JP7428919B2 - 画像表示装置の製造方法および画像表示装置 - Google Patents

画像表示装置の製造方法および画像表示装置 Download PDF

Info

Publication number
JP7428919B2
JP7428919B2 JP2021533925A JP2021533925A JP7428919B2 JP 7428919 B2 JP7428919 B2 JP 7428919B2 JP 2021533925 A JP2021533925 A JP 2021533925A JP 2021533925 A JP2021533925 A JP 2021533925A JP 7428919 B2 JP7428919 B2 JP 7428919B2
Authority
JP
Japan
Prior art keywords
light emitting
insulating film
image display
display device
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021533925A
Other languages
English (en)
Other versions
JPWO2021014972A1 (ja
Inventor
肇 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JPWO2021014972A1 publication Critical patent/JPWO2021014972A1/ja
Application granted granted Critical
Publication of JP7428919B2 publication Critical patent/JP7428919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明の実施形態は、画像表示装置の製造方法および画像表示装置に関する。
高輝度、広視野角、高コントラストで低消費電力の薄型の画像表示装置の実現が望まれている。このような市場要求に対応するように、自発光素子を利用した表示装置の開発が進められている。
自発光素子として、微細発光素子であるマイクロLEDを用いた表示装置の登場が期待されている。マイクロLEDを用いた表示装置の製造方法として、個々に形成されたマイクロLEDを駆動回路に順次転写する方法が紹介されている。しかしながら、フルハイビジョンや4K、8K等と高画質になるにつれて、マイクロLEDの素子数が多くなると、多数のマイクロLEDを個々に形成して、駆動回路等を形成した基板に順次転写するのでは、転写工程に膨大な時間を要する。さらに、マイクロLEDと駆動回路等との接続不良等が発生し、歩留りの低下を生じるおそれがある。
Si基板上に発光層を含む半導体層を成長させ、半導体層に電極を形成した後、駆動回路が形成された回路基板に貼り合わせる技術が知られている(たとえば、特許文献1)。
特開2002-141492号公報
本発明の一実施形態は、発光素子の転写工程を短縮し、歩留りを向上した画像表示装置の製造方法を提供する。
本発明の一実施形態に係る画像表示装置の製造方法は、発光層を含む半導体層を第1基板上に成長させた第2基板を準備する工程と、透光性基板上に形成された回路素子と、前記回路素子に接続され得る配線層と、前記回路素子および前記配線層を覆う第1絶縁膜と、を含む第3基板を準備する工程と、前記半導体層を、前記第3基板に貼り合わせる工程と、前記半導体層から発光素子を形成する工程と、前記発光素子を覆う第2絶縁膜を形成する工程と、前記第1絶縁膜および前記第2絶縁膜を貫通するビアを形成する工程と、前記発光素子と前記回路素子とを前記ビアを介して電気的に接続する工程と、を備える。前記配線層は、光反射性を有する部分を含む。前記発光素子は、前記部分上に設けられる。前記部分の外周は、平面視で前記部分に投影された前記発光素子の外周を含む。
本発明の一実施形態に係る画像表示装置は、第1面を有する透光性基板と、前記第1面上に設けられた回路素子と、前記回路素子に電気的に接続され得る第1配線層と、前記第1面上で前記回路素子および前記第1配線層を覆う第1絶縁膜と、前記第1絶縁膜上に配設された発光素子と、前記発光素子の少なくとも一部を覆う第2絶縁膜と、前記第2絶縁膜上に配設され、前記発光素子の前記第1絶縁膜の側の面に対向する発光面を含む面に電気的に接続された第2配線層と、前記第1絶縁膜および前記第2絶縁膜を貫通し、前記第1配線層および前記第2配線層を電気的に接続する第1ビアと、を備える。前記第1配線層は、光反射性を有する部分を含む。前記発光素子は、前記部分上に設けられる。前記部分の外周は、平面視で前記部分に投影された前記発光素子の外周を含む。
本発明の一実施形態に係る画像表示装置は、可撓性を有し、第1面を有する基板と、前記第1面上に設けられた回路素子と、前記回路素子に電気的に接続され得る第1配線層と、前記第1面上で前記回路素子および前記第1配線層を覆う第1絶縁膜と、前記第1絶縁膜上に配設された発光素子と、前記発光素子の少なくとも一部を覆う第2絶縁膜と、前記第2絶縁膜上に配設され、前記発光素子の前記第1絶縁膜の側の面に対向する発光面を含む面に電気的に接続された第2配線層と、前記第1絶縁膜および前記第2絶縁膜を貫通し、前記第1配線層および前記第2配線層を電気的に接続する第1ビアと、を備える。前記第1配線層は、光反射性を有する部分を含む。前記発光素子は、前記部分上に設けられる。前記部分の外周は、平面視で前記部分に投影された前記発光素子の外周を含む。
本発明の一実施形態に係る画像表示装置は、第1面を有する透光性基板と、前記第1面上に設けられた複数のトランジスタと、前記複数のトランジスタに電気的に接続された第1配線層と、前記第1面上で前記複数のトランジスタおよび前記第1配線層を覆う第1絶縁膜と、前記第1絶縁膜上に配設された第1導電形の第1半導体層と、前記第1半導体層上に配設された発光層と、前記発光層上に配設され、前記第1導電形とは異なる第2導電形の第2半導体層と、前記第1絶縁膜、前記発光層および前記第1半導体層を覆うとともに前記第2半導体層の少なくとも一部を覆う第2絶縁膜と、前記複数のトランジスタに応じて前記第2絶縁膜からそれぞれ露出された、前記第2半導体層の複数の発光面上に設けられた透光性電極に接続された第2配線層と、前記第1絶縁膜および前記第2絶縁膜を貫通し、前記第1配線層の配線および前記第2配線層の配線を電気的に接続する複数のビアと、を備える。前記第1配線層は、光反射性を有する部分を含む。前記第1半導体層は、前記部分上に設けられる。前記部分の外周は、平面視で前記部分に投影された前記第1半導体層、前記発光層および前記第2半導体層の外周をすべて含む。
本発明の一実施形態によれば、発光素子の転写工程を短縮し、歩留りを向上した画像表示装置の製造方法および画像表示装置が実現される。
第1の実施形態に係る画像表示装置の一部を例示する模式的な断面図である。 第1の実施形態の画像表示装置の変形例の一部を例示する模式的な断面図である。 第1の実施形態の画像表示装置の変形例の一部を例示する模式的な断面図である。 第1の実施形態の画像表示装置を例示する模式的なブロック図である。 第1の実施形態の画像表示装置の一部を例示する模式的な平面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な斜視図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第1の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第2の実施形態に係る画像表示装置の一部を例示する模式的な断面図である。 第2の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第2の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第2の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第2の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第2の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第2の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第3の実施形態に係る画像表示装置の一部を例示する模式的な断面図である。 第3の実施形態の画像表示装置を例示する模式的なブロック図である。 第3の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第3の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第3の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第3の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第3の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第4の実施形態に係る画像表示装置の一部を例示する模式的な断面図である。 第4の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第4の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第5の実施形態に係る画像表示装置の一部を例示する模式的な断面図である。 第5の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第5の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第5の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第5の実施形態の画像表示装置の製造方法を例示する模式的な断面図である。 第5の実施形態の変形例に係る画像表示装置の一部を例示する模式的な断面図である。 第5の実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。 第5の実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。 画素LED素子の特性を例示するグラフである。 第6の実施形態に係る画像表示装置を例示するブロック図である。 第6の実施形態の変形例に係る画像表示装置を例示するブロック図である。 第1~第5の実施形態およびこれらの変形例の画像表示装置を模式的に例示する斜視図である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。
(第1の実施形態)
図1は、実施形態に係る画像表示装置の一部を例示する模式的な断面図である。
図1には、本実施形態の画像表示装置のサブピクセル20の構成が模式的に示されている。後述する図3に記載される画像表示装置に表示される画像を構成するピクセル10は、複数のサブピクセル20によって構成されている。
以下では、XYZの3次元座標系を用いて説明することがある。サブピクセル20は、2次元平面上に配列されている。サブピクセル20が配列された2次元平面をXY平面とする。サブピクセル20は、X軸方向およびY軸方向に沿って配列されている。図1は、後述の図4のAA’線における矢視断面を表しており、XY平面に垂直な複数の平面における断面を1つにつなげた断面図としている。他の図においても、図1のように、XY平面に垂直な複数の平面における断面図では、X軸およびY軸は図示されず、XY平面に垂直なZ軸が示されている。つまり、これらの図では、Z軸に垂直な平面がXY平面とされている。
サブピクセル20は、XY平面にほぼ平行な発光面153Sを有している。発光面153Sは、主として、XY平面に直交するZ軸の正方向に向かって光を放射する。
図1に示すように、画像表示装置のサブピクセル20は、基板102と、トランジスタ103と、第1の配線層110と、第1の層間絶縁膜112と、発光素子150と、第2の層間絶縁膜156と、複数のビア161d,161k,161rと、第2の配線層160と、を備える。
本実施形態では、トランジスタ103を含む回路素子が形成される基板102は、透光性基板であり、たとえばガラス基板である。基板102は、第1面102aを有しており、第1面102a上に、トランジスタ103として薄膜トランジスタ(Thin Film Transistor、TFT)が形成される。発光素子150は、ガラス基板上に形成されたTFTによって駆動される。TFTを含む回路素子を大型のガラス基板上に形成するプロセスは、液晶パネルや有機ELパネル等の製造のために確立しており、既存のプラントを利用することができる利点がある。
サブピクセル20は、カラーフィルタ180をさらに備える。カラーフィルタ(波長変換部材)180は、表面樹脂層170上に、透明薄膜接着層188を介して設けられている。表面樹脂層170は、層間絶縁膜156および配線層160上に設けられている。
トランジスタ103は、基板102の第1面102a上に形成されたTFT下層膜106上に形成されている。TFT下層膜106は、トランジスタ103形成時に平坦性を確保するとともに、加熱処理時にトランジスタ103のTFTチャネル104を汚染等から保護する目的で設けられている。TFT下層膜106は、たとえばSiO等である
基板102には、発光素子150の駆動用のトランジスタ103のほか、他のトランジスタやキャパシタ等の回路素子が形成され、配線等によって回路101を構成している。たとえば、トランジスタ103は、後述する図3に示された駆動トランジスタ26に対応し、そのほか選択トランジスタ24やキャパシタ28等が回路素子である。
以下では、回路101は、TFTチャネル104、絶縁層105、絶縁膜108、ビア111s,111dおよび配線層110を含むものとする。基板102、TFT下層膜106、回路101および層間絶縁膜112等のその他の構成要素を含めて回路基板100と呼ぶことがある。
トランジスタ103は、この例では、pチャネルのTFTである。トランジスタ103は、TFTチャネル104と、ゲート107と、を含む。TFTは、好ましくは、低温ポリシリコン(Low Temperature Poly Silicon、LTPS)プロセスによって形成されている。TFTチャネル104は、基板102上に形成された多結晶Siの領域であり、アモルファスSiとして形成された領域をレーザ照射でアニーリングすることによって多結晶化され、活性化されている。LTPSプロセスによって形成されたTFTは、十分高い移動度を有する。
