JP7411594B2 - 欠陥検査装置及び欠陥検査方法 - Google Patents

欠陥検査装置及び欠陥検査方法 Download PDF

Info

Publication number
JP7411594B2
JP7411594B2 JP2021021803A JP2021021803A JP7411594B2 JP 7411594 B2 JP7411594 B2 JP 7411594B2 JP 2021021803 A JP2021021803 A JP 2021021803A JP 2021021803 A JP2021021803 A JP 2021021803A JP 7411594 B2 JP7411594 B2 JP 7411594B2
Authority
JP
Japan
Prior art keywords
corner rounding
corner
image
class
defect inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021021803A
Other languages
English (en)
Other versions
JP2022124187A (ja
Inventor
真児 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2021021803A priority Critical patent/JP7411594B2/ja
Priority to US18/260,839 priority patent/US20240054633A1/en
Priority to PCT/JP2021/036823 priority patent/WO2022172504A1/ja
Priority to KR1020237028657A priority patent/KR20230135129A/ko
Priority to TW111104219A priority patent/TWI810806B/zh
Publication of JP2022124187A publication Critical patent/JP2022124187A/ja
Application granted granted Critical
Publication of JP7411594B2 publication Critical patent/JP7411594B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Image Processing (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Analysis (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

本発明は、試料上に形成されたパターンの欠陥検査をするための欠陥検査装置及び欠陥検査方法に関する。
半導体デバイスの製造工程では、露光装置(「ステッパ―」または「スキャナー」とも呼ばれる)を用いた縮小露光により、回路パターンが半導体基板上に転写される。露光装置では、回路パターンを半導体基板(以下、「ウェハ」とも表記する)上に転写するために、原画パターン(以下、単に「パターン」とも表記する)が形成されたマスク(「レチクル」とも呼ばれる)が用いられる。
例えば、最先端のデバイスでは、数nmの線幅の回路パターンの形成が要求される。回路パターンの微細化に伴い、マスクにおける原画パターンも微細化している。このため、マスクの欠陥検査装置には、微細な原画パターンに対応した高い欠陥検出性能が求められる。
欠陥検査方式には、欠陥検査装置において撮像された画像に基づく検査画像と、設計データに基づく参照画像とを比較するD-DB(Die to Database)方式と、マスク上に形成された同一パターンからなる複数の領域同士を比較するD-D(Die to Die)方式とがある。
マスク上に形成されているパターンは、パターン形成(描画及び加工)プロセスに起因して寸法がシフトする場合がある。D-DB方式の場合、寸法シフトが発生すると、検査画像のパターンのエッジ位置が、参照画像と一致しなくなる。参照画像と検査画像との間に位置ずれが生じると、位置ずれ箇所が擬似欠陥として検出される。
寸法シフトに対応するため、参照画像を作成する際、設計データに基づいて生成された2値または多値の展開画像に対して、パターンのエッジ位置を移動させるリサイズ処理及びパターンのコーナー部分を丸めるコーナー丸め処理等の補正が施される。
例えば、特許文献1には、コーナーの種類、方向、及び大きさを判別してコーナー丸め処理を行う検査装置が開示されている。
特開平11-143052
検査画像におけるパターンのコーナーの丸まり具合は、パターン及びそのコーナーの形状に依存する。このため、各種パターンのコーナーに対して一律のコーナー丸め量を適用すると、全てのパターンのコーナーに対して参照画像と検査画像とを一致させることは困難となる。
本発明はこうした点に鑑みてなされたものである。すなわち、本発明は、欠陥検査装置において、パターンのコーナーをクラス分類して、クラスに基づいたコーナー丸め処理を実行できる欠陥検査装置及び欠陥検査方法を提供することを目的とする。
本発明の第1の態様によれば、欠陥検査装置は、試料の撮像機構と、撮像機構が撮像した試料の画像データに基づいて検査画像を生成する画像取得回路と、設計データから展開画像を生成する展開回路と、展開画像からパターンのコーナーを検出し、検出したコーナーをクラス分類し、クラス毎に異なるコーナー丸め量のコーナー丸め処理を実行するコーナー丸め処理回路を含み、コーナー丸め処理後の展開画像を用いて参照画像を生成する参照画像生成回路と、検査画像と参照画像とを比較する比較回路とを備える。コーナー丸め処理回路は、第1クラスに付与された第1コーナー丸め量に基づいて、予め設定されたサイズ以下の等方フィルタを用いたフィルタ処理を実行し、第1コーナー丸め量と第2クラスに付与された第2コーナー丸め量との差分を算出し、差分に基づいて、予め設定されたサイズ以下の等方フィルタを用いたフィルタ処理を実行する。
本発明の第1の態様によれば、コーナー丸め処理回路は、パターン及びコーナーの形状に基づいて、コーナー検出画素及び少なくともコーナー検出画素に隣接する画素を、コーナー検出画素のクラスに対応するクラス領域として設定することが好ましい。
本発明の第1の態様によれば、コーナー丸め処理回路は、クラス領域毎に、コーナー検出画素のクラスに対応したコーナー丸め量を付与し、コーナー丸め量マップを作成することが好ましい。
本発明の第1の態様によれば、コーナー丸め処理回路は、展開画像において、パターン毎に対応する画素をラベリングし、ラベル毎に、コーナー丸め処理を実行することが好ましい。
本発明の第2の態様によれば、欠陥検査方法は、試料を撮像して検査画像を生成する工程と、設計データから展開画像を生成する工程と、展開画像からパターンのコーナーを検出する工程と、検出されたコーナーをクラス分類する工程と、分類されたクラス毎に異なるコーナー丸め量のコーナー丸め処理を実行する工程と、コーナー丸め処理後の展開画像に基づいて参照画像を生成する工程と、検査画像と参照画像とを比較して検査を行う工程とを備える。コーナー丸め処理を実行する工程は、第1クラスに付与された第1コーナー丸め量に基づいて、予め設定されたサイズ以下の等方フィルタを用いたフィルタ処理を実行する工程と、第1コーナー丸め量と第2クラスに付与された第2コーナー丸め量との差分を算出する工程と、差分に基づいて、予め設定されたサイズ以下の等方フィルタを用いたフィルタ処理を実行する工程とを含む。
