JP7414465B2 - モータ制御装置及び画像形成装置 - Google Patents

モータ制御装置及び画像形成装置 Download PDF

Info

Publication number
JP7414465B2
JP7414465B2 JP2019192137A JP2019192137A JP7414465B2 JP 7414465 B2 JP7414465 B2 JP 7414465B2 JP 2019192137 A JP2019192137 A JP 2019192137A JP 2019192137 A JP2019192137 A JP 2019192137A JP 7414465 B2 JP7414465 B2 JP 7414465B2
Authority
JP
Japan
Prior art keywords
current
motor
offset amount
control
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192137A
Other languages
English (en)
Other versions
JP2021069175A (ja
Inventor
優介 磯見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019192137A priority Critical patent/JP7414465B2/ja
Publication of JP2021069175A publication Critical patent/JP2021069175A/ja
Application granted granted Critical
Publication of JP7414465B2 publication Critical patent/JP7414465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モータの制御技術に関する。
画像形成装置の駆動源として、ロータ位置を検知するセンサを搭載しないセンサレスタイプのDCブラシレスモータ(以下、センサレスモータ)が使用されている。センサレスモータの制御装置は、例えば、強制転流制御によりセンサレスモータを起動し、センサレスモータの回転速度が十分な誘起電圧を発生させる速度に達すると、フィードバック制御に切り替えを行う。ここで、特許文献1は、負荷トルクが大きい場合等においても脱調を起こさず安定的にモータを起動するため、起動時においては、連続通電が可能な電流より大きなコイル電流をセンサレスモータに流す構成を開示している。
特開2007-236081号公報
しかしながら、特許文献1に記載の構成では、コイル電流を供給する回路の電流定格を大きくする必要がありコストアップに繋がる。
本発明は、モータを安定して起動するための制御技術を提供するものである。
本発明の一態様によると、モータ制御装置は、モータの複数のコイルに印加する電圧を制御することで前記複数のコイルに電流を供給する電流供給手段と、前記モータの停止しているロータの電気角である停止角を検知する検知手段と、停止している前記ロータの回転を開始する際、前記検知手段により検知された前記停止角から不揮発性メモリに記憶されているオフセット量を減じた電気角である初期角に基づき強制転流制御を開始する様に前記電流供給手段を制御するとともに、前記ロータの回転速度が所定速度より大きくなると、前記強制転流制御からフィードバック制御に切り替えを行うように前記電流供給手段を制御する制御手段と、を備え、前記制御手段は、前記フィードバック制御において前記ロータを目標速度で回転させている際のトルク分電流に応じたオフセット量を決定し、前記不揮発性メモリに記憶した前記オフセット量を、当該決定したオフセット量に更新することを特徴とする。
本発明によると、モータを安定して起動することができる。
一実施形態による画像形成装置の構成図。 一実施形態によるモータ制御部の構成図。 一実施形態によるモータの構成図。 一実施形態によるモータ制御に関する機能ブロック図。 一実施形態による電気角と電圧指令値との関係を示す図。 オフセット量を使用する理由の説明図。 オフセット量を使用する理由の説明図。 一実施形態によるモータ制御に関する機能ブロック図。 トルク分電流とトルクとの関係を示す図。 トルク分電流とオフセット量との関係を示す図。
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
<第一実施形態>
