JP7406404B2 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
JP7406404B2
JP7406404B2 JP2020034469A JP2020034469A JP7406404B2 JP 7406404 B2 JP7406404 B2 JP 7406404B2 JP 2020034469 A JP2020034469 A JP 2020034469A JP 2020034469 A JP2020034469 A JP 2020034469A JP 7406404 B2 JP7406404 B2 JP 7406404B2
Authority
JP
Japan
Prior art keywords
substrate
liquid
liquid film
unit
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020034469A
Other languages
English (en)
Other versions
JP2021141086A (ja
Inventor
博史 阿部
喬 太田
岳明 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2020034469A priority Critical patent/JP7406404B2/ja
Priority to CN202011545248.8A priority patent/CN113053728B/zh
Priority to KR1020200182966A priority patent/KR102508052B1/ko
Priority to US17/133,647 priority patent/US12042813B2/en
Priority to TW109146154A priority patent/TWI771844B/zh
Publication of JP2021141086A publication Critical patent/JP2021141086A/ja
Application granted granted Critical
Publication of JP7406404B2 publication Critical patent/JP7406404B2/ja
Priority to US18/638,692 priority patent/US20240261814A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

この発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象になる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等の基板が含まれる。
基板を1枚ずつ処理する枚葉式の基板処理装置による基板処理では、たとえば、スピンチャックによってほぼ水平に保持された基板に対して薬液が供給される。その後、リンス液が基板に供給され、それによって、基板上の薬液がリンス液に置換される。その後、基板上のリンス液を排除するためのスピンドライ工程が行われる。
基板の表面にパターンが形成されている場合、スピンドライ工程では、パターンの内部に入り込んだリンス液を除去できないおそれがある。これにより、基板の乾燥不良が生じるおそれがある。パターンの内部に入り込んだリンス液の液面(空気と液体との界面)は、パターンの内部に形成されるので、液面とパターンとの接触位置に、液体の表面張力が働く。この表面張力が大きい場合には、パターンの倒壊が起こりやすくなる。典型的なリンス液である水は、表面張力が大きいために、スピンドライ工程におけるパターンの倒壊が無視できない。
そこで、水よりも表面張力が低い有機溶剤であるイソプロピルアルコール(Isopropyl Alcohol: IPA)を供給することが提案されている。基板の上面がIPAで処理されることによって、パターンの内部に入り込んだ水がIPAに置換される。その後にIPAが除去されることで、基板の上面が乾燥される。
ところが、近年、基板の表面には、高集積化のために、微細でかつアスペクト比の高い微細パターン(柱状のパターン、ライン状のパターン等)が形成されている。微細で高アスペクト比の微細パターンは倒壊し易い。そのため、IPAの液膜が基板の上面に形成された後、微細パターンに表面張力が働く時間を短縮する必要がある。
そこで、下記特許文献1には、IPAの気相層を形成する基板処理方法が提案されている。この基板処理方法では、ヒータによって基板が加熱されることによって、IPAの液膜と基板の上面との間にIPAの気相層が形成される。これにより、微細パターンの内部が気相のIPAで満たされるため、微細パターン内部のIPAを上方から徐々に蒸発させる方法と比較して、微細パターンに表面張力が作用する時間を短くすることができる。
特開2014-112652号公報
特許文献1に記載の基板処理方法では、IPAの液膜を基板の上面から浮上して基板の上面に接触しない状態を維持しながら、IPAの液膜が基板外へ排除される。特許文献1には、気相層が形成された状態でIPAの液膜を基板外へ排除する方法として、たとえば、基板を傾けてIPAの液膜を滑り落とす方法(特許文献1の図11A~図11C参照)や、IPAの液膜を吸引ノズルで吸引することでIPAの液膜を排除する方法(特許文献1の図12A~12C参照)等が開示されている。
これらの方法では、IPAの液膜の全体が基板の上面から浮上した後に液膜を排除しなければ、基板の上面にIPAが残存するおそれがある。そのため、ヒータによって基板を充分に加熱する必要がある。逆に、基板を加熱し過ぎると、IPAの液膜の全体を浮上させるためにヒータで基板を加熱している間にIPAが局所的に蒸発して液膜が分裂するおそれもある。
そこで、この発明の1つの目的は、基板の上面から処理液を排除する際に処理液の液膜と基板の上面との間に気相層を形成する構成において、基板の上面から処理液を良好に排除できる基板処理方法および基板処理装置を提供することである。
この発明の一実施形態は、水平に保持された基板の上面に処理液を供給して、前記処理液の液膜を前記基板の上面に形成する液膜形成工程と、前記処理液の沸点よりも低い温度に前記基板の全体を加熱することによって、前記液膜を保温する液膜保温工程と、前記液膜保温工程を実行しながら、前記基板の上面に対向する照射ユニットから前記基板の上面の中央部に設定される照射領域に光を照射して前記基板の上面の中央部を加熱することによって、前記基板の上面の中央部に接する前記処理液を蒸発させて前記基板の上面に接し前記処理液を保持する気相層を前記液膜の中央部に形成する気相層形成工程と、前記気相層によって保持される前記処理液を排除することによって、前記液膜の中央部に開口を形成する開口形成工程と、前記基板の上面の中央部を通り鉛直方向に延びる回転軸線の周りに前記基板を回転させる基板回転工程と、前記液膜保温工程および前記基板回転工程を実行しながら前記基板の周縁部に向けて前記照射領域を移動させることによって、前記液膜の内周縁に前記気相層が形成された状態を維持しながら前記開口を拡大させる開口拡大工程とを含む、基板処理方法を提供する。
この方法によれば、基板の上面の中央部に設定される照射領域に光が照射されて基板の上面の中央部が加熱される。これにより、基板の上面の中央部に接する処理液が蒸発し、気相層が基板の上面の中央部に形成される。気相層が形成されることにより、基板の上面の中央部から液膜が浮上する。基板の上面の中央部に形成された気相層によって保持される処理液を排除することによって液膜の中央部に開口が形成される。開口が形成された後、基板を回転させながら加熱領域を基板の周縁部に向けて移動させることによって、液膜の内周縁に気相層が形成された状態を維持しながら開口が拡大される。言い換えると、基板の上面から液膜を排除する際に、気相層が形成されている環状の領域(気相層形成領域)が、開口の拡大とともに基板の上面の周縁部に向かって移動する。
したがって、基板の上面の全域に気相層が形成された後に気相層に保持される液膜が排除される方法と比較して、気相層が形成されてから気相層に保持される処理液が排除されるまでの時間を、基板の上面の任意の箇所において短くすることができる。これにより、開口の形成および拡大の際に、基板の全体が過度に加熱されることを抑制できる。よって、処理液が局所的に蒸発して液膜が分裂することを抑制できる。
また、開口の形成および拡大は、処理液の液膜を保温しながら行われる。そのため、照射領域において気相層を速やかに形成することができる。また、基板の上面において照射されていない非照射領域(特に、基板Wの上面の回転中心位置に対して照射領域とは反対側の領域)における基板の温度低下を抑制できる。そのため、形成された気相層が基板の回転によって照射領域外に移動して消失することを抑制できる。
以上により、基板の上面から処理液を良好に排除できる。その結果、処理液の表面張力によるパターン倒壊や乾燥不良によるパーティクル発生を抑制できる。
この発明の一実施形態では、前記開口拡大工程が、前記基板の上面において前記液膜が形成されている液膜形成領域と、前記基板の上面において前記開口が形成されている開口形成領域とに前記照射領域が跨って配置されるように、前記開口の拡大に追従して前記照射領域を移動させる工程を含む。
液膜に開口が形成された状態で基板が加熱されると、基板の上面において開口が形成された領域には処理液が存在しないので、基板の温度が速やかに上昇する。それによって、液膜の内周縁よりも内側(開口形成領域)と液膜の内周縁よりも外側(液膜形成領域)とで温度差が生じる。具体的には、開口形成領域では基板の温度が高く、液膜形成領域では基板の温度が低くなる。この温度差によって、処理液が低温側に移動する熱対流が発生するので、開口が拡大されて、それによって、処理液が基板外に排除される。
そのため、液膜形成領域と開口形成領域とに照射領域が跨って配置されるように、開口の拡大に追従して照射領域を移動させる構成であれば、液膜形成領域と開口形成領域とで充分な温度差を生じさせ、液膜中に熱対流を発生させることができる。