本発明の第2の態様によれば、パターン及びコーナーの形状に基づいて、コーナー検出画素及び少なくともコーナー検出画素に隣接する画素を、コーナー検出画素のクラスに対応するクラス領域として設定する工程を更に備えることが好ましい。
本発明の第2の態様によれば、コーナー丸め処理を実行する工程は、クラス領域毎に、コーナー検出画素のクラスに対応したコーナー丸め量を付与する工程と、コーナー丸め量に基づいてコーナー丸め量マップを作成する工程と、コーナー丸め量マップに基づいてコーナー丸め処理を実行する工程とを含むことが好ましい。
本発明の第2の態様によれば、展開画像において、パターン毎に画素をラベリングする工程を更に備え、コーナー丸め処理を実行する工程は、ラベル毎に実行されることが好ましい。
本発明の欠陥検査装置、欠陥検査方法、及び欠陥検査プログラムによれば、欠陥検査装置において、パターンのコーナーがクラス分類され、クラスに基づいたコーナー丸め量が適用されたパターンを有する参照画像データを生成できる。
図1は、第1実施形態に係る欠陥検査装置の全体構成を示す図である。 図2は、第1実施形態に係る欠陥検査装置における検査工程のフローチャートである。 図3は、第1実施形態に係る欠陥検査装置における実画輪郭位置の一例を示す図である。 図4は、第1実施形態に係る欠陥検査装置におけるコーナー丸め処理のフローチャートである。 図5は、第1実施形態に係る欠陥検査装置におけるコーナー検出対象のパターンの一例を示す展開画像である。 図6は、第1実施形態に係る欠陥検査装置におけるコーナー検出対象のパターンの一例を示す展開画像である。 図7は、第1実施形態に係る欠陥検査装置におけるコーナー検出対象のパターンの一例を示す展開画像である。 図8は、第1実施形態に係る欠陥検査装置におけるコーナー検出対象のパターンの一例を示す展開画像である。 図9は、第1実施形態に係る欠陥検査装置におけるコーナー丸め量マップの一例を示す図である。 図10は、第1実施形態に係る欠陥検査装置におけるコーナー丸め処理に用いられる等方フィルタの一例を示す図である。 図11は、第1実施形態に係る欠陥検査装置における等方フィルタの具体例を示す図である。 図12は、第1実施形態に係る欠陥検査装置における折れ線関数の一例を示す図である。 図13は、図11で説明した等方フィルタを用いたコーナー丸め処理の一例を示す図である。 図14は、第1実施形態に係る欠陥検査装置における3×3画素の等方フィルタを用いたコーナー丸め処理のフローチャートである。 図15は、第2実施形態に係る欠陥検査装置におけるコーナー丸め処理のフローチャートである。 図16は、第2実施形態に係る欠陥検査装置における展開画像における画素のラベリングの一例を示す図である。 図17は、第2実施形態に係る欠陥検査装置におけるラベルAに対応する等方フィルタの一例を示す図である。
以下に、実施形態について図面を参照して説明する。実施形態は、発明の技術的思想を具体化するための装置や方法を例示している。図面は模式的または概念的なものであり、各図面の寸法及び比率等は必ずしも現実のものと同一とは限らない。本発明の技術的思想は、構成要素の形状、構造、配置等によって特定されるものではない。
以下では、試料の欠陥検査装置として、走査型電子顕微鏡(以下、「SEM(Scanning Electron Microscope)」と表記する)を用いて測定対象パターンの電子線画像(以下、「SEM画像」とも表記する)を撮像する欠陥検査装置について説明する。なお、欠陥検査装置は、光学顕微鏡を用いてパターンの光学画像を撮像してもよいし、受光素子を用いて、試料を反射または透過した光の光学画像を撮像してもよい。また、本実施形態では、検査対象となる試料がマスクである場合について説明するが、試料は、ウェハ、または液晶表示装置などに使用される基板等、表面にパターンが設けられている試料であればよい。
1.第1実施形態
1.1 欠陥検査装置の全体構成
まず、欠陥検査装置の全体構成の一例について、図1を用いて説明する。図1は、欠陥検査装置1の全体構成を示す図である。
図1に示すように、欠陥検査装置1は、撮像機構10と制御機構20とを含む。
撮像機構10は、試料室11及び鏡筒12を含む。鏡筒12は、試料室11の上に設置されている。例えば、鏡筒12は、試料室11に対し垂直に延伸する円筒形状を有している。試料室11及び鏡筒12は、互いに接する面が開口している。試料室11と鏡筒12とにより形成される空間は、ターボ分子ポンプ等を用いて真空(減圧)状態に保持される。
試料室11内には、ステージ13、ステージ駆動機構14、及び検出器15が設けられている。
ステージ13の上には、試料(マスク)300が載置される。ステージ13は、ステージ13の表面に平行なX方向、及びステージ13の表面に平行であり且つX方向と交差するY方向に移動可能である。また、ステージ13は、ステージ13の表面に垂直なZ方向に移動可能であってもよいし、Z方向を回転軸として、XY平面上で回転軸周りに回転可能であってもよい。
ステージ駆動機構14は、ステージ13を、X方向及びY方向に移動させるための駆動機構を有する。なお、ステージ駆動機構14は、例えば、ステージ13をZ方向に移動させる機構を有していてもよいし、Z方向を回転軸として、ステージ13をXY平面上で回転軸周りに回転させる機構を有していてもよい。
検出器15は、試料から放出された二次電子または反射電子等を検出する。検出器15は、検出した二次電子または反射電子等の信号、すなわちSEM画像のデータを、画像取得回路213に送信する。
鏡筒12内には、SEMの構成要素である電子銃16及び電子光学系17が設けられている。
電子銃16は、試料室11に向かって電子線を射出するように設置されている。
電子光学系17は、電子銃16から射出された電子線を、試料300の所定の位置に収束させて照射する。例えば、電子光学系17は、複数の集束レンズ101及び102と、複数の走査コイル103及び104と、対物レンズ105を含む。電子銃16から射出された電子線は、加速された後に集束レンズ101及び102、並びに対物レンズ105によって、ステージ13上に載置された試料300の表面に電子スポットとして集束する。走査コイル103及び104は、試料300上における電子スポットの位置を制御する。
制御機構20は、制御回路21、記憶装置22、表示装置23、入力装置24、及び通信装置25を含む。
制御回路21は、欠陥検査装置1の全体を制御する。より具体的には、制御回路21は、撮像機構10を制御してSEM画像を取得する。また、制御回路21は、制御機構20を制御して、生成した参照画像と検査画像とを比較し、欠陥を検出する。すなわち、制御回路21は、欠陥検査を実行するためのプロセッサである。例えば、制御回路21は、図示せぬCPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)を含む。例えば、CPUは、非一時的な記憶媒体としてのROMあるいは記憶装置22に格納されたプログラムをRAMに展開する。そして、制御回路21は、RAMに展開されたプログラムをCPUにより解釈及び実行して、欠陥検査装置1を制御する。なお、制御回路21は、例えば、マイクロプロセッサなどのCPUデバイスであってもよいし、パーソナルコンピュータなどのコンピュータ装置であってもよい。また、制御回路21は、少なくとも一部の機能が、特定用途集積回路(ASIC:Application Specific Integrated Circuit)、フィールドプログラマブルゲートアレイ(FPGA:Field Programmable Gate Alley)、または、グラフィック処理ユニット(GPU:Graphics Processing Unit)等の他の集積回路によって担われる専用回路(専用プロセッサ)を含んでいてもよい。