TFTチャネル104は、領域104s,104i,104dを含む。領域104s,104i,104dは、いずれもTFT下層膜106上に設けられている。領域104iは、領域104s,104d間に設けられている。領域104s,104dは、ホウ素(B)等のp形不純物がドープされており、ビア111s,111dとオーミック接続されている。
ゲート107は、絶縁層105を介して、TFTチャネル104上に設けられている。絶縁層105は、TFTチャネル104とゲート107とを絶縁するとともに、隣接する他の回路素子との絶縁をとるために設けられている。領域104sよりも低い電位がゲート107に印加されると、領域104iにチャネルが形成されることによって、領域104s,104d間に流れる電流を制御することができる。
絶縁層105は、たとえばSiOである。絶縁層105は、覆っている領域に応じてSiOやSi等を含む多層の絶縁層であってもよい。
ゲート107は、たとえば多結晶Siである。ゲート107の多結晶Si膜は、一般的なCVDプロセスで作成することができる。
この例では、ゲート107および絶縁層105は、絶縁膜108で覆われている。絶縁膜108は、たとえばSiOやSi等である。絶縁膜108は、配線層110の形成のための平坦化膜として機能する。絶縁膜108は、たとえばSiOやSi等を含む多層の絶縁膜である。
ビア111s,111dは、絶縁膜108を貫通して設けられている。絶縁膜108上には、第1の配線層(第1配線層)110が形成されている。第1の配線層110は、電位の異なり得る複数の配線を含んでおり、配線110s,110d,110rを含んでいる。図1以降の断面図の配線層においては、符号を付すべき配線層に含まれる1つの配線の横の位置にその配線の符号を表示するものとする。
ビア111sは、配線110sと領域104sとの間に設けられ、これらを電気的に接続している。ビア111dは、配線110dと領域104dとの間に設けられ、これらを電気的に接続している。
配線110sは、この例では、トランジスタ103のソース領域である領域104sを後述する図3に示された電源線3に電気的に接続している。配線110dは、後述するように、ビア161dおよび配線160aを介して、発光素子150の発光面153S側のp形半導体層153に電気的に接続されている。
配線110r(部分)は、光反射性を有する。配線110rは、発光素子150の直下に設けられている。配線110rの外周に囲まれた領域は、光反射膜として機能する。好ましくは、配線110rの外周は、XY平面視で、配線110rに投影された発光素子150の外周を含む。このため、配線110rは、発光素子150の下方への散乱光を発光面153S側に反射し、発光素子150の実質的な発光効率を向上させることができる。
配線層110およびビア111s,111dは、たとえばAlやAlの合金、AlとTi等との積層膜等によって形成されている。たとえば、AlとTiの積層膜では、Tiの薄膜上にAlが積層され、さらにAl上にTiが積層されている。また、配線の表面にAg等の金属の層を設けることによって、光反射性の高い配線とすることができる。
絶縁膜108および配線層110上には、第1の層間絶縁膜112が設けられている。第1の層間絶縁膜(第1絶縁膜)112は、たとえばPSG(Phosphorus Silicon Glass)やBPSG(Boron Phosphorus Silicon Glass)等の有機絶縁膜である。層間絶縁膜112は、ウェハボンディングにおいて、均一な接合を実現するために設けられている。層間絶縁膜112は、回路基板100の表面を保護する保護膜としても機能する。
発光素子150は、n形半導体層(第1半導体層)151と、発光層152と、p形半導体層(第2半導体層)153と、を含む。n形半導体層151、発光層152およびp形半導体層153は、層間絶縁膜112の側から発光面153Sの側に向かってこの順に積層されている。
発光素子150は、XY平面視で、たとえばほぼ正方形または長方形状を有しているが、角部は丸くなっていてもよい。発光素子150はXY平面視で、たとえば楕円形状や円形状を有していてもよい。平面視での発光素子の形状や配置等を適切に選定することによって、レイアウトの自由度が向上する。n形半導体層151は、この例では、層間絶縁膜112上をX軸方向に延伸する段差部151aを有している。
発光素子150には、たとえば、InAlGa1-X-YN(0≦X、0≦Y、X+Y<1)等の窒化物半導体が好適に用いられる。本発明の一実施形態における発光素子150は、いわゆる青色発光ダイオードであり、発光素子150が発光する光の波長は、たとえば467nm±20nm程度である。発光素子150が発光する光の波長は、410nm±20nm程度の青紫発光としてもよい。発光素子150が発光する光の波長は、上述の値に限らず、適切なものとすることができる。
第2の層間絶縁膜(第2絶縁膜)156は、第1の層間絶縁膜112、導電層130および発光素子150を覆っている。層間絶縁膜156は、たとえば、透明の有機絶縁材料等によって形成されている。透明の樹脂材料としては、SOG(Spin On Glass)等のシリコン系樹脂やノボラック型フェノール系樹脂等が用いられる。層間絶縁膜156は、たとえば、ALD(Atomic-layer-deposition)やCVDで形成されたSiO膜等でもよい。層間絶縁膜156は、発光素子150や導電層130等を覆うことによって、これらを塵埃や湿度等の周囲環境等から保護する。層間絶縁膜156は、発光素子150や導電層130等を覆うことによって、これらを他の導電物から絶縁する機能も有する。層間絶縁膜156の表面は、層間絶縁膜156上に配線層160が形成できる程度の平坦性があればよい。
第2の層間絶縁膜156を貫通して、ビア161kが設けられている。ビア161kの一端は、段差部151aに接続されている。
ビア161dは、層間絶縁膜112,156を貫通して設けられている。ビア161dの一端は、配線110dに接続されている。ビア161rは、層間絶縁膜112,156を貫通して設けられている。ビア161rの一端は、配線110rに接続されている。
第2の配線層(第2配線層)160は、層間絶縁膜156上に設けられている。配線層160は、配線160a,160kを含んでいる。配線160aは、層間絶縁膜156に開口されたコンタクトホールを介して、p形半導体層153に接続されている。つまり、配線160aは、発光面153Sを含む面の一部でp形半導体層153に電気的に接続されている。発光面153Sを含む面および発光面153Sは、たとえば同一平面にある。
配線160aは、ビア161dの他端に接続されている。したがって、p形半導体層153は、配線160a、ビア161dおよび配線110dを介して、トランジスタ103のドレイン電極である領域104dに電気的に接続されている。
配線160kは、ビア161k,161rの他端に接続されている。配線160kは、後述する図3に示される接地線4に接続されている。したがって、n形半導体層151は、ビア161kおよび配線160kを介して、接地線4に接続されている。また、配線110rは、ビア161rおよび配線160kを介して、接地線4に接続されている。
表面樹脂層170は、第2の層間絶縁膜156および第2の配線層160を覆っている。表面樹脂層170は、透明樹脂であり、層間絶縁膜156および配線層160を保護するとともに、カラーフィルタ180を接着するための平坦化面を提供する。
カラーフィルタ180は、遮光部181と色変換部182とを含む。色変換部182は、発光素子150の発光面153Sの直上に発光面153Sの形状に応じて設けられている。カラーフィルタ180では、色変換部182以外の部分は、遮光部181とされている。遮光部181は、いわゆるブラックマトリクスであり、隣接する色変換部182から発光される光の混色等によるにじみを低減し、シャープな画像を表示することを可能にする。
色変換部182は、1層または2層とされる。図1には、2層の部分が示されている。1層であるか2層であるかは、サブピクセル20が発光する光の色、すなわち波長によって決定される。サブピクセル20の発光色が赤または緑の場合には、色変換部182は、好ましくは、後述する色変換層183およびフィルタ層184との2層とされる。サブピクセル20の発光色が青の場合には、好ましくは1層とされる。
色変換部182が2層の場合には、発光素子150により近い1層目が色変換層183であり、2層目がフィルタ層184である。つまり、フィルタ層184は、色変換層183上に積層されている。
色変換層183は、発光素子150が発光する光の波長を所望の波長に変換する層である。赤色を発光するサブピクセル20の場合には、発光素子150の波長、467nm±20nmの光を、たとえば630nm±20nm程度の波長の光に変換する。緑色を発光するサブピクセル20の場合には、発光素子150の波長、467nm±20nmの光を、たとえば532nm±20nm程度の波長の光に変換する。
フィルタ層184は、色変換層183で色変換されずに残存した青色発光の波長成分を遮断する。
サブピクセル20が発光する光の色が青色の場合には、サブピクセル20は、色変換層183を介して光を出力してもよいし、色変換層183を介さずにそのまま出力するようにしてもよい。発光素子150が発光する光の波長が467nm±20nm程度の場合には、サブピクセル20は、色変換層183を介さずに光を出力してもよい。発光素子150が発光する光の波長を410nm±20nmとする場合には、出力する光の波長を467nm±20nm程度に変換するために、1層の色変換層183を設けることが好ましい。
青色のサブピクセル20の場合であっても、サブピクセル20は、フィルタ層184を有していてもよい。青色のサブピクセル20にフィルタ層184を設けることによって、発光素子150の表面で生じる微小な外光反射が抑制される。
(変形例)
サブピクセルの構成の変形例について説明する。
図2Aおよび図2Bは、本実施形態の画像表示装置の変形例の一部をそれぞれ例示する模式的な断面図である。
図2A以降のサブピクセルの断面図では、煩雑さを避けるため、表面樹脂層170およびカラーフィルタ180の表示が省略されている。以降の図においては、特に記載のない限り、第2の層間絶縁膜156,256および第2の配線層160上には、表面樹脂層170およびカラーフィルタ180等が設けられる。後述の他の実施形態およびその変形例の場合についても同様である。
図2Aおよび図2Bの場合には、サブピクセル20a,20bは、発光素子150aと配線160a1,160a2との接続方法が上述の第1の実施形態の場合と相違する。同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
図2Aに示すように、サブピクセル20aは、発光素子150aと、配線160a1と、を含む。この変形例では、第1の層間絶縁膜112および発光素子150aの少なくとも一部は、第2の層間絶縁膜(第2絶縁膜)256で覆われている。第2の層間絶縁膜256は、好ましくは白色樹脂である。白色樹脂である層間絶縁膜256は、発光素子150aの横方向の出射光やカラーフィルタ180の界面等に起因する戻り光を反射して、実質的に発光素子150aの発光効率を向上させることができる。
第2の層間絶縁膜256は、黒色樹脂であってもよい。層間絶縁膜256を黒色樹脂とすることによって、サブピクセル20a内における光の散乱が抑制され、迷光がより効果的に抑制される。迷光が抑制された画像表示装置は、よりシャープな画像を表示することが可能である。
第2の層間絶縁膜256は、開口158を有している。開口158は、発光素子150aの上方の層間絶縁膜256の一部を除去することによって形成されている。配線160a1は、開口158で露出されたp形半導体層153aまで延伸されており、p形半導体層153aに接続されている。
p形半導体層153aは、開口158により露出された発光面153Sを有する。発光面153Sは、p形半導体層153aの面のうち発光層152に接する面に対向する面である。発光面153Sは、好ましくは粗面加工されている。発光素子150aは、発光面153Sが粗面とされている場合には、光の取出効率を向上させることができる。
図2Bに示すように、サブピクセル20bでは、透光性電極159a,159kが配線160a2,160k上にそれぞれ設けられている。透光性電極159aは、開口されたp形半導体層153aの発光面153Sまで延伸されている。透光性電極159aは、発光面153S上にわたって設けられている。透光性電極159aは、配線160a2とp形半導体層153aとを電気的に接続する。
発光面153S上に透光性電極159aを設けることによって、透光性電極159aとp形半導体層153aとの接続面積を大きくすることができ、発光効率を向上させることができる。発光面153Sが粗面とされている場合には、発光面153Sと透光性電極159aとの接続面積を増大させることができ、接触抵抗を低減することができる。
本実施形態では、上述に示したサブピクセル20,20a,20bの構成のいずれかを含むことができる。
図3は、本実施形態に係る画像表示装置を例示する模式的なブロック図である。
図3に示すように、本実施形態の画像表示装置1は、表示領域2を備える。表示領域2には、サブピクセル20が配列されている。サブピクセル20は、たとえば格子状に配列されている。たとえば、サブピクセル20は、X軸に沿ってn個配列され、Y軸に沿ってm個配列される。
ピクセル10は、異なる色の光を発光する複数のサブピクセル20を含む。サブピクセル20Rは、赤色の光を発光する。サブピクセル20Gは、緑色の光を発光する。サブピクセル20Bは、青色の光を発光する。3種類のサブピクセル20R,20G,20Bが所望の輝度で発光することによって、1つのピクセル10の発光色および輝度が決定される。
1つのピクセル10は、3つのサブピクセル20R,20G,20Bを含み、サブピクセル20R,20G,20Bは、たとえば図3に示す例のように、X軸上を直線状に配列されている。各ピクセル10は、同じ色のサブピクセルが同じ列に配列されていてもよいし、この例のように、列ごとに異なる色のサブピクセルが配列されていてもよい。
画像表示装置1は、電源線3および接地線4をさらに有する。電源線3および接地線4は、サブピクセル20の配列に沿って、格子状に布線されている。電源線3および接地線4は、各サブピクセル20に電気的に接続され、電源端子3aとGND端子4aとの間に接続された直流電源から各サブピクセル20に電力を供給する。電源端子3aおよびGND端子4aは、電源線3および接地線4の端部にそれぞれ設けられ、表示領域2の外部に設けられた直流電源回路に接続される。電源端子3aは、GND端子4aを基準にして正の電圧が供給される。
