶液から分離され、排気管93Aに排出される。空気が分離されたシュウ酸水溶液は、配管20Fから並列に配置された配管20D及び20Eに導かれ、配管20Cを経て配管20Aに達する。
シュウ酸水溶液が配管20B,20K,20F,20D,20E及び20Cのそれぞれの内面と接触し、各内面に対して還元除染が実施される。また、熱交換器22Aの胴側領域98内に供給された気液二相流に含まれたシュウ酸は、熱交換器22Aの胴94の内面、各邪魔板97の表面及び各伝熱管95の外面に接触し、それらの内面、表面及び外面に対して還元除染が実施される。
配管20Bに導かれたシュウ酸水溶液の残りは、配管20Lを通って熱交換器22Bの胴側領域98内に供給される。このとき、弁29Bは閉じている。前述したように、エアコンプレッサ24Bからの空気が配管20Lに供給されるため、その空気を含むシュウ酸水溶液が、熱交換器22B内の胴側領域98に供給される。
その胴側領域98では、空気を含むシュウ酸水溶液であるシュウ酸及び空気を含む気液二相流(水溶液)が、熱交換器22Aと同様に、熱交換器22Bの胴側領域98内の、複数の邪魔板97で形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。熱交換器22Bにおいても、胴側領域98を上昇する気液二相流の流速は、空気を含んでいるため、シュウ酸水溶液のみが上昇する場合におけるシュウ酸水溶液の流速よりも速くなる。気液二相流は、その胴側領域98から配管20Jに排出される。排出された気液二相流に含まれた空気は、自動排気弁23Bによって気液二相流に含まれたシュウ酸水溶液から分離され、排気管93Bに排出される。空気が分離されたシュウ酸水溶液は、配管20Jから並列に配置された配管20H及び20Iに導かれ、配管20Gを経て配管20Aに達する。
シュウ酸水溶液が配管20L,20J,20H,20I及び20Gのそれぞれの内面と接触し、各内面に対して還元除染が実施される。また、熱交換器22Bの胴側領域98内に供給された気液二相流に含まれたシュウ酸は、熱交換器22Bの胴94の内面、各邪魔板97の表面及び各伝熱管95の外面に接触し、それらの内面、表面及び外面に対して還元除染が実施される。
還元除染工程(ステップS5)でも、シュウ酸水溶液は、RHR系19の通常運転時における炉水の流れとは逆で、RHR配管20内を弁92から弁91に向かって流れる。熱交換器22A及び22Bのそれぞれの胴側領域98内では、シュウ酸水溶液が、胴側領域98内に形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。
このような還元除染による、RHR配管20等の内面に形成された酸化皮膜の溶解によって、シュウ酸水溶液における放射性核種イオン濃度及び鉄イオン濃度が増加する。前述のように、弁68が閉じられて弁79及び80が開いているため、放射性核種イオン及び鉄イオンを含むシュウ酸水溶液が、カチオン樹脂塔62に供給される。シュウ酸水溶液に含まれた放射性核種イオン及び鉄イオン等の金属陽イオンが、カチオン樹脂塔62内の陽イオン交換樹脂に吸着され、除去される。
シュウ酸水溶液を用いて炭素鋼製のRHR配管20の内面等への還元除染を実施すると、シュウ酸鉄(II)がRHR配管20の内面等に析出する。シュウ酸鉄(II)の析出は、シュウ酸水溶液を用いた、RHR配管20の内面等の還元除染による酸化皮膜の溶解効率を低下させる。RHR配管20の内面等に形成された、放射性核種を含むその酸化皮膜の溶解を促進させるために、循環配管36内を流れるシュウ酸水溶液に過酸化水素を注入する。この過酸化水素の注入は、酸化剤注入装置55によって行われる。すなわち、図5に示す化学除染装置35の弁114を閉じた状態で、弁53及び59を開いて注入ポンプ57を駆動し、薬液タンク56内の過酸化水素を注入配管58及び配管54を通して循環配管36内を流れるシュウ酸水溶液に注入する。過酸化水素を含むシュウ酸水溶液が、循環配管36からRHR配管20に供給される。シュウ酸水溶液による還元除染でRHR配管20等の内面に析出したシュウ酸鉄(II)は、シュウ酸水溶液に含まれる過酸化水素によって溶解され、その内面から除去される。シュウ酸鉄(II)が除去されることにより、RHR配管20等の内面に存在する、放射性核種を含む酸化皮膜の、シュウ酸水溶液による溶解が促進される。
カチオン樹脂塔62から排出されたシュウ酸水溶液は、循環配管36からRHR配管20に再び供給され、RHR配管20及び熱交換器22A及び22Bの還元除染に用いられる。これらの還元除染は、シュウ酸水溶液が第1閉ループ内を循環しながら行われ、還元除染が実施されている間、エアコンプレッサ24A及び24Bから熱交換器22A及び22Bのそれぞれの胴側領域に空気が供給される。
RHR系19の化学除染対象箇所の線量率が設定線量率まで低下したとき、または、RHR系19に対する還元除染時間が設定時間に達したとき、RHR系19に対する還元除染を終了させる(気体供給工程及び還元除染液供給工程の終了)。なお、化学除染対象箇所の線量率が設定線量率まで低下したことは、例えば、RHR配管20の化学除染対象箇所からの放射線を検出する放射線検出器(図示せず)の出力信号に基づいて求められた線量率により確認することができる。
還元除染液に含まれる還元除染剤及び還元剤を分解する(ステップS6)。シュウ酸水溶液に含まれるシュウ酸(還元除染剤)及びヒドラジン(還元剤)を分解する際には、弁53及び114を開いて弁70の開度を一部減少させる。ヒドラジンを含むシュウ酸水溶液が、配管54を通って分解装置52に供給される。このとき、酸化剤注入装置55の弁59を開いて注入ポンプ57を駆動することにより、薬液タンク56内の過酸化水素が、注入配管58及び配管54を通して分解装置52に供給される。シュウ酸水溶液に含まれるシュウ酸及びヒドラジンは、分解装置52内で、活性炭触媒及び供給された過酸化水素の作用により分解される。分解装置52内でのシュウ酸及びヒドラジンの分解反応は、式(1)及び式(2)で表される。
(COOH)2 + H22 → 2CO2 + 2H2O ……(1)
24 + 2H22 → N2 + 4H2O ……(2)
シュウ酸及びヒドラジンの分解装置28内での分解は、第1閉ループ内でシュウ酸水溶液を循環させながら行われる。分解装置52に供給した過酸化水素が、シュウ酸及びヒドラジンの分解のために分解装置52内で完全に消費されて分解装置52から流出しないように、薬液タンク56から分解装置52への過酸化水素の供給量を、注入ポンプ57の回転速度を制御して調節する。
シュウ酸水溶液のシュウ酸濃度が所定値以下になったとき、注入ポンプ57を停止して弁59を閉じ、分解装置52への過酸化水素の供給を停止する。例えば、シュウ酸水溶液のシュウ酸濃度が30ppm以下になったとき、分解装置52への過酸化水素の供給を停止する。過酸化水素の供給の停止により、ステップS6の工程(還元除染剤及び還元剤の分解)が終了する。
化学除染の終了を判定する(ステップS7)。還元除染の開始からの経過時間が設定時間に達しても、化学除染対象箇所の表面線量率が設定線量率まで低下していない場合には、ステップS3~S7の各工程が繰り返される。例えば、設定線量率は除染係数(DF)が10となる表面線量率であり、ステップS3~S7の各工程の繰り返し回数は2~3回である。ステップS7の工程の判定が「YES」であるとき、または、その2~3回の繰り返し除染を行った結果、化学除染対象箇所の表面線量率が設定線量率まで低下していない場合でも、表面線量率がバックグラウンドレベルまで低下しているときには、後述のステップS8の工程が実施される。