その一方で、液膜の内周縁を充分な熱量で加熱することもできる。したがって、熱量不足により液膜の内周縁において気相層が形成されない事態や、一度形成された気相層が消失して処理液が基板の上面に接触する事態の発生を抑制できる。すなわち、液膜の内周縁に安定して気相層を形成することができる。
この発明の一実施形態では、前記液膜保温工程が、前記基板の下面から離間した位置で前記基板の下面に対向するヒータユニットによって前記基板を加熱することによって前記液膜を保温するヒータ加熱工程を含む。
この方法によれば、基板は、基板の下面から離間した位置に配置されたヒータユニットによって加熱される。したがって、ヒータユニットの構成にかかわらず、すなわち、ヒータユニットが基板とともに回転できない構成であっても、開口を拡大させる際に基板を容易に回転させることができる。また、基板にヒータユニットを接触させる構成と比較して、基板の全体を適度に加熱することができる。さらに、ヒータユニットに付着する汚れが基板に転写されることを抑制できる。
この発明の一実施形態では、前記液膜保温工程が、前記基板の下面の中央部に加熱流体を供給して前記基板を加熱することによって前記液膜を保温する流体加熱工程を含む。
開口が拡大される際、基板の下面の中央部に供給された加熱流体は、基板の回転に起因する遠心力の作用によって、基板の下面の周縁部に向かって広がる。そのため、基板の下面の中央部に加熱流体を供給するだけで、基板の全体を加熱することができる。
この発明の一実施形態では、前記開口形成工程が、前記気相層が形成された後に前記照射領域を前記基板の上面の中央部に維持することによって、前記液膜の中央部に前記開口を形成する工程を含む。
この方法によれば、気相層が形成された後においても照射領域が基板の上面の中央部に維持される。そのため、気相層が形成された後においても基板の上面の中央部が加熱されるので、気相層に保持される処理液の蒸発が促進される。また、基板の上面において、照射領域と、照射領域よりも外側の領域との間には大きな温度差が生じる。この温度差に起因して、基板の上面には、中央部から周縁部に向けて流れる熱対流が形成される。処理液の蒸発および熱対流の発生によって、処理液の液膜の中央部に開口を速やかに形成することができる。
この発明の一実施形態では、前記基板処理方法が、前記気相層が形成されている前記液膜の中央部に向けて気体を吹き付けることによって、前記開口の形成を促進する開口形成促進工程をさらに含む。
気相層が形成されている状態では、基板上の液膜に働く摩擦抵抗は、零と見なせるほど小さい。気相層が形成されている液膜の中央部に向けて気体を吹き付ける方法であれば、基板の中央部の処理液を速やかに押し退けることができる。これにより、開口の形成を促進することができる。
この発明の一実施形態では、前記基板処理方法が、前記液膜の内周縁が前記基板の上面の周縁部に達したときに、前記基板の上面において前記液膜の内周縁よりも内側に気体を吹き付けることによって、前記開口の拡大を促進する拡大促進工程をさらに含む。
熱対流を利用した処理液の移動では、或る程度まで開口を拡大できるものの、基板の上面の周縁部にまで開口の外周縁が至ると、処理液の移動が停止するおそれがある。より詳細には、開口の外周縁が基板の上面の周縁部に至っている状態では、基板上の処理液の全体量が少ないため、開口形成領域と液膜形成領域での基板の温度差が小さくなる。そのため、処理液は基板の内側への移動と外側への移動とを繰り返す平衡状態となる。この場合、処理液が基板の内側に戻るときに、気相層が失われた基板の上面に処理液が直接接するおそれがある。そのため、処理液の表面張力によるパターン倒壊や乾燥不良によるパーティクルが生じるおそれがある。
開口を拡大する際、基板は回転している。そのため、液膜に作用する遠心力が充分に大きければこの平衡状態を解消することができる。しかしながら、遠心力が充分に大きくない場合には、平衡状態が解消されない。
そこで、液膜の内周縁が基板の上面の周縁部に達したときに、基板の上面において前記液膜の内周縁よりも内側に気体を吹き付ける構成であれば、気体の勢いで処理液を基板の外側に押して、開口を拡大することができる。これにより、処理液が停止することなく基板の上面から排除される。パターン倒壊やパーティクルの発生を抑制または防止できる。
この発明の一実施形態では、前記開口形成工程において、前記照射ユニットの高さ位置を離隔位置にした状態で前記開口が形成される。前記基板処理方法が、前記開口が形成された後に、前記照射ユニットの高さ位置を前記離隔位置よりも前記基板の上面に近い近接位置に変更する照射ユニット近接工程と、前記開口拡大工程において、前記照射ユニットの高さ位置を前記近接位置に維持しながら前記照射ユニットを前記基板の周縁部に向けて移動させることによって、前記基板の周縁部に向けて前記照射領域を移動させる近接移動工程とをさらに含む。
この方法によれば、開口が形成された後に、照射ユニットの高さ位置が離隔位置から近接位置に変更される。そのため、開口形成領域の温度を速やかに上昇させることができる。これにより、温度差を利用して、開口を拡大させることができる。その後、開口を拡大させる際、高さ位置を近接位置に維持された照射ユニットが周縁部に移動される。そのため、液膜の内周縁に充分な熱量を与えながら開口を拡大させることができる。
この発明の一実施形態では、前記照射ユニットから照射される光が、前記処理液を透過する波長を有している。そのため、光を、前記基板の上面に良好に届かせることができる。処理液がIPAである場合、処理液を透過する波長は、200nm~1100nmである。
この発明の他の実施形態は、基板を水平に保持する基板保持ユニットと、水平に保持された前記基板の上面に処理液を供給する処理液供給ユニットと、水平に保持された前記基板の全体を前記処理液の沸点よりも低い温度に加熱する基板加熱ユニットと、水平に保持された前記基板の上面に対向するように構成されており、前記基板の上面の中央部に向けて光を照射する照射ユニットと、前記照射ユニットを水平方向に移動させる移動ユニットと、水平に保持された前記基板の上面の中央部を通り鉛直方向に延びる回転軸線の周りに前記基板を回転させる基板回転ユニットと、前記処理液供給ユニット、前記基板加熱ユニット、前記照射ユニット、前記移動ユニット、および前記基板回転ユニットを制御するコントローラとを含む、基板処理装置を提供する。
そして、前記コントローラが、前記基板保持ユニットに保持された基板の上面に、前記処理液供給ユニットから処理液を供給することによって、前記処理液の液膜を前記基板の上面に形成する液膜形成工程と、前記基板加熱ユニットに前記基板の全体を加熱させることによって前記液膜を保温する液膜保温工程と、前記液膜保温工程を実行しながら、前記基板の上面に設定される照射領域に向けて前記照射ユニットから光を照射することによって、前記基板の上面の中央部に接する前記処理液を蒸発させて、前記基板の上面に接し前記処理液を保持する気相層を、前記液膜の中央部に形成する気相層形成工程と、前記気相層によって保持される前記処理液を排除して前記液膜の中央部に開口を形成する開口形成工程と、前記基板回転ユニットに前記基板を回転させる基板回転工程と、前記液膜保温工程および前記基板回転工程を実行しながら前記移動ユニットに前記照射ユニットを移動させて前記基板の周縁部に向けて前記照射領域を移動させることによって、前記液膜の内周縁に前記気相層が形成された状態を維持しながら前記開口を拡大させる開口拡大工程とを実行するようにプログラムされている。
この装置によれば、上述した基板処理方法と同様の効果を奏する。
図1は、この発明の第1実施形態に係る基板処理装置のレイアウトを示す模式的な平面図である。 図2は、処理対象の基板の表面の断面の拡大図である。 図3は、前記基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。 図4は、前記処理ユニットに備えられるランプユニットの縦断面図である。 図5は、前記ランプユニットを下から見た図である。 図6は、前記基板処理装置の主要部の電気的構成を示すブロック図である。 図7は、前記基板処理装置による基板処理の一例を説明するための流れ図である。 図8Aは、前記基板処理の様子を説明するための模式図である。 図8Bは、前記基板処理の様子を説明するための模式図である。 図8Cは、前記基板処理の様子を説明するための模式図である。 図8Dは、前記基板処理の様子を説明するための模式図である。 図8Eは、前記基板処理の様子を説明するための模式図である。 図8Fは、前記基板処理の様子を説明するための模式図である。 図9Aは、前記基板処理中の基板の上面に形成される領域について説明するための模式図である。 図9Bは、前記基板処理中の基板の上面に形成される領域について説明するための模式図である。 図9Cは、前記基板処理中の基板の上面に形成される領域について説明するための模式図である。 図9Dは、前記基板処理中の基板の上面に形成される領域について説明するための模式図である。 図10は、本発明の第2実施形態に係る基板処理装置に備えられる照射ユニットの縦断面図である。 図11は、第2実施形態に係る基板処理装置に備えられる照射ユニットを下から見た図である。 図12Aは、第2実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図12Bは、第2実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図12Cは、第2実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図12Dは、第2実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図13は、本発明の第3実施形態に係る基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。 図14Aは、第3実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図14Bは、第3実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図14Cは、第3実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。 図14Dは、第3実施形態に係る基板処理装置による基板処理の様子を説明するための模式図である。