以下では、モータ制御装置の一例として、画像形成装置を使用して、本実施形態の説明を行う。なお、本発明は、画像形成装置に限定されず、センサレスモータを制御する任意のモータ制御装置に対して適用することができる。図1は、本実施形態による画像形成装置の構成図である。画像形成装置は、例えば、プリンタ、複写機、複合機、ファクシミリ等であり得る。画像形成ユニット101は、感光体102にトナー像を形成する。画像形成ユニット101は、感光体102にトナー像を形成するための、帯電ユニット、露光ユニット及び現像ユニット等を有する。画像形成ユニット101は、カセット104から搬送されたシートに感光体102のトナー像を転写する。シートは、その後、定着ユニット105において加熱・加圧され、トナー像の定着が行われる。トナー像の定着後、シートは、画像形成装置外に排出される。センサレスモータ(以下、単に、モータと表記する。)103は、感光体102を駆動するための駆動力を生成する駆動源である。しかしながら、モータ103が駆動する負荷には制限はなく、任意の負荷(部材)を駆動するモータ103の制御に本発明は適用され得る。
図2は、モータ103の制御構成を示している。プリンタ制御部107は、画像形成装置全体を制御する。モータ制御部110は、プリンタ制御部107と通信し、プリンタ制御部107の制御の下、モータ103を制御する。マイクロコンピュータ(マイコン)201の不揮発性メモリ205には、マイコン201が実行するプログラムや、モータ103の制御に使用する各種データが格納される。メモリ207は、一時的なデータの記憶のためにマイコン201が使用する。PWMポート208は、モータ103の3つの相(U、V、W)それぞれに対して2つのPWM信号(ハイ側、ロー側)を出力するための計6つの端子を有する。つまり、PWMポート208は、ハイ側の3つの端子(U-H、V-H、W-H)と、ロー側の3つの端子(U-L、V-L、W-L)を有する。
インバータ211は、モータ103の3つの相それぞれについて、ハイ側のスイッチング素子M1、M3及びM5と、ロー側のスイッチング素子M2、M4及びM5を有する。図2において、M1及びM2はU相のスイッチング素子であり、M3及びM4はV相のスイッチング素子であり、M5及びM6はW相のスイッチング素子である。スイッチング素子としては、例えば、トランジスタやFETを使用できる。ゲートドライバ210は、PWMポート208からのPWM信号に基づき、対応するスイッチング素子のON/OFFを制御する。例えば、ゲートドライバ210は、U-H端子から出力されるPWM信号に基づきスイッチング素子M1のゲートG1への印加電圧を制御することにより、スイッチング素子M1のON/OFFを制御する。
インバータ211のU、V、W相の出力217は、モータ103のコイル213(U相)、214(V相)、215(W相)に接続される。各スイッチング素子のON/OFFを制御することで、各コイル213、214、215に流れるコイル電流を制御することができる。この様に、インバータ211は、コイル電流を各コイル213、214及び215に供給する電流供給部として機能する。各コイル213、214、215に流れたコイル電流は、電流検出抵抗219、220、221により電圧に変換される。アンプ218は、コイル電流に対応する電流検出抵抗219、220、221の電圧を増幅して、マイコン201のADコンバータ203に出力する。ADコンバータ203は、アンプ218が出力する電圧をデジタル値に変換する。電流値算出部209は、ADコンバータ203が出力するデジタル値に基づき各相のコイル電流を判定する。
図3は、モータ103の構成図である。本実施形態において、ロータ502の極数を4とする。また、図3に示す様に、ロータ502のS極がコイル213に対向している状態を電気角0とし、反時計回り方向に電気角が増加するものとする。本実施形態では、ロータ502の極数が4であるため、ロータが図3の状態から反時計回り方向に機械角でπ/2だけ回転した場合、電気角はπとなる。
図4は、モータ制御に関するマイコン201の機能ブロック図である。なお、本実施形態において、マイコン201は、モータ103をベクトル制御する。電流制御部302は、不揮発性メモリ205に予め格納されている指令値Id_ref及びIq_refを取得する。また、電流制御部302には、座標変換部306から、励磁分電流Id及びトルク分電流Iqが入力される。なお、励磁分電流Idはコイル電流の内、磁束の生成に寄与する成分に対応し、トルク分電流Iqはコイル電流の内、出力トルクに寄与する成分に対応する。電流制御部302は、これら値に基づき、回転座標系における電圧指令値Vd_ref及びVq_refを出力する。座標変換部305は、回転座標系から静止座標系への座標変換を行い、さらに、2相-3相変換を行うことで、U相、V相及びW相の電圧指令値Vu、Vv及びVwを生成して出力する。なお、回転座標系から静止座標系への座標変換は、角度演算部303から出力される電気角θ_refに基づき行われる。マイコン201は、電圧指令値Vu、Vv及びVwに基づきゲートドライバ210に出力するPWM信号を生成する。
