JP7439213B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP7439213B2
JP7439213B2 JP2022177131A JP2022177131A JP7439213B2 JP 7439213 B2 JP7439213 B2 JP 7439213B2 JP 2022177131 A JP2022177131 A JP 2022177131A JP 2022177131 A JP2022177131 A JP 2022177131A JP 7439213 B2 JP7439213 B2 JP 7439213B2
Authority
JP
Japan
Prior art keywords
transistor
period
pixel
turned
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022177131A
Other languages
English (en)
Other versions
JP2023011858A (ja
Inventor
良助 中村
頼人 坂野
敦史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JP2023011858A publication Critical patent/JP2023011858A/ja
Application granted granted Critical
Publication of JP7439213B2 publication Critical patent/JP7439213B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/583Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本開示は、撮像動作を行う撮像装置に関する。
撮像装置では、ダイナミックレンジが広いことが望まれている。例えば、特許文献1には、フォトダイオードと、フォトダイオードから溢れる光電荷を蓄積する蓄積容量素子とを有し、ダイナミックレンジの拡大を図る撮像装置が開示されている。
特開2005-328493号公報
撮像装置では、撮像画像の画質が高いことが望まれており、さらなる画質の向上が期待されている。
撮像画像の画質を高めることができる撮像装置を提供することが望ましい。
本開示の一実施の形態における撮像装置は、画素と、信号処理部と、駆動部とを備えている。画素は、第1の光電変換素子と、前記第1の光電変換素子に接続された第1のトランジスタと、第1のトランジスタに接続された第1の容量素子と、第1の容量素子に接続された第2のトランジスタと、第2のトランジスタに接続された第3のトランジスタと、第2の光電変換素子と、第2の光電変換素子に接続された第4のトランジスタと、第4のトランジスタに接続された第2の容量素子と、第2のトランジスタおよび第4のトランジスタの間に接続された第5のトランジスタと、第1の容量素子に接続された第6のトランジスタとを有している。第1の光電変換素子の受光領域は、第2の光電変換素子の受光領域よりも広い。信号処理部は、画素から出力された第1の信号、第2の信号、第3の信号、および第4の信号に基づいて、第1の画像データ、第2の画像データ、第3の画像データ、および第4の画像データをそれぞれ生成し、第1の画像データ、第2の画像データ、第3の画像データ、および第4の画像データを合成することにより撮像画像データを生成するものである。駆動部は、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、第4のトランジスタ、および第5のトランジスタのそれぞれを駆動するものである。上記駆動部は、第1の期間において、第2のトランジスタおよび第3のトランジスタをオン状態にするとともに、第1のトランジスタ、第4のトランジスタ、および第5のトランジスタをオフ状態にし、第1の期間の後の第2の期間において、第3のトランジスタをオフ状態にするとともに第5のトランジスタをオン状態にし、第2の期間の後の第3の期間において、第4のトランジスタをオン状態にし、第3の期間の後の第4の期間において、第4のトランジスタをオフ状態にする。
本開示の一実施の形態における撮像装置によれば、撮像画像の画質を高めることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果があってもよい。
本開示の一実施の形態に係る撮像装置の一構成例を表す構成図である。 図1に示した読出部の一構成例を表すブロック図である。 図1に示した撮像装置の一動作例を表すタイミング波形図である。 図1に示した撮像装置の一動作例を表す他のタイミング波形図である。 図1に示した撮像装置の一動作例を表す他のタイミング波形図である。 図1に示した撮像画素の一動作状態を表す回路図である。 図1に示した撮像装置の他の動作状態を表す回路図である。 図1に示した撮像装置の他の動作状態を表す回路図である。 図1に示した撮像装置の一動作例を表す説明図である。 図1に示した撮像装置の一特性例を表す特性図である。 比較例に係る撮像装置の一動作例を表すタイミング波形図である。 比較例に係る撮像装置の一動作例を表す他のタイミング波形図である。 比較例に係る撮像装置の一動作例を表す他のタイミング波形図である。 比較例に係る撮像装置の一動作例を表す説明図である。 比較例に係る撮像装置の一特性例を表す特性図である。 変形例に係る撮像装置の一動作例を表すタイミング波形図である。 変形例に係る撮像装置の一動作例を表す説明図である。
以下、本開示の実施の形態について、図面を参照して詳細に説明する。
<実施の形態>
[構成例]
図1は、一実施の形態に係る撮像装置(撮像装置1)の一構成例を表すものである。撮像装置1は、CMOS(Complementary Metal Oxide Semiconductor)集積回路の製造プロセスを利用して製造される、いわゆるCMOSイメージセンサである。なお、本開示の実施の形態に係る撮像方法は、本実施の形態により具現化されるので、併せて説明する。 撮像装置1は、画素アレイ11と、走査部12と、読出部20と、信号処理部14と、制御部15とを備えている。
画素アレイ11は、複数の撮像画素10がマトリックス状に配置されたものである。画素アレイ11は、複数の制御線TGLLと、複数の制御線FDGLと、複数の制御線RSTLと、複数の制御線FCGLと、複数の制御線TGSLと、複数の制御線SELLと、複数の信号線SGLとを有している。制御線TGLLは、水平方向(図1における横方向)に延伸するものであり、制御線TGLLには、走査部12により信号STGLが印加される。制御線FDGLは、水平方向に延伸するものであり、制御線FDGLには、走査部12により信号SFDGが印加される。制御線RSTLは、水平方向に延伸するものであり、制御線RSTLには、走査部12により信号SRSTが印加される。制御線FCGLは、水平方向に延伸するものであり、制御線FCGLには、走査部12により信号SFCGが印加される。制御線TGSLは、水平方向に延伸するものであり、制御線TGSLには、走査部12により信号STGSが印加される。制御線SELLは、水平方向に延伸するものであり、制御線SELLには、走査部12により信号SSELが印加される。信号線SGLは、垂直方向(図1における縦方向)に延伸するものであり、読出部40に接続されている。
撮像画素10は、フォトダイオードPD1と、トランジスタTGLと、フォトダイオードPD2と、トランジスタTGSと、容量素子FCと、トランジスタFCG,RST,FDGと、フローティングディフュージョンFDと、トランジスタAMP,SELとを有している。トランジスタTGL,TGS,FCG,RST,FDG,AMP,SELは、この例ではN型のMOSトランジスタである。
フォトダイオードPD1は、受光量に応じた量の電荷を生成して内部に蓄積する光電変換素子である。フォトダイオードPD1が光を受光可能な受光領域は、フォトダイオードPD2が光を受光可能な受光領域よりも広いものである。フォトダイオードPD1のアノードは接地され、カソードはトランジスタTGLのソースに接続されている。
トランジスタTGLのゲートは制御線TGLLに接続され、ソースはフォトダイオードPD1のカソードに接続され、ドレインはフローティングディフュージョンFDに接続されている。
フォトダイオードPD2は、受光量に応じた量の電荷を生成して内部に蓄積する光電変換素子である。フォトダイオードPD2が光を受光可能な受光領域は、フォトダイオードPD1が光を受光可能な受光領域よりも狭いものである。フォトダイオードPD2のアノードは接地され、カソードはトランジスタTGSのソースに接続されている。