制御回路21は、展開回路211、参照画像生成回路212、画像取得回路213、及び比較回路214を含む。なお、これらは、CPU、ASIC、FPGA、または、GPUなどの集積回路が実行するプログラムによって構成されてもよいし、それらの集積回路が備えるハードウェアまたはファームウェアによって構成されてもよいし、それらの集積回路によって制御される個別の回路によって構成されてもよい。以下では、制御回路21が、実行するプログラムによって、展開回路211、参照画像生成回路212、画像取得回路213、及び比較回路214の機能を実現する場合について説明する。
展開回路211は、例えば、記憶装置22に保持されている設計データをパターン(図形)毎のデータに展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、展開回路211は、設計データを、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして、2値または多値(例えば8bit)の画像(以下、「CAD画」または「展開画像」とも表記する)に展開する。展開回路211は、展開画像の画素毎に図形が占める占有率を演算する。このようにして、演算された各画素内の図形占有率が画素値である。以下では、展開画像の画素値が8ビットの階調データで表される場合について説明する。この場合、各画素の画素値は、0~255の階調値で表される。画素値が0の場合、図形占有率は、0%であり、画素値が255の場合、図形占有率は、100%である。
参照画像生成回路212は、展開画像のリサイズ処理及びコーナー丸め処理を行う。そして、参照画像生成回路212は、リサイズ処理及びコーナー丸め処理後の展開画像から輪郭を抽出して参照画像(輪郭画像)を生成する。参照画像生成回路212は、生成した参照画像を比較回路214及び記憶装置22に送信する。参照画像生成回路212は、リサイズ処理回路215及びコーナー丸め処理回路216を含む。
リサイズ処理回路215は、リサイズ処理を実行し、展開画像のパターンのエッジ位置を移動させる。
コーナー丸め処理回路216は、リサイズ処理後の各パターンのコーナー部分を丸めるコーナー丸め処理を実行する。より具体的には、本実施形態のコーナー丸め処理回路216は、コーナーを含む画素を検出し、コーナー(検出した画素)のクラス分類を行う。コーナー丸め処理回路216は、コーナーを含む画素及びその周辺画素に対して、クラス毎に予め設定されたコーナー丸め量(以下、単に「丸め量」とも表記する)を付与する。コーナー丸め処理回路216は、各画素のコーナー丸め量を表すコーナー丸め量マップを生成する。そして、コーナー丸め処理回路216は、コーナー丸め量マップに基づいて、コーナー丸め処理を実行する。
画像取得回路213は、撮像機構10の検出器15からSEM画像のデータを取得する。画像取得回路213は、SEM画像から輪郭を抽出して検査画像(輪郭画像)を生成する。
比較回路214は、検査画像と参照画像とのアライメントを行い、参照画像に対する検査画像のシフト量を算出する。また比較回路214は、例えば、試料300面内におけるシフト量のばらつき等から検査画像の歪み量を測定し、歪み係数を算出する。比較回路214は、シフト量及び歪み係数を考慮した適切なアルゴリズムを用いて、検査画像と参照画像とを比較する。比較回路214は、検査画像と参照画像の誤差が予め設定された値を超えた場合には、対応する試料300の座標位置に欠陥があると判定する。
記憶装置22は、欠陥検査に関するデータ及びプログラムを記憶する。例えば、記憶装置22は、設計データ221、検査条件のパラメータ情報222、及び検査データ223等を記憶する。より具体的には、例えば、検査条件のパラメータ情報222には、撮像機構10の撮像条件、参照画像生成条件(コーナーのクラス分類情報等)、及び欠陥検出条件等が含まれる。また、検査データ223には、画像データ(展開画像、参照画像、SEM画像、及び検査画像)、並びに検出された欠陥に関するデータ(座標及びサイズ等)が含まれる。また、記憶装置22は、非一時的な記憶媒体として、欠陥検査プログラム224を記憶する。欠陥検査プログラム224は、制御回路21に欠陥検査を実行させるためのプログラムである。
なお、記憶装置22は、外部ストレージとして、磁気ディスク記憶装置(HDD:Hard Disk Drive)またはソリッドステートドライブ(SSD)等の各種記憶装置を含んでいてもよい。更に、記憶装置22は、例えば、非一時的な記憶媒体としてCD(Compact Disc)またはDVD(Digital Versatile Disc)等に記憶されたプログラムを読み込むためのドライブを含んでいてもよい。
表示装置23は、例えば、表示画面(例えば、LCD(Liquid Crystal Display)またはEL(Electroluminescence)ディスプレイ等)等を含む。表示装置23は、制御回路21の制御により、例えば、欠陥検出結果を表示する。
入力装置24は、キーボード、マウス、タッチパネル、またはボタンスイッチなどの入力装置である。
通信装置25は、外部装置との間でデータの送受信を行うために、ネットワークに接続するための装置である。通信には、各種の通信規格が用いられ得る。例えば、通信装置25は、外部装置から設計データを受信し、欠陥検査の結果等を外部装置に送信する。
1.2 検査工程の全体の流れ
次に、検査工程の全体の流れの一例について、図2を用いて説明する。図2は、検査工程のフローチャートである。
図2に示すように、検査工程は、大まかに、検査画像取得工程(ステップS1)と、参照画像生成工程(ステップS2)と、比較工程(ステップS3)とを含む。
1.2.1 検査画像取得工程
まず、ステップS1の検査画像取得工程の一例について説明する。画像取得回路213は、撮像機構10から、試料300のSEM画像を取得する(ステップS11)。
次に、画像取得回路213は、取得したSEM画像のノイズを除去するため、フィルタ処理を実行する(ステップS12)。
次に、画像取得回路213は、フィルタ処理後のSEM画像からパターンの輪郭を抽出し(ステップS13)、検査画像(輪郭画像)を生成する。より具体的には、画像取得回路213は、実画(検査画像)として、SEM画像毎に、当該SEM画像内の各図形パターンの複数の輪郭位置(実画輪郭位置)を抽出する。
以下、画像取得回路213における実画輪郭位置の抽出の一例について説明する。図3は、実画輪郭位置の一例を示す図である。
画像取得回路213は、例えばソーベルフィルタ等の微分フィルタを用いてX方向及びY方向に各画素を微分する微分フィルタ処理を行い、X方向及びY方向の1次微分値を合成する。そして合成後の1次微分値を用いたプロファイルのピーク位置を輪郭線(実画輪郭線)上の輪郭位置として抽出する。図3の例では、実画輪郭線が通る複数の画素(輪郭画素)において、それぞれ1点ずつ輪郭位置を抽出した場合を示している。輪郭位置は、各輪郭画素内においてサブ画素単位で抽出される。図3の例では、画素内の座標(x,y)は輪郭位置を示している。また、角度θは、複数の輪郭位置を所定の関数でフィッティングして近似する輪郭線の各輪郭位置での法線方向の角度を示している。法線方向の角度θは、例えば、X軸に対する右回りの角度で定義される。得られた各実画輪郭位置の情報(実画輪郭線データ)は、記憶装置22に格納される。なお、本例では、ソーベルフィルタを用いた場合について説明したが、輪郭抽出フィルタは、ソーベルフィルタに限定されない。