還元除染において還元除染剤としてシュウ酸を使用した場合には、前述したように、炭素鋼製のRHR配管20の内面にシュウ酸鉄(II)二水和物の析出物が形成される。そのシュウ酸鉄(II)二水和物の下に、Co-60等の放射性核種を含むクロム酸化物が残っている場合には、シュウ酸水溶液を用いた還元除染では、そのクロム酸化物を除去することはできない。このため、過マンガン酸でシュウ酸鉄(II)二水和物を分解することが有効であるため、過マンガン酸水溶液を用いた、RHR配管20等の酸化除染を実施する必要がある。シュウ酸鉄(II)二水和物の下にCo-60等の放射性核種を含むクロム酸化物が残っていると、RHR配管20等の、化学除染対象箇所の表面線量率が設定線量率まで低下しないため、ステップS7の工程の判定が「NO」となり、ステップS3~S7の各工程が繰り返される。ステップS3の工程(酸化除染)が再度実施されるため、形成されたシュウ酸鉄(II)二水和物、及びCo-60等の放射性核種を含むクロム酸化物が酸化除染液(例えば、過マンガン酸水溶液)によって除去される。
浄化を実施する(ステップS8)。弁68を開いて弁79及び80を閉じ、カチオン樹脂塔62への、シュウ酸濃度が30ppm以下のシュウ酸水溶液の供給を停止する。弁85及び86を開けて弁66を閉じることにより、そのシュウ酸水溶液を、循環配管36から冷却器64に供給して60℃以下に冷却する。このとき、弁82及び83が開き、弁67が閉じられているため、60℃のシュウ酸水溶液が混床樹脂塔63に供給される。このシュウ酸水溶液に残留している陽イオン及び陰イオンが、混床樹脂塔63内の陽イオン交換樹脂及び陰イオン交換樹脂に吸着されて除去される。
排水を実施する(ステップS9)。浄化工程が終了した後、ポンプ(図示せず)を有する高圧ホース(図示せず)により循環配管36と廃液処理装置(図示せず)を接続する。浄化工程の終了後に、循環配管36及びRHR配管20の弁91と弁92の間の部分に残存する、放射性廃液である水溶液を廃液処理装置(図示せず)に排出する前において、弁76及び77を開いて弁69を閉じる。その後、循環ポンプ47が駆動され、循環配管36及びRHR配管20の弁91と弁92の間の部分を含む第1閉ループ内のその水溶液がこの閉ループ内を循環する。水溶液がこの第1閉ループ内を循環している間、その水溶液がフィルタ61に導かれ、水溶液に含まれる不溶解性の鉄がフィルタ61によって除去される。このため、その水溶液の鉄濃度が低下する。フィルタ61による不溶解性の鉄の除去によって、その水溶液の鉄濃度が排水基準の鉄濃度以下になるまで低減される。
排水基準の鉄濃度以下になった、RHR配管20及び循環配管36内に残存する水溶液は、そのポンプを駆動して循環配管36から高圧ホースを通して廃液処理装置(図示せず)に排出され、廃液処理装置で処理される。RHR配管20及び循環配管36内の水溶液が排出された後、洗浄水をRHR配管20及び循環配管36内に供給し、循環ポンプ47を駆動してこれらの配管内を洗浄する。洗浄終了後、RHR配管20及び循環配管36内の洗浄水を、上記の廃液処理装置に排出する。
化学除染装置を配管系から除去する(ステップS10)。ステップS1~S9の各工程が実施された後、化学除染装置35がRHR配管20から取り外され、RHR配管20が復旧される。
そのステップS10の工程が終了したとき、本実施例の原子力プラントの化学除染方法が終了する。そして。燃料交換及びBWRプラント1の保守点検が終了した後、次の運転サイクルでの運転を開始するために、その化学除染方法を実施したBWRプラント1が起動される。
本実施例によれば、RHR系19の、炉水が胴側領域98に供給される熱交換器において、その胴側領域98に、シュウ酸水溶液以外に気体である空気を供給するため、胴側領域98内を流れる、空気及びシュウ酸を含む気液二相流の流量が増加する。この結果、胴側領域98内におけるシュウ酸水溶液の流速が増加し、シュウ酸水溶液だけをその胴側領域98に供給した場合に比べて熱交換器22A及び22Bのそれぞれの胴側領域98における還元除染効果が向上する。すなわち、熱交換器22A及び22Bのそれぞれの胴94の内面、各邪魔板97の表面及び各伝熱管95の外面のそれぞれに対する還元除染効果が向上する。
特に、RHR配管20において、シュウ酸及び空気を含む気液二相流が、RHR系19の通常運転時における炉水の流れとは逆の方向に流れるため、熱交換器22A及び22Bのそれぞれの胴側領域98内では、その気液二相流が、胴側領域98内に形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。このため、空気の浮力の作用により、胴側領域98内で上昇するシュウ酸水溶液の流速がさらに増加し、熱交換器22A及び22Bのそれぞれの胴側領域98における還元除染効果が向上する。
本実施例のRHR系19の化学除染に用いられる化学除染装置35は、BWRプラント1においてRHR系19以外の再循環系の再循環系配管6及び原子炉浄化系の浄化系配管の化学除染に使用することができる化学除染装置である。換言すれば、RHR系19の還元除染においてRHR系19の熱交換器22A及び22Bの、シュウ酸水溶液が供給される各胴側領域98に気体(例えば、空気)を供給する対策を講じることによって、再循環系の再循環系配管6及び原子炉浄化系の浄化系配管等の、BWRプラント1におけるRHR系19以外の配管系の化学除染に用いられる化学除染装置35を、RHR系19の化学除染に使用することができる。このため、RHR系19の化学除染への使用に特化した、新たな仕様(ポンプ容量の増大化)の化学除染装置を、別途製作する必要がなくなる。
本実施例では、熱交換器22Aの頂部側に自動排気弁23Aを配置している。このため、熱交換器22Aの胴側領域98の上端部から排出された気液二相流に含まれる空気を自動排気弁23Aによりシュウ酸水溶液から分離して排気管93Aに排出することができ、熱交換器22Aの胴側領域98から排出された空気が、シュウ酸水溶液の流れ方向において、RHR配管20のA系の配管(配管20C,20D,20E,20F及び20K)の、熱交換器22Aよりも下流側の部分に供給されることを防止することができる。また、熱交換器22Bの頂部側に自動排気弁23Bを配置している。このため、熱交換器22Bの胴側領域98の上端部から排出された気液二相流に含まれる空気を自動排気弁23Bによりシュウ酸水溶液から分離して排気管93Bに排出することができ、熱交換器22Bの胴側領域98から排出された空気が、シュウ酸水溶液の流れ方向において、RHR配管20のB系の配管(配管20G,20H,20I,20J及び20L)の、熱交換器22Bよりも下流側の部分に供給されることを防止することができる。
自動排気弁23Aが配管20Fに設けられていない場合には、熱交換器22Aから配管20Fに排出された空気を含むシュウ酸水溶液は、ポンプ21A及び21Bに流入する。ポンプ21A及び21Bのケーシング内に空気が溜まり、シュウ酸水溶液がポンプ21A及び21Bから配管20Aに向かって流れなくなる。ポンプ21A及び21Bから配管20Aに向かってシュウ酸水溶液が流れたとしても、シュウ酸水溶液に含まれる空気が循環配管36に設けられた循環ポンプ47のケーシング内に溜まるため、循環ポンプ47によるシュウ酸水溶液の昇圧ができなくなり、循環配管36からRHR配管20へのシュウ酸水溶液の供給ができなく、この結果、RHR配管20及び熱交換器22A内の還元除染ができなくなる。また、自動排気弁23Bが配管20Jに設けられていない場合でも、熱交換器22Bから排出されたシュウ酸水溶液に含まれる空気がポンプ21C及び21Dのケーシング内に溜まり、シュウ酸水溶液がポンプ21C及び21Dから配管20Aに向かって流れなくなる。もし、ポンプ21C及び21Dから配管20Aに向かってシュウ酸水溶液が流れた場合でも、シュウ酸水溶液に含まれる空気がその循環ポンプ47のケーシング内に溜まるため、循環ポンプ47によるシュウ酸水溶液の昇圧ができなくなる。このため、循環配管36からRHR配管20へのシュウ酸水溶液の供給ができなくなり、RHR配管20及び熱交換器22A内の還元除染ができなくなる。