画像表示装置1は、走査線6および信号線8をさらに有する。走査線6は、X軸に平行な方向に布線されている。つまり、走査線6は、サブピクセル20の行方向の配列に沿って布線されている。信号線8は、Y軸に平行な方向に布線されている。つまり、信号線8は、サブピクセル20の列方向の配列に沿って布線されている。
画像表示装置1は、行選択回路5および信号電圧出力回路7をさらに有する。行選択回路5および信号電圧出力回路7は、表示領域2の外縁に沿って設けられている。行選択回路5は、表示領域2の外縁のY軸方向に沿って設けられている。行選択回路5は、各列のサブピクセル20に走査線6を介して電気的に接続され、各サブピクセル20に選択信号を供給する。
信号電圧出力回路7は、表示領域2の外縁のX軸方向に沿って設けられている。信号電圧出力回路7は、各行のサブピクセル20に信号線8を介して電気的に接続され、各サブピクセル20に信号電圧を供給する。
サブピクセル20は、発光素子22と、選択トランジスタ24と、駆動トランジスタ26と、キャパシタ28と、を含む。図3において、選択トランジスタ24はT1と表示され、駆動トランジスタ26はT2と表示され、キャパシタ28はCmと表示されることがある。
発光素子22は、駆動トランジスタ26と直列に接続されている。本実施形態では、駆動トランジスタ26はpチャネルのTFTであり、駆動トランジスタ26の主電極であるドレイン電極に発光素子22のp形半導体層に接続されたアノード電極が接続されている。発光素子22および駆動トランジスタ26の直列回路は、電源線3と接地線4との間に接続されている。駆動トランジスタ26は、図1等におけるトランジスタ103に対応し、発光素子22は、図1等における発光素子150,150aに対応する。発光素子22に流れる電流は、駆動トランジスタ26のゲート-ソース間に印加される電圧によって決定され、発光素子22は、流れる電流に応じた輝度で発光する。
選択トランジスタ24は、駆動トランジスタ26のゲート電極と信号線8との間に主電極を介して接続されている。選択トランジスタ24のゲート電極は、走査線6に接続されている。駆動トランジスタ26のゲート電極と電源線3との間には、キャパシタ28が接続されている。
行選択回路5は、m行のサブピクセル20の配列から、1行を選択して走査線6に選択信号を供給する。信号電圧出力回路7は、選択された行の各サブピクセル20に必要なアナログ電圧値を有する信号電圧を供給する。選択された行のサブピクセル20の駆動トランジスタ26のゲート-ソース間には、信号電圧が印加される。信号電圧は、キャパシタ28によって保持される。駆動トランジスタ26は、信号電圧に応じた電流を発光素子22に流す。発光素子22は、発光素子22に流れる電流に応じた輝度で発光する。
行選択回路5は、選択する行を順次切り替えて選択信号を供給する。つまり、行選択回路5は、サブピクセル20が配列された行を走査する。順次走査されたサブピクセル20の発光素子22には、信号電圧に応じた電流が流れて発光する。RGB各色のサブピクセル20が発光する発光色および輝度によって決定された発光色および輝度で各ピクセル10が発光して表示領域2に画像が表示される。
図4は、本実施形態の画像表示装置の一部を例示する模式的な平面図である。
本実施形態では、図1において説明したように、発光素子22(150)と駆動トランジスタ26(103)が、Z軸方向に積層されており、ビア161dによって、発光素子22(150)のアノード電極と駆動トランジスタ26(103)のドレイン電極とを電気的に接続している。また、光反射性を有する配線110rは、ビア161rによって、図3に示した接地線4に電気的に接続されている。
図4の上部には、第I層の平面図が模式的に表示され、下部には、第II層の平面図が模式的に表示されている。図4では、第I層を"I"と表記し、第2層を"II"と表記している。第I層は、発光素子22(150)が形成された層である。すなわち、第I層は、図1において、第1の層間絶縁膜112よりもZ軸の正側の要素を示しており、要素は、n形半導体層151から第2の配線層160までの層である。図4では、第2の層間絶縁膜156は示されていない。
第II層は、図1において、TFT下層膜106よりもZ軸の正側の要素を示しており、要素は、トランジスタ103から第1の層間絶縁膜112までの層である。図4では、基板102、絶縁層105、絶縁膜108および第1の層間絶縁膜112は示されていない。
図1の断面図は、第I層および第II層それぞれに一点鎖線の折れ線で示されたAA'線の矢視断面である。
図4に示すように、発光素子150は、段差部151aで、図1に示されたビア161kに接続されている。ビア161kは、コンタクトホール161k1を介して、配線160kに接続されている。
配線160kには、コンタクトホール161r1が設けられている。配線160kは、コンタクトホール161r1を介して、ビア161rに接続されている。
また、発光素子150は、p形半導体層153に設けられたコンタクトホール162aを介して配線160aに接続されており、配線160aは、コンタクトホール161d1を介して、ビア161dに接続されている。
2つの層間絶縁膜112,156を貫通するビア161d,161rは、図上、二点鎖線で模式的に示されている。
ビア161rの他端は、第1の層間絶縁膜112に設けられたコンタクトホール161r2を介して、配線110rに接続されている。配線110rは、発光素子150の直下に設けられており、第II層の図では、配線110r内に二点鎖線で発光素子150の外周が示されている。
ビア161dの他端は、第1の層間絶縁膜112に設けられたコンタクトホール161d2を介して、配線110dに接続されている。配線110dは、絶縁膜108に開口されたコンタクトホール111c1を介して、図1に示したビア111dに接続され、トランジスタ103のドレイン電極に接続される。
このようにして、層間絶縁膜112,156を貫通するビア161d,161rによって、異なる層である第I層および第II層にそれぞれ形成された発光素子150と配線110rとを電気的に接続し、発光素子150とトランジスタ103とを電気的に接続することができる。
配線110rは、光反射膜として機能する。図4を用いて、配線110rが光反射膜として機能する場合の配線110rおよび発光素子150の配置を説明する。
配線110rは、XY平面視で、X軸方向の長さL2およびY軸方向の長さW2を有する方形である。一方、発光素子150は、XY平面視で、X軸方向の長さL1およびY軸方向の長さW1を有する方形の底面を有する。
各部の長さは、L2>L1、W2>W1となるように設定されている。配線110rは、発光素子150の直下に設けられており、二点鎖線で示したように、配線110rの外周は、発光素子150の外周を含んでいる。配線110rの外周が発光素子150の外周を含んでいればよく、回路基板100上のレイアウト等に応じて、配線110rの形状は、方形である場合に限らず適切な任意の形状とすることができる。
発光素子150は、上方に向かって発光するとともに、下方に向かう発光や、層間絶縁膜112と表面樹脂層170との界面での反射光や散乱光等が存在する。配線110rは光反射性を有するので、発光素子150の下方への散乱光は、配線110rによって上方に反射される。そのため、発光面153S側へ配光する割合が大きくなり、発光素子150の実質的な発光効率が向上する。また、このように配線110rが設定されることによって、発光素子150の下方への光の到達を抑制されるので、回路素子を発光素子150の直下近傍に配置する場合でも、回路素子への光の影響を軽減することができる。
配線110rは、接地線4に接続する場合に限らず、電源線3の電位等他の電位に接続してもよいし、後述する他の実施形態の場合のように、いずれの電位にも接続しなくてもよい。また、発光素子150の直下に配置する配線は、この例のように、配線110rを設ける場合に限らず、回路レイアウトに応じて、他の配線を兼用させるようにしてもよい。たとえば、トランジスタの電極に接続されている配線110s,110dのいずれかの一部を発光素子150下に延伸し、その部分のXY平面視での外周が発光素子150の外周を含むようにしてもよい。
本実施形態の画像表示装置1の製造方法について説明する。
図5A~図9Bは、本実施形態の画像表示装置の製造方法およびその変形例を例示する模式的な断面図である。
図5Aに示すように、本実施形態の画像表示装置1の製造方法では、半導体成長基板(第2基板)1194が準備される。半導体成長基板1194は、結晶成長用基板(第1基板)1001上に成長させた半導体層1150を有する。結晶成長用基板1001は、たとえばSi基板やサファイア基板等である。好ましくは、Si基板が用いられる。
半導体成長基板1194では、p形半導体層1153、発光層1152およびn形半導体層1151は、結晶成長用基板1001上に結晶成長用基板1001側からこの順に積層される。半導体層1150の成長には、たとえば気相成長法(Chemical Vapor Deposition、CVD法)が用いられ、有機金属気相成長法(Metal Organic Chemical Vapor Deposition、MOCVD法)が好適に用いられる。半導体層1150は、たとえば、InAlGa1-X-YN(0≦X、0≦Y、X+Y<1)等である。
図5Bに示すように、回路基板1100が準備される。回路基板(第3基板)1100は、図1等で説明した回路101を含む。半導体成長基板1194は、上下を反転させて、回路基板1100と貼り合わされる。より詳細には、図の矢印で示したように、回路基板1100に形成されている層間絶縁膜112の露出面と、n形半導体層1151の露出面とを向かい合わせて、両者を貼り合わせる。
2つの基板を貼り合わせるウェハボンディングでは、たとえば、2つの基板を加熱して熱圧着により2つの基板を貼り合わせる。加熱圧着する際に、低融点金属や低融点合金を用いてもよい。低融点金属は、たとえばSnやIn等であり、低融点合金は、たとえばZnやIn、Ga、Sn、Bi等を主成分とした合金とすることができる。
ウェハボンディングでは、上述のほか、それぞれの基板の貼り合わせ面を化学機械研磨(Chemical Mechanical Polishing、CMP)等を用いて平坦化した上で、真空中で貼り合わせ面をプラズマ処理により清浄化して密着させるようにしてもよい。
図6A~図7Bには、ウェハボンディング工程に関する2種類の変形例が示されている。ウェハボンディング工程では、図5Aおよび図5Bの工程に代えて、図6A~図6Cの工程とすることができる。また、図5Aおよび図5Bの工程に代えて、図7Aおよび図7Bの工程としてもよい。
図6A~図6Cでは、結晶成長用基板1001に半導体層1150を形成した後、半導体層1150は、結晶成長用基板1001とは異なる支持基板1190に転写される。
図6Aに示すように、半導体成長基板1294が準備される。半導体成長基板1294では、半導体層1150は、結晶成長用基板1001上に、結晶成長用基板1001の側から、n形半導体層1151、発光層1152およびp形半導体層1153の順に成長される。
結晶成長の初期には結晶格子定数の不整合に起因する結晶欠陥が生じ易く、そのような結晶はn形を呈する。そのため、この例のように、n形半導体層1151から結晶成長用基板1001に積層する方が生産プロセス上のマージンを大きくとれて歩留りを向上し易いという長所がある。
図6Bに示すように、結晶成長用基板1001上に半導体層1150を形成した後、p形半導体層1153の露出面に支持基板1190が接着される。支持基板1190は、たとえばSiや石英等によって形成されている。半導体層1150に支持基板1190が接着された後には、結晶成長用基板1001は除去される。結晶成長用基板1001の除去には、たとえばウェットエッチングやレーザリフトオフが用いられる。
図6Cに示すように、回路基板1100が準備される。半導体層1150は、n形半導体層1151の露出面を介して、回路基板1100と貼り合わされる。その後、支持基板1190は、レーザリフトオフ等によって除去される。
図7Aおよび図7Bに示す例では、結晶成長用基板1001にバッファ層1140を設けた後に、半導体層1150は、バッファ層1140上に形成される。
図7Aに示すように、半導体成長基板1194aが準備される。半導体成長基板1194aでは、半導体層1150は、バッファ層1140を介して、結晶成長用基板1001上に形成される。半導体層1150は、結晶成長用基板1001上に結晶成長用基板1001側から、p形半導体層1153、発光層1152、n形半導体層1151の順に積層される。バッファ層1140は、結晶成長用基板1001の一方の面に形成されている。バッファ層1140は、AlN等のナイトライドが好適に用いられる。バッファ層1140を介して、半導体層1150を結晶成長させることによって、GaNの結晶と結晶成長用基板1001との界面での不整合を緩和することができる。
図7Bに示すように、回路基板1100が準備される。1194aは、上下を反転して、n形半導体層1151の露出面を介して、回路基板1100に貼り合わせられる。ウェハボンディング後、結晶成長用基板1001がレーザリフトオフ等によって除去される。
この例では、結晶成長用基板1001の除去後にバッファ層1140が残るので、以降のいずれかの工程で、バッファ層1140が除去される。バッファ層1140の除去は、たとえば、発光素子150を形成する工程の後に行ってもよいし、発光素子150を形成する前に行ってもよい。バッファ層1140の除去には、たとえば、ウェットエッチング等が用いられる。
ウェハボンディングした後の製造工程に戻って説明を続ける。
図8Aに示すように、ウェハボンディングによって回路基板1100が半導体層1150に接合された後、結晶成長用基板1001は、ウェットエッチングやレーザリフト等によって除去される。
図8Bに示すように、半導体層1150は、エッチングによって、必要な形状に成形される。発光素子150の成形には、たとえばドライエッチングプロセスが用いられ、好適には、異方性プラズマエッチング(Reactive Ion Etching、RIE)が用いられる。第1の層間絶縁膜112および発光素子150を覆って、第2の層間絶縁膜156が形成される。
図9Aに示すように、第2の層間絶縁膜156にコンタクトホール162aが形成される。層間絶縁膜156を貫通するビアホール162kが形成される。層間絶縁膜112,156を貫通するビアホール162d,162rが形成される。コンタクトホールやビアホールの形成には、たとえばRIE等が用いられる。
なお、前述のように、層間絶縁膜156は、発光素子150等を覆うことにより、絶縁性が確保されればよい。層間絶縁膜156の表面の平坦性は、層間絶縁膜156上に第2の配線層160を形成できる程度でよく、平坦化工程を行わなくてもかまわない。層間絶縁膜156に平坦化工程を施さない場合には、工程数を削減できるほか、発光素子150が形成された場所以外では、層間絶縁膜156の厚さを薄くすることができるとの利点がある。層間絶縁膜156の厚さが薄い箇所では、ビアホール162k,162d,162rの深さを浅くすることができる。ビアホールの深さを浅くすることによって、ビアホールの形成される深さにわたって十分な開口径を確保することができるので、ビアによる電気的接続を確保することが容易になる。そのため、電気的特性の不良による歩留りの低下を抑制することができる。