画像取得回路213は、生成した検査画像を比較回路214及び記憶装置22に送信する。
1.2.2 参照画像取得工程
次に、参照画像取得工程の一例について説明する。例えば、欠陥検査装置1は、通信装置25を介して、設計データを取得する(ステップS21)。取得された設計データは、例えば、記憶装置22に記憶される。
展開回路211は、記憶装置22に記憶された設計データを読み出す。そして、展開回路211は、展開処理を実行し、設計データを、例えば8bitの画像データ(展開画像)に展開(変換)する(ステップS22)。展開画像の各画素は、その画素を設計データの図形が画素に占める占有率に相当する値を持つ。例えば8bitの画像データの場合、設計図形の占有率が0%の場合の画素値は0であり、占有率が100%の場合の画素値は255である。展開回路211は、展開画像を参照画像生成回路212及び記憶装置22に送信する。
リサイズ処理回路215は、展開画像のリサイズ処理を実行する(ステップS23)。
次に、コーナー丸め処理回路216は、リサイズ処理された各パターンのコーナーのクラス分類を行った後、コーナー丸め処理を実行する(ステップS24)。コーナー丸め処理の詳細については、後述する。
参照画像生成回路212は、リサイズ処理及びコーナー丸め処理が施された展開画像からパターンの輪郭を抽出し(ステップS25)、参照画像(輪郭画像)を生成する。参照画像生成回路212は、生成した参照画像を比較回路214及び記憶装置22に送信する。
1.2.3 比較工程
次に、比較工程の一例について説明する。まず、比較回路214は、検査画像と参照画像とを用いてアライメントを実行し(ステップS31)、検査画像内のパターンと、参照画像内のパターンとの位置合わせを行う。例えば、実画(検査画像)の各輪郭線位置と参照画像の対応する輪郭線位置の相対ベクトルを求め、その平均値をアライメントシフト量とする。ここのとき、比較回路214は、参照画像に対する検査画像のアライメントシフト量を算出する。
次に、比較回路214は、検査画像の歪み量を測定し(ステップS32)、歪み係数を算出する。例えば、ステージ移動精度あるいは試料300の歪み等により、設計データに基づく座標情報と、撮像された画像から算出されたパターンの座標との間に位置ずれが生じる場合がある。比較回路214は、例えば、試料300面内における局所的なアライメントシフト量の分布等から検査画像の歪み量を測定し、歪み係数を算出する。
例えば、座標(x,y)の歪み量は、歪み量をdx、dyとする次の式で歪みを表される。ここで、a~a、b~bを歪み係数とする。各歪み係数は検査画像の各輪郭点と、参照画像の対応する輪郭点の相対ベクトルを(dx、dy)として最小二乗法などの最適化手法で算出することができる。
dx(x,y)=a+ax+ay+axy
dy(x,y)=b+bx+by+bxy
算出された歪み係数によって各輪郭点における歪み量を算出できるので、後述のステップS33においてアライメントシフト量とともに検査画像と参照画像との相対ベクトル計算に用いられる。
次に、比較回路214は、検査画像と参照画像とを比較する(ステップS33)。比較回路214は、比較した結果に基づいて、欠陥を検出する。換言すれば、比較回路214は、検査画像と参照画像とを比較する比較工程として、アライメントシフト量を用いて、検査画像の各輪郭線(実画輪郭線)と参照画像の対応する輪郭線(参照画輪郭線)とを比較する。例えば、比較回路214は、複数の実画輪郭位置の各実画輪郭位置と、それぞれ対応する参照輪郭位置との間でのアライメントシフト量を考慮した欠陥位置ずれベクトルの大きさ(距離)が判定閾値を超えた場合に欠陥と判定する。比較結果は、記憶装置22または表示装置(モニタ)23に出力される。
制御回路21は、欠陥検査の結果を、記憶装置22に保存した後、例えば、表示装置23に表示してもよく、通信装置25を介して外部装置(例えば、レビュー装置等)に出力してもよい。
1.3 コーナー丸め処理
次に、コーナー丸め処理の一例について説明する。図4は、コーナー丸め処理のフローチャートである。図4に示すように、コーナー丸め処理回路216は、ステップS101~S110を実行する。各ステップの詳細について説明する。
[ステップS101]
まず、コーナー丸め処理回路216は、展開画像の各パターン(図形)のコーナー検出を行う。
以下では、コーナー検出の一例として、SUSAN(Smallest Univalue Segment Assimilating Nucleus)オペレータを用いた場合について、図5及び図6を用いて説明する。図5及び図6は、コーナー検出対象のパターンの一例を示す展開画像である。
図5及び図6に示すように、まず、コーナー丸め処理回路216は、注目画素に対して予め設定された範囲内にある周辺画素(図5及び図6の破線内にある画素)を演算対象画素として設定する。なお、演算対象画素の設定範囲は、任意に設定可能であり、例えば、注目画素を中心とした3×3画素でもよいし、5×5画素であってもよい。コーナー丸め処理回路216は、設定範囲内の各演算対象画素において、注目画素の画素値(階調値)との差分を算出し、その差分が、予め設定された閾値以下である場合は、演算対象画素に“1”を設定し、閾値以上であれば“0”を設定する。そして、コーナー丸め処理回路216は、“1”が設定された演算対象画素の合計数Sを算出する。例えば、図5に示すような比較的面積の大きな正方形のパターンP1と図6に示すようなラインパターンP2とでは、演算対象画素の設定範囲におけるパターンの形状が異なるため、注目画素のS値がそれぞれ異なる。コーナー丸め処理回路216は、展開画像の各画素において上述の演算を行い、S値が極小となる画素を、コーナーを含む画素(以下、「コーナー検出画素」とも表記する)として検出する。コーナー丸め処理回路216は、パターンの形状と演算対象画素の設定範囲の大きさによって、検出されるコーナーを制御する。
[ステップS102]
次に、コーナー丸め処理回路216は、コーナー検出画素のS値及び画素値に基づいてコーナーのクラス分類を行う。例えば、図5及び図6で説明したようにパターンの形状が異なると、コーナー検出画素のS値が異なる場合がある。また、図7及び図8に示すように、コーナーの形状(角度)が異なるとパターンの形状は異なっていてもS値が同じとなる場合がある。図7及び図8は、コーナー検出対象のパターンの一例を示す展開画像である。例えば、図7に示すようなコーナーの角度が90°であるパターンP3と、図8に示すようなコーナーの角度が270°であるパターンP4とは、コーナー検出画素(注目画素)のS値は同じである。S値は同じでもコーナー検出画素の画素値に着目すると、90°コーナーを含む注目画素の画素値は、0よりも大きく(例えば255)、270°コーナーを含む注目画素の画素値は、0となる。従って、コーナー丸め処理回路216は、パターン及びコーナーの形状、換言すれば、コーナー検出画素のS値と画素値に基づいて、予め設定された区分に従って、コーナー検出画素のクラス分類を行う。以下では、コーナー丸め量が少ない順に、クラス1~N(Nは2以上の整数)と分類する場合について説明する。
[ステップS103]
次に、コーナー丸め処理回路216は、コーナー検出画素及びその周辺画素を、コーナー検出画素のクラスに対応するクラス領域として設定する。なお、クラス領域に含まれる周辺画素の範囲は、任意に設定可能であり、例えば、コーナー検出画素を中心とした3×3画素でもよいし、5×5画素であってもよい。例えば、コーナー丸め処理回路216は、クラス領域毎に異なる周辺画素の範囲を設定してもよい。そして、コーナー丸め処理回路216は、クラス領域毎に、クラスに対応したコーナー丸め量を付与し、コーナー丸め量マップを作成する。図9は、コーナー丸め量マップの一例を示す図である。