以下では、この発明の実施の形態を、添付図面を参照して説明する。
<第1実施形態>
図1は、この発明の第1実施形態にかかる基板処理装置1のレイアウトを示す模式的な平面図である。
基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。
基板処理装置1は、基板Wを流体で処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。
搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
各処理ユニット2は、チャンバ4と、チャンバ4内に配置された処理カップ7とを備えており、処理カップ7内で基板Wに対する処理を実行する。チャンバ4には、搬送ロボットCRによって、基板Wを搬入したり基板Wを搬出したりするための出入口4Aが形成されている。チャンバ4には、この出入口4Aを開閉するシャッタユニット4Bが備えられている。
図2に示すように、基板処理装置1で処理される基板Wの表層には、微細な凹凸パターン160が形成されている。凹凸パターン160は、基板Wの表面に形成された微細な凸状の構造体161と、隣接する構造体161の間に形成された凹部(溝)162とを含む。
凹凸パターン160の表面、すなわち、構造体161(凸部)および凹部162の表面は、凹凸のあるパターン面165を形成している。パターン面165は、基板Wの表面に含まれる。構造体161の表面161aは、先端面161b(頂部)および側面161cによって構成されており、凹部162の表面は、底面162a(底部)によって構成されている。構造体161が筒状である場合には、その内方に凹部が形成されることになる。
構造体161は、絶縁体膜を含んでいてもよいし、導体膜を含んでいてもよい。また、構造体161は、複数の膜を積層した積層膜であってもよい。
凹凸パターン160は、アスペクト比が3以上の微細パターンである。凹凸パターン160のアスペクト比は、たとえば、10~50である。構造体161の幅L1は5nm~45nm程度、構造体161同士の間隔L2は5nm~数μm程度であってもよい。構造体161の高さ(パターン高さT1)は、たとえば50nm~5μm程度であってもよい。パターン高さT1は、構造体161の先端面161bと凹部162の底面162a(底部)との間の距離である。
図3は、処理ユニット2の構成例を説明するための模式図である。処理ユニット2は、スピンチャック5と、ヒータユニット6と、処理カップ7と、薬液ノズル8と、リンス液ノズル9と、低表面張力液体ノズル10と、気体ノズル11と、ランプユニット12とを含む。
スピンチャック5は、基板Wを水平に保持しながら、回転軸線A1まわりに基板Wを回転させる。回転軸線A1は、基板Wの上面(上側の表面)の中心位置を通り鉛直方向に延びる。スピンチャック5は、複数のチャックピン20と、スピンベース21と、回転軸22と、回転軸22に回転力を与えるスピンモータ23とを含む。スピンチャック5は、基板保持回転ユニットの一例である。
スピンベース21は、水平方向に沿う円板形状を有している。スピンベース21の上面には、基板Wの周縁部を保持する複数のチャックピン20が、スピンベース21の周方向に間隔を空けて配置されている。
複数のチャックピン20は、ピン開閉ユニット24によって開閉される。複数のチャックピン20は、ピン開閉ユニット24によって閉状態にされることによって基板Wを水平に保持(挟持)する。複数のチャックピン20は、ピン開閉ユニット24によって開状態にされることによって基板Wを解放する。複数のチャックピン20は、開状態において、基板Wを下方から支持する。
スピンベース21および複数のチャックピン20は、基板Wを水平に保持する基板保持ユニットを構成している。基板保持ユニットは、基板ホルダともいう。
回転軸22は、回転軸線A1に沿って鉛直方向に延びている。回転軸22の上端部は、スピンベース21の下面中央に結合されている。スピンモータ23は、回転軸22に回転力を与える。スピンモータ23によって回転軸22が回転されることにより、スピンベース21が回転される。これにより、基板Wが回転軸線A1のまわりに回転される。スピンモータ23は、回転軸線A1まわりに基板Wを回転させる基板回転ユニットの一例である。
ヒータユニット6は、基板Wの全体を加熱する基板加熱ユニットの一例である。ヒータユニット6は、円板状のホットプレートの形態を有している。ヒータユニット6は、スピンベース21の上面と基板Wの下面との間に配置されている。ヒータユニット6は、基板Wの下面に下方から対向する対向面6aを有する。
ヒータユニット6は、プレート本体61およびヒータ62を含む。プレート本体61は、平面視において、基板Wよりも僅かに小さい。プレート本体61の上面が対向面6aを構成している。ヒータ62は、プレート本体61に内蔵されている抵抗体であってもよい。ヒータ62に通電することによって、対向面6aが加熱される。対向面6aは、たとえば、195℃に加熱される。そして、ヒータ62には、給電線63を介して、ヒータ通電ユニット64から電力が供給される。
処理ユニット2は、ヒータユニット6をスピンベース21に対して相対的に昇降させるヒータ昇降ユニット65を含む。ヒータ昇降ユニット65は、たとえば、ボールねじ機構(図示せず)と、それに駆動力を与える電動モータ(図示せず)とを含む。ヒータ昇降ユニット65は、ヒータリフタともいう。
ヒータユニット6の下面には、回転軸線A1に沿って鉛直方向に延びる昇降軸66が結合されている。昇降軸66は、スピンベース21の中央部に形成された貫通孔21aと、中空の回転軸22とを挿通している。昇降軸66内には、給電線63が通されている。
ヒータ昇降ユニット65は、昇降軸66を介してヒータユニット6を昇降させる。ヒータユニット6は、ヒータ昇降ユニット65によって昇降されて、下位置および上位置に位置することができる。ヒータ昇降ユニット65は、下位置および上位置だけでなく、下位置および上位置の間の任意の位置に配置することが可能である。
処理カップ7は、スピンチャック5に保持された基板Wから外方に飛散する液体を受け止め、その液体を回収または廃棄する部材である。処理カップ7は、スピンチャック5に保持された基板Wから外方に飛散する液体を受け止める複数のガード71と、複数のガード71によって下方に案内された液体を受け止める複数のカップ72と、複数のガード71と複数のカップ72とを取り囲む円筒状の外壁部材73とを含む。
この実施形態では、2つのガード71(第1ガード71Aおよび第2ガード71B)と、2つのカップ72(第1カップ72Aおよび第2カップ72B)とが設けられている例を示している。
第1カップ72Aおよび第2カップ72Bのそれぞれは、上向きに開放された環状溝の形態を有している。
第1ガード71Aは、スピンベース21を取り囲むように配置されている。第2ガード71Bは、第1ガード71Aよりも外側でスピンベース21を取り囲むように配置されている。
第1ガード71Aおよび第2ガード71Bは、それぞれ、ほぼ円筒形状を有している。各ガード71の上端部は、スピンベース21側に向かうように内側に傾斜している。
第1カップ72Aは、第1ガード71Aによって下方に案内された液体を受け止める。第2カップ72Bは、第1ガード71Aと一体に形成されている。第2カップ72Bは、第2ガード71Bによって下方に案内された液体を受け止める。
処理ユニット2は、第1ガード71Aおよび第2ガード71Bを別々に昇降させるガード昇降ユニット74をさらに含む。ガード昇降ユニット74は、下位置と上位置との間で第1ガード71Aを昇降させる。ガード昇降ユニット74は、下位置と上位置との間で第2ガード71Bを昇降させる。
第1ガード71Aおよび第2ガード71Bがともに上位置に位置するとき、基板Wから飛散する液体は、第1ガード71Aによって受けられる。第1ガード71Aが下位置に位置し、第2ガード71Bが上位置に位置するとき、基板Wから飛散する液体は、第2ガード71Bによって受けられる。
第1ガード71Aおよび第2ガード71Bがともに下位置に位置するときには、搬送ロボットCRが、チャンバ4内に基板Wを搬入したりチャンバ4内から基板Wを搬出したりすることができる。
ガード昇降ユニット74は、たとえば、第1ガード71Aに結合された第1ボールねじ機構(図示せず)と、第1ボールねじ機構に駆動力を与える第1モータ(図示せず)と、第2ガード71Bに結合された第2ボールねじ機構(図示せず)と、第2ボールねじ機構に駆動力を与える第2モータ(図示せず)とを含む。ガード昇降ユニット74は、ガード移動ユニットの一例である。ガード昇降ユニット74は、ガードリフタともいう。
薬液ノズル8は、基板Wの上面に向けて薬液を吐出するノズルである。薬液ノズル8は、薬液ノズル8に薬液を案内する薬液配管40に接続されている。薬液配管40に介装された薬液バルブ50が開かれると、薬液が、薬液ノズル8の吐出口から下方に向けて連続流で吐出される。
薬液として、たとえば、硫酸、硝酸、塩酸、フッ酸(HF、DHF)、リン酸、酢酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸等)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイド等)、界面活性剤、および腐食防止剤の少なくとも1つを含む液を用いることができる。
薬液ノズル8は、たとえば、移動可能なスキャンノズルである。処理ユニット2は、薬液ノズル8が先端部に取り付けられた第1アーム30と、第1アーム30を移動させることにより、薬液ノズル8を移動させる第1移動ユニット31とをさらに含む。
第1移動ユニット31は、第1アーム30を回動させることにより、平面視で基板Wの上面の中央部を通る軌跡に沿って薬液ノズル8を水平に移動させる。第1移動ユニット31は、中央位置と退避位置との間で薬液ノズル8を水平に移動させる。薬液ノズル8が中央位置に位置するとき、薬液ノズル8が基板Wの上面の中央部に対向する。