トランジスタTGSのゲートは制御線TGSLに接続され、ソースはフォトダイオードPD2のカソードに接続され、ドレインは容量素子FCの一端、およびトランジスタFCGのソースに接続されている。
容量素子FCの一端はトランジスタTGSのドレインおよびトランジスタFCGのソースに接続され、他端には電源電圧VDDが供給されている。
トランジスタFCGのゲートは制御線FCGLに接続され、ソースは容量素子FCの一端およびトランジスタTGSのドレインに接続され、ドレインはトランジスタRSTのソースおよびトランジスタFDGのドレインに接続されている。
トランジスタRSTのゲートは制御線RSTLに接続され、ドレインには電源電圧VDDが供給され、ソースは、トランジスタFCG,FDGのドレインに接続されている。
トランジスタFDGのゲートは制御線FDGLに接続され、ドレインはトランジスタRSTのソースおよびトランジスタFCGのドレインに接続され、ソースはフローティングディフュージョンに接続されている。
フローティングディフュージョンFDは、フォトダイオードPD1,PD2から供給された電荷を蓄積するものであり、例えば、半導体基板の表面に形成された拡散層を用いて構成される。図1では、フローティングディフュージョンFDを、容量素子のシンボルを用いて示している。
トランジスタAMPのゲートはフローティングディフュージョンFDに接続され、ドレインには電源電圧VDDが供給され、ソースはトランジスタSELのドレインに接続されている。
トランジスタSELのゲートは制御線SELLに接続され、ドレインはトランジスタAMPのソースに接続され、ソースは信号線SGLに接続されている。
この構成により、撮像画素10では、制御線SELLに印加された信号SSELに基づいてトランジスタSELがオン状態になることにより、撮像画素10が信号線SGLと電気的に接続される。これにより、トランジスタAMPは、読出部20の電流源23(後述)に接続され、いわゆるソースフォロワとして動作する。そして、撮像画素10は、フローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして、信号線SGLに出力する。具体的には、撮像画素10は、後述するように、いわゆる水平期間H内の7つの期間(変換期間P1~P7)において、7つの画素電圧VP(VP1~VP7)を順次出力するようになっている。
走査部12は、制御部15からの指示に基づいて、複数の撮像画素10を、1行分の撮像画素10を単位として、順次駆動するものであり、例えばシフトレジスタを用いて構成される。なお、これに限定されるものではなく、これに代えて、例えば、アドレスデコーダを用いてもよい。走査部12は、複数の制御線TGLLに対して信号STGLを印加し、複数の制御線FDGLに対して信号SFDGを印加し、複数の制御線RSTLに対して信号SRSTを印加し、複数の制御線FCGLに対して信号SFCGを印加し、複数の制御線TGSLに対して信号STGSを印加し、複数の制御線SELLに対して信号SSELを印加することにより、1行分の撮像画素10を駆動するようになっている。
読出部20は、画素アレイ11から信号線SGLを介して供給された信号SIGに基づいてAD(Analog to Digital)変換を行うことにより、デジタル値(カウント値CNT)を生成するものである。
図2は、読出部20の一構成例を表すものである。なお、図2には、読出部20に加え、制御部15および信号処理部14をも描いている。
読出部20は、読出制御部28と、参照信号生成部29と、複数のAD(Analog to Digital)変換部ADCとを有している。
読出制御部28は、制御部15からの指示に基づいて、読出部40における読出動作を制御するものである。具体的には、読出制御部28は、参照信号生成部29に制御信号を供給することにより、参照信号生成部29に参照信号REF(後述)を生成させる。また、読出制御部28は、複数のAD変換部ADCに、クロック信号CLKおよび制御信号CCを供給することにより、複数のAD変換部ADCにおけるAD変換動作を制御するようになっている。
参照信号生成部29は、読出制御部28からの指示に基づいて参照信号REFを生成するものである。参照信号REFは、後述するように、7つの期間(変換期間P1~P7)において、時間の経過に応じて電圧レベルが徐々に低下する、いわゆるランプ波形を有するものである。
AD変換部ADCは、画素アレイ11から信号線SGLを介して供給された信号SIGに基づいてAD変換を行うことにより、画素電圧VPをデジタル値(カウント値CNT)に変換するものである。複数のAD変換部ADCは、画素アレイ11の複数の信号線SGLに対応して設けられている。
AD変換部ADCは、容量素子21,22と、電流源23と、コンパレータ24と、カウンタ25とを有している。容量素子21の一端には参照信号REFが供給され、他端はコンパレータ24の正入力端子に接続されている。容量素子22の一端は信号線SGLに接続され、他端はコンパレータ24の負入力端子に接続されている。電流源23は、信号線SGLから接地に所定の電流値の電流を流すものである。コンパレータ24の正入力端子には、容量素子21を介して参照信号REFが供給され、負入力端子には、容量素子22を介して信号SIGが供給される。そして、コンパレータ24は、正入力端子における入力電圧と負入力端子における入力電圧とを比較して、その比較結果を信号CMPとして出力するようになっている。カウンタ25は、信号CMP、クロック信号CLK、および制御信号CCに基づいて、カウント動作を行うものである。具体的には、カウンタ25は、読出制御部28がクロック信号CLKの生成を開始することにより、このクロック信号CLKにおけるクロックパルスのカウント動作を開始し、カウント値CNTをインクリメントする。そして、カウンタ25は、コンパレータ24から供給された信号CMPに基づいて、このカウント動作を終了する。また、カウンタ25は、制御信号CCに基づいて、カウント値CNTをリセットする。
この構成により、読出部20では、AD変換部ADCが、信号SIGに基づいてAD変換を行い、カウント値CNTを出力する。具体的には、AD変換部ADCは、7つの変換期間P1~P7において、信号SIGに含まれる7つの画素電圧VP1~VP7に基づいてそれぞれAD変換を行い、7つのカウント値CNT(カウント値CNT1~CNT7)をそれぞれ出力するようになっている。
信号処理部14は、読出部20から供給されたカウント値CNTに基づいて、所定の信号処理を行い、この信号処理の結果を画像信号DATAとして出力するものである。具体的には、信号処理部14は、読出部20から供給された7つのカウント値CNT1~CNT7に基づいて、4枚の画像PIC(画像PIC1,PIC2,PIC3,PIC4)を生成する。そして、信号処理部14は、この4枚の画像PICを合成することにより、1枚の撮像画像PICAを生成する。そして、信号処理部14は、この撮像画像PICAを、画像信号DATAとして出力する。これにより、撮像装置1では、後述するように、ダイナミックレンジを拡大することができるようになっている。
制御部15は、走査部12、読出部20、および信号処理部14に制御信号を供給し、これらの回路の動作を制御することにより、撮像装置1の動作を制御するものである。
ここで、フォトダイオードPD1は、本開示における「第1の光電変換素子」の一具体例に対応する。フォトダイオードPD2は、本開示における「第2の光電変換素子」の一具体例に対応する。フローティングディフュージョンFDは、本開示における「第1の容量素子」の一具体例に対応する。容量素子FCは、本開示における「第2の容量素子」の一具体例に対応する。トランジスタTGLは、本開示における「第1のトランジスタ」の一具体例に対応する。トランジスタFDGは、本開示における「第2のトランジスタ」の一具体例に対応する。トランジスタRSTは、本開示における「第3のトランジスタ」の一具体例に対応する。トランジスタTGSは、本開示における「第4のトランジスタ」の一具体例に対応する。トランジスタFCGは、本開示における「第5のトランジスタ」の一具体例に対応する。トランジスタAMPは、本開示における「第6のトランジスタ」の一具体例に対応する。走査部12は、本開示における「駆動部」の一具体例に対応する。読出部20および信号処理部14は、本開示における「信号処理部」の一具体例に対応する。
[動作および作用]
続いて、本実施の形態の撮像装置1の動作および作用について説明する。