図9に示すように、コーナー丸め処理回路216は、パターンP5に対して6つの画素C1~C6を、コーナー検出画素として検出する。例えば、コーナー丸め処理回路216は、画素C1及びC2をクラス1に分類し、画素C3~C5をクラス2に分類し、画素C6をクラス3に分類する。この状態において、コーナー丸め処理回路216は、画素C1及びC2、並びに画素C1及びC2の周辺画素をクラス領域1に設定する。そして、コーナー丸め処理回路216は、クラス領域1の各画素にクラス1のコーナー丸め量R1を付与する。同様に、コーナー丸め処理回路216は、画素C3~C5、並びに画素C3~C5の周辺画素をクラス領域2に設定し、クラス領域2の各画素にクラス2のコーナー丸め量R2(>R1)を付与する。また、コーナー丸め処理回路216は、画素C6及び画素C6の周辺画素をクラス領域3に設定し、クラス領域3の各画素にクラス3のコーナー丸め量R3(>R2)を付与する。なお、クラス領域に含まれない画素はコーナー丸め量0とされる。
[ステップS104]
次に、コーナー丸め処理回路216は、各クラス領域において、クラス1のコーナー丸め量R1を用いた3×3画素の等方フィルタによるフィルタ処理と、フィルタ処理の結果を用いた折れ線関数の演算とによるコーナー丸め処理を実行する。
ここで、コーナー丸め処理の一例について、図10~図12を用いて説明する。図10は、コーナー丸め処理に用いられる等方フィルタの一例を示す図である。図11は、等方フィルタの具体例を示す図である。図12は、折れ線関数の一例を示す図である。
本実施形態では、等方フィルタによるフィルタ処理の結果に折れ線関数を適用することにより、対象画素のコーナー丸め処理(画素値の補正)を行っている。
図10に示すように、例えば、コーナー丸め量Rに対し、半径r=Rとした等方フィルタによるフィルタ処理(畳み込み演算)を行う。より具体的には、例えば、コーナー丸め量Rが1.5<R≦2.5である場合、等方フィルタfのサイズは、注目画素を中心とした5×5画素のカーネルで表される。ここで、注目画素の座標を(0,0)とすると、各画素の座標は、紙面左下から紙面右上に向かって、(x,y)=(-2,2)~(2,-2)で表される。
コーナー丸め処理回路216は、まず、式(1)の演算を行い、等方フィルタfと注目画素との畳み込み演算を行う。ここで、Iは、注目画素の画素値を示す。
次に、コーナー丸め処理回路216は、式(2)及び式(3)の演算を行い、折れ線関数の係数k及びkを算出する。係数kは、X座標が0である等方フィルタfの合計値(面積)を表している。係数kは、X座標が1以上である等方フィルタfの合計値(面積)を表している。
次に、コーナー丸め処理回路216は、式(4)の折れ線関数Lの演算を行い、コーナー丸め処理後の注目画素の画素値を算出する。ここで、Imaxは、最大画素値を示しており、例えば、画素値が0~255で表される場合、Imax=255である。
図11に示すように、5×5画素の等方フィルタfにおいて、例えば、座標(-2,2)、(2,2)、(-2,-2)、及び(2,-2)の値を0.0068とする。座標(-1,2)、(1,2)、(-2,1)、(2,1)、(-2,-1)、(2,-1)、(-1,-2)、及び(1,-2)の値を0.4326とする。座標(0,2)、(-2,0)、(2,0)、及び(0,-2)の値を0.6812とする。そして、他の座標の値を1とする。このような場合、k=4.3624及びk=5.4252である。従って、Imax=255である場合の折れ線関数Lは、図12に示すグラフで表される。
図11で説明した5×5画素の等方フィルタを用いたコーナー丸め処理具体例について、図13を用いて説明する。図13は、1つのクラス領域におけるコーナー丸め処理前後の各画素の画素値を示す図である。なお、図13の例では、クラス領域外の左右及び上下の画素には同じ値が続いている。
図13に示すように、例えばコーナー検出画素の座標(4,4)を中心画素とした7×7画素をクラス領域とした場合、座標(4,4)の画素値165は、コーナー丸め処理により、0となる。座標(4,5)の画素値196は、120となる。座標(4,6)の画素値196は、187となる。座標(5,4)の画素値216は、126となる。座標(6,4)の画素値216は、202となる。なお、図13の例では、クラス領域の他の画素の画素値は、変動していない。
[ステップS105]
次に、コーナー丸め処理回路216は、クラス及びクラス領域を表す変数nとして、n=2(nは、1<n<Nの整数)を設定する。
[ステップS106]
次に、コーナー丸め処理回路216は、コーナー丸め処理の対象クラス領域として、クラス領域n~クラス領域Nを選択する。
[ステップS107]
次に、コーナー丸め処理回路216は、クラスnのコーナー丸め量Rnと、クラス(n-1)のコーナー丸め量R(n-1)との差分のコーナー丸め量を算出する。例えば、n=2の場合、コーナー丸め処理回路216は、クラス2のコーナー丸め量R2と、クラス1のコーナー丸め量R1との差分のコーナー丸め量を算出する。
[ステップS108]
次に、コーナー丸め処理回路216は、選択したクラス領域n~クラス領域Nにおいて、差分のコーナー丸め量(Rn-R(n-1))を用いた3×3画素の等方フィルタによる畳み込み演算と、畳み込み演算の結果を用いた折れ線関数の演算とによるコーナー丸め処理を実行する。
[ステップS109]
n=Nの場合(ステップS109_Yes)、すなわち、選択したクラス領域がコーナー丸め量の最も大きいクラス領域であった場合、コーナー丸め処理回路216は、コーナー丸め処理を終了する。
[ステップS110]
ステップS109において、n<Nの場合(ステップS109_No)、コーナー丸め処理回路216は、変数nのカウントアップを行ってn=n+1とし、ステップS106に進む。コーナー丸め処理回路216は、変数nがNに達するまで、コーナー丸め処理を繰り返し実行する。
1.4 3×3画素の等方フィルタを用いたコーナー丸め処理
次に、図4で説明した3×3画素の等方フィルタを用いたコーナー丸め処理の具体例について、図14を用いて説明する。図14は、3×3画素の等方フィルタを用いたコーナー丸め処理のフローチャートである。
本実施形態のコーナー丸め処理回路216は、コーナー丸め量Rに応じて、3×3画素の等方フィルタを用いたフィルタ処理を複数回実行する。例えば、3×3画素の等方フィルタの半径をrとすると、rの最大値は1.5である。このため、コーナー丸め量Rがr=1.5よりも大きい場合、r=1.5のコーナー丸め処理をK回(Kは整数)繰り返した後、最後にr<1.5のコーナー丸め処理を実行する。
図14に示すように、まず、コーナー丸め処理回路216は、K=ceil(R-0.5)-1の演算を行い、r=1.5の3×3画素の等方フィルタを用いたコーナー丸め処理の処理総数Kを算出する(ステップS201)。ここで“ceil”は、端数の切り上げを示す。
処理総数K≧1である場合(ステップS202_Yes)、すなわち、コーナー丸め処理Rが1.5以上である場合、コーナー丸め処理回路216は、r=1.5のコーナー丸め処理回数のカウント値をk(kは任意の整数)とすると、k=1を設定する(ステップS203)。