基板Wの上面の中央部とは、基板Wの上面の回転中心位置と基板Wの上面における回転中心位置の周囲の位置とを含む領域である。
薬液ノズル8が退避位置に位置するとき、薬液ノズル8が平面視でスピンチャック5の周囲に退避する。第1移動ユニット31は、たとえば、第1アーム30に接続され鉛直方向に延びる回動軸(図示せず)と、当該回動軸を回動させる電動モータ(図示せず)とを含む。
リンス液ノズル9は、薬液を洗い流すリンス液を基板Wの上面に向けて吐出するノズルである。リンス液ノズル9は、リンス液ノズル9にリンス液を案内するリンス液配管41に接続されている。リンス液配管41に介装されたリンス液バルブ51が開かれると、リンス液が、リンス液ノズル9の吐出口から下方に向けて連続流で吐出される。
リンス液は、たとえば、純水(脱イオン水:DIW(Deionized Water))である。リンス液は、炭酸水、電解イオン水、水素水、オゾン水、希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水、および希釈濃度(たとえば、10ppm~100ppm程度)のアンモニア水のいずれかであってもよい。
リンス液ノズル9は、たとえば、移動可能なスキャンノズルである。処理ユニット2は、リンス液ノズル9が先端部に取り付けられた第2アーム32と、第2アーム32を移動させることにより、リンス液ノズル9を移動させる第2移動ユニット33とをさらに含む。
第2移動ユニット33は、第2アーム32を回動させることにより、平面視で基板Wの上面の中央部を通る軌跡に沿ってリンス液ノズル9を水平に移動させる。第2移動ユニット33は、中央位置と退避位置との間でリンス液ノズル9を水平に移動させる。リンス液ノズル9が中央位置に位置するとき、リンス液ノズル9が基板Wの上面の中央部に対向する。リンス液ノズル9が退避位置に位置するとき、リンス液ノズル9が平面視でスピンチャック5の周囲に退避する。第2移動ユニット33は、たとえば、第2アーム32に接続され鉛直方向に延びる回動軸(図示せず)と、当該回動軸を回動させる電動モータ(図示せず)とを含む。
低表面張力液体ノズル10は、リンス液よりも表面張力の低い低表面張力液体を基板Wの上面に向けて吐出するノズルである。低表面張力液体ノズル10は、低表面張力液体ノズル10に低表面張力液体を案内する低表面張力液体配管42に接続されている。低表面張力液体配管42に介装された低表面張力液体バルブ52が開かれると、低表面張力液体が、低表面張力液体ノズル10の吐出口10aから下方に連続流で吐出される。
低表面張力液体は、たとえばIPA等の有機溶剤である。IPAの表面張力は、水の表面張力よりも低い。IPA以外の有機溶剤も低表面張力液体として使用することができる。IPAの他に、たとえば、メタノール、エタノール、アセトン、EG(エチレングリコール)、HFE(ハイドロフルオロエーテル)、n-ブタノール、t-ブタノール、イソブチルアルコールおよび2-ブタノール等の有機溶剤も、低表面張力液体として用いることができる。
単体成分のみからなるものだけでなく、他の成分と混合した有機溶剤も低表面張力液体として使用できる。低表面張力液体は、処理液の一例であり、低表面張力液体ノズル10は、処理液供給ユニットの一例である。
気体ノズル11は、基板Wの上面に向けて気体を吐出するノズルである。気体ノズル11は、気体ノズル11に気体を案内する気体配管43に接続されている。気体配管43には、気体バルブ53Aと、気体流量調整バルブ53Bとが介装されている。気体バルブ53Aが開かれると、気体流量調整バルブ53Bの開度に対応する流量で、気体ノズル11の吐出口11aから下方に向けて気体が連続的に吐出される。
気体ノズル11に供給される気体は、窒素ガス等の不活性ガスである。不活性ガスは窒素ガスに限られず、不活性ガスとして、ヘリウムガスやアルゴンガス等の希ガス類を用いることもできる。
ランプユニット12は、基板Wの上面に向けて光を照射(放出)することによって、基板Wを加熱するユニットである。ランプユニット12は、照射ユニットの一例である。ランプユニット12は、近赤外線、可視光線、紫外線のうちの少なくとも一つを含む光を基板Wに向けて照射して、輻射によって基板Wを加熱する。すなわち、ランプユニット12は、輻射加熱ヒータである。ランプユニット12には、給電線89を介して、ランプ通電ユニット90から電力が供給される。
低表面張力液体ノズル10および気体ノズル11は、ランプユニット12に取り付けられている。処理ユニット2は、ランプユニット12が先端部に取り付けられた第3アーム34と、第3アーム34を移動させることにより、ランプユニット12を移動させる第3移動ユニット35(移動ユニット)とをさらに含む。
第3アーム34が移動することによって、ランプユニット12とともに、低表面張力液体ノズル10および気体ノズル11が移動する。低表面張力液体ノズル10および気体ノズル11は、移動可能なスキャンノズルである。
第3移動ユニット35は、第3アーム34を回動させることにより、平面視で基板Wの上面の中央部を通る軌跡に沿って、低表面張力液体ノズル10、気体ノズル11およびランプユニット12を水平に移動させる。
第3移動ユニット35は、低表面張力液体ノズル10、気体ノズル11およびランプユニット12を、退避位置および中央位置に配置できる。低表面張力液体ノズル10、気体ノズル11およびランプユニット12は、退避位置に位置するとき平面視でスピンチャック5の周囲に退避する。
低表面張力液体ノズル10が中央位置に位置するとき、低表面張力液体ノズル10の吐出口10aが基板Wの上面の中央部に対向する。気体ノズル11が中央位置に位置するとき、気体ノズル11の吐出口11aが基板Wの上面の中央部に対向する。ランプユニット12が中央位置に位置するとき、ランプユニット12が基板Wの上面の中央部に対向する。
第3移動ユニット35は、たとえば、第3アーム34に接続され鉛直方向に延びる回動軸(図示せず)と、当該回動軸を回動させる電動モータ(図示せず)とを含む。
図4は、ランプユニット12の縦断面図である。図5は、ランプユニット12を下から見た図である。ランプユニット12は、ランプ80と、ランプ80を収容するランプハウジング81と、ランプハウジング81の内部を冷却するためのヒートシンク82とを含む。
ランプ80は、円板状のランプ基板83と、ランプ基板83の下面に実装された複数(図5の例では、59個)の光源84とを含む。個々の光源84は、たとえばLED(発光ダイオード)である。ランプ通電ユニット90から供給される電力によって複数の光源84が点灯する。
図5に示すように、複数の光源84は、ランプ基板83の下面の全域に分散して配置されている。図5の例では、1個の光源84が、ランプ基板83の下面の中心に配置されており、残りの58個の光源84が、ランプ基板83の下面の中心を取り囲むように4重円環状に配置されている。ランプ基板83における光源84の配置密度は略一様である。複数の光源84によって、水平方向に広がる円形状の発光部12aが構成されている。
個々の光源84から発せられる光は、近赤外線、可視光線、紫外線のうちの少なくとも一つを含む。個々の光源84から発せられる光の波長は、200nm以上1100nm以下の波長である。個々の光源84から発せられる光は、390nm以上800nm以下の波長であることが好ましい。
図4に示すように、ランプハウジング81は、円筒状のハウジング本体85と、円板状の底壁86とを含む。ハウジング本体85は、PTFE(ポリテトラフルオロエチレン)等の耐薬性を有する材料で形成されている。底壁86は、石英などの光透過性および耐熱性を有する材料で形成されている。ランプハウジング81は、平面視で基板Wよりも小さい。底壁86の下面は、ランプユニット12の下面を構成している。
ヒートシンク82は、ヒートシンク本体87と、ヒートシンク本体87に冷却流体を供給して、ヒートシンク本体87を冷却する冷却ユニット88とを含む。ヒートシンク本体87は、高い伝熱特性を有する金属(たとえば、アルミニウム、鉄、銅等)を用いて容器状に形成されている。冷却ユニット88は、冷媒供給源88aと、冷媒供給源88aから冷媒をヒートシンク本体87に供給する冷媒供給配管88bと、ヒートシンク本体87に供給された冷媒を冷媒供給源88aに戻す冷媒戻り配管88cと、冷媒供給配管88b内の冷媒を送り出すポンプ88dとを含む。
冷却ユニット88は、冷却水等の冷媒をヒートシンク本体87に供給する。すなわち、ヒートシンク82は、水冷式のヒートシンクである。複数の光源84の発光に伴い、ランプ80およびその周囲が加熱される。しかしながら、ヒートシンク82によりランプハウジング81内が冷却されるので、ランプハウジング81内が過度に昇温することを防止できる。ヒートシンク82において、冷媒として冷却気体が用いられてもよい。
ランプユニット12は、基板Wの上面を覆う低表面張力液体の液膜Lが基板Wの上面に形成されている状態で使用される。低表面張力液体ノズル10および気体ノズル11は、ランプハウジング81の外壁面81aに鉛直方向に沿う姿勢で取り付けられている。
図4に示すように、ランプ80が発光すると、すなわち複数の光源84が発光すると、ランプ80から発せられた光(近赤外線、可視光線、紫外線のうちの少なくとも一つを含む光)は、ランプハウジング81の底壁86を透過し、基板Wの上面に照射される。
低表面張力液体の一例であるIPAは、200nm以上1100nm以下の波長の光を透過させる。ランプ80から発せられた光の波長が200nm以上1100nm以下(より好ましくは、390nm以上800nm以下)である。そのため、ランプ80から放出された光は、液膜Lに吸収されずに、液膜Lを透過する。
ランプハウジング81の外表面(底壁86の下面)から放射された光は、液膜Lを透過し、基板Wの上面に照射される。基板Wの上面においてランプユニット12から光が照射される領域を照射領域RRという。これにより、照射領域RRが輻射により加熱されて昇温する。照射領域RRは、ランプユニット12から照射される光によって加熱される加熱領域と平面視で一致している。