(全体動作概要)
まず、図1,2を参照して、撮像装置1の全体動作概要を説明する。走査部12は、複数の撮像画素10を、1行分の撮像画素10を単位として、順次駆動する。撮像画素10は、水平期間Hにおける7つの変換期間P1~P7において、7つの画素電圧VP1~VP7を順次出力する。読出部20のAD変換部ADCは、これらの7つの画素電圧VP1~VP7に基づいてそれぞれAD変換を行い、7つのカウント値CNT1~CNT7をそれぞれ出力する。信号処理部14は、読出部20から供給された7つのカウント値CNT1~CNT7に基づいて、4枚の画像PIC(画像PIC1,PIC2,PIC3,PIC4)を生成する。そして、信号処理部14は、この4枚の画像PICを合成することにより、1枚の撮像画像PICAを生成する。
(詳細動作)
撮像装置1において、複数の撮像画素10は、画素電圧VPを信号SIGとして出力する。そして、読出部20のAD変換部ADCは、この信号SIGに基づいてデジタル値(カウント値CNT)を生成する。以下に、着目したある撮像画素10Aに係る動作について詳細に説明する。
図3,4A,4Bは、撮像装置1の一動作例を表すものであり、(A)は水平同期信号HSYNCの波形を示し、(B)は撮像画素10Aに供給される信号SSELの波形を示し、(C)は撮像画素10Aに供給される信号SFDGの波形を示し、(D)は撮像画素10Aに供給される信号STGLの波形を示し、(E)は撮像画素10Aに供給される信号SRSTの波形を示し、(F)は撮像画素10Aに供給される信号SFCGの波形を示し、(G)は撮像画素10Aに供給される信号STGSの波形を示し、(H)は参照信号REFの波形を示し、(I)は撮像画素10Aから出力される信号SIGの波形を示し、(J)は撮像画素10Aに接続されたAD変換部ADCにおけるカウンタ25の動作を示す。図4Aは、図3に示した動作のうちの前半の動作を示し、図4Bは、図3に示した動作のうちの後半の動作を示す。図3(H),(I)、図4A(H),(I)、および図4B(H),(I)では、各信号の波形を同じ電圧軸で示している。また、図3(J)、図4A(J)、図4B(J)において、斜線は、カウンタ25がカウント動作を行っていることを示している。
図5A~5Cは、撮像画素10Aの状態を表すものである。この図5A~5Cでは、トランジスタTGL,RST,FDG,TGS,FCG,SELを、そのトランジスタの動作状態に応じたスイッチを用いて示している。
撮像装置1では、ある水平期間Hにおいて、まず、走査部12は、信号SSELを用いて、画素アレイ11における複数の撮像画素10のうちの、着目した撮像画素10Aを含む1行分の撮像画素10を選択し、撮像画素10Aを、その撮像画素10Aに対応する信号線SGLに電気的に接続させる。そして、走査部12は、信号SFDG,STGL,SRST,SFCG,STGSを用いて、撮像画素10Aの動作を制御し、撮像画素10Aは、7つの変換期間P1~P7において、7つの画素電圧VP1~VP7を順次出力する。そして、読出部20のAD変換部ADCは、これらの7つの画素電圧VP1~VP7に基づいてそれぞれAD変換を行い、7つのカウント値CNT1~CNT7を出力する。以下にこの動作について詳細に説明する。
まず、タイミングt1において、水平期間Hが開始すると、走査部12は、タイミングt2において、信号SSELの電圧を低レベルから高レベルに変化させる(図4A(B))。これにより、撮像画素10Aでは、トランジスタSELがオン状態になり、撮像画素10Aが信号線SGLと電気的に接続される。
(タイミングt11~t16の動作)
次に、タイミングt11において、走査部12は、信号SFDGの電圧を低レベルから高レベルに変化させるとともに、信号SRSTの電圧を低レベルから高レベルに変化させる(図4A(C),(E))。これにより、撮像画素10Aでは、トランジスタFDG,RSTがともにオン状態になり、フローティングディフュージョンFDの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDがリセットされる。また、このタイミングt11において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4A(H))。
次に、タイミングt12において、走査部12は、信号SFDGの電圧を高レベルから低レベルに変化させるとともに、信号SRSTの電圧を高レベルから低レベルに変化させる(図4A(C),(E))。これにより、撮像画素10Aでは、トランジスタFDG,RSTがともにオフ状態になる。
次に、タイミングt13において、走査部12は、信号SFDGの電圧を低レベルから高レベルに変化させる(図4A(C))。これにより、トランジスタFDGがオン状態になる。
これにより、撮像画素10Aでは、図5Aに示したように、トランジスタFDG,SELはオン状態になり、その他のトランジスタは全てオフ状態になる。トランジスタFDGがオン状態であるので、フローティングディフュージョンFDおよびトランジスタFDGが合成容量を構成する。この合成容量は、撮像画素10Aにおいて電荷を電圧へ変換する変換容量として機能する。撮像画素10Aでは、このように、トランジスタFDGがオン状態であるので、撮像画素10Aにおける変換容量の容量値が大きいため、電荷から電圧への変換効率が低い。この変換容量は、タイミングt11~t12においてフローティングディフュージョンFDがリセットされたときの電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP1)を出力する。
次に、タイミングt14~t16の期間(変換期間P1)において、AD変換部ADCは、この画素電圧VP1に基づいてAD変換を行う。具体的には、タイミングt14において、読出制御部28は、クロック信号CLKの生成を開始し、これと同時に、参照信号生成部29は、参照信号REFの電圧を、電圧V1から所定の変化度合いで低下させ始める(図4A(H))。これに応じて、AD変換部ADCのカウンタ25は、カウント動作を開始する(図4A(J))。
そして、タイミングt15において、参照信号REFの電圧が信号SIGの電圧(画素電圧VP1)を下回る(図4A(H),(I))。これに応じて、AD変換部ADCのコンパレータ24は、信号CMPの電圧を変化させ、その結果、カウンタ25は、カウント動作を停止する(図4A(J))。このときのカウンタ25のカウント値CNTは、カウント値CNT1である。読出部20は、これ以降において、このカウント値CNT1を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
そして、タイミングt16において、読出制御部28は、変換期間P1の終了に伴い、クロック信号CLKの生成を停止し、参照信号生成部29は、参照信号REFの電圧の変化を停止させる(図4A(H))。
(タイミングt21~t24の動作)
次に、タイミングt21において、走査部12は、信号SFDGの電圧を高レベルから低レベルに変化させる(図4A(C))。これにより、撮像画素10Aでは、トランジスタFDGがオフ状態になる。また、このタイミングt21において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4A(H))。
これにより、撮像画素10Aでは、図5Bに示したように、トランジスタSELはオン状態になり、その他のトランジスタは全てオフ状態になる。撮像画素10Aでは、このように、トランジスタFDGがオフ状態であるので、撮像画素10Aにおける変換容量の容量値が小さいため、電荷から電圧への変換効率が高い。この変換容量は、タイミングt11~t12においてフローティングディフュージョンFDがリセットされたときの電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP2)を出力する。
次に、タイミングt22~t24の期間(変換期間P2)において、AD変換部ADCは、この画素電圧VP2に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP2に基づいてAD変換を行い、カウント値CNT2を得る(図4A(J))。読出部20は、これ以降において、このカウント値CNT2を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
(タイミングt31~t35の動作)