また、電流値算出部209が検出したU相、V相及びW相のコイル電流の電流値Iu、Iv及びIwは、座標変換部306に入力される。座標変換部306は、3相-2相変換により、電流値Iu、Iv及びIwを静止座標系の電流値に変換し、さらに、静止座標系から回転座標系への座標変換を行うことで、励磁分電流Id及びトルク分電流Iqを求める。なお、静止座標系から回転座標系への座標変換は、角度演算部303から出力される電気角θ_refに基づき行われる。座標変換部306は、励磁分電流Id及びトルク分電流Iqを電流制御部302に出力する。
モータ103の起動時、検出部301は、ロータ502の停止時の電気角(以下、停止角)θ_stdを判定する。各コイル213、214及び215のインダクタンスは、外部磁界に応じて変化し、外部磁界は、ロータの停止角θ_stdにより変化する。つまり、各コイル213、214及び215のインダクタンスはロータ502の停止角に応じて変化する。したがって、検出部301は、各コイル213、214及び215のインダクタンスを検出することで、停止角θ_stdを検出することができる。
なお、インダクタンスは、コイル213、214、215に、ロータ502が回転しない程度の電圧を印加した際の、U相、V相及びW相のコイル電流の立ち上がりの速さ等から判定することができる。検出部301は、検出した停止角θ_stdを減算器307に出力する。オフセット設定部304は、不揮発性メモリ205が保持しているオフセット量θ_offを減算器307に出力する。減算器307は、停止角θ_stdからオフセット量θ_offを減じた電気角を初期角θ_iniとして角度演算部303に出力する。
角度演算部303は、初期角θ_iniに対して、プリンタ制御部107から入力された速度指令値ω_refを所定周期毎に積算することで、ロータ512の電気角θ_refを求め、座標変換部305及び306に通知する。なお、強制転流制御の間、指令値Id_refを0とし、トルクに関する指令値Iq_refを制御することでモータ103を回転させる。
図5は、ロータ502の電気角と、電圧指令値Vu、Vv及びVwとの関係を示している。図5に示す様に、ロータ502の電気角に応じて電圧指令値Vu、Vv及びVwを正弦波上に変化させる。マイコン201が出力する各相のPWM信号のデューティ比は、この電圧指令値に応じて決定される。以下の説明において、ロータ502の電気角がθであるときの交流電圧である電圧指令値Vu、Vv及びVwの位相を"励磁相の位相"又は"励磁相の電気角"と表現する。モータ制御部110は、ロータ502の電気角θに応じて励磁相の位相を変化させることでロータ502を回転させる。
続いて、検出部301が検出した停止角θ_stdではなく、停止角θ_stdからオフセット量θ_offを減じた電気角を初期角θ_iniとする理由について説明する。図6は、停止角θ_std=0である場合において、オフセット量θ_off=0、つまり、初期角θ_iniを停止角θ_stdと同じ0としたときの、励磁相の電気角とモータ103の出力トルクとの関係を示している。
図6(A)は、負荷が想定される最小値(以下、最小負荷)のときを示し、その起動に必要な起動トルクの値は41である。なお、起動トルクは、モータ103の負荷の負荷トルクと、加速に必要な加速トルクとの和である。図6(B)は、負荷が想定される最大値(以下、最大負荷)のときを示し、その起動トルクの値は82である。起動の開始により、励磁相の電気角は、ロータの初期角θ_iniである0から増加されることになる。
但し、起動の開始により、モータ103の負荷にトルクは直ちに伝わらず、実際には、所定の遅れ量の後にトルクが伝わる。遅れ量は、モータ103の速度変化量の傾き、モータ103に力が伝達してメカ的に動作し始めるまでの時間、ギアのバックラッシュ等に依存する。また、負荷が回転し始めるまでの時間は、当該負荷の大きさにも依存する。つまり、負荷トルクが大きい程、遅れ量は大きくなる。図6の参照符号10は、起動を開始する起動タイミングを示し、参照符号11は、負荷にトルクが伝わるタイミングを示している。起動タイミング10において、マイコン201は、初期角θ_iniに基づき求めた電圧指令値Vu、Vv及びVwに応じたPWM信号を出力する。つまり、マイコン201は、起動開始時の励磁相の電気角を初期角θ_iniとする。一方、タイミング11において、マイコン201は、そのきときの電気角θ_refに基づき求めた電圧指令値Vu、Vv及びVwに応じたPWM信号を出力する。つまり、マイコン201は、起動開始時の励磁相の電気角を電気角θ_refとする。