図9Bに示すように、コンタクトホール162aおよびビアホール162d,162k,162r内に導電材料が充填される。その後、第2の配線層160が形成される。あるいは、コンタクトホール162aおよびビアホール162d,162k,162r内に導電材料が充填され、ビア161d、161k、161rが形成されると同時に、第2の配線層160が形成されてもよい。
図10Aおよび図10Bは、本実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。
図10Aおよび図10Bは、図2Aに示したサブピクセル20aを形成するための製造工程を示している。本変形例では、第2の層間絶縁膜256を形成し、ビアホールを形成するまでは、第1の実施形態の場合と同一の工程を有している。以下では、図9Aの工程以降に図10Aおよび図10Bの工程が実行されるものとして説明する。
図10Aに示すように、第2の層間絶縁膜256をエッチングにより開口158を形成し、p形半導体層153aの発光面153Sを露出させる。エッチングは、ウェットエッチングでもよいし、ドライエッチングでもよい。その後、露出されたp形半導体層153aの発光面153Sは、発光効率を向上させるために粗面化される。
図10Bに示すように、開口158を含めて配線層を成膜し、フォトリソグラフィによって各配線160a1,160kを形成する。配線160a1は、露出されたp形半導体層153aの発光面153Sに接続されるように形成される。
このようにして、変形例のサブピクセル20aが形成される。
図11Aおよび図11Bは、本実施形態の変形例の画像表示装置の製造方法を例示する模式的な断面図である。
図11Aおよび図11Bは、図2Bに示したサブピクセル20bを形成するための製造工程を示している。本変形例では、開口158を形成するまでは、上述の変形例の場合と同一の工程を有している。したがって、以下では、図10A以降に、図11A、図11Bの工程が実行されるものとして説明する。
図11Aに示すように、p形半導体層153aの発光面153Sを露出するように開口158を形成した後、発光面153Sが粗面化される。層間絶縁膜256を貫通するビア161kが形成され、層間絶縁膜112,256を貫通するビア161rが形成される。その後、各配線160a2,160kを形成する。この段階では、配線160a2は、p形半導体層153の発光面153Sに接続されていない。
図11Bに示すように、配線層160、第2の層間絶縁膜256およびp形半導体層153aの発光面153Sを覆う透光性導電膜を形成する。透光性導電膜は、ITO膜やZnO膜等が好適に用いられる。フォトリソグラフィにより、必要な透光性電極159a,159kが形成される。透光性電極159aは、配線160a2上に形成されるとともに、p形半導体層153aの発光面153S上にも形成されている。したがって、配線160a2およびp形半導体層153aは、電気的に接続される。好ましくは、透光性電極159aは、露出されている発光面153Sの全面を覆うように設けられ、発光面153Sに接続されている。
このようにして、変形例のサブピクセル20bが形成される。
サブピクセル20以外の回路の一部は、回路基板1100中に形成されている。たとえば図3に示した行選択回路5は、駆動トランジスタや選択トランジスタ等とともに、回路基板1100中に形成されることができる。つまり、行選択回路5は、上述の製造工程によって同時に組み込まれている場合がある。一方、信号電圧出力回路7は、微細加工による高集積化が可能な製造プロセスによって製造された半導体デバイスに組み込まれることが望ましい。信号電圧出力回路7は、CPUや他の回路要素とともに別の基板に実装され、たとえば後述するカラーフィルタの組み込みの前に、あるいは、カラーフィルタの組み込みの後に、回路基板1100の配線と相互に接続される。
たとえば、回路基板1100は、回路101を含むガラス基板を含んでおり、ガラス基板は、ほぼ方形である。回路基板1100には、1つまたは複数の画像表示装置のための回路101が形成されている。あるいは、より大きな画面サイズ等の場合には、1つの画像表示装置を構成するための回路101が複数の回路基板1100に分割されて形成されており、分割された回路のすべてを組み合わせて、1つの画像表示装置を構成するようにしてもよい。
結晶成長用基板1001には、結晶成長用基板1001とほぼ同一寸法を有する半導体層1150が形成される。たとえば、結晶成長用基板1001は、方形の回路基板1100と同じ寸法を有する方形とすることができる。結晶成長用基板は、回路基板1100と同一形状や、相似の形状に限らず、他の形状であってもよい。たとえば、結晶成長用基板1001は、方形の回路基板1100に形成された回路101を含むような径を有するほぼ円形のウェハ形状等であってもよい。
図12は、本実施形態の画像表示装置の製造方法を例示する斜視図である。
図12に示すように、複数の半導体成長基板1194を準備して、1つの回路基板1100に、複数の結晶成長用基板1001に形成された半導体層1150を接合するようにしてもよい。
回路基板1100には、1枚の基板102に複数の回路101がたとえば格子状に配置されている。回路101は、1つの画像表示装置1に必要なすべてのサブピクセル20等を含んでいる。隣接して配置されている回路101の間には、スクライブライン幅の程度の間隔が設けられている。回路101の端部および端部付近には、回路素子等は配置されていない。
半導体層1150は、その端部が結晶成長用基板1001の端部と一致するように形成されている。そこで、半導体成長基板1194の端部を、回路101の端部と一致するように配置し、接合することによって、接合後の半導体層1150の端部と回路101の端部とを一致させることができる。
結晶成長用基板1001に半導体層1150を成長させるときに、半導体層1150の端部およびその近傍では、結晶品位の低下を生じ易い。そのため、半導体層1150の端部と回路101の端部とを一致させることによって、半導体成長基板1194上の半導体層1150の端部近傍における結晶品位の低下し易い領域を画像表示装置1の表示領域に使用しないようにすることができる。なお、ここで、結晶成長用基板1001の配置方法にはさまざまな自由度がある。半導体層1150の端部が発光素子150にかからないように配置することが好ましい。
あるいは、この逆に、複数の回路基板1100を準備して、1つの半導体成長基板1194の結晶成長用基板1001上に形成された半導体層1150に対して、複数の回路基板1100を接合するようにしてもよい。
図13は、本実施形態の画像表示装置の製造方法を例示する模式的な断面図である。
なお、図13では、煩雑さを避けるために、回路基板1100内の構造や層間絶縁膜112、ビア161d,161k,161r、配線層160等については、表示が省略されている。また、図13には、カラーフィルタ180等の色変換部材の一部が表示されている。図13では、発光素子150、層間絶縁膜156、表面樹脂層170、および表示が省略されているビア等を含む構造物を発光回路部172と呼ぶ。また、回路基板1100上に発光回路部172を設けた構造物を構造体1192と呼ぶ。
図13に示すように、カラーフィルタ(波長変換部材)180は、一方の面で構造体1192に接着される。カラーフィルタ180の他方の面は、ガラス基板186に接着されている。カラーフィルタ180の一方の面には、透明薄膜接着層188が設けられており、透明薄膜接着層188を介して、構造体1192の発光回路部172の側の面に接着される。
カラーフィルタ180は、この例では、赤色、緑色、青色の順にX軸の正方向に色変換部が配列されている。赤色については、1層目に赤色の色変換層183Rが設けられており、緑色については、1層目に緑色の色変換層183Gが設けられており、いずれも2層目にはフィルタ層184がそれぞれ設けられている。青色については、単層の色変換層183Bが設けられていてもよいし、フィルタ層184が設けられていてもよい。各色変換部の間には、遮光部181が設けられている。
各色の色変換層183R,183G,183Bの位置を発光素子150の位置に合わせて、カラーフィルタ180は、構造体1192に貼り付けられる。
図14A~図14Dは、本実施形態の画像表示装置の製造方法の変形例を示す模式的な断面図である。
図14A~図14Dには、カラーフィルタをインクジェットで形成する方法が示されている。
図14Aに示すように、回路基板1100に発光回路部172が貼り付けられた構造体1192が準備される。
図14Bに示すように、構造体1192上に遮光部181が形成される。遮光部181は、たとえばスクリーン印刷やフォトリソグラフィ技術等を用いて形成される。
図14Cに示すように、発光色に応じた蛍光体は、インクジェットノズルから噴出され、色変換層183を形成する。蛍光体は、遮光部181が形成されていない領域を着色する。蛍光体は、たとえば一般的な蛍光体材料やペロブスカイト蛍光体材料、量子ドット蛍光体材料を用いた蛍光塗料が用いられる。ペロブスカイト蛍光体材料や量子ドット蛍光体材料を用いた場合には、各発光色を実現できるとともに、単色性が高く、色再現性を高くできるので好ましい。インクジェットノズルによる描画の後、適切な温度および時間で乾燥処理を行う。着色時の塗膜の厚さは、遮光部181の厚さよりも薄く設定されている。
すでに説明したように、青色発光のサブピクセルについては、色変換部を形成しない場合には、蛍光体は噴出されない。また、青色発光のサブピクセルについて、青色の色変換層を形成する際に、色変換部は1層でよい場合には、好ましくは、青色の蛍光体の塗膜の厚さは、遮光部181の厚さと同じ程度とされる。
図14Dに示すように、フィルタ層184のための塗料は、インクジェットノズルから噴出される。塗料は、蛍光体の塗膜に重ねて塗布される。蛍光体および塗料の塗膜の合計の厚さは、遮光部181の厚さと同じ程度とされる。
本実施形態の画像表示装置1の効果について説明する。
本実施形態の画像表示装置1の製造方法では、発光素子150を駆動するトランジスタ103等の回路素子を含む回路基板1100に、発光素子150を形成するための発光層1152を含む半導体層1150を貼り合わせる。その後、半導体層1150をエッチングして発光素子150を形成する。そのため、回路基板1100に個片化された発光素子を個々に転写するのに比べて、発光素子を転写する工程を著しく短縮することができる。
たとえば、4K画質の画像表示装置では、サブピクセルの数は2400万個を超え、8K画質の画像表示装置の場合には、サブピクセルの数は9900万個を超える。これだけ大量の発光素子を個々に回路基板に実装するのでは、膨大な時間を要することとなり、マイクロLEDによる画像表示装置を現実的なコストで実現することは困難である。また、大量の発光素子を個々に実装したのでは、実装時の接続不良等による歩留りが低下し、さらなるコスト上昇が避けられない。
これに対して、本実施形態の画像表示装置1の製造方法では、半導体層1150を個片化する前に、半導体層1150全体を回路基板1100に貼り付けるので、転写工程が1回で完了する。
回路基板上で、エッチング等により発光素子を直接形成した後に、発光素子と、回路基板1100内の回路素子とを、ビア形成により電気的に接続するので、均一な接続構造を実現することができ、歩留りの低下を抑制することができる。
さらに、半導体層1150をあらかじめ個片化したり、回路素子に対応した位置に電極を形成したりすることなく、ウェハレベルで回路基板1100に貼り付けるので、アライメントをとる必要がない。そのため、貼り付け工程を短時間で容易に行うことが可能になる。貼り付け時にアライメントをとる必要がないので、発光素子150の小型化も容易であり、高精細化されたディスプレイに好適である。
本実施形態では、たとえばガラス基板上に形成されたTFTを回路基板1100とすることができるので、既存のフラットパネルの製造プロセスやプラントを利用することができる。
本実施形態の画像表示装置1では、回路基板100は、発光素子150の直下となる位置に光反射性を有する配線110rを設けているので、発光素子150の下方への散乱光を発光面153S側に配光して、実質的な発光効率を向上させることができる。
(第2の実施形態)
図15は、本実施形態に係る画像表示装置の一部を例示する模式的な断面図である。
図15は、図4のAA’線に相当する位置における矢視断面を示している。
本実施形態では、第1実施形態の配線110rは、配線210rに置き換えられている。この例では、配線210rには電位が与えられておらず、フローティングとされている。上述した他の実施形態の場合と同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
図15に示すように、本実施形態の画像表示装置のサブピクセル220では、第1の配線層110は、配線210rを含む。配線210rは、発光素子150の直下に設けられている。配線210rは、発光素子150の側に凹となる面211rを有する。好ましくは、第1の実施形態の場合と同様に、配線210rの外周は、XY平面視で、配線210rに投影された発光素子150の外周を含んでいる。
配線210rは、少なくとも面211rにおいて光反射性を有しており、発光素子150の直下に設けられている。そのため、配線210rは、発光素子150の下方への散乱光を上方へ反射することができる。本実施形態では、配線210rの発光素子150側の面211rは、凹面となっているので、下方への散乱光が、発光素子150から広がりながら散乱される場合であっても、より多くの光を発光面153Sの側に反射することができる。
本実施形態の画像表示装置の製造方法について説明する。
図16A~図17Cは、本実施形態の画像表示装置の製造方法を例示する模式的な断面図である。
図16A~図16Cでは、第1の配線層110の形成工程において、配線210rの形成工程が示されている。
図16Aに示すように、ゲート107および絶縁層105を覆う絶縁膜108が形成された回路基板2100aが準備される。回路基板2100aでは、配線層は、まだ形成されていない。
図16Bに示すように、絶縁膜108上にフォトレジストを塗布し、配線210rを形成する箇所に開口209が設けられたマスク1109を形成する。その後、マスク1109が形成された回路基板2100aは、等方性エッチングによって処理される。等方性エッチングは、ドライエッチングでもよいし、ウェットエッチングでもよい。等方性エッチングでは、マスク1109の下方や開口209のXY平面視での中央部付近にもエッチングが進ことによって、Z軸の正方向に凹となる凹面209aが形成される。