次に、タイミングt31において、走査部12は、信号STGLの電圧を低レベルから高レベルに変化させる(図4A(D))。これにより、撮像画素10Aでは、トランジスタTGLがオン状態になる。これにより、フォトダイオードPD1で発生した電荷がフローティングディフュージョンFDに転送される。また、このタイミングt31において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4A(H))。
次に、タイミングt32において、走査部12は、信号STGLの電圧を高レベルから低レベルに変化させる(図4A(D))。これにより、撮像画素10Aでは、トランジスタTGLがオフ状態になる。
これにより、撮像画素10Aでは、図5Bに示したように、トランジスタFDGがオフ状態であるので、撮像画素10Aにおける変換容量の容量値が小さいので、電荷から電圧への変換効率が高い。この変換容量は、タイミングt31~t32においてフォトダイオードPD1から転送された電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP3)を出力する。
次に、タイミングt33~t35の期間(変換期間P3)において、AD変換部ADCは、この画素電圧VP3に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP3に基づいてAD変換を行い、カウント値CNT3を得る(図4A(J))。このカウント値CNT3は、同じく変換効率が高い時(変換期間P2)に得られたカウント値CNT2に対応するものである。読出部20は、これ以降において、このカウント値CNT3を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
(タイミングt41~t44の動作)
次に、タイミングt41において、走査部12は、信号SFDGの電圧を低レベルから高レベルに変化させる(図4A(C))。これにより、撮像画素10Aでは、トランジスタFDGがオン状態になる。また、このタイミングt41において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4A(H))。
これにより、撮像画素10Aでは、図5Aに示したように、トランジスタFDGがオン状態であるので、フローティングディフュージョンFDおよびトランジスタFDGが合成容量(変換容量)を構成する。よって、撮像画素10Aにおける変換容量の容量値が大きいので、電荷から電圧への変換効率が低い。この変換容量は、タイミングt31~t32においてフォトダイオードPD1から転送された電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP4)を出力する。
次に、タイミングt42~t44の期間(変換期間P4)において、AD変換部ADCは、この画素電圧VP4に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP4に基づいてAD変換を行い、カウント値CNT4を得る(図4A(J))。このカウント値CNT4は、同じく変換効率が低い時(変換期間P1)に得られたカウント値CNT1に対応するものである。読出部20は、これ以降において、このカウント値CNT4を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
(タイミングt51~t56の動作)
次に、タイミングt51において、走査部12は、信号SRSTの電圧を低レベルから高レベルに変化させる(図4B(E))。これにより、撮像画素10Aでは、トランジスタRSTがオン状態になる。トランジスタFDGはオン状態であるので、これにより、フローティングディフュージョンFDの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDがリセットされる。また、このタイミングt51において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4B(H))。
次に、タイミングt52において、走査部12は、信号SRSTの電圧を高レベルから低レベルに変化させる(図4B(E))。これにより、撮像画素10Aでは、トランジスタRSTがオフ状態になる。
次に、タイミングt53において、走査部12は、信号SFCGの電圧を低レベルから高レベルに変化させる(図4B(F))。これにより、撮像画素10Aでは、トランジスタFCGがオン状態になる。
これにより、撮像画素10Aでは、図5Cに示したように、トランジスタFDG,FCG,SELはオン状態になり、その他のトランジスタは全てオフ状態になる。トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt53より前にフォトダイオードPD2で発生し、トランジスタTGSを介して容量素子FCに蓄積されていた電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP5)を出力する。
次に、タイミングt54~t56の期間(変換期間P5)において、AD変換部ADCは、この画素電圧VP5に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP5に基づいてAD変換を行い、カウント値CNT5を得る(図4B(J))。読出部20は、これ以降において、このカウント値CNT5を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
(タイミングt61~t65の動作)
次に、タイミングt61において、走査部12は、信号STGSの電圧を低レベルから高レベルに変化させる(図4B(G))。これにより、撮像画素10Aでは、トランジスタTGSがオン状態になる。また、このタイミングt61において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4B(H))。
次に、タイミングt62において、走査部12は、信号STGSの電圧を高レベルから低レベルに変化させる(図4B(G))。これにより、撮像画素10Aでは、トランジスタTGSがオフ状態になる。
これにより、撮像画素10Aでは、図5Cに示したように、トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt53より前にフォトダイオードPD2で発生し、トランジスタTGSを介して容量素子FCに蓄積されていた電荷に加え、タイミングt61~t62においてフォトダイオードPD2から転送された電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP6)を出力する。
次に、タイミングt63~t65の期間(変換期間P6)において、AD変換部ADCは、この画素電圧VP6に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP6に基づいてAD変換を行い、カウント値CNT6を得る(図4B(J))。このカウント値CNT6は、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量を構成するときに得られたカウント値CNT5に対応するものである。読出部20は、これ以降において、このカウント値CNT6を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
(タイミングt71~t77の動作)
次に、タイミングt71において、走査部12は、信号SRSTの電圧を低レベルから高レベルに変化させる(図4B(E))。これにより、撮像画素10Aでは、トランジスタRSTがオン状態になる。トランジスタFDG,FCGはオン状態であるので、フローティングディフュージョンFDの電圧および容量素子FCの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDおよび容量素子FCがリセットされる。また、このタイミングt71において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図4B(H))。
次に、タイミングt72において、走査部12は、信号SFCGの電圧を高レベルから低レベルに変化させる(図4B(F))。これにより、撮像画素10Aでは、トランジスタFCGがオフ状態になる。
次に、タイミングt73において、走査部12は、信号SRSTの電圧を高レベルから低レベルに変化させる(図4B(E))。これにより、撮像画素10Aでは、トランジスタRSTがオフ状態になる。
次に、タイミングt74において、走査部12は、信号SFCGの電圧を低レベルから高レベルに変化させる(図4B(F))。これにより、撮像画素10Aでは、トランジスタFCGがオン状態になる。