次に、コーナー丸め処理回路216は、r=1.5の3×3画素の等方フィルタを用いたコーナー丸め処理を実行する(ステップS204)。そして、コーナー丸め処理回路216は、フィルタ処理の結果を用いた折れ線関数の演算により、各クラス領域の各画素の画素値を算出する(ステップS205)。
カウント値k=Kではない場合(ステップS206_No)、すなわち、カウント値kが処理総数Kに達していない場合、コーナー丸め処理回路216は、カウント値kをインクリメントしてk=k+1とし(ステップS207)、ステップS204に進む。コーナー丸め処理回路216は、カウント値kが処理総数Kに達するまで、ステップS204~S207を繰り返す。
処理総数Kが0である場合(ステップS202_No)、またはカウント値k=Kの場合(ステップS206_Yes)、すなわち、r=1.5の3×3画素の等方フィルタを用いたコーナー丸め処理が終了した場合、コーナー丸め処理回路216は、r=(R-K)の3×3画素の等方フィルタを用いたコーナー丸め処理を実行する(ステップS208)。より具体的には、コーナー丸め量R≦1.5の場合、処理総数K=0となるため、コーナー丸め処理回路216は、r=Rの3×3画素の等方フィルタを用いたコーナー丸め処理を実行する。また、コーナー丸め量R>1.5の場合、コーナー丸め処理回路216は、コーナー丸め処理Rから処理総数Kを減算した値を半径rとした3×3画素の等方フィルタを用いたコーナー丸め処理を実行する。そして、コーナー丸め処理回路216は、フィルタ処理の結果を用いた折れ線関数の演算により、各クラス領域の各画素の画素値を算出する(ステップS209)。
この様に等方フィルタのサイズを3×3画素以下に限定することにより、フィルタサイズがパターン最小サイズより大きくなったときに生じる誤差を抑制することができる。
1.5 本実施形態に係る効果
本実施形態に係る構成であれば、欠陥検査装置は、参照画像の生成において、パターン及びそのコーナーの形状に基づいてコーナーをクラス分類し、クラス毎に異なるコーナー丸め量を設定できる。このため、欠陥検査装置は、パターン及びそのコーナーの形状に基づいてコーナー丸め量が異なる参照画像データを生成できる。これにより、寸法シフトが生じている検査画像と参照画像とのずれを低減できる。従って、欠陥検査による擬似欠陥の抽出を低減でき、欠陥検査の信頼性を向上できる。
更に、本実施形態に係る構成であれば、コーナー検出画素を含む周辺画素をクラス領域に設定し、クラス領域毎に異なるコーナー丸め量を付与できる。クラス分類に基づいてコーナー丸め量を付与することにより、各コーナーにおいてコーナーの大きさ等からコーナー丸め量を算出する場合よりも、矩形パターンの様な単純なパターンだけでなく、OPC(Optical Proximity correction)パターンなどの複雑なパターンのコーナー一致度を高めることができる。
2.第2実施形態
次に、第2実施形態について説明する。第2実施形態では、第1実施形態とは異なるコーナー丸め処理の方法について説明する。以下、第1実施形態と異なる点を中心に説明する。
2.1 コーナー丸め処理
本実施形態におけるコーナー丸め処理の一例について説明する。図15は、コーナー丸め処理のフローチャートである。図4に示すように、コーナー丸め処理回路216は、ステップS101~S103、並びにS120及びS121を実行する。ステップS101~S103は、第1実施形態の図4と同様である。
[ステップS120]
コーナー丸め処理回路216は、コーナー丸め量マップを作成後、パターン毎に画素をラベリングする。図16は、展開画像における画素のラベリングの一例を示す図である。
図16に示すように、コーナー丸め処理回路216は、例えばパターンP6の画素と、近傍に配置されたパターンP7~P10の各画素とを区別できるようにラベリングする。より具体的には、コーナー丸め処理回路216は、例えば、パターンP6の各画素をラベルAとラベリングする。同様に、コーナー丸め処理回路216は、パターンP7の各画素をラベルBとラベリングする。コーナー丸め処理回路216は、パターンP8の各画素をラベルCとラベリングする。コーナー丸め処理回路216は、パターンP9の各画素をラベルDとラベリングする。コーナー丸め処理回路216は、パターンP10の各画素をラベルEとラベリングする。
[ステップS121]
次に、コーナー丸め処理回路216は、ラベル毎に、各クラス領域のコーナー丸め量Rに基づくM×M(Mは3以上の奇数)画素の等方フィルタを用いたフィルタ処理(畳み込み演算)と、の結果を用いた折れ線関数の演算とによるコーナー丸め処理を実行する。コーナー丸め処理回路216は、対象ラベルの画素のフィルタ処理を実行する際に、非対象ラベルの画素の画素値を例えば0とし、フィルタ処理が非対象ラベルの画素の影響を受けないようにする。
ラベル毎のコーナー丸め処理の具体例について、図17を用いて説明する。図17は、ラベルAに対応する等方フィルタの一例を示す図である。
図17に示すように、例えば、ラベルAの注目画素に対する5×5画素の等方フィルタ内にラベルBの画素が含まれる場合がある。このような場合、コーナー丸め処理回路216は、ラベルBの画素の画素値を0として、ラベルAの注目画素の畳み込み演算を実行する。
この様に等方フィルタを同一ラベルの図形のみに適用することにより、図形間の距離が接近してフィルタの範囲に異なる図形が入ることによる誤差を抑制することができる。
2.2 本実施形態に係る効果
本実施形態に係る構成であれば、第1実施形態と同様の効果が得られる。
更に、本実施形態に係る構成であれば、パターン毎に対応する画素のラベリングをし、ラベル毎にコーナー丸め処理を実行できる。これにより、等方フィルタを用いたフィルタ処理を実行する際に近接パターンの影響を低減できる。
3.変形例等
上述の第1及び第2実施形態では、コーナー検出にSUSANオペレータを用いる場合について説明したが、他のコーナー検出方法を用いてもよい。コーナー検出方法は、例えば、HarrisまたはMoravecのコーナー検出方法であってもよい。
上述の第1及び第2実施形態を組み合わせてもよい。例えば、第2実施形態において、コーナー丸め量Rが1.5より大きい場合、M×Mの等方フィルタを用いる代わりに、3×3の等方フィルタを用いたフィルタ処理を複数回繰り返してもよい。
上述の第1及び第2実施形態では、コーナー丸め処理に等方フィルタを用いた場合について説明したが、他のフィルタを用いてもよい。
上述の実施形態では、欠陥検査装置において参照画像を生成する場合について説明したが、参照画像の生成方法は、欠陥検査装置に限定されない。データに基づいて参照画像を生成する装置、例えば、測定装置等、他の装置に適用されてもよい。
上述の実施形態において、コーナーのクラス分類に、機械学習等を利用してもよい。すなわち、AI(artificial intelligence)を用いたパターン学習によって、クラス分類の演算条件を設定してもよい。
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
1…欠陥検査装置、10…撮像機構、11…試料室、12…鏡筒、13…ステージ、14…ステージ駆動機構、15…検出器、16…電子銃、17…電子光学系、20…制御機構、21…制御回路、22…記憶装置、23…表示装置、24…入力装置、25…通信装置、101、102…集束レンズ、103、104…走査コイル、105…対物レンズ、211…展開回路、212…参照画像生成回路、213…画像取得回路、214…比較回路、215…リサイズ処理回路、216…コーナー丸め処理回路、221…設計データ、222…パラメータ情報、223…検査データ、224…欠陥検査プログラム、300…試料