ランプユニット12から照射される光によって、基板Wの表層(詳しくは、図2に示す凹凸パターン160)の温度が上昇する。光の照射によって、基板Wの表層の温度が低表面張力液体の沸点以上の温度にまで加熱されることにより、照射領域RRに接する低表面張力液体が温められて蒸発する。これにより、基板Wの表面(図2に示すパターン面165)の周囲に低表面張力液体の気相層が形成される。低表面張力液体がIPAである場合、沸点は82.6℃である。
基板Wの上面に照射領域RRが設定されている状態で第3移動ユニット35がランプユニット12を水平に移動させることにより、照射領域RRが基板Wの上面内で移動する。
図6は、基板処理装置1の主要部の電気的構成を示すブロック図である。コントローラ3は、マイクロコンピュータを備え、所定の制御プログラムに従って基板処理装置1に備えられた制御対象を制御する。
具体的には、コントローラ3は、プロセッサ(CPU)3Aと、制御プログラムが格納されたメモリ3Bとを含む。コントローラ3は、プロセッサ3Aが制御プログラムを実行することによって、基板処理のための様々な制御を実行するように構成されている。
とくに、コントローラ3は、搬送ロボットIR,CR、スピンモータ23、第1移動ユニット31、第2移動ユニット33、第3移動ユニット35、ガード昇降ユニット74、ピン開閉ユニット24、ヒータ通電ユニット64、ヒータ昇降ユニット65、ランプ通電ユニット90、ポンプ88d、薬液バルブ50、リンス液バルブ51、低表面張力液体バルブ52、気体バルブ53A、および気体流量調整バルブ53Bを制御するようにプログラムされている。
コントローラ3によってバルブが制御されることによって、対応するノズルからの液体や気体の吐出の有無や、対応するノズルからの気体の吐出流量が制御される。
図7は、基板処理装置1による基板処理の一例を説明するための流れ図である。図7には、主として、コントローラ3がプログラムを実行することによって実現される処理が示されている。図8A~図8Fは、基板処理の様子を説明するための模式図である。図9A~図9Dは、基板処理中の基板Wの上面に形成される領域について説明するための模式図である。以下では、主に図3および図7を参照し、図8A~図9Dについては適宜参照する。
基板処理装置1による基板処理では、たとえば、図7に示すように、基板搬入工程(ステップS1)、薬液供給工程(ステップS2)、リンス液供給工程(ステップS3)、置換工程(ステップS4)、液膜形成工程(ステップS5)、気相層形成工程(ステップS6)、液膜排除工程(ステップS7)および基板搬出工程(ステップS8)が実行される。
まず、未処理の基板Wは、搬送ロボットCRによってキャリヤCから処理ユニット2に搬入され、スピンチャック5に渡される(ステップS1)。これにより、基板Wは、スピンチャック5によって水平に保持される(基板保持工程)。基板Wは、凹凸パターン160(図2を参照)が形成されている表面が上面となる姿勢で保持される。基板Wの搬入時には、ヒータユニット6には電力が供給されており、ヒータユニット6は、下位置に退避している。基板Wの搬入時には、複数のガード71が下位置に退避している。基板Wの搬入時には、ランプユニット12には電力が供給されていない。
スピンチャック5によって基板Wが保持されると、スピンモータ23が、スピンベース21を回転させる。これにより、水平に保持された基板Wが回転される(基板回転工程)。スピンチャック5による基板Wの保持、およびスピンモータ23による基板Wの回転は、液膜排除工程(ステップS7)が終了するまで継続される。ガード昇降ユニット74は、基板保持工程が開始されてから液膜排除工程(ステップS7)が終了するまでの間、少なくとも一つのガード71が上位置に位置するように、第1ガード71Aおよび第2ガード71Bの高さ位置を調整する。
次に、搬送ロボットCRが処理ユニット2外に退避した後、基板Wの上面を薬液で処理するために基板Wの上面に薬液を供給する薬液供給工程(ステップS2)が開始される。具体的には、第1移動ユニット31が、薬液ノズル8を薬液処理位置に移動させる。薬液処理位置は、たとえば、中央位置である。薬液ノズル8が薬液処理位置に位置する状態で、薬液バルブ50が開かれる。これにより、回転状態の基板Wの上面の中央部に向けて、薬液ノズル8から薬液が供給(吐出)される(薬液供給工程、薬液吐出工程)。
薬液ノズル8から吐出された薬液は、基板Wの上面の中央部に着液する。基板Wの上面に着液した薬液には、基板Wの回転による遠心力が作用する。そのため、薬液は、遠心力によって基板Wの上面の全体に行き渡り、それにより、基板Wの上面の全体が薬液によって処理される。
薬液ノズル8からの薬液の供給は、所定時間、たとえば、60秒の間継続される。薬液供給工程において、基板Wは、所定の薬液回転速度、たとえば、1000rpmで回転される。
所定時間の薬液処理の後、基板Wの上面をリンス液で処理するリンス処理(ステップS2)が開始される。具体的には、薬液バルブ50が閉じられ、第1移動ユニット31が薬液ノズル8を退避位置に移動させる。薬液ノズル8の移動が開始された後、第2移動ユニット33が、リンス液ノズル9をリンス処理位置に移動させる。リンス処理位置は、たとえば、中央位置である。
リンス液ノズル9がリンス処理位置に位置する状態で、リンス液バルブ51が開かれる。これにより、回転状態の基板Wの上面の中央部に向けて、リンス液ノズル9からリンス液が供給(吐出)される(リンス液供給工程、リンス液吐出工程)。
リンス液ノズル9から吐出されたリンス液は、基板Wの上面の中央部に着液する。基板Wの上面に着液したリンス液には、基板Wの回転による遠心力が作用する。そのため、リンス液は、遠心力によって基板Wの上面の全体に行き渡り、それにより、基板Wの上面に存在する薬液がリンス液で置換される。すなわち、基板Wの上面の全体がリンス液で処理される。
リンス液ノズル9からのリンス液の供給は、所定時間、たとえば、15秒の間継続される。リンス液供給工程において、基板Wは、所定のリンス液回転速度、たとえば、1000rpmで回転される。
所定時間のリンス処理の後、基板Wの上面に存在するリンス液を低表面張力液体に置換する置換工程(ステップS4)が実行される。
置換工程では、まず、リンス液バルブ51が閉じられ、第2移動ユニット33がリンス液ノズル9を退避位置に移動させる。リンス液ノズル9の移動が開始された後、第3移動ユニット35が、低表面張力液体ノズル10を低表面張力液体処理位置に移動させる。低表面張力液体処理位置は、たとえば、中央位置である。
低表面張力液体ノズル10が低表面張力液体処理位置に位置する状態で、低表面張力液体バルブ52が開かれる。これにより、図8Aに示すように、低表面張力液体ノズル10からの低表面張力液体の供給(吐出)が開始され、基板Wの上面の中央部に向けて低表面張力液体が供給される(低表面張力液体供給工程、低表面張力液体吐出工程)。
低表面張力液体ノズル10から吐出された低表面張力液体は、基板Wの上面の中央部に着液する。基板Wの上面に着液した低表面張力液体には、基板Wの回転による遠心力が作用する。そのため、低表面張力液体は、遠心力によって基板Wの上面の全体に行き渡り、それにより、基板Wの上面に存在するリンス液が低表面張力液体で置換され、基板Wの上面の全体が低表面張力液体によって覆われる。
低表面張力液体の供給の開始と同時、または、低表面張力液体の供給中に、基板Wの回転は、所定の置換速度に減速される(第1回転減速工程)。置換速度は、たとえば、300rpmである。
低表面張力液体の供給中に、ヒータ昇降ユニット65がヒータユニット6を下位置から第1加熱位置に移動させる。第1加熱位置は、下位置よりも上方で基板Wから離間する位置である。ヒータユニット6が第1加熱位置に位置するとき、ヒータユニット6の対向面6aは基板Wの下面に非接触で近接する。ヒータユニット6を第1加熱位置に配置することによって、基板Wの加熱が開始される。ヒータユニット6が第1加熱位置に位置するとき、基板Wの下面とヒータユニット6の対向面6aとの間の距離は、たとえば、4mmである。ヒータユニット6が第1加熱位置に配置されている状態で、基板Wは、たとえば、30℃に加熱される。
基板Wの上面に存在するリンス液が低表面張力液体で置換された後、低表面張力液体の供給を継続して、基板Wの上面に低表面張力液体の液膜L(図8Bを参照)を形成する液膜形成工程(ステップS5)が実行される。
基板Wの上面に存在するリンス液が低表面張力液体で置換された後、基板Wの回転は、所定の液膜形成速度に減速される(第2回転減速工程)。液膜形成速度は、0rpmよりも大きく50rpm以下の速度であり、たとえば、10rpmである。第2回転減速工程において、基板Wの回転は、段階的に減速されてもよい。
基板Wの回転が液膜形成速度に減速された後に、低表面張力液体バルブ52が閉じられる。これにより、低表面張力液体ノズル10から基板Wの上面への低表面張力液体の供給が停止される。低表面張力液体ノズル10からの低表面張力液体の供給は、所定時間、たとえば、30秒の間継続される。
基板Wの回転が液膜形成速度に減速されることによって、基板W上の低表面張力液体に作用する遠心力が小さくなる。そのため、基板Wからの低表面張力液体の排出は停止される。あるいは、低表面張力液体は、基板Wから微量しか排除されない。そのため、基板Wの上面への低表面張力液体の供給が停止された後も、基板Wの上面は、低表面張力液体によって覆われた状態で維持される。図8Bに示すように、基板Wの回転が液膜形成速度に減速された状態で低表面張力液体の供給が停止されることによって、基板W上の低表面張力液体が充分に厚くされてパドル状態の液膜Lが形成される(液膜形成工程、パドル形成工程)。
リンス液が低表面張力液体で置換された後に微量のリンス液が凹凸パターン160の凹部162に残っていたとしても(図2を参照)、このリンス液は、低表面張力液体に溶け込み、液膜L中に拡散する。これにより、凹凸パターン160の凹部162に残留するリンス液を減らすことができる。
基板Wの上面に液膜Lが形成された後、ランプユニット12から光を照射することによって基板Wを加熱して基板Wの上面の中央部に気相層VL(図8Cの拡大図を参照)を形成する気相層形成工程(ステップS6)が実行される。