これにより、撮像画素10Aでは、図5Cに示したように、トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt71~t72においてフローティングディフュージョンFDおよび容量素子FCがリセットされたときの電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP7)を出力する。
次に、タイミングt75~t77の期間(変換期間P7)において、AD変換部ADCは、この画素電圧VP7に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP7に基づいてAD変換を行い、カウント値CNT7を得る(図4B(J))。このカウント値CNT7は、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量を構成するときに得られたカウント値CNT5に対応するものである。読出部20は、これ以降において、このカウント値CNT7を信号処理部14に供給し、その後にカウンタ25のカウント値CNTをリセットする。
次に、タイミングt7において、走査部12は、信号SFDGの電圧を高レベルから低レベルに変化させるとともに、信号SFCGの電圧を高レベルから低レベルに変化させる(図4B(C),(F))。これにより、撮像画素10Aでは、トランジスタFDG,FCGがオフ状態になる。また、このタイミングt7において、参照信号生成部29は、参照信号REFの電圧を電圧V2に変化させる(図4B(H))。
そして、タイミングt8において、走査部12は、信号SSELの電圧を高レベルから低レベルに変化させる(図4B(B))。これにより、撮像画素10Aでは、トランジスタSELがオフ状態になり、撮像画素10Aが信号線SGLから電気的に切り離される。
次に、信号処理部14の動作について説明する。信号処理部14は、読出部20から供給されたカウント値CNTに基づいて、4枚の画像PIC(画像PIC1,PIC2,PIC3,PIC4)を生成する。そして、信号処理部14は、この4枚の画像PICを合成することにより、1枚の撮像画像PICAを生成する。
図6は、信号処理部14の動作を模式的に表すものである。図6(A)~(G)に示した波形は、図3(A)~(G)に示した波形と同様である。
読出部20は、図3,4A,4Bを用いて説明したように、タイミングt11~t21の期間における動作に基づいてカウント値CNT1を生成し、タイミングt21~t31の期間における動作に基づいてカウント値CNT2を生成し、タイミングt31~t41の期間における動作に基づいてカウント値CNT3を生成し、タイミングt41~t51の期間における動作に基づいてカウント値CNT4を生成し、タイミングt51~t61の期間における動作に基づいてカウント値CNT5を生成し、タイミングt61~t71の期間における動作に基づいてカウント値CNT6を生成し、タイミングt71~t7の期間における動作に基づいてカウント値CNT7を生成する。
信号処理部14は、カウント値CNT2およびカウント値CNT3に基づいて、画素値VAL1を生成する。具体的には、信号処理部14は、カウント値CNT3からカウント値CNT2を減算(CNT3-CNT2)することにより、画素値VAL1を算出する。すなわち、撮像装置1は、いわゆる相関2重サンプリング(CDS;Correlated double sampling)の原理を利用し、P相(Pre-Charge相)データに対応するカウント値CNT2、およびD相(Data相)データに対応するカウント値CNT3を用いて、画素値VAL1を算出する。
同様に、信号処理部14は、カウント値CNT1およびカウント値CNT4に基づいて、画素値VAL2を生成する。具体的には、信号処理部14は、カウント値CNT4からカウント値CNT1を減算(CNT4-CNT1)することにより、画素値VAL2を算出する。すなわち、撮像装置1は、相関2重サンプリングの原理を利用し、P相データに対応するカウント値CNT1、およびD相データに対応するカウント値CNT4を用いて、画素値VAL2を算出する。
同様に、信号処理部14は、カウント値CNT5およびカウント値CNT6に基づいて、画素値VAL3を生成する。具体的には、信号処理部14は、カウント値CNT6からカウント値CNT5を減算(CNT6-CNT5)することにより、画素値VAL3を算出する。すなわち、撮像装置1は、相関2重サンプリングの原理を利用し、P相データに対応するカウント値CNT5、およびD相データに対応するカウント値CNT6を用いて、画素値VAL3を算出する。
そして、信号処理部14は、カウント値CNT5およびカウント値CNT7に基づいて、画素値VAL4を生成する。具体的には、信号処理部14は、カウント値CNT5からカウント値CNT7を減算(CNT5-CNT7)することにより、画素値VAL4を算出する。すなわち、撮像装置1は、いわゆる2重データサンプリング(DDS;Double Data Sampling)の原理を利用し、フローティングディフュージョンFDおよび容量素子FCをリセットした後のカウント値CNT7、およびフローティングディフュージョンFDをリセットした後のカウント値CNT5を用いて、画素値VAL4を算出する。
ここで、画素値VAL1は、本開示における「第1の値」の一具体例に対応する。画素値VAL2は、本開示における「第2の値」の一具体例に対応する。画素値VAL3は、本開示における「第3の値」の一具体例に対応する。画素値VAL4は、本開示における「第4の値」の一具体例に対応する。
そして、信号処理部14は、画素アレイ11における全ての撮像画素10における画素値VAL1に基づいて画像PIC1を生成し、画素アレイ11における全ての撮像画素10における画素値VAL2に基づいて画像PIC2を生成し、画素アレイ11における全ての撮像画素10における画素値VAL3に基づいて画像PIC3を生成し、画素アレイ11における全ての撮像画素10における画素値VAL4に基づいて画像PIC4を生成する。そして、信号処理部14は、これらの画像PIC1~PIC4を合成することにより、撮像画像PICAを生成する。
図7は、撮像装置1により合成された撮像画像PICAにおける信号対雑音比(S/N比)の一例を表すものである。図7において、横軸は輝度を示し、縦軸はS/N比を示す。
信号処理部14は、4枚の画像PIC1~PIC4を合成する際、輝度が高くなるにつれて、画像PIC1~PIC4のうちの使用する画像PICの枚数を増やしていく。具体的には、信号処理部14は、着目した画素における輝度が輝度値L1より低い場合には、画像PIC1における、その着目した画素での画素値VAL1に基づいて、撮像画像PICAにおける、その着目した画素での画素値を生成する。また、信号処理部14は、着目した画素における輝度が輝度値L1より高く輝度値L2より低い場合には、2枚の画像PIC1,PIC2における、その着目した画素での画素値VAL1,VAL2に基づいて、撮像画像PICAにおける、その着目した画素での画素値を生成する。また、信号処理部14は、着目した画素における輝度が輝度値L2より高く輝度値L3より低い場合には、3枚の画像PIC1~PIC3における、その着目した画素での画素値VAL1~VAL3に基づいて、撮像画像PICAにおける、その着目した画素での画素値を生成する。また、信号処理部14は、輝度が輝度値L3より高い場合には、4枚の画像PIC1~PIC4における、その着目した画素での画素値VAL1~VAL4に基づいて、撮像画像PICAにおける、その着目した画素での画素値を生成する。
図7に示したように、S/N比は、輝度が輝度値L2を超えると低下し(部分W1)、輝度が輝度値L3を超えるとさらに低下する(部分W3)。すなわち、部分W1では、合成に使用する画像に画像PIC3を加えることにより、S/N比が低下し、部分W2では、合成に使用する画像に画像PIC4を加えることにより、S/N比が低下する。
上述したように、撮像装置1では、相関2重サンプリングにより、画像PIC3を構成する画素値VAL3を求めるようにした。これにより、撮像装置1では、画像PIC3に含まれるノイズを低減することができるので、以下に、比較例と対比して説明するように、図7に示した輝度値L2におけるS/N比の低下を改善することができる。
(比較例)