このような問題が発生することを防止するため、熱交換器22Aの上方で配管20Fに自動排気弁23Aを設け、熱交換器22Bの上方で配管20Jに自動排気弁23Bを設け、これらの自動排気弁により、胴側領域から排出されるシュウ酸水溶液に含まれる空気を分離する必要がある。
本実施例は、配管20Bにより供給されるシュウ酸水溶液の一部をRHR配管20のA系の配管(配管20C,20D,20E,20F及び20K)及び熱交換器22Aに供給し、そのシュウ酸水溶液の残りをRHR配管20のB系の配管(配管20G,20H,20I,20J及び20L)及び熱交換器22Bに供給するため、RHR配管20のA系の配管及び熱交換器22Aの内部とRHR配管20のB系の配管及び熱交換器22Bの内部に対して、同時に還元除染を実施することができる。このため、RHR系19の還元除染を短時間に終了することができる。
本実施例によれば、熱交換器22A及び22Bのそれぞれへの気体(例えば、空気)の供給は、それぞれの熱交換器の胴側領域へのシュウ酸水溶液を供給する前に行われる。このため、シュウ酸水溶液を用いた熱交換器22A及び22Bのそれぞれの内部に対する還元除染時において、熱交換器22A及び22Bのそれぞれの胴94の内面、各邪魔板97の表面及び各伝熱管95の外面にシュウ酸鉄(II)が析出し難くなる。
熱交換器22A及び22Bのそれぞれの胴側領域98に注入する気体として酸化性ガス(例えば、酸素またはオゾン)を用いることが望ましい。酸化性ガスの使用は、熱交換器22A及び22B内の還元除染によってそれらの熱交換器の、胴側領域98に面する上記の各面に析出したシュウ酸鉄(II)を酸化して溶解し易いシュウ酸鉄(III)にする。このように、熱交換器の、胴側領域98に面する上記の各面に析出したシュウ酸鉄(II)を、シュウ酸鉄(III)にすることによりそれらの面から容易に除去することができる。このため、還元除染効果を高めることができる。
本実施例では、RHR系19の熱交換器22A及び22Bの各胴側領域98に供給される空気の流量は、0m/hよりも多くし、その胴側領域98に供給されるシュウ酸水溶液の流量の1/100以下にするため、熱交換器22A及び22Bの胴側領域98の上部に空気が溜まって胴側領域98内で還元除染水溶液が流れなくなることを防止することができ、熱交換器22A及び22Bのそれぞれの胴94内での還元除染の効果を高めることができる。
本実施例は、好ましくは、RHR系19の熱交換器22A及び22Bの胴側領域98に供給される気体の流量を、その胴側領域98に供給される還元除染水溶液の流量の1/1000以上1/100以下の範囲にするため、熱交換器22A及び22Bの胴94の内面に対する還元除染を効率良く且つより短時間に行うことができる。
本発明の好適な他実施例である実施例2の原子力プラントの化学除染方法を、図1、図2、図5及び図9を用いて説明する。本実施例の化学除染方法は、BWRプラントのRHR系に適用される。
本実施例でも、実施例1で実施されるステップS1~S4の各工程が実施される。
還元除染を実施する(ステップS5)。本実施例におけるステップS5の工程でも、実施例1のステップS5の工程で実施される、カチオン樹脂塔62に充填された陽イオン交換樹脂による、過マンガン酸が分解されて生じた水に含まれた陽イオンの吸着及び除去を実施する。
シュウ酸水溶液の、化学除染装置35からRHR配管20への供給の前に、弁25B及び30Bのそれぞれを閉じて、シュウ酸水溶液を、RHR配管20におけるA系の配管にのみに供給できるように、RHR系19の各弁の開度が制御される。A系の配管に設けられた弁のうち弁29Aのみが閉じられる。
弁26Cを開いて、熱交換器22Aの胴側領域98に空気を供給するエアコンプレッサ24Aが駆動される。このとき、B系の熱交換器22Bの胴側領域98に空気を供給するエアコンプレッサ24Bは停止されたままであり、弁26Dは閉じている。エアコンプレッサ24Aから排出された空気は、配管26A及び20Kを通って、熱交換器22Aの胴側領域98内で管板96の上面付近に供給される。この空気は、胴側領域98内を上昇し、胴94の頂部から配管20Fに排出され、自動排気弁23Aを通して排気管93Aに排出される。
弁74及び83Aが開いた状態で、シュウ酸がエゼクタ50から配管73内に供給され、サージタンク49内に導かれる。このシュウ酸はサージタンク49内で水に溶解されてシュウ酸水溶液を生成する。このシュウ酸水溶液は、ポンプ48の駆動により、サージタンク49から循環配管36に供給される。実施例1と同様に、循環配管36内を流れるシュウ酸水溶液に対して、還元剤注入装置37の薬液タンク38からヒドラジン水溶液が注入される。ヒドラジンの注入により、シュウ酸水溶液のpHが2.5に調節される。
pHが2.5で90℃のシュウ酸水溶液が、循環配管36、及びRHR系19のRHR配管20である配管20A及び20B、A系の配管(配管20C,20D,20E,20F及び20K)を含む第1閉ループ内を循環し、配管20A及び20B、A系の配管のそれぞれの内面、及び熱交換器22Aの内部に対する還元除染が実施される。
エアコンプレッサ24Aから排出された空気が供給されている配管20Kに、循環配管36から、pHが2.5で90℃のシュウ酸水溶液が供給される。pHが2.5で90℃の、空気を含むシュウ酸水溶液(シュウ酸及び空気を含む気液二相流)が、配管20Kを通して熱交換器22Aの胴側領域98の管板96の上面付近に供給される。熱交換器22Aの胴側領域98では、シュウ酸及び空気を含むその気液二相流が、熱交換器22Aの胴側領域98内の、複数の邪魔板97によって形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。空気を含んでいるため、胴側領域98内を上昇するシュウ酸水溶液の流速が早くなり、熱交換器22A内部の還元除染の効果が向上する。
RHR配管20のA系の配管及び熱交換器22A内の還元除染により、A系の配管の線量率が設定線量率まで低下したとき、循環ポンプ47の駆動を停止し、循環配管36からRHR配管20のA系の配管及び熱交換器22Aへのシュウ酸水溶液の供給を停止する。さらに、エアコンプレッサ24Aの駆動を停止して弁26Cを閉じる。そして、A系の配管における弁25A及び30Aのそれぞれを閉じる。
その後、B系の配管(配管20G,20H,20I,20J及び20L)における弁25B及び30Bのそれぞれを開く。A系の配管に設けられた弁のうち弁29Bのみが閉じられている。弁26Dを開いて、熱交換器22Bの胴側領域98に空気を供給するエアコンプレッサ24Bが駆動される。このとき、A系の熱交換器22Aの胴側領域98に空気を供給するエアコンプレッサ24Aは停止されたままであり、弁26Cは閉じている。エアコンプレッサ24Bから排出された空気は、配管26B及び20Lを通って、熱交換器22Bの胴側領域98内で管板96の上面付近に供給される。この空気は、胴側領域98内を上昇し、胴94の頂部から配管20Jに排出され、自動排気弁23Bを通して排気管93Bに排出される。
停止されていた循環ポンプ47が駆動され、循環配管36内の、pHが2.5で90℃のシュウ酸水溶液が、循環配管36、及びRHR系19のRHR配管20である配管20A及び20B、B系の配管(配管20G,20H,20I,20J及び20L)を含む第1閉ループ内を循環し、配管20A及び20B、B系の配管のそれぞれの内面、及び熱交換器22Bの内部に対する還元除染が実施される。