参照符号10と参照符号11との間の距離(電気角)が遅れ量に対応する。図6(A)においては、タイミング11におけるモータ103の出力トルクの値は80であり、起動トルク(値41)より大きいため起動できる。一方、図6(B)において、タイミング11におけるモータ103の出力トルクの値は78であり、起動トルク(値82)より小さい。従って、モータ103を起動することができず、モータ103は脱調する。なお、起動タイミング10における出力トルクは、指令値Iq_refが示す84である。
脱調を防ぐ方法の1つは、指令値Iq_refを大きくすることである。しかしながら、指令値Iq_refを大きくすると、コイル電流を供給するインバータ211の電流定格を大きくする必要がありコストアップに繋がる。脱調を防ぐ他の方法として、起動時における速度変化の傾きを緩やかにする方法もある。しかしながら、速度変化を緩やかにすることは、モータ103により回転される回転体が定常回転速度となるまでの時間が長くなることを意味し、First Print Out Time(FPOT)に影響を与える。
このため、本実施形態では、停止角θ_stdからオフセット量θ_offを減じた電気角を初期角θ_iniとすることで、起動時の脱調を防ぐ。図7は、図6(B)に示す最大負荷の場合において、オフセット量θ_off=π/3とした場合を示している。参照符号12で示す様に停止角_stdは0であるが、オフセット量θ_off=π/3であるため、起動タイミング10において、モータ制御部110は、励磁相の電気角を-π/3とする。したがって、負荷にトルクが伝わるタイミング11の出力トルクの値は84となり、起動可能となる。
オフセット量θ_offは、モータ103の負荷が最大のときの最大負荷トルクと、モータ103の負荷が最小のときの最小負荷トルクに基づき決定する。最大負荷の観点から、オフセット量θ_offの絶対値は、モータ103が逆回転しない範囲で十分大きい値とすることが望ましい。つまり、オフセット量θ_offの絶対値がπ未満となる範囲で十分大きな値とすることが望ましい。しかしながら、負荷トルクが小さい場合において、オフセット量θ_offを大きな値に設定すると、強制転流制御からフィードバック制御に切り替えるタイミングにおいて電圧指令値Vu、Vv及びVwが大きく変化する。これにより、ロータ502の回転の安定性が損なわれる。このため、モータ103の負荷の最大値と最小値とに基づき、最適なオフセット量θ_offを求めて、不揮発性メモリ205に格納しておく。
以上、強制転流制御による起動時の励磁相の初期角を、ロータ502の停止角よりオフセット量だけ遅らせる。つまり、起動時の電圧指令値Vu、Vv及びVwを求めるために座標変換部305が座標変換に使用する電気角を実際の電気角θ_stdとするのではなく、オフセット量θ_offだけ遅らせる。この構成により、強制転流制御において脱調が生じることを抑え、モータを安定して起動することができる。また、本実施形態の構成では、コイル電流を供給する回路の電流定格を、モータに連続通電できない値の様に大きくする必要はなく、コストアップは生じない。また、FPOTが長くなることもない。
<第二実施形態>
続いて、第二実施形態について第一実施形態との相違点を中心に説明する。第一実施形態において、オフセット量θ_offは固定値であった。オフセット量θ_offを固定値とすることでマイコン201における処理は簡易になる。しかしながら、負荷トルクの範囲が広い場合、強制転流制御からフィードバック制御に切り替えるタイミングにおいて、推定したロータ502の電気角と実際の電気角とのズレが大きくなり、ロータ502の回転の安定性が損なわれ得る。このため、本実施形態では、オフセット量θ_offを動的に設定、つまり、可変値とする。
具体的には、最初のオフセット量θ_off、つまり、オフセット量θ_offの初期値については、予め決定して不揮発性メモリ205に格納しておく。初回の起動後、トルク分電流Iqをモータ制御部110は取得し、このトルク分電流Iqに基づきオフセット量θ_offを更新する。第一実施形態で説明した様に、オフセット量θ_offの設定には負荷トルクを考慮する必要がある。例えば、ロータ502を一定速度で回転させている際の出力トルクは、略負荷トルクに等しい。したがって、モータ制御部110は、ロータ502を所定速度で回転させている際のトルク分電流Iqに基づきオフセット量θ_offを決定することができる。例えば、モータ制御部110は、フィードバック制御において、誘起電圧からロータ502の回転速度を判定してモータ103を所定の目標速度で回転させている際のトルク分電流Iqに基づきオフセット量θ_offを決定することができる。以後、同様に、モータ制御部110は、所定の速度で回転させている際のトルク分電流Iqに基づきオフセット量θ_offを更新していく。