次に、比較例に係る撮像装置1Rと対比して、本実施の形態に係る撮像装置1の効果を説明する。撮像装置1Rは、走査部12Rと、読出部20Rと、信号処理部14Rと、制御部15Rとを備えている。この撮像装置1Rでは、撮像画素10は、水平期間Hにおける6つの変換期間P1~P6において、6つの画素電圧VP1~VP4,VP16,VP7を順次出力する。読出部20RのAD変換部ADCは、これらの6つの画素電圧VP1~VP4,VP16,VP7に基づいてそれぞれAD変換を行い、6つのカウント値CNT1~CNT4,CNT16,CNT7をそれぞれ出力する。信号処理部14Rは、読出部20Rから供給されたカウント値CNT1~CNT4,CNT16,CNT7に基づいて、3枚の画像PIC(画像PIC1,PIC2,PIC13)を生成する。そして、信号処理部14Rは、この3枚の画像PICを合成することにより、1枚の撮像画像PICRを生成する。
図8,9A,9Bは、撮像装置1Rにおける、着目したある撮像画素10Aに係る動作の一例を表すものである。図9Aは、図8に示した動作のうちの前半の動作を示し、図9Bは、図8に示した動作のうちの後半の動作を示す。タイミングt51以前の動作、およびタイミングt71以降の動作は、本実施の形態に係る撮像装置1の動作(図3,4A,4B)と同様である。以下に、タイミングt51~t71における動作について説明する。
タイミングt51において、走査部12Rは、信号SRSTの電圧を低レベルから高レベルに変化させる(図9B(E))。これにより、撮像画素10Aでは、トランジスタRSTがオン状態になる。トランジスタFDGはオン状態であるので、これにより、フローティングディフュージョンFDの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDがリセットされる。また、このタイミングt51において、参照信号生成部29は、参照信号REFの電圧を電圧V1に変化させる(図9B(H))。
次に、タイミングt52において、走査部12Rは、信号SRSTの電圧を高レベルから低レベルに変化させる(図9B(E))。これにより、撮像画素10Aでは、トランジスタRSTがオフ状態になる。
次に、タイミングt53において、走査部12Rは、信号SFCGの電圧を低レベルから高レベルに変化させる(図9B(F))。これにより、撮像画素10Aでは、トランジスタFCGがオン状態になる。
次に、タイミングt58において、走査部12Rは、信号STGSの電圧を低レベルから高レベルに変化させる(図9B(G))。これにより、撮像画素10Aでは、トランジスタTGSがオン状態になる。
次に、タイミングt59において、走査部12Rは、信号STGSの電圧を高レベルから低レベルに変化させる(図8B(G))。これにより、撮像画素10Aでは、トランジスタTGSがオフ状態になる。
これにより、撮像画素10Aでは、図5Cに示したように、トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt53より前にフォトダイオードPD2で発生し、トランジスタTGSを介して容量素子FCに蓄積されていた電荷に加え、タイミングt58~t59においてフォトダイオードPD2から転送された電荷を保持している。撮像画素10Aは、フローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP16)を出力する。
次に、タイミングt63~t65の期間(変換期間P16)において、AD変換部ADCは、この画素電圧VP16に基づいてAD変換を行う。この動作は、変換期間P1における動作と同様である。AD変換部ADCは、画素電圧VP16に基づいてAD変換を行い、カウント値CNT16を得る(図9B(J))。読出部20Rは、これ以降において、このカウント値CNT16を信号処理部14Rに供給し、その後にカウンタ25のカウント値CNTをリセットする。
図10は、信号処理部14Rの動作を模式的に表すものである。図10(A)~(G)に示した波形は、図8(A)~(G)に示した波形と同様である。
読出部20Rは、図8,9A,9Bを用いて説明したように、タイミングt51~t71の期間における動作に基づいてカウント値CNT16を生成し、タイミングt71~t7の期間における動作に基づいてカウント値CNT7を生成する。
信号処理部14Rは、カウント値CNT16およびカウント値CNT7に基づいて、画素値VAL13を生成する。具体的には、信号処理部14Rは、2重データサンプリング(DDS)の原理を利用し、カウント値CNT16からカウント値CNT7を減算(CNT16-CNT7)することにより、画素値VAL13を算出する。
そして、信号処理部14Rは、画素アレイ11における全ての撮像画素10における画素値VAL1に基づいて画像PIC1を生成し、画素アレイ11における全ての撮像画素10における画素値VAL2に基づいて画像PIC2を生成し、画素アレイ11における全ての撮像画素10における画素値VAL13に基づいて画像PIC13を生成する。そして、信号処理部14Rは、これらの画像PIC1,PIC2,PIC13を合成することにより、撮像画像PICRを生成する。
図11は、撮像装置1Rにより合成された撮像画像PICRにおける信号対雑音比(S/N比)の一例を表すものである。
信号処理部14Rは、本実施の形態に係る信号処理部14と同様に、3枚の画像PICを合成する際、輝度が高くなるにつれて、画像PIC1,PIC2,PIC13のうちの使用する画像PICの枚数を増やしていく。具体的には、信号処理部14Rは、着目した画素における輝度が輝度値L11より低い場合には、画像PIC1における、その着目した画素での画素値VAL1に基づいて、撮像画像PICRにおける、その着目した画素での画素値を生成する。また、信号処理部14Rは、着目した画素における輝度が輝度値L11より高く輝度値L12より低い場合には、2枚の画像PIC1,PIC2における、その着目した画素での画素値VAL1,VAL2に基づいて、撮像画像PICRにおける、その着目した画素での画素値を生成する。また、信号処理部14Rは、着目した画素における輝度が輝度値L12より高い場合には、3枚の画像PIC1,PIC2,PIC13における、その着目した画素での画素値VAL1,VAL2,VAL13に基づいて、撮像画像PICRにおける、その着目した画素での画素値を生成する。
図11に示したように、S/N比は、輝度が輝度値L12を超えると低下する(部分W3)。すなわち、部分W3では、合成に使用する画像に画像PIC13を加えることにより、S/N比が低下する。すなわち、この画像PIC13は、2重データサンプリング(DDS)により生成したものであるので、相関2重サンプリングのように、ノイズを十分に除去することができない。その結果、撮像装置1Rでは、この部分W3において、S/N比が大幅に低下してしまう。
一方、本実施の形態に係る撮像装置1では、相関2重サンプリングにより、画像PIC3を生成した。すなわち、信号処理部14は、図6において、タイミングt51~t61の期間における動作に基づいて生成したカウント値CNT5をP相データとして用いるとともに、続くタイミングt61~t71の期間における動作に基づいて生成したカウント値CNT6をD相データとして用いることにより、画像PIC3を生成するようにした。これにより、撮像装置1では、例えばフォトダイオードPD2における暗電流やリセットノイズの成分を除去することができるので、図7に示したように、合成に使用する画像に画像PIC3を加えたときのS/N比の低下を改善することができる。その結果、撮像装置1では、撮像画像PICAの画質を高めることができる。
[効果]
以上のように本実施の形態では、相関2重サンプリングにより、3つめの画像PIC3を生成し、この画像PIC3を用いて撮像画像を生成するようにしたので、画質を高めることができる。
[変形例1]
上記実施の形態では、図3に示したように、7つの変換期間P1~P7を設けたが、これに限定されるものではない。例えば、図12,13に示す撮像装置1Bのように、8つの変換期間P1~P8を設けてもよい。この撮像装置1Bは、上記実施の形態に係る撮像装置1(図3)におけるタイミングt51~t61の期間と、タイミングt61~t71の期間の間に、変換期間P15を含む期間を追加したものである。
撮像装置1Bでは、ADC変換部ADCは、変換期間P5において、撮像画素10Aから出力された画素電圧VP(VP5)に基づいてカウント値CNT(カウント値CNT5)を生成する。そして、撮像装置1Bでは、その後に、信号SSEL,SFDG,STGL,SRST,SFCG,STGSを維持したまま、ADC変換部ADCが、変換期間P15において、撮像画素10Aから出力された画素電圧VPに基づいてカウント値CNT(カウント値CNT15)を生成する。