液膜Lが基板Wの上面に形成されている状態で、図8Cに示すように、ヒータ昇降ユニット65がヒータユニット6を上昇させて第2加熱位置に配置する。第2加熱位置は、第1加熱位置よりも上方で基板Wから離間する位置である。ヒータユニット6が第2加熱位置に位置するとき、ヒータユニット6の対向面6aは基板Wの下面に非接触で近接する。ヒータユニット6が第2加熱位置に位置するとき、基板Wの下面とヒータユニット6の対向面6aとの間の距離は、たとえば、2mmである。
ヒータユニット6が第2加熱位置に配置されることによって、基板Wの全体は、常温(たとえば、25℃)よりも高く低表面張力液体の沸点よりも低い温度に加熱される(ヒータ加熱工程)。そのため、液膜Lが常温(たとえば、25℃)よりも高く低表面張力液体の沸点よりも低い温度に保温される(液膜保温工程)。ヒータユニット6が第1加熱位置に位置するときよりもヒータユニット6が第2加熱位置に位置するときの方が基板Wは高温に加熱される。ヒータユニット6が第2加熱位置に配置されている状態で、ヒータユニット6の対向面6aが195℃に加熱されていれば、基板Wは、40℃に加熱される。
基板Wの上面に液膜Lが形成された状態で、第3移動ユニット35が、ランプユニット12を水平方向に移動させて光照射位置に配置する。光照射位置は、たとえば、中央位置である。さらに、第3移動ユニット35は、ランプユニット12の高さ位置が離隔位置になるように、ランプユニット12を鉛直方向に移動させる。ランプユニット12が離隔位置に位置するとき、ランプユニット12の下面と基板Wの上面との間の距離は、たとえば、50mmである。
ランプユニット12の高さ位置が離隔位置である状態で、ランプ通電ユニット90がランプユニット12を通電させる。これにより、ランプユニット12からの光の照射が開始される(光照射工程)。光の照射は、液膜保温工程を実行しながら開始される。光の照射は、パドル状態の液膜Lが形成されてから速やかに(たとえば、1.5秒後に)開始される。
ランプユニット12から放出される光は、液膜Lに吸収されずに、液膜Lを透過し、基板Wの上面の中央部に設定された照射領域RRに照射される。これにより、基板Wの上面の中央部が輻射により加熱される。これにより、照射領域RRに接する低表面張力液体が温められる。
照射領域RRの温度(すなわち、照射領域RRにおける凹凸パターン160の温度)が、低表面張力液体の沸点以上である場合には、低表面張力液体が液膜Lと基板Wとの界面で蒸発する。照射領域RRにおいて凹凸パターン160に接触する低表面張力液体が蒸発することにより、低表面張力液体の気相層VL(図8Cの拡大図を参照)が液膜Lと基板Wとの間に形成される。これにより、照射領域RRにおいて液膜Lが気相層VLに保持されて基板Wの上面から浮上する。
照射領域RRにおける基板Wの表層の温度が低表面張力液体の沸点以上の気相形成温度に加熱されていれば、充分な厚みの気相層VLが照射領域RRに形成される。低表面張力液体がIPAである場合、沸点は82.6℃であり、気相層形成温度は、たとえば、100℃である。充分な厚みとは、パターン高さT1よりも大きい厚みのことをいう。充分な厚みの気相層が形成されれば、気相層によって液膜Lを充分な高さ位置に保つことができる。充分な高さ位置とは、液膜Lと気相層VLとの界面が凹凸パターン160の構造体161の先端面161b(図2も参照)よりも上方に位置する位置である。
基板Wの上面において液膜Lが形成されている領域を液膜形成領域LRという。基板Wの上面において、充分な厚みの気相層VLと接触する領域を気相層形成領域VRという。
充分な厚みの気相層VLが形成されている状態では、基板W上の液膜Lに働く摩擦抵抗は、零と見なせるほど小さい。図9Aに示すように、気相層形成領域VRは、基板Wの上面の中央部を覆うほぼ円形の領域である。気相層形成領域VRは、照射領域RRとほぼ一致する。液膜形成領域LRは、気相層形成領域VRと、基板Wの上面において気相層形成領域VRよりも外側の領域とを含む。
照射領域RRが基板Wの上面の中央部に位置するとき、基板Wの上面において照射領域RRの外側の非照射領域NRは、加熱温度まで達していない。そのため、気相層VLが全く形成されないか、形成される気相層VLの量が不充分であり、気相層VLの厚みを充分な厚みに維持することができない。そのため、基板Wの上面において非照射領域NRには、気相層形成領域VRは形成されない。
気相層形成領域VRが形成された後、気相層形成領域VRが形成された状態を維持しながら基板Wの上面から液膜Lを排除する液膜排除工程が実行される(ステップS7)。
具体的には、気相層形成領域VRが形成された後においても、ランプユニット12を光照射位置に配置することによって照射領域RRが基板Wの上面の中央部に維持される。そのため、気相層形成領域VRが形成された後においても、ランプユニット12による基板Wの上面の中央部の加熱が維持される。基板Wの上面の中央部に対する加熱の維持によって、基板Wの上面の中央部において気相層VLに保持される処理液の蒸発が促進される。
また、基板Wの上面の中央部に対する加熱の維持によって、基板Wの上面において、照射領域RRと、非照射領域NRとの間には大きな温度差が生じる。この温度差に起因して、基板Wの上面には、中央部から周縁部に向けて流れる熱対流が形成される。基板Wが回転しているため、液膜Lには遠心力が作用している。
基板Wの回転速度がパドル速度であるため、液膜Lに加わる遠心力は比較的弱い。また、基板Wの上面に発生する熱対流も比較的弱い。しかし、前述したように、気相層形成領域VRにおいて液膜Lに働く摩擦抵抗は零と見なせるほど小さい。そのため、これら遠心力および熱対流によって、低表面張力液体が外方に押し退けられる。これにより、液膜Lの中央部の厚みが減少し、図8Dに示すように、液膜Lの中央部にほぼ円形の開口100が形成される。開口100は、基板Wの上面を露出させる露出穴である。
開口100の形成によって液膜Lが部分的に除去されることにより、図9Bに示すように気相層形成領域VRが円環状を呈する。照射領域RRは、円形状である。開口100が形成されることによって、図8Dの拡大図に示すように、気相層形成領域VRの液膜Lと開口100との間、すなわち気相層形成領域VRの液膜Lの内周縁に気液界面GLが形成される。
このように、処理液の蒸発、熱対流の発生、および遠心力の作用によって、図8Dに示すように、気相層VLによって保持される低表面張力液体が排除されて、液膜Lの中央部に開口100が速やかに形成される(開口形成工程)。開口100が形成されることにより、液膜Lが環状にされる。開口100が形成されることによって、図9Bに示すように、液膜形成領域LRも環状にされる。
気相層VLが形成された後においても、ヒータユニット6による基板Wの加熱は継続されて、液膜Lの全体が保温される(液膜保温工程)。そのため、開口100が形成される際に気相層VLが消失することを抑制できる。
液膜Lに開口100が形成された後においてもヒータユニット6およびランプユニット12によって基板Wが加熱される。基板Wの上面において開口100が形成されている領域(開口形成領域OR)には低表面張力液体が存在しないので、ヒータユニット6およびランプユニット12によって基板Wの温度が速やかに上昇する。それによって、液膜Lの内周縁よりも内側(開口形成領域OR)と液膜Lの内周縁の外側(液膜形成領域LR)とで温度差が生じる。具体的には、開口形成領域ORでは基板Wの温度が高く、液膜形成領域LRでは基板Wの温度が低くなる。この温度差によって、液膜Lの内周縁付近において熱対流の発生が継続される。また、基板Wが回転しているため、液膜Lには遠心力が作用する。そのため、遠心力の作用および熱対流の発生によって、図8Dおよび図8Eに示すように、開口100が拡大される(開口拡大工程)。
開口100が形成された後、図8Dに二点鎖線で示すように、第3移動ユニット35がランプユニット12の高さ位置を、離隔位置よりも基板Wの上面に近い近接位置に変更する(照射ユニット近接工程)。これにより、基板Wの上面において開口形成領域ORの温度を速やかに上昇させることができる。ランプユニット12が近接位置に位置するとき、ランプユニット12の下面と基板Wの上面との間の距離は、たとえば、4mmである。
開口100の拡大が開始されると、第3移動ユニット35は、ランプユニット12の高さ位置を近接位置に維持しながら、低表面張力液体ノズル10、気体ノズル11およびランプユニット12を基板Wの周縁部に向けて移動させる(近接移動工程)。その際、気体ノズル11がランプユニット12よりも基板Wの内側に位置するように、すなわち、気体ノズル11が開口形成領域ORに対向するように、低表面張力液体ノズル10、気体ノズル11およびランプユニット12が移動される。ランプユニット12が基板Wの上面の周縁部に向けて移動することによって、照射領域RRが基板Wの上面の周縁部に向けて移動する。
開口100の拡大中においても、基板Wは回転されている。そのため、照射領域RRは、基板Wの回転方向の上流側に相対移動する。これにより、液膜Lの内周縁が全周において加熱され、液膜Lの内周縁が全周において充分な厚みの気相層VLが形成される。すなわち、図9Cに示すように、開口100の拡大中において、気相層形成領域VRは、円環状となる。開口100の拡大中において、気相層VLは、非照射領域NRにも形成されている。
このように、開口拡大工程では、基板Wを回転させながら照射領域RRを基板Wの上面の周縁部に向けて移動させる。そのため、液膜Lの内周縁に気相層VLが形成された状態を維持しながら開口100が拡大される。
図9Cに示すように、照射領域RRは、液膜形成領域LRおよび開口形成領域ORに跨って配置されるように開口100の拡大に追従して移動される。そのため、液膜Lの内周縁を充分な熱量で加熱することができる。したがって、熱量不足により液膜Lの内周縁において気相層VLが形成されない事態や、一度形成された気相層VLが消失して低表面張力液体が基板Wの上面に接触する事態の発生を抑制できる。すなわち、液膜Lの内周縁に安定して気相層VLを形成することができる。