エアコンプレッサ24Bから排出された空気が供給されている配管20Lに、循環配管36から、pHが2.5で90℃のシュウ酸水溶液が供給される。pHが2.5で90℃の、空気を含むシュウ酸水溶液(シュウ酸及び空気を含む気液二相流)が、配管20Lを通して熱交換器22Aの胴側領域98の管板96の上面付近に供給される。熱交換器22Bの胴側領域98では、シュウ酸及び空気を含むその気液二相流が、熱交換器22Bの胴側領域98内の、複数の邪魔板97によって形成された水平通路及び上昇通路を交互に通過し、胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。空気を含んでいるため、胴側領域98内を上昇するシュウ酸水溶液の流速が早くなり、熱交換器22B内部の還元除染の効果が向上する。
熱交換器22Aの頂部から排出された気液二相流に含まれる空気は、自動排気弁23Aで分離されて排気管93Aに排出される。自動排気弁23Aで空気が分離されたシュウ酸水溶液は、配管20F,20D,20E、20C及び20Aへと導かれる。熱交換器22Bの頂部から排出された気液二相流に含まれる空気は、自動排気弁23Bで分離されて排気管93Bに排出される。自動排気弁23Bで空気が分離されたシュウ酸水溶液は、配管20J,20H,20I、20G及び20Aへと導かれる。
A系及びB系のそれぞれの配管に対する還元除染を実施している間、シュウ酸水溶液がカチオン樹脂塔62供給され、シュウ酸水溶液に含まれた放射性核種イオン及び鉄イオン等の金属陽イオンが、カチオン樹脂塔62内の陽イオン交換樹脂に吸着され、除去される。
RHR配管20のB系の配管及び熱交換器22B内の還元除染により、B系の配管の線量率が設定線量率まで低下したとき、循環配管36からRHR配管20のB系の配管及び熱交換器22Bへのシュウ酸水溶液の供給を停止する。さらに、エアコンプレッサ24Bの駆動を停止して弁26Dを閉じる。
その後、ステップS6の工程(還元除染剤の分解)が実施される。ステップS6の工程を実施する前に、弁25B及び30Bを開く。シュウ酸水溶液に含まれるシュウ酸(還元除染剤)及びヒドラジン(還元剤)を分解する際には、弁53を開いて弁70の開度を一部減少させる。ヒドラジンを含むシュウ酸水溶液は、配管54を通って分解装置52に供給される。そして、分解装置52内の活性炭触媒及び酸化剤注入装置55の薬液タンク56から分解装置52に供給された過酸化水素の作用により、シュウ酸水溶液に含まれるシュウ酸及びヒドラジンが、実施例1と同様に分解される。
その後、実施例1で実施されるステップS7~S10の各工程が実施される。ステップS10の工程で、化学除染装置35がRHR配管20から取り外された後、RHR配管20が復旧され、次の運転サイクルでの運転を開始するために、BWRプラント1が起動される。
本実施例は、実施例1で生じる効果のうち、「RHR系19の還元除染を短時間に終了できる」という効果を除いた他の各効果を得ることができる。さらに、本実例では、RHR系19に対する還元除染を、A系の配管に対する還元除染が終了した後にB系の配管に対する還元除染を実施するため、A系の配管及びB系の配管のそれぞれに供給されるシュウ酸水溶液の流量を、実施例1よりも増加させることができ、A系及びB系のそれぞれの配管内におけるシュウ酸水溶液の流速を増加させることができる。このため、本実施例では、A系の配管及びB系の配管における還元除染の効果をさらに向上させることができる。
本発明の好適な他の実施例である実施例3の原子力プラントの化学除染方法を、図1、図2、図5及び図10を用いて説明する。本実施例の化学除染方法は、BWRプラントのRHR系に適用される。
実施例1と同様に、化学除染対象のRHR配管に化学除染装置を接続する(ステップS1)。実施例1と同様に、さらに、弁94Aを有する仮設配管93Cの一端部が、A系の配管の一部である配管20Kの、弁30Aと弁34Aの間の部分に接続される。その仮設配管93Cの他端部が、B系の配管の一部である配管20Gの、弁25Bと、3本の配管である配管20G、配管20H及び配管20Iの接続点との間の部分に接続される。
そして、実施例1で実施されるステップS2~S4の各工程が実施される。
還元除染を実施する(ステップS5)。まず、RHR系19のRHR配管20に含まれるA系の配管(配管20C,20D,20E,20F及び20K)に設けられた弁のうち、弁29A及び30Aを閉じて残りの全ての弁を開ける。さらに、RHR配管20に含まれるB系の配管(配管20G,20H,20I,20J及び20L)に設けられた弁のうち、弁25B及び29Bを閉じて残りの全ての弁を開ける。
弁26C26Dを開いてエアコンプレッサ24A及び24Bのそれぞれを駆動する。エアコンプレッサ24Aから排出された空気は、配管26A及び20Kを通って、熱交換器22Aの胴側領域98内で管板96の上面付近に供給される。この空気は、胴側領域98内を上昇し、胴94の頂部から配管20Fに排出され、自動排気弁23Aを通して排気管93Aに排出される。エアコンプレッサ24Bから排出された空気は、配管26B及び20Lを通って、熱交換器22Bの胴側領域98内で管板96の上面付近に供給される。この空気は、胴側領域98内を上昇し、胴94の頂部から配管20Jに排出され、自動排気弁23Bを通して排気管93Bに排出される。
循環配管36からRHR配管20の配管20Bに供給された、pHが2.5で90℃のシュウ酸水溶液が、空気が供給されている配管20Lに供給される。pHが2.5で90℃の、シュウ酸及び空気を含む気液二相流が、配管20Lを通して熱交換器22Bの胴側領域98の管板96の上面付近に供給される。熱交換器22Bの胴側領域98では、シュウ酸及び空気を含むその気液二相流が、熱交換器22Bの胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。空気を含んでいるため、胴側領域98内を上昇するシュウ酸水溶液の流速が早くなり、熱交換器22B内部の還元除染の効果が向上する。
熱交換器22Bの頂部から排出された気液二相流に含まれる空気は、自動排気弁23Bで分離されて排気管93Bに排出される。自動排気弁23Bで空気が分離されたシュウ酸水溶液は、配管20J,20H,20I及び20Gへと導かれる。
配管20Gに導かれたシュウ酸水溶液は、仮設配管93Cを通って配管20Kに供給される。配管20Kにはエアコンプレッサ24Aから空気が供給されているため、配管20K内でシュウ酸及び空気を含む気液二相流が生成され、この気液二相流が熱交換器22Aの胴側領域98の管板96の上面付近に供給される。熱交換器22Aの胴側領域98では、シュウ酸及び空気を含むその気液二相流が、熱交換器22Aの胴側領域98の下端部から胴側領域98の上端部に向かって上昇する。空気を含んでいるため、胴側領域98内を上昇するシュウ酸水溶液の流速が早くなり、熱交換器22B内部の還元除染の効果が向上する。
熱交換器22Aの頂部から排出された気液二相流に含まれる空気は、自動排気弁23Aで分離されて排気管93Aに排出される。自動排気弁23Aで空気が分離されたシュウ酸水溶液は、配管20F,20D,20E,20C及び20Aへと導かれる。配管20Aに達したシュウ酸水溶液は、循環配管36に戻される。
本実施例は、実施例1で生じる各効果を得ることができる。ただし、本実施例では、RHR系19の還元除染に要する時間は、実施例1でRHR系19の還元除染に要する時間よりも若干長くなるが、実施例2においてRHR系19の還元除染に要する時間よりも短くなる。さらに、本実例では、RHR系19におけるB系の配管とA系の配管を仮設配管93Cで連絡し、B系の配管に供給されたシュウ酸水溶液をA系の配管に供給することができるため、A系及びB系の各配管に供給されるシュウ酸水溶液の流量を、実施例1よりも増加させることができ、A系及びB系のそれぞれの配管内におけるシュウ酸水溶液の流速を増加させることができる。このため、本実施例では、A系の配管及びB系の配管における還元除染の効果をさらに向上させることができる。