図16Cに示すように、マスク1109を除去し、絶縁膜108にビアホールを形成して、ビア111s,111dを形成した後、あるいは、ビア111s,111dを形成すると同時に第1の配線層210を形成する。
その後、絶縁膜108および配線層210を覆う層間絶縁膜112が形成される。このようにして、凹面である面211rを有する配線210rを形成することができ、配線210rを含む回路基板2100が形成される。
図17Aに示すように、図16Aに示した工程によって形成された回路基板2100が準備される。回路基板2100に半導体成長基板1194が貼り合わされ、結晶成長用基板が除去される。その後、半導体層がエッチングされて発光素子150が形成される。
図17Bに示すように、第1の層間絶縁膜112および発光素子150を覆う第2の層間絶縁膜156が形成された後、第2の層間絶縁膜156にコンタクトホール162aおよびビアホール162kが形成される。コンタクトホール162aおよびビアホール162kが形成されると同時に、層間絶縁膜112,156を貫通するビアホール162dが形成される。ビアホール162dは、コンタクトホール162aおよびビアホール162kが形成される前に形成されてもよいし、コンタクトホール162aおよびビアホール162kが形成された後に形成されてもよい。コンタクトホールやビアホールの形成には、たとえばRIE等が用いられる。
図17Cに示すように、ビアホール162d,162k内に導電材料が充填される。その後、第2の配線層160が形成される。あるいはビアホール162d,162kの充填と同時に第2の配線層160が形成される。
以降、他の実施形態の場合と同様に、カラーフィルタが形成される。
このようにして、本実施形態の画像表示装置を製造することができる。
本実施形態の画像表示装置の効果について説明する。
本実施形態においても、上述の他の実施形態の場合と同様の効果を有する。すなわち、回路基板2100に半導体層1150を貼り合わせた後、個別の発光素子150をエッチングにより形成するので、発光素子の転写工程を著しく短縮することができる。
上述の他の実施形態と同様の効果に加えて、本実施形態では、回路基板2100の第1の配線層210は、発光素子150の直下に設けられた配線210rを含んでいる。配線210rは、発光素子150側に凹となる面211rを有し、配線210rの外周は、平面視で、配線210rに投影される発光素子150の外周を含んでいる。そのため、発光素子150の下方への散乱光が横方向に広がりをもって散乱する場合であっても、面211rは、散乱光を発光面153Sの側に反射することができる。したがって、実質的な発光効率が向上される。
(第3の実施形態)
図18は、本実施形態に係る画像表示装置の一部を例示する模式的な断面図である。
ここで、図18は、図4のAA’線に相当する位置の矢視断面を示している。
本実施形態では、発光素子250の構成および発光素子250を駆動するトランジスタ203の構成が上述の他の実施形態の場合と相違する。上述の他の実施形態の場合と同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
図18に示すように、本実施形態の画像表示装置のサブピクセル320は、トランジスタ203と、発光素子250と、を含む。
トランジスタ203は、この例では、nチャネルのTFTである。トランジスタ203は、TFTチャネル204と、ゲート107と、を含む。TFTチャネル204は、基板102上に形成された多結晶Siの領域であり、アモルファスSiとして形成された領域をレーザ照射でアニーリングすることによって多結晶化され、活性化されている。TFTチャネル204は、領域204s,204i,204dを含む。領域204iは、領域204s,204d間に設けられている。領域204s,204dは、P等のn形不純物がドープされており、ビア111s,111dとオーミック接続されている。
ゲート107は、絶縁層105を介して、TFTチャネル204上に設けられている。領域204sよりも高い電位がゲート107に印加されると、領域204iにチャネルが形成されることによって、領域204s,204d間に流れる電流が制御される。
トランジスタ203の上部の構造および配線層の構造は、上述した他の実施形態の場合と同じである。
発光素子250は、p形半導体層(第1半導体層)253と、発光層252と、n形半導体層(第2半導体層)251と、を含む。p形半導体層253、発光層252およびn形半導体層251は、回路基板100の第1の層間絶縁膜112から発光面251Sに向かってこの順に積層されている。発光素子250は、XY平面視で、たとえば、ほぼ正方形または長方形状をなしているが、角部は丸くなっていてもよい。発光素子250はXY平面視で、たとえば楕円形状や円形状を有していてもよい。平面視での発光素子の形状や配置等を適切に選定することによって、レイアウトの自由度が向上する。p形半導体層253は、この例では、第1の層間絶縁膜112上をX軸方向に延伸する段差部253aを有する。
発光素子250は、上述の他の実施形態の場合と同じ材料でよい。発光素子250は、たとえば467nm±20nm程度の青色光あるいは410nm±20nmの波長の青紫色光を発光する。
第2の層間絶縁膜(第2絶縁膜)256は、第1の層間絶縁膜112および発光素子250を覆っている。第2の層間絶縁膜256は、開口258を有している。開口258は、発光素子250上に形成されており、層間絶縁膜256は、発光素子250の発光面251S上に設けられていない。層間絶縁膜256は、発光素子250が発光する光を反射して開口258から効果的に出力されるように、白色樹脂が好適に用いられるが、上述した他の実施形態の変形例の場合と同様に、黒色樹脂であってもよい。
発光面251Sは、n形半導体層251の面のうち発光層252に接する面に対向する面である。発光面251Sは、粗面化されている。
層間絶縁膜256を貫通して、ビア161aが設けられている。ビア161aの一端は、段差部253aに接続されている。
ビア161dは、層間絶縁膜112,256を貫通して設けられている。ビア161dの一端は、配線110dに接続されている。
配線層160は、第2の層間絶縁膜256上に設けられている。配線層160は、配線160k3,160a3を含む。第2の層間絶縁膜256を貫通するビア161aの一端は段差部253aに接続され、他端は、配線160a3に接続されている。層間絶縁膜112,256を貫通するビア161rの一端は、配線110rに接続され、他端は、配線160a3に接続されている。配線160a3は、後述する図19の電源線3に接続されている。したがって、p形半導体層253は、ビア161aおよび配線160a3を介して、電源線3に電気的に接続されている。配線110rは、ビア161rおよび配線160a3を介して、電源線3に電気的に接続されている。
配線160k3は、n形半導体層251に発光面251Sで接続されている。層間絶縁膜112,256を貫通するビア161dの一端は、配線110dに接続されている。配線110dは、トランジスタ203のドレイン電極に接続されている。ビア161dの他端は、配線160k3に接続されている。したがって、n形半導体層251は、配線160k3、ビア161dおよび配線110dを介して、トランジスタ203の主電極に電気的に接続されている。なお、トランジスタ203のもう一方の主電極であるソース電極は、配線110sを介して、後述の図19の接地線4に接続されている。
なお、この例では、発光面251Sは、粗面化されている。粗面化工程は省略されてもよい。また、図2Bにおいて上述したように、発光面251S上にわたって透光性電極を設け、透光性電極および配線によって、n形半導体層251を接地線4に接続するようにしてもよい。さらに、第1の実施形態の場合と同様に、発光面251S上を開口せず、層間絶縁膜を透明樹脂としてもよい。
本実施形態の画像表示装置のサブピクセル320では、層間絶縁膜256および配線層160上に表面樹脂層170が設けられ、上述の他の実施形態の場合と同様にカラーフィルタ等の上部構造が形成されている。
図19は、本実施形態に係る画像表示装置を例示する模式的なブロック図である。
図19に示すように、本実施形態の画像表示装置301は、表示領域2、行選択回路305および信号電圧出力回路307を備える。表示領域2には、上述の他の実施形態の場合と同様に、たとえばサブピクセル320が格子状に配列されている。
ピクセル10は、上述の他の実施形態の場合と同様に、異なる色の光を発光する複数のサブピクセル320を含む。サブピクセル320Rは、赤色の光を発光する。サブピクセル320Gは、緑色の光を発光する。サブピクセル320Bは、青色の光を発光する。3種類のサブピクセル320R,320G,320Bが所望の輝度で発光することによって、1つのピクセル10の発光色および輝度が決定される。
1つのピクセル10は、3つのサブピクセル320R,320G,320Bからなり、サブピクセル320R,320G,320Bは、たとえば図19に示す例のように、X軸上を直線状に配列されている。各ピクセル10は、同じ色のサブピクセルが同じ列に配列されていてもよいし、この例のように、列ごとに異なる色のサブピクセルが配列されていてもよい。
サブピクセル320は、発光素子322と、選択トランジスタ324と、駆動トランジスタ326と、キャパシタ328と、を含む。図19において、選択トランジスタ324はT1と表示され、駆動トランジスタ326はT2と表示され、キャパシタ328はCmと表示されることがある。
本実施形態では、発光素子322が電源線3側に設けられており、発光素子322に直列に接続された駆動トランジスタ326は、接地線4側に設けられている。つまり、駆動トランジスタ326は、発光素子322よりも低電位側に接続されている。駆動トランジスタ326は、nチャネルのトランジスタである。
駆動トランジスタ326のゲート電極と信号線308との間には、選択トランジスタ324が接続されている。キャパシタ328は、駆動トランジスタ326のゲート電極と接地線4との間に接続されている。
行選択回路305および信号電圧出力回路307は、nチャネルのトランジスタである駆動トランジスタ326を駆動するために、上述の他の実施形態と異なる極性の信号電圧を、信号線308に供給する。
本実施形態では、駆動トランジスタ326の極性がnチャネルであることから、信号電圧の極性等が上述の他の実施形態の場合と相違する。すなわち、行選択回路305は、m行のサブピクセル320の配列から、順次1行を選択するように走査線306に選択信号を供給する。信号電圧出力回路307は、選択された行の各サブピクセル320に必要なアナログ電圧値を有する信号電圧を供給する。選択された行のサブピクセル320の駆動トランジスタ326は、信号電圧に応じた電流を発光素子322に流す。発光素子322は、流れた電流に応じた輝度で発光する。
本実施形態の画像表示装置の製造方法について説明する。
図20A~図21Cは、本実施形態の画像表示装置の製造方法を例示する模式的な断面図である。
図20Aに示すように、本実施形態では、図5Aにおいて示した半導体成長基板1194とは異なる半導体成長基板1294を用いる。半導体成長基板1294では、半導体層1150は、結晶成長用基板1001上に、結晶成長用基板1001の側から、n形半導体層1151、発光層1152およびp形半導体層1153の順に成長、積層される。
図20Bに示すように、p形半導体層1153の開放された面と、回路基板1100の第1の層間絶縁膜112の開放された面とが、貼り合わされる。
ウェハボンディング工程においては、第1の実施形態の場合に説明したように、半導体成長基板1294を支持基板に転写後、結晶成長用基板1001を除去して、貼り合わせてもよい。この場合には、結晶成長用基板1001には、結晶成長用基板1001の側から、p形半導体層1153、発光層1152およびn形半導体層1151の順に成長、積層された半導体成長基板1194が用いられる。
また、第1の実施形態の場合と同様に、結晶成長用基板1001に、バッファ層を介して半導体層1150を成長させるようにしてもよい。
図21Aに示すように、ウェハボンディング後、結晶成長用基板1001がウェットエッチングまたはレーザリフトオフ等によって除去された後、半導体層1150は、異方性エッチング等によってエッチングされ発光素子250が形成される。第1の層間絶縁膜112および発光素子250上に第2の層間絶縁膜256が形成される。
図21Bに示すように、第2の層間絶縁膜256にビアホール162d,162a3,162rが形成される。ビアホールの形成には、RIE等が用いられる。XY平面視で、層間絶縁膜256の発光素子250に対応する箇所に、開口258が形成される。この例では、開口258によって露出された発光面251Sは粗面化される。
図21Cに示すように、ビアホール162d,162a3,162r内に導電材料が充填される。その後、第2の配線層160が形成される。あるいは、ビアホール内に導電材料が充填されると同時に、第2の配線層160が形成されてもよい。
以降、上述の他の実施形態の場合と同様に、層間絶縁膜256および配線層160を覆う表面樹脂層170を形成し、カラーフィルタ等の上部構造を形成して、その後、画像表示装置301ごとに切断される。このようにして、画像表示装置301は製造されることができる。
本実施形態の画像表示装置301の効果について説明する。
本実施形態においても、上述の他の実施形態の場合と同様の効果を有する。すなわち、回路基板1100に半導体層1150を貼り合わせた後、個別の発光素子250をエッチングにより形成するので、発光素子の転写工程を著しく短縮することができる。
上述の他の実施形態の場合の効果に加えて、本実施形態では、n形半導体層251を発光面251Sとすることによって、より容易に粗面化することができ、発光面251Sに配線160k3を接続することによって、発光効率の高いサブピクセルを形成することができる。発光面を粗面化する場合には、粗面化する半導体層の厚さが厚い方が、より深くエッチングすることができ、接続面積をかせぐことができる。n形半導体層251は、低抵抗化し易く、抵抗値を上げずにより厚く形成できるので、より深くまでエッチングすることができるとの利点がある。
(第4の実施形態)
本実施形態の画像表示装置では、ガラス基板に代えて可撓性のある基板上にトランジスタ等の回路素子が形成されている。他の点では、上述した他の実施形態の場合と同様であり、同一の構成要素には同一の符号を付して、詳細な説明を適宜省略する。
図22は、本実施形態に係る画像表示装置の一部を例示する模式的な断面図である。
図22は、図4に示したAA’線に相当する位置における矢視断面を示している。