図8は、本実施形態におけるモータ制御に関するマイコン201の機能ブロック図である。なお、図4に示す第一実施形態の機能ブロック図と同様の機能ブロックについては、同じ参照符号を付与して、その説明については省略する。推定部801は、フィードバック制御の間、コイル電流の電流値Iu、Iv、Iwと、電圧指令値Vd_ref及びVq_refと、に基づきロータ512の回転速度ω_estと、ロータ512の電気角θ_estの推定を行う。また、速度制御部802は、速度指令値ω_refと、推定部801で推定した回転速度ω_estに基づき、指令値Id_ref及びIq_refを算出する。なお、本実施形態では、効率を重視し、指令値Id_refを0に設定する。なお、電気角θ_estは、第一実施形態の電気角θ_refに対応し、座標変換部305及び306は、電気角θ_estに基づき静止座標系と回転座標系との座標変換を行う。
また、推定部801は、第一実施形態の検出部301と同様に、起動時、停止角θ_stdを検出する。さらに、推定部801は、定速回転時のトルク分電流Iqを取得して、不揮発性メモリ205に保存する。モータ103の起動時、推定部801は、不揮発性メモリ205に格納されている、前回の定速回転時のトルク分電流Iqに基づきオフセット量θ_offを求める。そして、検出した停止角θ_stdから、求めたオフセット量θ_offを減じた値を、起動時の電気角θ_estとして出力する。なお、不揮発性メモリ205に、トルク分電流Iqを格納するのではなく、トルク分電流Iqに基づき求めたオフセット量θ_offを格納する構成であっても良い。この場合、推定部801は、モータ103の起動時、検出した停止角θ_stdから、前回の定速回転時のトルク分電流Iqに基づき求めたオフセット量θ_offを減じた値を出力する。
図9は、モータ103のトルク分電流Iqと、出力トルクとの関係を示している。起動時において、図9は、起動トルクとトルク分電流Iqとの関係を示すものとなる。そして、各負荷トルクとオフセット量θ_offとの関係を予め決定し、決定した関係と起動時に必要な加速トルクとに基づき、図10に示す、トルク分電流Iqとオフセット量θ_offとの関係を決定する。図10においては、トルク分電流Iqをxとし、オフセット量θ_offをyとすると、
y=0.7782×x-0.5625 (1)
と決定している。例えば、トルク分電流Iq=2であると、オフセット量θ_offは約1.0となる。式(1)を推定部801に格納しておくことで、推定部801は、トルク分電流Iqに基づきオフセット量θ_offを動的に更新することができる。
モータ103を所定の目標速度で定速回転させている際の出力トルクは、負荷トルクに略等しいため、定速回転時のトルク分電流Iqが大きいことは、負荷トルクが大きいことを意味する。よって、図10は、負荷トルクが大きい程、オフセット量θ_offを大きくすることを意味している。
以上、本実施形態では、フィードバック制御における定速回転中のトルク分電流Iqに基づきオフセット量θ_offを設定する。この構成により、使用環境や経時変化により負荷トルクが変動した場合でも適切なオフセット量θ_offを設定することができる。よって、強制転流制御において脱調が生じることを抑え、モータを安定して起動することができる。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
211:インバータ、301:検出部、201:マイクロコンピュータ

Claims (6)

  1. モータの複数のコイルに印加する電圧を制御することで前記複数のコイルに電流を供給する電流供給手段と、
    前記モータの停止しているロータの電気角である停止角を検知する検知手段と、
    停止している前記ロータの回転を開始する際、前記検知手段により検知された前記停止角から不揮発性メモリに記憶されているオフセット量を減じた電気角である初期角に基づき強制転流制御を開始する様に前記電流供給手段を制御するとともに、前記ロータの回転速度が所定速度より大きくなると、前記強制転流制御からフィードバック制御に切り替えを行うように前記電流供給手段を制御する制御手段と、
    を備え
    前記制御手段は、前記フィードバック制御において前記ロータを目標速度で回転させている際のトルク分電流に応じたオフセット量を決定し、前記不揮発性メモリに記憶した前記オフセット量を、当該決定したオフセット量に更新することを特徴とするモータ制御装置。
  2. 前記制御手段は、前記初期角に基づき前記強制転流制御を開始する際に前記複数のコイルそれぞれに印加する交流電圧の位相を決定して前記電流供給手段を制御することを特徴とする請求項1に記載のモータ制御装置。