そして、信号処理部14は、カウント値CNT15およびカウント値CNT6に基づいて、画素値VAL3を生成する。具体的には、信号処理部14は、カウント値CNT6からカウント値CNT15を減算(CNT6-CNT15)することにより、画素値VAL3を算出する。すなわち、撮像装置1Bは、相関2重サンプリングの原理を利用し、P相データに対応するカウント値CNT15、およびD相データに対応するカウント値CNT6を用いて、画素値VAL3を算出する。また、信号処理部14は、上記実施の形態の場合と同様に、カウント値CNT5およびカウント値CNT7に基づいて、画素値VAL4を生成する。
そして、信号処理部14は、画素アレイ11における全ての撮像画素10における画素値VAL1に基づいて画像PIC1を生成し、画素アレイ11における全ての撮像画素10における画素値VAL2に基づいて画像PIC2を生成し、画素アレイ11における全ての撮像画素10における画素値VAL3に基づいて画像PIC3を生成し、画素アレイ11における全ての撮像画素10における画素値VAL4に基づいて画像PIC4を生成する。そして、信号処理部14は、これらの画像PIC1~PIC4を合成することにより、撮像画像PICAを生成する。
以上、実施の形態および変形例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
例えば、上記の各実施の形態等における信号SSEL,SFDG,STGL,SRST,SFCG,STGSの波形および遷移タイミングは、一例であり、適宜変更してもよい。
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (14)

  1. 第1の光電変換素子と、前記第1の光電変換素子に接続された第1のトランジスタと、前記第1のトランジスタに接続された第1の容量素子と、前記第1の容量素子に接続された第2のトランジスタと、前記第2のトランジスタに接続された第3のトランジスタと、第2の光電変換素子と、前記第2の光電変換素子に接続された第4のトランジスタと、前記第4のトランジスタに接続された第2の容量素子と、前記第2のトランジスタおよび前記第4のトランジスタの間に接続された第5のトランジスタと、前記第1の容量素子に接続された第6のトランジスタとを有し、前記第1の光電変換素子の受光領域は、前記第2の光電変換素子の受光領域よりも広い画素と、
    前記画素から出力された第1の信号、第2の信号、第3の信号、および第4の信号に基づいて、第1の画像データ、第2の画像データ、第3の画像データ、および第4の画像データをそれぞれ生成し、前記第1の画像データ、前記第2の画像データ、前記第3の画像データ、および前記第4の画像データを合成することにより撮像画像データを生成する信号処理部と
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、前記第4のトランジスタ、および前記第5のトランジスタのそれぞれを駆動する駆動部と
    を備え
    前記駆動部は、
    第1の期間において、前記第2のトランジスタおよび前記第3のトランジスタをオン状態にするとともに、前記第1のトランジスタ、前記第4のトランジスタ、および前記第5のトランジスタをオフ状態にし、
    前記第1の期間の後の第2の期間において、前記第3のトランジスタをオフ状態にするとともに前記第5のトランジスタをオン状態にし、
    前記第2の期間の後の第3の期間において、前記第4のトランジスタをオン状態にし、
    前記第3の期間の後の第4の期間において、前記第4のトランジスタをオフ状態にする
    像装置。
  2. 前記第2の容量素子には、所定の直流電圧が供給されている
    請求項1に記載の撮像装置。
  3. 前記第5のトランジスタは、前記第2のトランジスタおよび前記第3のトランジスタの間に接続されている
    請求項1に記載の撮像装置。
  4. 前記第2の容量素子は、前記第4のトランジスタおよび前記第5のトランジスタの間に接続されている
    請求項1に記載の撮像装置。
  5. 前記第2のトランジスタは、前記画素における変換効率を切り替える
    請求項1に記載の撮像装置。
  6. 前記第5のトランジスタは、前記画素における変換効率を切り替える
    請求項1に記載の撮像装置。
  7. 前記第1の容量素子は、前記第6のトランジスタに直接に接続された
    請求項1に記載の撮像装置。
  8. 前記第1の容量素子は、フローティングディフュージョンである
    請求項1に記載の撮像装置。
  9. 前記第6のトランジスタは、前記第1の容量素子における電圧に対応する画素電圧を出力する
    請求項1に記載の撮像装置。
  10. 前記駆動部は、
    前記第4の期間の後の第5の期間において、前記第3のトランジスタおよび前記第5のトランジスタをオン状態にし、
    前記第5の期間の後の第6の期間において、前記第3のトランジスタおよび前記第5のトランジスタをオフ状態にし、
    前記第6の期間の後の第7の期間において、前記第3のトランジスタをオフ状態にするとともに前記第5のトランジスタをオン状態にする
    請求項1に記載の撮像装置。
  11. 前記駆動部は、
    前記第4の期間の後の第5の期間において、前記第3のトランジスタおよび前記第5のトランジスタをオン状態にし、
    前記第5の期間の後の第6の期間において、前記第3のトランジスタおよび前記第5のトランジスタをオフ状態にし、
    前記第6の期間の後の第7の期間において、前記第3のトランジスタをオフ状態にするとともに前記第5のトランジスタをオン状態にし、
    前記第2の期間は、第1のサブ期間と、前記第1のサブ期間の後の第2のサブ期間とを含む
    請求項1に記載の撮像装置。
  12. 前記駆動部は、
    第8の期間において、前記第2のトランジスタおよび前記第3のトランジスタをオン状態にするとともに、前記第1のトランジスタ、前記第4のトランジスタ、および前記第5のトランジスタをオフ状態にし、
    前記第8の期間の後の第9の期間において、前記第2のトランジスタをオン状態にするとともに前記第3のトランジスタをオフ状態にし、
    前記第9の期間の後の第10の期間において、前記第2のトランジスタをオフ状態にし、
    前記第10の期間の後の第11の期間において、前記第1のトランジスタをオン状態にし、
    前記第11の期間の後の第12の期間において、前記第1のトランジスタをオフ状態にし、
    前記第12の期間の後であり前記第1の期間の前の第13の期間において、前記第2のトランジスタをオン状態にする
    請求項10に記載の撮像装置。
  13. 前記第1の容量素子は、拡散層を含む
    請求項1に記載の撮像装置。
  14. 前記信号処理部は、
    電圧レベルが変化する参照信号を生成する参照信号生成部と、
    画素電圧と前記参照信号とを比較することにより比較信号を生成する比較部と、
    前記比較信号に基づいてカウント動作を行うことによりデジタル値を生成するカウンタと
    を有する
    請求項1に記載の撮像装置。
JP2022177131A 2017-10-27 2022-11-04 撮像装置 Active JP7439213B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017208118 2017-10-27
JP2017208118 2017-10-27
PCT/JP2018/036877 WO2019082614A1 (ja) 2017-10-27 2018-10-02 撮像装置および撮像方法
JP2019550911A JP7181887B2 (ja) 2017-10-27 2018-10-02 撮像装置および撮像方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019550911A Division JP7181887B2 (ja) 2017-10-27 2018-10-02 撮像装置および撮像方法

Publications (2)

Publication Number Publication Date
JP2023011858A JP2023011858A (ja) 2023-01-24
JP7439213B2 true JP7439213B2 (ja) 2024-02-27

Family

ID=66246454

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019550911A Active JP7181887B2 (ja) 2017-10-27 2018-10-02 撮像装置および撮像方法