図22に示すように、本実施形態の画像表示装置は、サブピクセル420を備える。サブピクセル420は、基板402を含む。基板402は第1面402aを含む。トランジスタ103等の回路素子は、第1面402a上に設けられている。サブピクセル420において、回路素子を含む上部構造は、第1面402a上に形成されている。
基板402は、可撓性を有する。基板402は、たとえば、ポリイミド樹脂等である。層間絶縁膜112,156や配線層110,160等は、基板402の可撓性に応じて、ある程度のフレキシビリティを有する材料で形成されることが好ましい。なお、折り曲げ時に最も破壊されるリスクが高いのは、最も長い配線長を有する配線層110である。そのため、必要に応じて表面や裏面に追加される複数の保護フィルム等をも含めた中立面が配線層110の位置になるように、各種の膜厚と膜質を調整することが望ましい。
この例では、基板402上に形成されるトランジスタ103および発光素子150は、第1の実施形態の場合と同様であり、たとえば、図3の回路構成が適用される。他の実施形態の回路構成を含めた構成が適用できるのは言うまでもない。
本実施形態の画像表示装置の製造方法について説明する。
図23A~図23Bは、本実施形態の画像表示装置の製造方法を例示する模式的な断面図である。
図23Aに示すように、本実施形態では、上述の他の実施形態の場合と異なる回路基板4100が準備される。回路基板4100は、2層の基板102,402を含む。基板402は、基板102の第1面102a上に設けられており、たとえばポリイミド材料を塗布、焼成して形成される。2層の基板102,402の間には、SiN等の無機膜をさらに挟んでもよい。TFT下層膜106や回路101および層間絶縁膜112は、基板402の第1面402a上に設けられている。基板402の第1面402aは、基板102が設けられた面に対向する面である。
このような回路基板4100に、準備された半導体成長基板1194の半導体層1150を貼り合わせる。その後、上述の他の実施形態の場合と同様に、発光素子150、層間絶縁膜156および第2の配線層160を形成し、さらにカラーフィルタ180等の上部構造を形成する。たとえば、すでに説明した図5A~図14Dに対応する製造工程が適用される。
図23Bに示すように、カラーフィルタ等の上部構造が形成された構造体から、基板102が除去される。基板102の除去には、たとえばレーザリフトオフ等が用いられる。基板102の除去は、上述の時点に限らず、他の適切な時点で行うことができる。たとえば、ウェハボンディング後や、カラーフィルタの形成前に基板102を除去するようにしてもよい。より早い時点で基板102を除去することによって、製造工程中での割れや欠け等の不具合を低減することができる。
本実施形態の画像表示装置の効果について説明する。
基板402は、可撓性を有するので、画像表示装置として曲げ加工が可能になり、曲面への貼り付けや、ウェアラブル端末等への利用等を違和感なく実現することができる。
(第5の実施形態)
本実施形態では、発光層を含む単一の半導体層に、複数の発光素子に相当する複数の発光面を形成することによって、より発光効率の高い画像表示装置を実現する。以下の説明では、上述の他の実施形態の場合と同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
図24は、本実施形態に係る画像表示装置の一部を例示する模式的な断面図である。
図24の断面図は、XZ平面に平行な面における断面を示している。
図24に示すように、画像表示装置は、サブピクセル群520を備える。サブピクセル群520は、トランジスタ103-1,103-2と、第1の配線層510と、第1の層間絶縁膜112と、半導体層550と、第2の層間絶縁膜556と、第2の配線層560と、ビア561d1,561d2と、を含む。
半導体層550は、2つの発光面551S1,551S2を含んでおり、サブピクセル群520には実質的に2つのサブピクセルが含まれる。本実施形態では、上述の他の実施形態の場合と同様に、実質的に2つのサブピクセルを含むサブピクセル群520が格子状に配列されることによって、表示領域が形成される。
トランジスタ103-1,103-2は、TFTチャネル104-1,104-2にそれぞれ形成されている。この例では、TFTチャネル104-1,104-2は、p形にドープされた領域を含んでおり、これらの領域の間にチャネル領域を含む。
TFTチャネル104-1,104-2上には、絶縁層105が形成され、絶縁層105を介して、ゲート107-1,107-2がそれぞれ形成されている。ゲート107-1,107-2は、トランジスタ103-1,103-2のゲートである。この例では、トランジスタ103-1,103-2は、pチャネルのTFTである。
絶縁膜108は、2つのトランジスタ103-1,103-2上を覆っている。絶縁膜108上には、第1の配線層510が形成されている。
トランジスタ103-1のp形にドープされた領域と配線層510との間には、ビア111s1,111d1が設けられている。トランジスタ103-2のp形にドープされた領域と配線層510との間には、ビア111s2,111d2が設けられている。
第1の配線層510は、配線510s,510d1,510d2を含む。配線510sは、ビア111s1,111s2を介して、トランジスタ103-1,103-2のソース電極に対応する領域に電気的に接続されている。配線510sは、たとえば図3の電源線3に接続される。配線510s(部分)は、半導体層550の直下に設けられている。配線510sの外周は、XY平面視で、半導体層550を配線510sに投影したときに、半導体層550の外周をすべて含むように設定されている。
配線510d1は、ビア111d1を介して、トランジスタ103-1のドレイン電極に対応する領域に接続されている。配線510d2は、ビア111d2を介して、トランジスタ103-2のドレイン電極に対応する領域に接続されている。
第1の層間絶縁膜112は、トランジスタ103-1,103-2および配線層510を覆っている。半導体層550は、層間絶縁膜112上に設けられている。単一の半導体層550は、X軸方向に沿って配置された2つの駆動用のトランジスタ103-1,103-2の間に設けられている。
半導体層550は、p形半導体層(第1半導体層)553と、発光層552と、n形半導体層(第2半導体層)551と、を含む。半導体層550は、層間絶縁膜112の側から発光面551S1,551S2の側に向かって、p形半導体層553、発光層552およびn形半導体層551の順に積層されている。p形半導体層553は、段差部553a1,553a2を有する。段差部553a1はトランジスタ103-1の側に設けられており、段差部553a2はトランジスタ103-2の側に設けられている。
第2の層間絶縁膜(第2絶縁膜)556は、第1の層間絶縁膜112および半導体層550を覆っている。層間絶縁膜556は、半導体層550の一部を覆っている。好ましくは、層間絶縁膜556は、半導体層550の発光面551S1,551S2を除き、n形半導体層551の面を覆っている。層間絶縁膜556は、半導体層550の側面および段差部553a1,553a2を覆っている。層間絶縁膜556は、好ましくは白色樹脂である。
半導体層550のうち層間絶縁膜556で覆われていない部分は、透光性電極559kが覆っている。透光性電極559kは、層間絶縁膜556の開口558-1,558-2からそれぞれ露出されたn形半導体層551の発光面551S1,551S2上に設けられている。透光性電極559kは、n形半導体層551に電気的に接続されている。
ビア561a1,561a2は、層間絶縁膜556を貫通して設けられている。ビア561a1,561a2の一端は、段差部553a1,553a2にそれぞれ接続されている。
ビア561d1,561d2は、層間絶縁膜556,112を貫通して設けられている。ビア561d1,561d2の一端は、配線510d1,510d2にそれぞれ接続されている。
第2の配線層560は、層間絶縁膜556上に設けられている。配線層560は、配線560a1,560a2を含む。ビア561d1は、配線510d1と配線560a1との間に設けられている。ビア561d2は、配線510d2と配線560a2との間に設けられている。ビア561d1,561d2の他端は、配線560a1,560a2にそれぞれ接続されている。
配線560a1は、ビア561a1を介してp形半導体層553に接続されている。配線560a2は、ビア561a2を介して、p形半導体層553に接続されている。したがって、p形半導体層553は、配線560a1、ビア561d1および配線510d1を介してトランジスタ103-1のドレイン電極に接続される。p形半導体層553は、配線560a2、ビア561d2および配線510d2を介してトランジスタ103-2のドレイン電極に接続される。
配線層560は、配線560kを含む。配線560k上には、透光性電極559kが設けられており、配線560kと透光性電極559kとは電気的に接続されている。透光性電極559kは、開口558-1,558-2に延伸されている。透光性電極559kは、開口558-1,558-2からそれぞれ露出された発光面551S1,551S2の全面にわたって設けられ、発光面551S1,551S2を介して、n形半導体層551に電気的に接続されている。配線560a1,560a2上にも、透光性電極559a1,559a2がそれぞれ設けられている。配線560a1および透光性電極559a1は、相互に電気的に接続され、配線560a2および透光性電極559a2は、相互に電気的に接続されている。
開口558-1は、配線560a1,560kの間に設けられている。開口558-2は、配線560k,560a2の間に設けられている。配線560kは、この例では、開口558-1,558-2の間に設けられている。開口558-1,558-2は、XY平面視で、たとえば正方形または長方形状である。方形に限らず、円形、楕円形あるいは六角形等の多角形であってもよい。発光面551S1,551S2もXY平面視で、正方形や長方形、その他の多角形や円形等である。発光面551S1,551S2の形状は、開口558-1,558-2の形状と相似であってもよいし、異なる形状としてもよい。
上述したように、開口558-1,558-2から露出されている発光面551S1,551S2には、それぞれ透光性電極559kが接続されている。そのため、透光性電極559kから供給された電子は、露出された発光面551S1,551S2からn形半導体層551に注入される。一方、p形半導体層553には、配線560a1、ビア561d1および配線510d1を介して、トランジスタ103-1から正孔が注入される。また、p形半導体層553には、配線560a2、ビア561d2および配線510d2を介して、トランジスタ103-2から正孔が注入される。
トランジスタ103-1,103-2は、隣接するサブピクセルの駆動トランジスタであり、順次駆動される。したがって、2つのトランジスタ103-1,103-2のいずれか一方から注入された正孔が発光層552に注入され、配線560kから注入された電子が発光層552に注入されて、発光する。
ここで、開口558-1は、配線560kと配線560a1との間に設けられている。そのため、トランジスタ103-1がオンしたときに、開口558-1から露出された発光面551S1は発光する。一方、開口558-2は、配線560kと配線560a2との間に設けられている。そのため、トランジスタ103-2がオンしたときに、開口558-2から露出された発光面551S2は発光する。このように、発光層552における発光が局在化するのは、p形半導体層553およびn形半導体層551の抵抗によって、半導体層550内で、XY平面に平行な方向に流れるドリフト電流が抑制されるからである。
本実施形態の画像表示装置の製造方法について説明する。
図25A~図26Bは、実施形態の画像表示装置の製造方法を例示する模式的な断面図である。
図25Aに示すように、半導体成長基板1294aおよび回路基板5100が準備される。半導体成長基板1294aは、結晶成長用基板1001上に、バッファ層1140を介して、半導体層1150がエピタキシャル成長されている。半導体層1150は、バッファ層1140の側からn形半導体層1151、発光層1152およびp形半導体層1153の順に積層されている。回路基板5100は、ガラスからなる基板102上にトランジスタ103-1,103-2や配線層510、層間絶縁膜112が形成されている。半導体層1150のp形半導体層1153の開放された面は、回路基板5100の層間絶縁膜112の開放された面に接合される。
半導体成長基板等の形成については、上述の他の実施形態やその変形例の場合においてすでに説明した場合と同様であり、詳細な説明を省略する。なお、回路基板5100についても、回路の構成が上述の他の実施形態の場合と相違し得るが、他のほとんどの部分ですでに説明した構造と同様である。以下では、符号のみを代えて、詳細な説明を適宜省略する。
図25Bに示すように、半導体成長基板1294aおよび回路基板5100がウェハボンディングされた後、結晶成長用基板1001がウェットエッチングやレーザリフトオフ等によって除去される。
図26Aに示すように、半導体層1150は、エッチングされて、p形半導体層553の端部が形成される。p形半導体層553の端部には、ビア接続用の段差部553a1,553a2が形成される。p形半導体層553の段差部553a1,553a2以外の部分の上には、発光層552およびn形半導体層551が形成される。
図26Bに示すように、第1の層間絶縁膜112および半導体層550上に第2の層間絶縁膜556が形成される。層間絶縁膜556には、ビアが形成される。さらに配線層560が形成され、エッチングによって配線560a1,560a2,560k等が形成される。
その後、配線560a1,560kの間の部分および配線560a2,560kの間の部分に開口558-1,558-2がそれぞれ形成される。開口558-1,558-2によって露出されたn形の半導体層の発光面551S1,551S2は、それぞれ粗面化される。その後、透光性電極559a1,559a2,559kが形成される。
このようにして、2つの発光面551S1,551S2を共用する半導体層550を有するサブピクセル群520が形成される。
本実施例では、1つの半導体層550に2つの発光面551S1,551S2を設けたが、発光面の数は2つに制限されることはなく、3つあるいはそれ以上の発光面を1つの半導体層550に設けることも可能である。一例として、1列あるいは2列分のサブピクセルを、単一の半導体層550で実現してもよい。これによって後述するように、発光面1つあたりの発光に寄与しない再結合電流を削減するとともに、より微細な発光素子を実現する効果を増大させることができる。
(変形例)
図27は、本実施形態の変形例に係る画像表示装置の一部を例示する模式的な断面図である。