  3. 前記制御手段は、前記初期角に基づき回転座標系の電圧指令値を静止座標系の電圧指令値に変換することで、前記強制転流制御を開始する際に前記複数のコイルそれぞれに印加する交流電圧を決定して前記電流供給手段を制御することを特徴とする請求項1又は2に記載のモータ制御装置。
  4. 前記制御手段は、前記トルク分電流が大きくなると、前記オフセット量を大きくすることを特徴とする請求項1から3のいずれか1項に記載のモータ制御装置。
  5. 前記オフセット量の絶対値は、前記電気角でπ未満であることを特徴とする請求項1からのいずれか1項に記載のモータ制御装置。
  6. シートに画像を形成する画像形成手段と、
    前記画像形成手段の部材の動力を生成するモータと、
    前記モータの複数のコイルに印加する電圧を制御することで前記複数のコイルに電流を供給する電流供給手段と、
    前記モータの停止しているロータの電気角である停止角を検知する検知手段と、
    停止している前記ロータの回転を開始する際、前記検知手段により検知された前記停止角から、不揮発性メモリに記憶されているオフセット量を減じた電気角である初期角に基づき強制転流制御を開始する様に前記電流供給手段を制御するとともに、前記ロータの回転速度が所定速度より大きくなると、前記強制転流制御からフィードバック制御に切り替えを行うように前記電流供給手段を制御する制御手段と、
    を備え
    前記制御手段は、前記フィードバック制御において前記ロータを目標速度で回転させている際のトルク分電流に応じたオフセット量を決定し、前記不揮発性メモリに記憶した前記オフセット量を、当該決定したオフセット量に更新することを特徴とする画像形成装置。
JP2019192137A 2019-10-21 2019-10-21 モータ制御装置及び画像形成装置 Active JP7414465B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192137A JP7414465B2 (ja) 2019-10-21 2019-10-21 モータ制御装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192137A JP7414465B2 (ja) 2019-10-21 2019-10-21 モータ制御装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2021069175A JP2021069175A (ja) 2021-04-30
JP7414465B2 true JP7414465B2 (ja) 2024-01-16

Family

ID=75638672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192137A Active JP7414465B2 (ja) 2019-10-21 2019-10-21 モータ制御装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP7414465B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291283A (ja) 2001-03-26 2002-10-04 Yaskawa Electric Corp 同期電動機の磁極位置推定方法および制御装置
JP2003125594A (ja) 2001-10-15 2003-04-25 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
JP2007037352A (ja) 2005-07-29 2007-02-08 Hitachi Ltd モータ制御装置,洗濯機,エアコンおよび電動オイルポンプ
JP2007236081A (ja) 2006-02-28 2007-09-13 Toshiba Corp 永久磁石同期電動機の制御装置
JP2017229165A (ja) 2016-06-23 2017-12-28 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、画像形成装置、および制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291283A (ja) 2001-03-26 2002-10-04 Yaskawa Electric Corp 同期電動機の磁極位置推定方法および制御装置
JP2003125594A (ja) 2001-10-15 2003-04-25 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