弁94Aを有する仮設配管93Cの一端部を、B系の配管の一部である配管20Lの、弁30Bと弁34Bの間の部分に接続し、その仮設配管93Cの他端部を、A系の配管の一部である配管20Cの、弁25Aと、3本の配管である配管20C、配管20D及び配管20Eの接続点との間の部分に接続してもよい。この場合には、A系の配管及びB系の配管において、弁29B,30B、25A及び29Aが閉じられ、他の弁は開いている。ステップS5の工程(還元除染の実施)では、循環配管36から配管20Bに供給された、pHが2.5で90℃のシュウ酸水溶液は、配管20Kにより、胴側領域98に空気が供給されている熱交換器22Aのその胴側領域98に供給され、その胴側領域98から排出されて空気が自動排気弁23Aによってシュウ酸水溶液から分離される。空気が分離されたシュウ酸水溶液は、配管20F,20D,20E及び20Cへと導かれ、さらに、仮設配管93Cにより配管20Lに導かれる。
配管20Lに達したシュウ酸水溶液は、胴側領域98に空気が供給されている熱交換器22Bのその胴側領域98に供給され、その胴側領域98から排出されて空気が自動排気弁23Bによってシュウ酸水溶液から分離される。空気が分離されたシュウ酸水溶液は、配管20J,20H,20I,20G及び20Aへと導かれる。
本発明の好適な他の実施例である実施例4の原子力プラントの化学除染方法を、図5、図11及び図12を用いて説明する。本実施例の化学除染方法は、原子炉圧力容器3に適用される。
本実施例の原子力プラントの化学除染方法では、化学除染装置35を用いて、図11に示されるステップS1A,S2~S9及びS10Aの各工程が実施される。
化学除染対象の原子炉圧力容器(RPV)に化学除染装置を接続する(ステップS1A)。BWRプラント1の運転が停止された後に、RPV3の上蓋を取り外し、冷却水を原子炉補機冷却水系(図示せず)からRPV3内に供給する。主蒸気配管8Aに設けられた主蒸気隔離弁(図示せず)は閉じている。主蒸気隔離弁は、主蒸気配管8Aと加熱蒸気配管110の接続点よりも上流に配置されている。供給された冷却水は、RPV3の上方に形成された原子炉ウエル(図示せず)内の設定レベルまで充填する。その後、RPV3内の蒸気乾燥器(図示せず)及び気水分離器(図示せず)が取り付けられたシュラウドヘッド(図示せず)をRPVから順次取外し、取り外したそれらを、順次、機器仮置きプール(図示せず)まで移送する。
そして、燃料交換機(図示せず)を用いて、炉心4に装荷されたすべての燃料集合体を炉心4から取り出して使用済燃料貯蔵プールまで移送させる。全ての燃料集合体の燃料貯蔵プールへの移送が終了した後、RPV3内の冷却水をRPV3の底部に接続されたドレン配管(図示せず)を通してRPV3外に排出する。この冷却水の排出により、原子炉ウエル内の冷却水の水位を低下させる。さらに、その冷却水の水位は、RPV3内で、RPV3に設けられ、主蒸気配管8Aが接続される主蒸気排出ノズルの位置よりも上方の所定位置まで低下される。上蓋をRPV3の上端に取り付けてRPV3を封鎖する。
その後、化学除染装置35を、化学除染対象であるRPV3に接続する。例えば、RPV3の底部に取り付けられて下方に向かって伸びている複数のCRDハウジング23及び複数のICMハウジング24のそれぞれの一部において、該当するハウジングの下端に設けられたフランジに取り付けられた下部フランジを取り外す。下部フランジが取り外された、所定本数のCRDハウジング23の各フランジ及び所定本数のICMハウジング24の各フランジに、接続冶具(図示せず)を取り付ける。接続冶具は、該当するCRDハウジング23及びICMハウジング24のそれぞれの下端に設けられた各フランジに別々に取り付けられる別のフランジ、及びこれらの別のフランジに接続された除染液分配管を有する。化学除染装置35の循環配管36の一端部が、除染液分配管に接続される。化学除染液の供給に使用するCRDハウジング23の本数及びICMハウジング24の本数は、RPV3内に供給する、シュウ酸水溶液の流量に応じて決められる。
自動排気弁23Cが主蒸気配管8Aに取り付けられ、排気管93が自動排気弁23Cに接続されている。循環配管36の他端部が自動排気弁23Cに接続される。この結果、化学除染対象のRPV3の内部領域及び循環配管36を含む閉ループ(以下、第2閉ループという)が形成される。エアコンプレッサ24Aが、弁26Cが設けられた配管26Aによって、前述の接続冶具の除染液分配管と循環配管36の接続部の近くで、循環配管36に接続される。
次に、化学除染に使用する水を昇温する(ステップS2)。BWRプラント1の運転が停止されたとき、RPV3内には通常の水位のレベルまで冷却水(炉水)が存在する。自動排気弁23Cが設置された主蒸気配管8Aの主蒸気隔離弁を開く。この主蒸気配管8Aに設けられた蒸気止め弁108及び主蒸気配管8Aに接続された加熱蒸気配管110に設けられた加熱蒸気止め弁111のそれぞれが閉じられる。実施例1と同様に、開閉弁65,弁66,67,68,69,70,74及び83A、及び開閉弁72をそれぞれ開き、他の弁を閉じた状態で、原子炉補機冷却水系から冷却水が供給され、循環配管36及びサージタンク49が冷却水で満たされる。循環配管36及びサージタンク49が冷却水で満たされたとき、原子炉補機冷却水系からの冷却水の供給が停止される。蒸気止め弁108及び加熱蒸気止め弁111が閉じられているため、RPV3内の冷却水の水位上昇によって主蒸気配管8A内に流入したRPV3内の冷却水が、蒸気止め弁108及び加熱蒸気止め弁111によって遮られ、高圧タービン9A及び湿分分離加熱器112に流入することを防止できる。
循環ポンプ47が駆動され、循環配管36内の水が、化学除染装置35の循環配管36から前述の接続冶具を通して接続冶具が取り付けられた各CRDハウジング23及び各ICMハウジング24内に流入する。この水は、各CRDハウジング23及び各ICMハウジング24内を上昇し、RPV3内に導かれてRPV3内を上昇する。RPV3内を上昇した水は、主蒸気配管8A内に流入し、主蒸気配管8Aに取り付けられた自動排気弁23Cを通過して循環配管36に戻される。このように、水が第2閉ループ内を循環する。この第2閉ループ内を循環する水は、加熱器51及び60により90℃に加熱される。
酸化除染を実施する(ステップS3)。第2閉ループ内を循環する水の温度が90℃になったとき、過マンガン酸水溶液を酸化除染剤注入装置42の薬液タンク43から循環配管36内を流れる水に注入し、200ppmの過マンガン酸を含む過マンガン酸水溶液が生成される。過マンガン酸水溶液が第2閉ループ内を循環するため、過マンガン酸水溶液は、循環配管36からCRDハウジング23及び各ICMハウジング24を通してRPV3内、すなわち、RPV3の内部領域の下端部に供給される。過マンガン酸水溶液がRPV3の内部領域を上昇するため、RPV3の内面、及びRPV3内に存在する構造物(例えば、炉心シュラウド、及び燃料集合体の上端部を支持する上部格子板等)の炉水に接触する表面に対する酸化除染が実施される。酸化除染時間が所定時間を経過したとき、酸化除染を終了する。
酸化除染の終了後に、酸化除染剤の分解工程(ステップS4)が実施される。実施例1と同様に、シュウ酸をエゼクタ50から配管73内を流れる過マンガン酸水溶液に供給する。供給されるシュウ酸によって、第2閉ループ内を循環する過マンガン酸水溶液に含まれる過マンガン酸が分解される。過マンガン酸水溶液が紫色から無色透明になったとき、酸化除染剤の分解工程を終了する。