熱対流による低表面張力液体の移動では、或る程度まで開口100を拡大できるものの、図8Fおよび図9Dに示すように基板Wの上面の周縁部にまで開口100の外周縁が至ると、低表面張力液体の移動が停止するおそれがある。
より詳細には、開口100の外周縁が基板Wの上面の周縁部に至っている状態では、基板W上の処理液の全体量が少ないため、開口100の内側と開口100の外側での基板Wの温度差が小さくなる。そのため、低表面張力液体は基板Wの内側への移動と外側への移動とを繰り返す平衡状態となる。この場合、低表面張力液体が基板Wの内側に戻るときに、気相層VLが失われた基板Wの上面に低表面張力液体が直接接するおそれがある。そのため、低表面張力液体の表面張力によるパターン倒壊や乾燥不良によるパーティクルが生じるおそれがある。
開口100を拡大する際、基板Wは回転している。そのため、液膜Lに作用する遠心力が充分に大きければこの平衡状態を解消することができる。しかしながら、遠心力が充分に大きくない場合には、平衡状態が解消されない。特に、10rpm程度の低回転速度では、平衡状態が解消されないおそれがある。
そこで、液膜Lの内周縁が基板Wの上面の周縁部に達したときに、気体バルブ53Aが開かれる。これにより、図8Fに示すように、開口形成領域ORに向けて気体が吹き付けられる。基板Wの上面に衝突した気体は、基板Wの上面に沿って流れ、低表面張力液体を基板Wの外側に押して、開口100の拡大を促進する(拡大促進工程)。これにより、低表面張力液体が停止することなく基板Wの上面から排除される。パターン倒壊やパーティクルの発生を抑制または防止できる。
開口100の拡大によって、最終的に液膜Lが基板Wの上面から完全に排除される。その後、ランプ通電ユニット90からランプユニット12への電力の供給が停止され、気体バルブ53Aが閉じられる。そして、第3移動ユニット35が低表面張力液体ノズル10、気体ノズル11およびランプユニット12を退避位置に移動させる。
そして、スピンモータ23が基板Wの回転を停止させる。ガード昇降ユニット74が第1ガード71Aおよび第2ガード71Bを下位置に移動させる。そして、ヒータ昇降ユニット65がヒータユニット6を下位置に移動させる。
搬送ロボットCRが、処理ユニット2に進入して、スピンチャック5のチャックピン20から処理済みの基板Wをすくい取って、処理ユニット2外へと搬出する(ステップS8)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。
第1実施形態によれば、基板Wの上面の中央部に設定された照射領域RRに光が照射されて基板Wの上面の中央部が加熱される。これにより、基板Wの上面の中央部に接する低表面張力液体が蒸発し、気相層VLが基板Wの上面の中央部に形成される。気相層VLが形成されることにより、基板Wの上面の中央部から液膜Lが浮上する。基板Wの上面の中央部に形成された気相層VLによって保持される低表面張力液体を排除することによって液膜Lの中央部に開口100が形成される。
開口100が形成された後、基板Wを回転させながら照射領域RRを基板Wの上面の周縁部に向けて移動させることによって、液膜Lの内周縁に気相層VLが形成された状態を維持しながら開口100が拡大される。言い換えると、基板Wの上面から液膜Lを排除する際に、気相層VLが形成されている環状の領域(気相層形成領域VR)が、開口100の拡大とともに基板Wの上面の周縁部に向かって移動する。気相層形成領域VRは、内周縁および外周縁が大きくなるように基板W上を移動する。
液膜Lに開口を形成および拡大して基板の上面から液膜Lを排除する手法として、本実施形態とは異なり、基板Wの下面にヒータユニット6を接触させた状態で液膜Lを基板Wから排除する手法や、基板Wの上面の全体に対向するランプユニット(第1実施形態とは異なるランプユニット)によって基板Wの上面の全体を加熱しながら液膜Lを基板Wから排除する手法が想定し得る。これらの手法を採用した場合、基板Wの上面において液膜Lが最後に排除される箇所では、液膜Lの排除の開始から終了までの長期間において、気相層VLが形成された状態を維持し続ける必要がある。
一方、第1実施形態では、環状の気相層形成領域VRが開口100とともに拡大される。したがって、気相層VLに保持される液膜Lが基板Wの上面の全域に気相層VLが形成された後に排除される方法と比較して、気相層VLが形成されてから気相層VLに保持される低表面張力液体が排除されるまでの時間を、基板Wの上面の任意の箇所において短くすることができる。これにより、開口100の形成および拡大の際に、基板Wの全体が過度に(長期間)加熱されることを抑制できる。よって、低表面張力液体が局所的に蒸発して液膜Lが分裂することを抑制できる。
気相層VLを維持するために加熱する時間が長いほど、液膜Lや基板Wの温度の局所的な低下によって気相層VLが消失する可能性が高まるところ、第1実施形態では、気相層VLが形成されてから気相層VLに保持される低表面張力液体が排除されるまでの時間が、基板Wの上面の任意の箇所において短くされている。そのため、気相層VLを長期間維持するための加熱に起因するパターン倒壊を抑制できる。
また、開口100の形成および拡大は、低表面張力液体をヒータユニット6によって保温しながら行われる。そのため、照射領域RRにおいて気相層VLを速やかに形成することができる。また、非照射領域NR(特に、基板Wの上面の回転中心位置に対して照射領域RRとは反対側の領域)における基板Wの温度低下を抑制できる。そのため、形成された気相層VLが照射領域RR外(照射領域RRよりも回転方向の下流側)に移動して消失することを、抑制できる。
以上により、基板Wの上面から低表面張力液体を良好に排除できる。その結果、低表面張力液体の表面張力によるパターン倒壊や乾燥不良によるパーティクル発生を抑制できる。
また、第1実施形態によれば、液膜保温工程において、基板Wは、基板Wの下面から離間した位置(第2加熱位置)に配置されたヒータユニット6によって加熱される。したがって、ヒータユニット6の構成にかかわらず、すなわち、ヒータユニット6が基板とともに回転できない構成であっても、開口100を拡大させる際に基板Wを容易に回転させることができる。また、基板Wにヒータユニット6を接触させる構成と比較して、基板Wの全体を適度に加熱することができる。また、ヒータユニット6に付着する汚れが基板Wに転写されることを抑制できる。さらに、ヒータユニット6を基板Wに接触させる構成のように対向面6aと基板Wの下面との平行度を精度よく調整する必要がないため、基板処理装置1の複雑化を避けることができる。
また、開口100の拡大中に基板Wの上面の開口形成領域ORに気体を吹き付けることによって、開口形成領域ORが冷却されるおそれがある。開口形成領域ORが冷却されると、基板Wの上面における液膜形成領域LRと開口形成領域ORとの間の温度差が不充分となり、液膜L内で熱対流が充分に形成されないおそれがある。これでは、開口100の拡大が阻害されるおそれがある。そこで、第1実施形態では、開口拡大工程において、液膜Lの内周縁が基板Wの上面の周縁部に達するまでは、基板Wの上面への気体の吹き付けが行われない。そのため、気体の吹き付けによる基板Wの上面の開口形成領域ORの冷却を避けることができる。
<第2実施形態>
図10は、第2実施形態に係る基板処理装置1Pに備えられるランプユニット12の縦断面図である。図11は、基板処理装置1Pに備えられるランプユニット12を下から見た図である。図10および図11において、前述の図1~図9Dに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。後述する図12A~図12Dにおいても同様に、図1等と同一の参照符号を付してその説明を省略する。
第2実施形態に係る基板処理装置1Pが第1実施形態に係る基板処理装置1(図3を参照)と主に異なる点は、図10に示すように、気体ノズル11が、ランプユニット12のランプハウジング81の内部を鉛直方向に挿通している点である。
第2実施形態のランプユニット12では、図11に示すように、光源84は、複数(たとえば、52個)設けられており、複数の光源84は、3重円環状に配置されている。個々の光源84は、たとえばLED(発光ダイオード)である。複数の光源84は、ランプ基板83の下面の全域に分散して配置されている。ランプ基板83における光源84の配置密度は略一様である。複数の光源84によって、水平方向に広がりを有する円環状の発光部12aが構成されている。発光部12aは、下方から見て吐出口11aの周囲を環状に取り囲んでいる。
低表面張力液体ノズル10は、第1実施形態と同様に、ランプユニット12のランプハウジング81の外壁面81aに取り付けられており、ランプユニット12の外側に配置されている。
第2実施形態に係る基板処理装置1Pを用いて、第1実施形態に係る基板処理装置1と同様の基板処理(図7を参照)を実行することができる。ただし、第2実施形態に係る基板処理は、液膜排除工程(ステップS7)において、第1実施形態に係る基板処理と異なる。具体的には、第2実施形態に係る基板処理では、開口形成工程において、液膜Lの中央部に気体を吹き付けることによって、開口100の形成を促進する開口形成促進工程が実行される。以下では、第2実施形態に係る基板処理の液膜排除工程についてより詳しく説明する。
図12A~図12Dは、基板処理装置1Pによる基板処理の様子を説明するための模式図である。
第2実施形態に係る基板処理では、第1実施形態に係る基板処理と同様に、気相層形成工程(ステップS6)の後に、液膜排除工程(ステップS7)が実行される。図12Aに示すように、気相層形成工程では、第3移動ユニット35が、ランプユニット12を水平方向に移動させて光照射位置に配置する。光照射位置は、たとえば、中央位置である。ランプユニット12が光照射位置に配置されているとき、気体ノズル11の吐出口11aが基板Wの上面の回転中心位置に対向する。
気相層形成領域VRが形成された後においてもランプユニット12を光照射位置に配置することによって、照射領域RRが基板Wの上面の中央部に維持される。そのため、気相層形成領域VRが形成された後においても、ランプユニット12による基板Wの上面の中央部の加熱が維持される。基板Wの上面の中央部に対する加熱の維持によって、基板Wの上面の中央部において気相層VLに保持される処理液の蒸発が促進される。