本変形例では、発光層552上に2つのn形半導体層5551a1,5551a2を設けた点で上述の第5の実施形態の場合と異なっている。他の点では、第5の実施形態の場合と同じである。
図27に示すように、本変形例の画像表示装置は、サブピクセル群520aを備える。サブピクセル群520aは、半導体層550aを含む。半導体層550aは、p形半導体層553と、発光層552と、n形半導体層5551a1,5551a2と、を含む。p形半導体層553、発光層552およびn形半導体層5551a1,5551a2は、層間絶縁膜112から発光面5551S1,5551S2の側に向かってこの順に積層されている。
n形半導体層5551a1,5551a2は、発光層552上をX軸方向に沿って離隔して配置されている。n形半導体層5551a1,5551a2の間には、層間絶縁膜556が設けられ、n形半導体層5551a1,5551a2は、層間絶縁膜556によって分離されている。その層間絶縁膜556上には、配線560kが設けられている。
n形半導体層5551a1,5551a2は、XY平面視で、ほぼ同一の形状を有しており、その形状は、ほぼ正方形または長方形状であり、他の多角形状や円形等であってもよい。
n形半導体層5551a1,5551a2は、発光面5551S1,5551S2をそれぞれ有する。発光面5551S1,5551S2は、開口558-1,558-2によってそれぞれ露出されたn形半導体層5551a1,5551a2の面である。
発光面5551S1,5551S2のXY平面視での形状は、第5の実施形態の場合の発光面の形状と同様に、ほぼ同一の形状を有し、ほぼ正方形等の形状を有する。発光面5551S1,5551S2の形状は、本実施形態のような方形に限らず、円形、楕円形あるいは六角形等の多角形であってもよい。発光面5551S1,5551S2の形状は、開口558-1,558-2の形状と相似であってもよいし、異なる形状としてもよい。
発光面5551S1上には、透光性電極559kが設けられている。発光面5551S2上にも透光性電極559kが設けられている。透光性電極559kは、配線560k上にも設けられており、発光面5551S1,5551S2に接続された透光性電極559kを介して、n形半導体層5551a1,5551a2は、配線560kに接続されている。配線560kは、たとえば図3の接地線4に接続されている。
図28Aおよび図28Bは、本変形例の画像表示装置の製造方法を例示する模式的な断面図である。
本変形例では、半導体層1150を形成するまでは、第5の実施形態の場合の図25A~図25Bにおいて説明した工程と同様の工程が採用される。以下では、それ以降の工程について説明する。
図28Aに示すように、本変形例では、バッファ層1140、n形半導体層1151、発光層1152およびp形半導体層1153をエッチングして、発光層552およびp形半導体層553を形成した後、さらにエッチングにより2つのn形半導体層5551a1,5551a2を形成する。バッファ層1140は、n形半導体層5551a1,5551a2を形成後に除去されてもよい。
図28Aの場合には、n形半導体層5551a1,5551a2のエッチングは、発光層552に到達したところで停止されている。n形半導体層5551a1,5551a2のエッチングは、さらに深い位置まで進められてもよい。たとえば、n形半導体層5551a1,5551a2を形成するためのエッチングは、発光層552内やp形半導体層553内の深さに到達するまで行ってもよい。このようにn形半導体層を深くエッチングする場合には、後述するn形の半導体層の発光面5551S1,5551S2は、エッチングされたn形半導体層5551a1,5551a2の端部から1μm以上内側とすることが望ましい。エッチングによって形成されたn形半導体層5551a1,5551a2の端部の位置を発光面5551S1,5551S2から離すことによって、再結合電流を抑制することができる。
図28Bに示すように、層間絶縁膜112および半導体層550aを覆う層間絶縁膜556が形成され、その後ビアが形成される。さらに配線層560が形成され、エッチングによって配線560a1,560a2,560k等が形成される。
層間絶縁膜556に開口558-1,558-2がそれぞれ形成される。開口558-1,558-2によって露出されたn形の半導体層の発光面5551S1,5551S2は、それぞれ粗面化される。その後、透光性電極559a1,559a2,559kが形成される。
このようにして、2つの発光面5551S1,5551S2を有するサブピクセル群520aが形成される。
本変形例の場合も、第5の実施形態の場合と同様に、発光面の数は2つに限定されることはなく、3つあるいはそれ以上の発光面を1つの半導体層550aに設けてもよい。
本実施形態の画像表示装置の効果について説明する。
図29は、画素LED素子の特性を例示するグラフである。
図29の縦軸は、発光効率[%]を表している。横軸は、画素LED素子に流す電流の電流密度を相対値によって表している。
図29に示すように、電流密度の相対値が1.0より小さい領域では、画素LED素子の発光効率は、ほぼ一定か、単調に増加する。電流密度の相対値が1.0よりも大きい領域では、発光効率は単調に減少する。つまり、画素LED素子には、発光効率が最大になるような適切な電流密度が存在する。
発光素子から十分な輝度が得られる程度に電流密度を抑制することによって、高効率な画像表示装置を実現することが期待される。しかしながら、低電流密度では、電流密度の低下とともに、発光効率が低下する傾向にあることが、図29によって示されている。
上述の他の実施形態において説明したように、発光素子150,150a、250は、発光層152,252を含む半導体層1150の全層をエッチング等で個別に分離することによって形成される。このとき、発光層152,252とn形半導体層151,251との接合面が端部に露出する。同様に、発光層152,252とp形半導体層153,153a,253との接合面が端部に露出する。
このような端部が存在する場合には、端部において電子および正孔が再結合する。一方で、このような再結合は、発光に寄与しない。端部での再結合は、発光素子に流す電流とはほとんど関係なく発生する。再結合は、端部の発光に寄与する接合面の長さに応じて発生するものと考えられる。
同一寸法の立方体形状の発光素子を2個発光させる場合には、端部は、発光素子ごとに四方に形成されるため、合計8つの端部において再結合が発生し得る。
これに対して、本実施形態では、2つの発光面を有する半導体層550,550aの端部は4つである。開口558-1,558-2の間の領域は、電子や正孔の注入が少なく、発光にほとんど寄与しないので、発光に寄与する端部は、6個になると考えることができる。このように、本実施形態では、半導体層の端部の数が実質的に低減されることによって、発光に寄与しない再結合を低減し、再結合電流の減少が、駆動電流を引き下げることを可能にする。
高精細化等のために、サブピクセル間の距離を短縮するような場合や電流密度が比較的高い場合等には、第5の実施形態のサブピクセル群520では、発光面551S1,551S2の距離が短くなる。この場合に、n形半導体層551が共有されていると、隣接する発光面の側に注入された電子の一部が分流して、発光面5551S1,5551S2の間で発光層552が微発光するおそれがある。変形例では、n形半導体層5551a1,5551a2を発光面5551S1,5551S2ごとに分離しているので、発光面5551S1,5551S2の間での発光層552の発光を回避することができる。
なお、本実施形態では、半導体層550,550aの上層のn形半導体層551,5551a1,5551a2には配線560kから定電圧を入力し、下層のp形半導体層553には各トランジスタ103-1,103-2等から駆動電流を供給している。トランジスタの極性を変更し、配線等の接続を変更することによって、これを逆にすることも可能である。その場合は半導体層550,550aの下層のp形半導体層553には定電圧を入力し、上層のn形半導体層551,5551a1,5551a2には2つのnチャネルのトランジスタ等から駆動電流を供給することになる。このようにすることによって、回路レイアウトに応じて、いずれかを選択することが可能である。
本実施形態では、発光層を含む半導体層は、層間絶縁膜112の側から、p形半導体層、発光層およびn形半導体層の順に積層するものであり、n形半導体層の露出面を粗面化して発光効率を向上させる観点からは好ましい。上述した他の実施形態の場合と同様に、p形半導体層とn形半導体層の積層順を代えて、n形半導体層、発光層およびp形半導体層の順に積層するようにしてもよい。
(第6の実施形態)
上述した画像表示装置は、適切なピクセル数を有する画像表示モジュールとして、たとえばコンピュータ用ディスプレイ、テレビ、スマートフォンのような携帯用端末、あるいは、カーナビゲーション等とすることができる。
図30は、本実施形態に係る画像表示装置を例示するブロック図である。
図30には、コンピュータ用ディスプレイの構成の主要な部分が示されている。
図30に示すように、画像表示装置601は、画像表示モジュール602を備える。画像表示モジュール602は、たとえば上述した第1の実施形態の場合の構成を備えた画像表示装置である。画像表示モジュール602は、サブピクセル20が配列された表示領域2、行選択回路5および信号電圧出力回路7を含む。画像表示装置601は、第2~第5の実施形態のいずれかの場合の構成を備えるようにしてもよい。
画像表示装置601は、コントローラ670をさらに備えている。コントローラ670は、図示しないインタフェース回路によって分離、生成される制御信号を入力して、行選択回路5および信号電圧出力回路7に対して、各サブピクセルの駆動および駆動順序を制御する。
(変形例)
図31は、本変形例の画像表示装置を例示するブロック図である。
図31には、高精細薄型テレビの構成が示されている。
図31に示すように、画像表示装置701は、画像表示モジュール702を備える。画像表示モジュール702は、たとえば上述した第1の実施形態の場合の構成を備えた画像表示装置1である。画像表示装置701は、コントローラ770およびフレームメモリ780を備える。コントローラ770は、バス740によって供給される制御信号にもとづいて、表示領域2の各サブピクセルの駆動順序を制御する。フレームメモリ780は、1フレーム分の表示データを格納し、円滑な動画再生等の処理のために用いられる。
画像表示装置701は、I/O回路710を有する。I/O回路710は、外部の端末や装置等と接続するためのインタフェース回路等を提供する。I/O回路710には、たとえば外付けのハードディスク装置等を接続するUSBインタフェースや、オーディオインタフェース等が含まれる。
画像表示装置701は、受信部720および信号処理部730を有する。受信部720には、アンテナ722が接続され、アンテナ722によって受信された電波から必要な信号を分離、生成する。信号処理部730は、DSP(Digital Signal Processor)やCPU(Central Processing Unit)等を含んでおり、受信部720によって分離、生成された信号は、信号処理部730によって、画像データや音声データ等に分離、生成される。
受信部720および信号処理部730を、携帯電話の送受信用やWiFi用、GPS受信器等の高周波通信モジュールとすることによって、他の画像表示装置とすることもできる。たとえば、適切な画面サイズおよび解像度の画像表示モジュールを備えた画像表示装置は、スマートフォンやカーナビゲーションシステム等の携帯情報端末とすることができる。
本実施形態の場合の画像表示モジュールは、第1の実施形態の場合の画像表示装置の構成に限らず、その変形例や他の実施形態の場合としてもよい。
以上説明した実施形態によれば、発光素子の転写工程を短縮し、歩留りを向上した画像表示装置の製造方法および画像表示装置を実現することができる。
図32は、第1~第5の実施形態およびこれらの変形例の画像表示装置を模式的に例示する斜視図である。
図32に示すように、第1~第5の実施形態の画像表示装置は、上述したように、回路基板100上に、多数のサブピクセルを有する発光回路172が設けられている。発光回路部172上には、カラーフィルタ180が設けられている。なお、第6の実施形態においては、回路基板100、発光回路部172およびカラーフィルタ180を含む構造物は、画像表示モジュール602,702とされ、画像表示装置601,701に組み込まれている。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明およびその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1,201,601,701 画像表示装置、2 表示領域、3 電源線、4 接地線、5,205 行選択回路、6,206 走査線、7,207 信号電圧出力回路、8,208 信号線、10 ピクセル、20,20a,20b サブピクセル、22,222 発光素子、24,224 選択トランジスタ、26,226 駆動トランジスタ、28,228 キャパシタ、100 回路基板、101 回路、103,203,203-1,203-2 トランジスタ、104,204,204-1,204-2 TFTチャネル、105 絶縁層、107,107-1,107-2 ゲート、108 絶縁膜、110 第1の配線層、112 第1の層間絶縁膜、150,250 発光素子、156,256,556 第2の層間絶縁膜、159,159a,159k,459k 透光性電極、180 カラーフィルタ、560 配線層、520,520a サブピクセル群、1001 結晶成長用基板、1100,2100,2100a,4100,5100 回路基板、1140 バッファ層、1150 半導体層、1190 支持基板、1192 構造体、1194,1294 半導体成長基板

Claims (24)

  1. 発光層を含む半導体層を第1基板上に成長させた第2基板を準備する工程と、
    透光性基板上に形成された回路素子と、前記回路素子に接続され得る配線層と、前記回路素子および前記配線層を覆う第1絶縁膜と、を含む第3基板を準備する工程と、
    前記半導体層を、前記第3基板に貼り合わせる工程と、
    前記半導体層から発光素子を形成する工程と、
    前記発光素子を覆う第2絶縁膜を形成する工程と、
    前記第1絶縁膜および前記第2絶縁膜を貫通するビアを形成する工程と、
    前記発光素子と前記回路素子とを前記ビアを介して電気的に接続する工程と、
    を備え、
    前記配線層は、光反射性を有する部分を含み、
    前記発光素子は、前記部分上に設けられ、
    前記部分の外周は、平面視で前記部分に投影された前記発光素子の外周を含む画像表示装置の製造方法。