還元除染を実施する(ステップS5)。本実施例でも、実施例1と同様に、還元除染液(例えば、シュウ酸水溶液)と共に気体(例えば、空気)が、RPV3内に供給され、RPV3の内面、及びRPV3内に存在する構造物の炉水に接触する表面に対する還元除染が実施される。本実施例におけるシュウ酸水溶液及び空気のRPV3内への供給を具体的に説明する。
エゼクタ50から配管73内に供給されるシュウ酸を用いてシュウ酸水溶液(還元除染液)が生成される。ヒドラジンが、還元剤注入装置37の薬液タンク38から循環配管36内のシュウ酸水溶液に注入され、シュウ酸水溶液のpHが2.5になる。生成された、ヒドラジンを含みpHが2.5で90℃のシュウ酸水溶液は、第2閉ループ内を循環する。弁26Cを開いてエアコンプレッサ24Aを駆動し、エアコンプレッサ24Aから吐出された空気を、配管26Aを通して循環配管36内に供給する。空気及びヒドラジンを含むシュウ酸水溶液は、循環配管36から接続冶具を通してCRDハウジング23及びICMハウジング24内に流入し、CRDハウジング23及びICMハウジング24内を上昇し、RPV3の内部領域の下端部に供給される。空気を含むシュウ酸水溶液である、シュウ酸、ヒドラジン及び空気を含む気液二相流(水溶液)は、内部領域、すなわち、炉心4、ジェットポンプ5、及びジェットポンプ5が配置されたダウンカマ内を上昇し、その内部領域の上端部部に達する。CRDハウジング23及びICMハウジング24からRPV3の内部領域に供給されるシュウ酸水溶液の流量は、例えば40m/hである。そして、その内部領域にシュウ酸水溶液と共に供給される空気流量は、シュウ酸水溶液の流量の1/100である、例えば0.4m/hである。
この気液二相流は、RPV3の内部領域から主蒸気配管8A内に流入し、自動排気弁23Cに導かれる。自動排気弁23Cにおいて、気液二相流から空気が分離され、分離された空気は自動排気弁23Cから排気管93に排気される。気液二相流に含まれる、ヒドラジンを含むシュウ酸水溶液は、自動排気弁23Cから、自動排気弁23Cに接続された循環配管36に排出され、再び、前述したように、循環配管36を通してRPV3内に供給される。
RPV3内を上昇するシュウ酸水溶液は、空気を含んでいるため、上昇する流速が著しく速くなる。このため、RPV3の内面、及びRPV3内に存在する構造物の炉水に接触する表面に対する還元除染の効果が向上する。
シュウ酸水溶液を用いた還元除染が行われているとき、放射性核種イオン及び鉄イオンを含むシュウ酸水溶液が、カチオン樹脂塔62に供給される。シュウ酸水溶液に含まれた放射性核種イオン及び鉄イオン等の金属陽イオンが、カチオン樹脂塔62内の陽イオン交換樹脂に吸着され、除去される。
還元除染液に含まれる還元除染剤及び還元剤を分解する(ステップS6)。還元除染が終了した後、弁53及び114を開いて弁70の開度を一部減少させる。ヒドラジンを含むシュウ酸水溶液が、分解装置52内で、酸化剤注入装置55から供給される過酸化水素、及び分解装置52内の活性炭触媒の作用により分解される。シュウ酸水溶液に含まれるシュウ酸の濃度が30ppm以下になったとき、シュウ酸及びヒドラジンの分解工程が終了する。
化学除染の終了判定工程(ステップS7)で「YES」と判定された場合には、浄化工程(ステップS8)が実施される。化学除染の終了判定工程で「NO」と判定された場合には、化学除染の終了判定工程が「YES」になるまで、ステップS3~S7の各工程が繰り返し実行される。
化学除染の終了判定工程が「YES」になったとき、浄化工程(ステップS8)が、実施例1と同様に実施される。浄化工程の後に実施される排水工程(ステップS9)では、化学除染装置35の循環配管36内に存在する、放射性廃液である水溶液は、実施例1と同様に、循環配管36に接続され高圧ホースにより廃液処理装置に排出される。その排水工程では、RPV3内に存在する、放射性廃液である水溶液は、RPV3の底部に接続されたドレン配管を通してRPV3外に排出される。さらに、自動排気弁23Cが設置された主蒸気配管8Aに設けられた主蒸気隔離弁が閉じられる。主蒸気配管8Aの、主蒸気配管8Aと加熱蒸気配管110の接続点と主蒸気隔離弁との間における最も低い部分で主蒸気配管8Aの下側の部分に、弁を設けたドレン配管を接続する。主蒸気配管8Aの、主蒸気隔離弁と蒸気止め弁108の間の部分に存在する、放射性物質を含む水溶液が、弁を開くことによりそのドレン配管に排出され、上記の廃液処理装置に導かれる。
本実施例におけるその排水工程が終了した後、化学除染装置を原子炉圧力容器から取り外す(ステップS10A)。化学除染装置35の循環配管36を、化学除染対象であるRPV3から取り外す。すなわち、循環配管36の一端部が、所定本数のCRDハウジング23の各フランジ及び所定本数のICMハウジング24の各フランジに取り付けられた接続冶具から取り外される。そして、接続冶具をCRDハウジング23のフランジ及びICMハウジング24のフランジから取り外し、CRDハウジング23のフランジ及びICMハウジング24のフランジのそれぞれに下部フランジを取り付けてCRDハウジング23及びICMハウジング24を復旧させる。さらに、循環配管36の他端部が自動排気弁23Cから取り外される。
ステップS10Aの工程が終了したとき、RPV3に対する本実施例の原子力プラントの化学除染方法が終了する。そして、原子炉補機冷却水系からRPV3内に冷却水を供給する。RPV3の上蓋を取り外し、RPV3の上方の原子炉ウエル内の設定レベルまで充填する。燃料貯蔵プールに移送した燃料集合体を、使用済燃料集合体となった一部の燃料集合体を除き、燃料交換機により、原子炉ウエルを通して炉心4まで移送する。その使用済燃料集合体の替りに、燃焼度0GWd/tの燃料集合体を炉心4に装荷する。さらに、機器仮置きプールに保管していた気水分離器が取り付けられたシュラウドヘッド及び蒸気乾燥器が、天井クレーン(図示せず)を用いて、順次、RPV3内の所定の位置まで移送され、RPV3内に設置される。
RPV3内の冷却水の水位が、BWRプラント1の運転時における通常の設定水位になるまで、原子炉ウエル及びRPV3内の冷却水が、RPV3の底部に接続されたドレン配管を通してRPV3外に排出される。RPV3内の冷却水の水位がその設定水位まで低下したとき、ドレン配管による冷却水の排出を停止する。RPV3が上蓋によって密封され、BWRプラント1の保守点検が終了した後、次の運転サイクルでの運転を開始するために、その化学除染方法を実施したBWRプラント1が起動される。
本実施例によれば、RPV3の内部領域に、シュウ酸水溶液以外に気体である空気を供給するため、RPV3の内部領域を流れる、空気及びシュウ酸を含む気液二相流の流量が増加する。この結果、RPV3内におけるシュウ酸水溶液の流速が増加し、シュウ酸水溶液だけをRPV3に供給した場合に比べてRPV3における還元除染効果が向上する。すなわち、RPV3の内面、及びRPV3内に存在する構造物の炉水に接触する表面のそれぞれに対する還元除染効果が向上する。
本実施例では、主蒸気配管8Aに自動排気弁23Cを設置しているため、RPV3の内部領域の上端部から排出された気液二相流に含まれる空気を自動排気弁23Cによりシュウ酸水溶液から分離して排気管93に排出することができ、その空気が、自動排気弁23Cに接続された循環配管36に供給されることを防止することができる。このため、気液二相流に含まれた空気が、循環配管36に設けられた循環ポンプ47のケーシング内に溜まり、循環ポンプ47によるシュウ酸水溶液の昇圧ができなくなり、循環配管36からRPV3の内部領域へのシュウ酸水溶液の供給ができなるという問題が生じない。