JP2022177131A Active JP7439213B2 (ja) 2017-10-27 2022-11-04 撮像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019550911A Active JP7181887B2 (ja) 2017-10-27 2018-10-02 撮像装置および撮像方法

Country Status (5)

Country Link
US (1) US11122230B2 (ja)
JP (2) JP7181887B2 (ja)
KR (2) KR102577163B1 (ja)
CN (2) CN111164964B (ja)
WO (1) WO2019082614A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219857A (ja) 2015-05-14 2016-12-22 ブリルニクスジャパン株式会社 固体撮像装置およびその駆動方法、電子機器
JP2017034301A (ja) 2015-07-28 2017-02-09 キヤノン株式会社 固体撮像素子、撮像装置、及び固体撮像素子の制御方法
WO2017141847A1 (ja) 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 固体撮像装置および撮像装置
JP2017175345A (ja) 2016-03-23 2017-09-28 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317115B2 (ja) 2004-04-12 2009-08-19 国立大学法人東北大学 固体撮像装置、光センサおよび固体撮像装置の動作方法
JP2005332880A (ja) * 2004-05-18 2005-12-02 Sony Corp 撮像素子および画像入力処理装置
KR101257526B1 (ko) * 2005-04-07 2013-04-23 고쿠리츠다이가쿠호진 도호쿠다이가쿠 광 센서, 고체 촬상 장치, 및 고체 촬상 장치의 동작 방법
JP2011023917A (ja) 2009-07-15 2011-02-03 Nikon Corp 固体撮像素子
JP2014143508A (ja) 2013-01-23 2014-08-07 Nippon Hoso Kyokai <Nhk> 撮像装置
WO2015045785A1 (ja) * 2013-09-30 2015-04-02 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
US10498983B2 (en) 2015-03-16 2019-12-03 Sony Corporation Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
WO2017010260A1 (ja) 2015-07-10 2017-01-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および駆動方法、並びに電子機器
JP6754157B2 (ja) * 2015-10-26 2020-09-09 ソニーセミコンダクタソリューションズ株式会社 撮像装置
TWI717450B (zh) * 2016-02-18 2021-02-01 日商新力股份有限公司 固體攝像裝置、固體攝像裝置之驅動方法、及電子機器
KR102678455B1 (ko) * 2016-12-30 2024-06-27 삼성전자주식회사 이미지 센서
US11050966B2 (en) * 2017-04-12 2021-06-29 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US11350044B2 (en) * 2017-07-07 2022-05-31 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219857A (ja) 2015-05-14 2016-12-22 ブリルニクスジャパン株式会社 固体撮像装置およびその駆動方法、電子機器
JP2017034301A (ja) 2015-07-28 2017-02-09 キヤノン株式会社 固体撮像素子、撮像装置、及び固体撮像素子の制御方法
WO2017141847A1 (ja) 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 固体撮像装置および撮像装置
JP2017175345A (ja) 2016-03-23 2017-09-28 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器

Also Published As

Publication number Publication date
CN111164964B (zh) 2022-08-16
KR20200073212A (ko) 2020-06-23
JP7181887B2 (ja) 2022-12-01
CN115483236A (zh) 2022-12-16
US11122230B2 (en) 2021-09-14
US20210211599A1 (en) 2021-07-08
KR20220165836A (ko) 2022-12-15
JP2023011858A (ja) 2023-01-24
KR102489552B1 (ko) 2023-01-17
KR102577163B1 (ko) 2023-09-08
WO2019082614A1 (ja) 2019-05-02
CN111164964A (zh) 2020-05-15
JPWO2019082614A1 (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
KR101450904B1 (ko) A/d 변환 회로, a/d 변환 회로의 제어 방법, 고체 촬상장치 및 촬상 장치
US9661253B2 (en) Solid-state imaging device, driving method, and electronic device
JP6740067B2 (ja) 固体撮像装置及びその駆動方法
US9479189B2 (en) A/D converter, solid-state imaging device and camera system
JP6874007B2 (ja) 比較器、ad変換器、固体撮像装置、電子機器、および、比較器の制御方法
US10630930B2 (en) Solid-state image sensing apparatus, control method, and electronic device
KR20210102517A (ko) 듀얼 컨버전 게인을 이용하여 hdr 이미지를 구현하기 위한 이미지 센서
JP2008136042A (ja) 固体撮像装置、撮像装置
TW202015396A (zh) 固態攝像裝置
JP7362651B2 (ja) 撮像装置及び電子機器
US11750942B2 (en) Image sensor, an imaging device and a method of operating the same
JP7439213B2 (ja) 撮像装置
US8710422B2 (en) Imaging device
CN112567732A (zh) 固态摄像装置和电子设备
JP6053333B2 (ja) 撮像装置、撮像システム、撮像装置の駆動方法
JP2010130254A (ja) 固体撮像素子、固体撮像装置及びその駆動方法
JP2013058960A (ja) 固体撮像装置
JP2010226679A (ja) 固体撮像装置
JP2013051497A (ja) 固体撮像装置、撮像装置および撮像方法
WO2023002643A1 (ja) 撮像素子及び撮像装置
JP2022170557A (ja) Ad変換回路の駆動方法、ad変換回路、光電変換装置、機器
JP2023042891A (ja) 光電変換装置及びその駆動方法
JP2017050577A (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7439213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150