  2. 前記第3基板を準備する工程は、前記配線層を形成する前に、前記第3基板上にマスクを設けて等方性エッチングする工程を含み、
    前記マスクは、前記部分が形成される箇所を開口して設けられる請求項1記載の画像表示装置の製造方法。
  3. 前記第3基板は、前記透光性基板と前記回路素子との間に設けられ、可撓性を有する第3基板をさらに含み、
    前記半導体層を前記第3基板に貼り合わせた後に前記透光性基板を除去する工程をさらに備えた請求項1記載の画像表示装置の製造方法。
  4. 前記透光性基板は、ガラス基板である請求項3記載の画像表示装置の製造方法。
  5. 前記半導体層を前記第3基板に貼り合わせる前に前記第1基板を除去する工程をさらに備えた請求項1記載の画像表示装置の製造方法。
  6. 前記半導体層を前記第3基板に貼り合わせた後に前記第1基板を除去する工程をさらに備えた請求項1記載の画像表示装置の製造方法。
  7. 前記発光素子の前記第1絶縁膜の側の面に対向する発光面を前記第2絶縁膜から露出させる工程をさらに備えた請求項1記載の画像表示装置の製造方法。
  8. 露出された前記発光面に透光性電極を形成する工程をさらに備えた請求項7記載の画像表示装置の製造方法。
  9. 前記第1基板は、シリコンまたはサファイアを含む請求項1記載の画像表示装置の製造方法。
  10. 前記半導体層は、窒化ガリウム系化合物半導体を含む請求項1記載の画像表示装置の製造方法。
  11. 前記発光素子上に波長変換部材を形成する工程をさらに備えた請求項1記載の画像表示装置の製造方法。
  12. 第1面を有する透光性基板と、
    前記第1面上に設けられた回路素子と、
    前記回路素子に電気的に接続され得る第1配線層と、
    前記第1面上で前記回路素子および前記第1配線層を覆う第1絶縁膜と、
    前記第1絶縁膜上に配設された発光素子と、
    前記発光素子の少なくとも一部を覆う第2絶縁膜と、
    前記第2絶縁膜上に配設され、前記発光素子の前記第1絶縁膜の側の面に対向する発光面を含む面に電気的に接続された第2配線層と、
    前記第1絶縁膜および前記第2絶縁膜を貫通し、前記第1配線層および前記第2配線層を電気的に接続する第1ビアと、
    を備え、
    前記第1配線層は、光反射性を有する部分を含み、
    前記発光素子は、前記部分上に設けられ、
    前記部分の外周は、平面視で前記部分に投影された前記発光素子の外周を含む画像表示装置。
  13. 前記透光性基板は、ガラス基板である請求項12記載の画像表示装置。
  14. 可撓性を有し、第1面を有する基板と、
    前記第1面上に設けられた回路素子と、
    前記回路素子に電気的に接続され得る第1配線層と、
    前記第1面上で前記回路素子および前記第1配線層を覆う第1絶縁膜と、
    前記第1絶縁膜上に配設された発光素子と、
    前記発光素子の少なくとも一部を覆う第2絶縁膜と、
    前記第2絶縁膜上に配設され、前記発光素子の前記第1絶縁膜の側の面に対向する発光面を含む面に電気的に接続された第2配線層と、
    前記第1絶縁膜および前記第2絶縁膜を貫通し、前記第1配線層および前記第2配線層を電気的に接続する第1ビアと、
    を備え、
    前記第1配線層は、光反射性を有する部分を含み、
    前記発光素子は、前記部分上に設けられ、
    前記部分の外周は、平面視で前記部分に投影された前記発光素子の外周を含む画像表示装置。
  15. 前記部分は、前記発光素子の設けられている側に凹となる面を含む請求項12記載の画像表示装置。
  16. 前記第1絶縁膜および前記第2絶縁膜を貫通し、前記部分および前記第2配線層を電気的に接続する第2ビア
    をさらに備えた請求項12記載の画像表示装置。
  17. 前記部分は、前記回路素子および前記発光素子から絶縁された請求項12記載の画像表示装置。
  18. 前記発光素子は、第1導電形の第1半導体層と、前記第1半導体層上に設けられた第1発光層と、前記第1発光層上に設けられ、前記第1導電形と異なる第2導電形の第2半導体層と、を含み、前記第1絶縁膜の側から前記発光面の側に向かって前記第1半導体層、前記第1発光層および前記第2半導体層の順に積層され、
    前記第1導電形は、p形であり、
    前記第2導電形は、n形である請求項12記載の画像表示装置。
  19. 前記第2絶縁膜は、前記発光面を露出させた開口を含み、
    前記発光面上に設けられた透光性電極をさらに備えた請求項12記載の画像表示装置。
  20. 前記開口から露出された露出面は、粗面を含む請求項19記載の画像表示装置。
  21. 前記発光素子は、窒化ガリウム系化合物半導体を含み、
    前記回路素子は、薄膜トランジスタを含む請求項12記載の画像表示装置。
  22. 前記発光素子上に波長変換部材をさらに備えた請求項12記載の画像表示装置。
  23. 第1面を有する透光性基板と、
    前記第1面上に設けられた複数のトランジスタと、
    前記複数のトランジスタに電気的に接続された第1配線層と、
    前記第1面上で前記複数のトランジスタおよび前記第1配線層を覆う第1絶縁膜と、
    前記第1絶縁膜上に配設された第1導電形の第1半導体層と、
    前記第1半導体層上に配設された発光層と、
    前記発光層上に配設され、前記第1導電形とは異なる第2導電形の第2半導体層と、
    前記第1絶縁膜、前記発光層および前記第1半導体層を覆うとともに前記第2半導体層の少なくとも一部を覆う第2絶縁膜と、
    前記複数のトランジスタに応じて前記第2絶縁膜からそれぞれ露出された、前記第2半導体層の複数の発光面上に設けられた透光性電極に接続された第2配線層と、
    前記第1絶縁膜および前記第2絶縁膜を貫通し、前記第1配線層の配線および前記第2配線層の配線を電気的に接続する複数のビアと、
    を備え、
    前記第1配線層は、光反射性を有する部分を含み、
    前記第1半導体層は、前記部分上に設けられ、
    前記部分の外周は、平面視で前記部分に投影された前記第1半導体層、前記発光層および前記第2半導体層の外周をすべて含む画像表示装置。
  24. 前記第2半導体層は、前記第2絶縁膜によって分離された請求項23記載の画像表示装置。
JP2021533925A 2019-07-25 2020-07-08 画像表示装置の製造方法および画像表示装置 Active JP7428919B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019136949 2019-07-25
JP2019136949 2019-07-25
PCT/JP2020/026658 WO2021014972A1 (ja) 2019-07-25 2020-07-08 画像表示装置の製造方法および画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2021014972A1 JPWO2021014972A1 (ja) 2021-01-28
JP7428919B2 true JP7428919B2 (ja) 2024-02-07

Family

ID=74193210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021533925A Active JP7428919B2 (ja) 2019-07-25 2020-07-08 画像表示装置の製造方法および画像表示装置

Country Status (5)

Country Link
US (1) US20220149228A1 (ja)
JP (1) JP7428919B2 (ja)
CN (1) CN114175261A (ja)
TW (1) TW202109869A (ja)
WO (1) WO2021014972A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030122141A1 (en) 2000-08-23 2003-07-03 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
JP2009094144A (ja) 2007-10-04 2009-04-30 Canon Inc 発光素子の製造方法
US20120012871A1 (en) 2010-07-15 2012-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Light emitting device
JP2018010309A (ja) 2013-03-15 2018-01-18 アップル インコーポレイテッド 冗長性スキームを備えた発光ダイオードディスプレイ、及び統合欠陥検出検査を備えた発光ダイオードディスプレイを製造する方法
JP2018097367A (ja) 2012-10-04 2018-06-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 発光ダイオードディスプレイの製造方法および発光ダイオードディスプレイ
JP2018101785A (ja) 2016-12-20 2018-06-28 エルジー ディスプレイ カンパニー リミテッド 発光ダイオードチップ及びこれを含む発光ダイオードディスプレイ装置
WO2018132070A1 (en) 2017-01-13 2018-07-19 Massachusetts Institute Of Technology A method of forming a multilayer structure for a pixelated display and a multilayer structure for a pixelated display
WO2019049360A1 (ja) 2017-09-11 2019-03-14 凸版印刷株式会社 表示装置及び表示装置基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030122141A1 (en) 2000-08-23 2003-07-03 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
JP2009094144A (ja) 2007-10-04 2009-04-30 Canon Inc 発光素子の製造方法
US20120012871A1 (en) 2010-07-15 2012-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Light emitting device
JP2018097367A (ja) 2012-10-04 2018-06-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 発光ダイオードディスプレイの製造方法および発光ダイオードディスプレイ
JP2018010309A (ja) 2013-03-15 2018-01-18 アップル インコーポレイテッド 冗長性スキームを備えた発光ダイオードディスプレイ、及び統合欠陥検出検査を備えた発光ダイオードディスプレイを製造する方法
JP2018101785A (ja) 2016-12-20 2018-06-28 エルジー ディスプレイ カンパニー リミテッド 発光ダイオードチップ及びこれを含む発光ダイオードディスプレイ装置
WO2018132070A1 (en) 2017-01-13 2018-07-19 Massachusetts Institute Of Technology A method of forming a multilayer structure for a pixelated display and a multilayer structure for a pixelated display
WO2019049360A1 (ja) 2017-09-11 2019-03-14 凸版印刷株式会社 表示装置及び表示装置基板

Also Published As

Publication number Publication date
TW202109869A (zh) 2021-03-01
WO2021014972A1 (ja) 2021-01-28
CN114175261A (zh) 2022-03-11
US20220149228A1 (en) 2022-05-12
JPWO2021014972A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
JP7457255B2 (ja) 画像表示装置の製造方法および画像表示装置
JP7463662B2 (ja) 画像表示装置の製造方法および画像表示装置
CN114342092A (zh) 图像显示装置的制造方法以及图像显示装置
US20220149113A1 (en) Method for manufacturing image display device and image display device
US20230006001A1 (en) Method for manufacturing image display device and image display device
US20220262782A1 (en) Image display device manufacturing method and image display device
JP7432845B2 (ja) 画像表示装置の製造方法および画像表示装置
US20220069187A1 (en) Image display device manufacturing method and image display device
WO2021065917A1 (ja) 画像表示装置の製造方法および画像表示装置
JP7428919B2 (ja) 画像表示装置の製造方法および画像表示装置
CN116235305A (zh) 图像显示装置的制造方法以及图像显示装置
WO2021256190A1 (ja) 画像表示装置の製造方法および画像表示装置
WO2022004308A1 (ja) 画像表示装置の製造方法および画像表示装置
WO2022113950A1 (ja) 画像表示装置の製造方法および画像表示装置
TW202224232A (zh) 圖像顯示裝置之製造方法及圖像顯示裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R151 Written notification of patent or utility model registration

Ref document number: 7428919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151