前述の実施例1~3のそれぞれでは、或る運転サイクルでのBWRプラント1の運転が停止された後で次の運転サイクルに対するBWRプラント1の運転が開始されるまでのBWRプラント1の運転停止期間(BWRプラント1の保守点検等を実施)において、化学除染装置35を用いた、RHR系19における化学除染方法を実施している。前述の実施例1~3で述べた各化学除染方法は、BWRプラント1の廃止措置の段階でも実施することができる。
この場合には、実施例1で述べたステップS1の工程のように、化学除染装置35の循環配管36の開閉弁側の一端部を、RHR配管20に設けられてボンネットが開放された弁92のフランジに接続し、循環配管36の開閉弁65側の他端部を、RHR配管20に設けられてボンネットが開放された弁91のフランジに接続して、RHR配管20の、弁91と弁92の部分に対して化学除染を実施してもよい。しかしながら、廃止措置が実施されるBWRプラント1のRHR系19のRHR配管20においてより広範囲で化学除染を実施することが望まれる。
このため、RHR配管20を、RHR配管20と再循環系配管6の接続位置、及びRHR配管20のRPV3貫通部の、RPV3の外面の位置で切断する。切断されたRHR配管20の両端に、化学除染装置35の循環配管36の両端を接続するためにフランジを溶接にて取り付ける。RHR配管20の、再循環系配管6に接続されていた一端部に取り付けられたフランジに、循環配管36の開閉弁65側の端部が接続される。RHR配管20の、RPV3の外面付近の他端部に取り付けられたフランジに、循環配管36の開閉弁72側の端部が接続される。再循環系配管6の、RHR配管20の一端部が取り付けられていた部分、及びRHR配管20のRPV3貫通部のそれぞれに閉止治具を溶接し、再循環系配管6の、RHR配管20の一端部が取り付けられていた部分、及びRHR配管20のRPV3貫通部のそれぞれを封鎖する。
その後、配置措置の対象となるBWRプラント1において、前述のステップS2~S10の各工程による、BWRプラント1から切断により取り外されたRHR系19の化学除染が実施される。
前述の実施例4で述べたRPV3に対する化学除染方法は、BWRプラント1の廃止措置の段階でも実施することができる。
1…沸騰水型原子力発電プラント、3…原子炉圧力容器、4…炉心、6…再循環系配管、9A…高圧タービン、9B…低圧タービン、11…給水配管、19…RHR系、20…RHR配管、22A,22B…熱交換器、23A,23B,23C…自動排気弁、24A,24B…エアコンプレッサ、35…化学除染装置、36…循環配管、37…還元剤注入装置、42…酸化除染剤注入装置、47…循環ポンプ、49…サージタンク、52…分解装置、55…酸化剤注入装置、60…加熱器、62…カチオン樹脂塔、63…混床樹脂塔、64…冷却器、94…胴、95…伝熱管、98…胴側領域、112…湿分分離加熱器。

Claims (12)

  1. 容器に対して還元除染を実施する際に、前記容器の内部領域の下端部に気体及び還元除染液を供給し、前記気体を含む前記還元除染液を、前記内部領域の下端部から前記内部領域の上端部に向かって上昇させる方法であって、
    前記内部領域への前記気体の供給は、前記還元除染液を前記内部領域に供給する前に実施することを特徴とする原子力プラントの化学除染方法。
  2. 原子炉圧力容器に連絡されて前記原子炉圧力容器内の冷却水が供給され、熱交換器が設けられている配管系に対して還元除染を実施するときには、前記容器が前記熱交換器の胴であって前記内部領域が前記胴の内部領域であり、
    前記気体及び前記還元除染液を前記胴の前記内部領域の下端部に供給し、前記気体を含む前記還元除染液を、前記胴の前記内部領域の下端部から上端部に向かって上昇させる請求項1に記載の原子力プラントの化学除染方法。
  3. 前記内部領域から排出された前記還元除染液に含まれる前記気体を、前記熱交換器の真上に配置された自動排気弁によって前記還元除染液から分離し、前記気体が分離された前記還元除染液が、前記還元除染液の流れ方向において前記自動排気弁よりも下流に位置する、前記還元除染の対象である前記配管系に含まれる配管に導かれる請求項に記載の原子力プラントの化学除染方法。
  4. 前記熱交換器の前記内部領域内に供給される前記気体の流量は、前記熱交換器の前記内部領域内に供給される前記還元除染液の流量の1/1000以上1/100以下の範囲にある請求項2または3に記載の原子力プラントの化学除染方法。
  5. 前記配管系の配管は、一つの前記熱交換器である第1の熱交換器が設けられた第1の配管、及び他の前記熱交換器である第2の熱交換器が設けられ、前記第1の配管と並列に配置された第2の配管を含んでおり、前記還元除染液が、前記気体が供給されている前記第1の熱交換器を有する前記第1の配管、及び前記気体が供給されている前記第2の熱交換器を有する前記第2の配管のそれぞれに同時に供給され、供給された前記還元除染液によって、前記第1の熱交換器が設けられた前記第1の配管、及び前記第2の熱交換器が設けられた前記第2の配管のそれぞれの内部に対して前記還元除染が実施される請求項ないしのいずれか1項に記載の原子力プラントの化学除染方法。
  6. 前記配管系の配管は、一つの前記熱交換器である第1の熱交換器が設けられた第1の配管、及び他の前記熱交換器である第2の熱交換器が設けられ、前記第1の配管と並列に配置された第2の配管を含んでおり、前記還元除染液が、前記気体が供給されている前記第1の熱交換器を有する前記第1の配管に供給され、供給された前記還元除染液によって、前記第1の熱交換器が設けられた前記第1の配管の内部に対する前記還元除染が実施され、前記第1の配管に対する前記還元除染が終了した後、前記還元除染液が、前記気体が供給されている前記第2の熱交換器を有する前記第2の配管に供給され、供給された前記還元除染液によって、前記第2の熱交換器が設けられた前記第2の配管の内部に対する前記還元除染が実施される請求項ないしのいずれか1項に記載の原子力プラントの化学除染方法。
  7. 前記配管系の配管は、一つの前記熱交換器である第1の熱交換器が設けられた第1の配管、及び他の前記熱交換器である第2の熱交換器が設けられ、前記第1の配管と並列に配置された第2の配管を含んでおり、
    仮設配管の一端部を、前記第1の配管内を流れる前記還元除染液の流れ方向において、前記第1の配管の、前記第1の熱交換器よりも上流の部分に接続し、
    前記仮設配管の他端部を、前記第2の配管内を流れる前記還元除染液の流れ方向において、前記第2の配管の、前記第2の熱交換器よりも下流の部分に接続し、
    前記還元除染液を、前記第2の配管の、前記第2の熱交換器よりも上流の前記部分に供給して、前記気体が供給されている前記第2の熱交換器内に導き、
    前記第2の熱交換器から排出されて、前記第2の配管の、前記第2の熱交換器よりも下流の前記部分を流れる前記還元除染液を、前記仮設配管を通して前記第1の配管の、前記第1の熱交換器よりも上流の前記部分に導き、
    前記第1の配管の、前記第1の熱交換器よりも上流の前記部分に導かれた前記還元除染液を、前記気体が供給されている前記第1の熱交換器内に導き、
    前記第1の熱交換器から排出された前記還元除染液を、前記第1の配管の、前記第1の熱交換器よりも下流の前記部分に供給する請求項ないしのいずれか1項に記載の原子力プラントの化学除染方法。
  8. 前記容器が原子炉圧力容器であり、前記原子炉圧力容器に対して前記還元除染を実施するときには、前記原子炉圧力容器の内部領域の下端部に前記気体及び前記還元除染液を供給し、前記気体を含む前記還元除染液を、前記内部領域の下端部から前記内部領域の上端部に向かって上昇させる請求項1に記載の原子力プラントの化学除染方法。