Claims (8)

  1. 試料の撮像機構と、
    前記撮像機構が撮像した前記試料の画像データに基づいて検査画像を生成する画像取得回路と、
    設計データから展開画像を生成する展開回路と、
    前記展開画像からパターンのコーナーを検出し、検出した前記コーナーをクラス分類し、クラス毎に異なるコーナー丸め量のコーナー丸め処理を実行するコーナー丸め処理回路を含み、前記コーナー丸め処理後の前記展開画像を用いて参照画像を生成する参照画像生成回路と、
    前記検査画像と前記参照画像とを比較する比較回路と
    を備え
    前記コーナー丸め処理回路は、
    第1クラスに付与された第1コーナー丸め量に基づいて、予め設定されたサイズ以下の等方フィルタを用いたフィルタ処理を実行し、
    前記第1コーナー丸め量と第2クラスに付与された第2コーナー丸め量との差分を算出し、
    前記差分に基づいて、前記予め設定されたサイズ以下の前記等方フィルタを用いた前記フィルタ処理を実行する、
    欠陥検査装置。
  2. 前記コーナー丸め処理回路は、パターン及びコーナーの形状に基づいて、コーナー検出画素及び少なくとも前記コーナー検出画素に隣接する画素を、前記コーナー検出画素のクラスに対応するクラス領域として設定する、
    請求項1に記載の欠陥検査装置。
  3. 前記コーナー丸め処理回路は、前記クラス領域毎に、前記コーナー検出画素の前記クラスに対応した前記コーナー丸め量を付与し、コーナー丸め量マップを作成する、
    請求項2に記載の欠陥検査装置。
  4. 前記コーナー丸め処理回路は、
    前記展開画像において、パターン毎に対応する画素をラベリングし、
    ラベル毎に、前記コーナー丸め処理を実行する、
    請求項1乃至3のいずれか一項に記載の欠陥検査装置。
  5. 試料を撮像して検査画像を生成する工程と、
    設計データから展開画像を生成する工程と、
    前記展開画像からパターンのコーナーを検出する工程と、
    検出された前記コーナーをクラス分類する工程と、
    分類されたクラス毎に異なるコーナー丸め量のコーナー丸め処理を実行する工程と、
    前記コーナー丸め処理後の前記展開画像に基づいて参照画像を生成する工程と、
    前記検査画像と前記参照画像とを比較して検査を行う工程と
    を備え
    前記コーナー丸め処理を実行する工程は、
    第1クラスに付与された第1コーナー丸め量に基づいて、予め設定されたサイズ以下の等方フィルタを用いたフィルタ処理を実行する工程と、
    前記第1コーナー丸め量と第2クラスに付与された第2コーナー丸め量との差分を算出する工程と、
    前記差分に基づいて、前記予め設定されたサイズ以下の前記等方フィルタを用いた前記フィルタ処理を実行する工程と
    を含む、
    欠陥検査方法。
  6. パターン及びコーナーの形状に基づいて、コーナー検出画素及び少なくとも前記コーナー検出画素に隣接する画素を、前記コーナー検出画素のクラスに対応するクラス領域として設定する工程を更に備える、
    請求項に記載の欠陥検査方法。
  7. 前記コーナー丸め処理を実行する工程は、
    前記クラス領域毎に、前記コーナー検出画素の前記クラスに対応した前記コーナー丸め量を付与する工程と、
    前記コーナー丸め量に基づいてコーナー丸め量マップを作成する工程と、
    前記コーナー丸め量マップに基づいて前記コーナー丸め処理を実行する工程と
    を含む、請求項に記載の欠陥検査方法。
  8. 前記展開画像において、パターン毎に画素をラベリングする工程を更に備え、
    前記コーナー丸め処理を実行する工程は、ラベル毎に実行される、
    請求項乃至のいずれか一項に記載の欠陥検査方法。
JP2021021803A 2021-02-15 2021-02-15 欠陥検査装置及び欠陥検査方法 Active JP7411594B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021021803A JP7411594B2 (ja) 2021-02-15 2021-02-15 欠陥検査装置及び欠陥検査方法
US18/260,839 US20240054633A1 (en) 2021-02-15 2021-10-05 Defect inspection apparatus and defect inspection method
PCT/JP2021/036823 WO2022172504A1 (ja) 2021-02-15 2021-10-05 欠陥検査装置及び欠陥検査方法
KR1020237028657A KR20230135129A (ko) 2021-02-15 2021-10-05 결함 검사 장치 및 결함 검사 방법
TW111104219A TWI810806B (zh) 2021-02-15 2022-02-07 缺陷檢查裝置及缺陷檢查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021021803A JP7411594B2 (ja) 2021-02-15 2021-02-15 欠陥検査装置及び欠陥検査方法