JP2007037352A (ja) 2005-07-29 2007-02-08 Hitachi Ltd モータ制御装置,洗濯機,エアコンおよび電動オイルポンプ
JP2007236081A (ja) 2006-02-28 2007-09-13 Toshiba Corp 永久磁石同期電動機の制御装置
JP2017229165A (ja) 2016-06-23 2017-12-28 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、画像形成装置、および制御方法

Also Published As

Publication number Publication date
JP2021069175A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
JP6753291B2 (ja) 永久磁石同期電動機の制御装置、および回転子の初期位置推定のための制御方法
US10141877B2 (en) Controller for permanent magnet synchronous motor, control method, and image forming apparatus
US11233471B2 (en) Motor control device, image forming apparatus, and method for estimating initial position of magnetic pole of rotor
US11387758B2 (en) Motor controller and image forming apparatus
US20180076750A1 (en) Controller for permanent magnet synchronous motor, control method, and image forming apparatus
US11218101B2 (en) Motor control device, method of estimating initial position of magnetic pole of rotor, and image forming apparatus
US20200295688A1 (en) Motor control device, method of estimating initial position of magnetic pole of rotor, and image forming apparatus
JP4590761B2 (ja) 永久磁石形同期電動機の制御装置
JP2018098856A (ja) 永久磁石同期電動機の制御装置、画像形成装置、および制御方法
JP7450458B2 (ja) モータ制御装置及び画像形成装置
US11349417B2 (en) Motor control apparatus, image reading apparatus and image forming apparatus
CN111585494B (zh) 电动机控制装置、初始位置推定方法及图像形成装置
JP7414465B2 (ja) モータ制御装置及び画像形成装置
JPH09215382A (ja) 永久磁石同期モータの駆動方法
US10651765B2 (en) Motor controller, image forming apparatus and motor controlling method
JP2019050684A (ja) パワーステアリング装置の制御装置
JP2022150844A (ja) モータ制御装置及び画像形成装置
JP2023013272A (ja) モータ制御装置及び画像形成装置
JP2004023920A (ja) 交流モータ制御装置
JP2023109005A (ja) モータ制御装置及び画像形成装置
US20240120865A1 (en) Drive system and control method
JP4154687B2 (ja) モータ制御装置
JP2023109007A (ja) モータ制御装置及び画像形成装置
JP2006067727A (ja) 直流モータ駆動装置及び直流モータ駆動方法及びプログラム
CN116802989A (zh) 驱动系统及控制方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231228

R151 Written notification of patent or utility model registration

Ref document number: 7414465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151