  9. 前記原子炉圧力容器の底部に取り付けられた制御棒駆動機構ハウジング及び中性子計測ハウジングに、前記還元除染液を供給する配管を取り外し可能に接続し、前記原子炉圧力容器の前記内部領域の下端部への、前記気体を含む前記還元除染液の供給は、前記還元除染液を前記配管から前記制御棒駆動機構ハウジング及び前記中性子計測ハウジング内に供給し、その還元除染液を、前記制御棒駆動機構ハウジング及び前記中性子計測ハウジングを上昇させて行われる請求項に記載の原子力プラントの化学除染方法。
  10. 前記原子炉圧力容器に接続されて前記原子炉圧力容器の前記内部領域の上端部に連絡され、自動排気弁が取り付けられた主蒸気配管を、前記自動排気弁の前記主蒸気配管への取り付け位置よりも下流で前記主蒸気配管を封鎖し、前記内部領域から前記主蒸気配管に排出された、前記還元除染液に含まれる前記気体を前記自動排気弁によって前記還元除染液から分離し、前記気体が分離された前記還元除染液を前記自動排気弁から前記自動排気弁に接続された配管に排出する請求項に記載の原子力プラントの化学除染方法。
  11. 前記容器の前記内部領域に供給される前記気体として、空気、酸素、窒素、ヘリウム、アルゴン及びオゾンのうちの少なくとも1種を用いる請求項1ないし10のいずれか1項に記載の原子力プラントの化学除染方法。
  12. 前記還元除染液に含まれる還元除染剤として、シュウ酸、マロン酸、ギ酸及びアスコルビン酸のうちの少なくとも1種を用いる請求項1ないし11のいずれか1項に記載の原子力プラントの化学除染方法。
JP2020137233A 2020-08-17 2020-08-17 原子力プラントの化学除染方法 Active JP7446180B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020137233A JP7446180B2 (ja) 2020-08-17 2020-08-17 原子力プラントの化学除染方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020137233A JP7446180B2 (ja) 2020-08-17 2020-08-17 原子力プラントの化学除染方法

Publications (2)

Publication Number Publication Date
JP2022033390A JP2022033390A (ja) 2022-03-02
JP7446180B2 true JP7446180B2 (ja) 2024-03-08

Family

ID=80375217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020137233A Active JP7446180B2 (ja) 2020-08-17 2020-08-17 原子力プラントの化学除染方法

Country Status (1)

Country Link
JP (1) JP7446180B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294393A (ja) 2003-03-28 2004-10-21 Toshiba Corp 化学除染方法
JP2012513006A (ja) 2008-12-03 2012-06-07 ドミニオン エンジニアリング,インク. 蒸気注入を行う化学洗浄方法及び化学洗浄システム
JP2017133927A (ja) 2016-01-27 2017-08-03 株式会社東芝 化学除染実施方法
JP2019138894A (ja) 2018-11-30 2019-08-22 株式会社東芝 除染実施方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294393A (ja) 2003-03-28 2004-10-21 Toshiba Corp 化学除染方法
JP2012513006A (ja) 2008-12-03 2012-06-07 ドミニオン エンジニアリング,インク. 蒸気注入を行う化学洗浄方法及び化学洗浄システム
JP2017133927A (ja) 2016-01-27 2017-08-03 株式会社東芝 化学除染実施方法
JP2019138894A (ja) 2018-11-30 2019-08-22 株式会社東芝 除染実施方法

Also Published As

Publication number Publication date
JP2022033390A (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
US8652272B2 (en) Suppression method for corrosion of carbon steel member
JP3977963B2 (ja) 化学除染方法
JP4538022B2 (ja) 原子力プラント構成部材への放射性核種の付着抑制方法及びフェライト皮膜形成装置
US20090290675A1 (en) Method and apparatus for suppressing corrosion of carbon steel, method for suppressing deposit of radionuclide onto carbon steel members composing a nuclear power plant, and film formation apparatus
JP2016102727A (ja) 原子力プラントの炭素鋼部材への放射性核種付着抑制方法及び皮膜形成装置
JP2007192672A (ja) 原子力プラントの炭素鋼部材表面にフェライト皮膜を成膜する方法および装置
JP5500958B2 (ja) 原子力部材へのフェライト皮膜形成方法、応力腐食割れの進展抑制方法及びフェライト成膜装置
JP7446180B2 (ja) 原子力プラントの化学除染方法
JP5377147B2 (ja) 炭素鋼部材へのニッケルフェライト皮膜形成方法
JP6322493B2 (ja) 原子力プラントの炭素鋼部材への放射性核種付着抑制方法
JP6523973B2 (ja) 放射性核種の付着抑制方法、及び炭素鋼配管への皮膜形成装置
JP2009210307A (ja) 原子力プラント構成部材への放射性核種の付着抑制方法及びフェライト皮膜形成装置
JP6059106B2 (ja) 原子力プラントの炭素鋼部材の化学除染方法
JP7475171B2 (ja) 化学除染方法および化学除染装置
JP2017138139A (ja) 化学除染方法並びに化学除染装置及びこれを用いる原子力プラント
JP7299865B2 (ja) 化学除染方法
JP7411502B2 (ja) 原子力プラントの炭素鋼部材の化学除染方法
JP4945487B2 (ja) 炭素鋼部材へのフェライト皮膜形成方法及びその皮膜形成装置
JP2020160031A (ja) 炭素鋼配管の腐食抑制方法
JP2019191075A (ja) 化学除染方法及び化学除染装置
TWI825540B (zh) 化學除汙方法及化學除汙裝置
JP4771994B2 (ja) フェライト皮膜形成後における溶液の処理方法
JP2023000771A (ja) 化学除染方法及び化学除染装置
JP2023037387A (ja) 化学除染方法および化学除染装置
JP2017203707A (ja) 化学除染方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7446180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150