Publications (2)

Publication Number Publication Date
JP2022124187A JP2022124187A (ja) 2022-08-25
JP7411594B2 true JP7411594B2 (ja) 2024-01-11

Family

ID=82837620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021021803A Active JP7411594B2 (ja) 2021-02-15 2021-02-15 欠陥検査装置及び欠陥検査方法

Country Status (5)

Country Link
US (1) US20240054633A1 (ja)
JP (1) JP7411594B2 (ja)
KR (1) KR20230135129A (ja)
TW (1) TWI810806B (ja)
WO (1) WO2022172504A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028334A (ja) 1998-07-15 2000-01-28 Hitachi Ltd パターン欠陥検査方法およびその装置
JP2007040839A (ja) 2005-08-03 2007-02-15 Sony Corp 周期性パターンのピッチ検査方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113102A (ja) * 1983-11-25 1985-06-19 Hitachi Ltd 微細パタ−ン検査方法
JPH05197132A (ja) * 1992-01-23 1993-08-06 Toshiba Corp パターン検査装置
JP2997161B2 (ja) * 1994-03-08 2000-01-11 大日本スクリーン製造株式会社 画像パターン検査装置
US5804340A (en) * 1996-12-23 1998-09-08 Lsi Logic Corporation Photomask inspection method and inspection tape therefor
JP3517100B2 (ja) * 1997-11-12 2004-04-05 株式会社東芝 パターン検査装置及びパターン検査方法
JP6043662B2 (ja) * 2013-03-18 2016-12-14 株式会社ニューフレアテクノロジー 検査方法および検査装置
CN105548350B (zh) * 2016-01-26 2018-12-25 江苏理工学院 基于圆角矩形阵列探头的脉冲涡流缺陷检测成像系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028334A (ja) 1998-07-15 2000-01-28 Hitachi Ltd パターン欠陥検査方法およびその装置
JP2007040839A (ja) 2005-08-03 2007-02-15 Sony Corp 周期性パターンのピッチ検査方法

Also Published As

Publication number Publication date
WO2022172504A1 (ja) 2022-08-18
TWI810806B (zh) 2023-08-01
US20240054633A1 (en) 2024-02-15
JP2022124187A (ja) 2022-08-25
TW202234148A (zh) 2022-09-01
KR20230135129A (ko) 2023-09-22

Similar Documents

Publication Publication Date Title
US10937146B2 (en) Image evaluation method and image evaluation device
US7817844B2 (en) Pattern inspection apparatus and method
US9189843B2 (en) Pattern inspection apparatus and method
TWI648533B (zh) 用於相對於一所儲存高解析度晶粒圖像判定檢查資料之一位置之電腦實施方法及經組態以相對於一所儲存高解析度晶粒圖像判定檢查資料之一位置之系統
JP5065943B2 (ja) 製造プロセスモニタリングシステム
JP5543872B2 (ja) パターン検査方法およびパターン検査装置
JP4771714B2 (ja) パターン検査装置および方法
JP4827269B2 (ja) パターン検査装置および方法
JP2019004115A (ja) 設計データを用いた欠陥可視化方法及び欠陥検出方法
JP2012251785A (ja) 検査装置および検査方法
JP7411594B2 (ja) 欠陥検査装置及び欠陥検査方法
JP2021135893A (ja) 検査装置、検査方法、及びプログラム
JP7459007B2 (ja) 欠陥検査装置及び欠陥検査方法
WO2024018681A1 (ja) 検査装置及び検査画像の生成方法
JP2021129043A (ja) 検査装置、検査方法、及びプログラム
WO2024142524A1 (ja) 検査装置及び検査画像の生成方法
WO2023026557A1 (ja) 検査装置及び参照画像生成方法
JP2023030539A (ja) 検査装置及び検査方法
JP5604208B2 (ja) 欠陥検出装置及びコンピュータプログラム
KR20230119139A (ko) 하전 입자 빔 검사 시스템에서의 토폴로지 기반의 이미지 렌더링

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7411594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150