また、基板Wの上面の中央部に対する加熱の維持によって、基板Wの上面において、照射領域RRと、非照射領域NRとの間には大きな温度差が生じる。この温度差に起因して、基板Wの上面には、中央部から周縁部に向けて流れる熱対流が形成される。基板Wが回転しているため、液膜Lには遠心力が作用している。
基板Wの回転速度がパドル速度であるため、液膜Lに加わる遠心力は比較的弱い。また、基板Wの上面に発生する熱対流も比較的弱い。しかし、前述したように、気相層形成領域VRにおいて液膜Lに働く摩擦抵抗は零と見なせるほど小さい。そのため、これら遠心力および熱対流によって、低表面張力液体が外方に押し退けられる。これにより、液膜Lの中央部の厚みが減少し、図12Bに示すように、液膜Lの中央部にほぼ円形の開口100が形成される。開口100は、基板Wの上面を露出させる露出穴である。
ランプユニット12からの光の照射の開始と同時、または、ランプユニット12からの光の照射が開始された後で開口100が形成されるまでの間に、気体バルブ53Aが開かれる。そのため、液膜Lの中央部に向けて気体が吹き付けられる。気体の吹き付けによって、基板Wの上面の中央部の低表面張力液体が基板Wの周縁部に向けて押し退けられる。気相層形成領域VRが形成されている状態では、基板W上の液膜Lに働く摩擦抵抗は、零と見なせるほど小さい。そのため、気体の吹き付けによって、基板Wの中央部の低表面張力液体を速やかに押し退けることができる。これにより、開口100の形成を促進することができる(開口形成促進工程)。
開口100の形成によって液膜Lが部分的に除去されることにより、図9Bに示すように、気相層形成領域VRが円環状を呈する。開口100が形成されることによって、図12Bの拡大図に示すように、気相層形成領域VRの液膜Lと開口100との間、すなわち気相層形成領域VRの液膜Lの内周縁に気液界面GLが形成される。
このように、処理液の蒸発、熱対流の発生、および遠心力の作用によって、図12Bに示すように、処理液の液膜Lの中央部に開口100が速やかに形成される(開口形成工程)。開口100が形成されることにより、液膜Lが環状にされる。開口100が形成されることによって、図9Bに示すように、液膜形成領域LRも環状になる。開口100が形成された後、気体バルブ53Aは、一度閉じられる。これにより、気体ノズル11からの気体の吐出が停止される。
気相層VLが形成された後においても、ヒータユニット6による基板Wの加熱は継続されて、液膜Lの全体が保温される(液膜保温工程)。そのため、開口100が形成される際に気相層VLが消失することを抑制できる。
液膜Lに開口100が形成された後においてもヒータユニット6およびランプユニット12によって基板Wが加熱される。基板Wの上面において開口100が形成されている領域(開口形成領域OR)には低表面張力液体が存在しないので、ヒータユニット6およびランプユニット12によって基板Wの温度が速やかに上昇する。それによって、液膜Lの内周縁よりも内側(開口形成領域OR)と液膜Lの内周縁の外側(液膜形成領域LR)とで温度差が生じる。
具体的には、開口形成領域ORでは基板Wの温度が高く、液膜形成領域LRでは基板Wの温度が低くなる。この温度差によって、液膜Lの内周縁付近において熱対流の発生が継続される。また、基板Wが回転しているため、液膜Lには遠心力が作用する。そのため、遠心力の作用および熱対流の発生によって、図12Bおよび図12Cに示すように、開口100が拡大される(開口拡大工程)。
開口100が形成された後、図12Bに二点鎖線で示すように、第3移動ユニット35がランプユニット12の高さ位置を、離隔位置よりも基板Wの上面に近い近接位置に変更する(照射ユニット近接工程)。これにより、基板Wの上面において開口形成領域ORの温度を速やかに上昇させることができる。
開口100の拡大が開始されると、第3移動ユニット35は、ランプユニット12の高さ位置を近接位置に維持しながら、低表面張力液体ノズル10、気体ノズル11およびランプユニット12を基板Wの周縁部に向けて移動させる(近接移動工程)。その際、気体ノズル11がランプユニット12よりも基板Wの内側に位置するように、低表面張力液体ノズル10、気体ノズル11およびランプユニット12が移動される。ランプユニット12が基板Wの上面の周縁部に向けて移動することによって、照射領域RRが基板Wの上面の周縁部に向けて移動する。
開口100の拡大中においても、基板Wは回転されている。そのため、照射領域RRは、基板Wの回転方向の上流側に相対移動する。これにより、液膜Lの内周縁が全周において加熱され、液膜Lの内周縁が全周において充分な厚みの気相層VLが形成される。すなわち、図9Cに示すように、開口100の拡大中において、気相層形成領域VRは、円環状となる。開口100の拡大中において、気相層VLは、非照射領域NRにも形成されている。
開口拡大工程において、図9Cに示すように、ランプユニット12は、液膜形成領域LRおよび開口形成領域ORに照射領域RRが跨って配置されるように移動される。そのため、液膜Lの内周縁に気相層VLが形成された状態を維持しながら開口100が拡大される。
図9Cに示すように、照射領域RRは、液膜形成領域LRおよび開口形成領域ORに跨って配置されるように開口100の拡大に追従して移動される。そのため、液膜Lの内周縁を充分な熱量で加熱することができる。したがって、熱量不足により液膜Lの内周縁において気相層VLが形成されない事態や、一度形成された気相層VLが消失して低表面張力液体が基板Wの上面に接触する事態の発生を抑制できる。すなわち、液膜Lの内周縁に安定して気相層VLを形成することができる。
第1実施形態において説明したように、低回転速度に起因する遠心力と、熱対流の発生とによる低表面張力液体の移動では、或る程度まで開口100を拡大できるものの、図12Dおよび図9Dに示すように基板Wの上面の周縁部にまで開口100の外周縁が至ると、低表面張力液体の移動が停止するおそれがある。そのため、第2実施形態においても、液膜Lの内周縁が基板Wの上面の周縁部に達したときに、気体バルブ53Aが開かれる。これにより、基板Wの上面において液膜Lの内周縁よりも内側(開口形成領域OR)に向けて気体が吹き付けられる。基板Wの上面に衝突した気体は、基板Wの上面に沿って流れ、低表面張力液体を基板Wの外側に押して、開口100を拡大させる。これにより、低表面張力液体が停止することなく基板Wの上面から排除される。パターン倒壊やパーティクルの発生を抑制または防止できる。
ただし、第2実施形態に係る気体ノズル11の吐出口11aは、発光部12aの中心に位置している。そのため、気体ノズル11の吐出口11aから吐出される気体は、照射領域RRの中心に吹き付けられる。すなわち、気体が、開口形成領域ORにおいて液膜Lの内周縁に近い位置に吹き付けられる。これにより、気体ノズル11の吐出口11aが発光部12aの外側に位置する構成(第1実施形態の構成)と比較して、大きな吹き付け力を液膜Lに作用させることができる。
第2実施形態によれば、第1実施形態と同様に、基板Wの上面から低表面張力液体を良好に排除できる。その結果、低表面張力液体の表面張力によるパターン倒壊や乾燥不良によるパーティクル発生を抑制できる。
<第3実施形態>
図13は、第3実施形態に係る基板処理装置1Qに備えられる処理ユニット2の概略構成を示す模式的な部分断面図である。図13において、前述の図1~12Dに示された構成と同等の構成について、図1等と同一の参照符号を付してその説明を省略する。
第3実施形態に係る基板処理装置1Qが第1実施形態に係る基板処理装置1(図3を参照)と主に異なる点は、図13に示すように、処理ユニット2が、ヒータユニット6の代わりに、基板Wの下面に加熱流体を供給する加熱流体ノズル13を含む点である。
加熱流体ノズル13は、スピンベース21の上面中央部で開口する貫通孔21aと、中空の回転軸22とに挿入されている。加熱流体ノズル13の吐出口13aは、スピンベース21の上面から露出されている。加熱流体ノズル13の吐出口13aは、基板Wの下面の中央部に下方から対向する。基板Wの下面の中央部とは、基板Wの下面の回転中心位置と基板Wの下面における回転中心位置の周囲の位置とを含む領域である。
加熱流体ノズル13は、加熱流体ノズル13に加熱流体を案内する加熱流体配管44に接続されている。加熱流体配管44に介装された加熱流体バルブ54が開かれると、加熱流体が、加熱流体ノズル13の吐出口13aから上方に向けて連続流で吐出される。
加熱流体は、たとえば、温水である。加熱流体は、常温よりも高温であり、低表面張力液体の沸点よりも低温の流体である。加熱流体は、温水に限らず、高温の窒素ガス等の気体であってもよく、基板Wを加熱することができる流体であればよい。
第3実施形態に係る基板処理装置1Qを用いて、第1実施形態に係る基板処理装置1と同様の基板処理(図7を参照)を実行することができる。
ただし、図14Aに示すように、第3実施形態に係る基板処理では、基板Wの上面に低表面張力液体の液膜Lが形成された後で、基板Wの上面への光の照射が開始される前に、加熱流体バルブ54が開かれる。
加熱流体バルブ54が開かれることによって、加熱流体ノズル13から基板Wの下面の中央部に向けて加熱流体が吐出される。基板Wの下面の中央部に供給された加熱流体には、基板Wの回転による遠心力が作用する。そのため、加熱流体は、遠心力によって基板Wの下面の全体に行き渡り、基板Wの全体が加熱流体によって加熱される(流体加熱工程)。加熱流体ノズル13は、基板加熱ユニットの一例である。
加熱流体は、常温(たとえば、25℃)よりも高く低表面張力液体の沸点よりも低い温度である。そのため、液膜Lが常温(たとえば、25℃)よりも高く低表面張力液体の沸点よりも低い温度に保温される(液膜保温工程)。低表面張力液体がIPAである場合、加熱流体は、たとえば、60℃の水である。そうであれば、常温よりも高く、IPAの沸点(82.6℃)よりも低い温度に液膜Lを保温することができる。
第3実施形態では、基板Wの下面の中央部に加熱流体を供給するだけで、基板Wの全体を加熱することができる。
基板Wの下面への加熱流体の供給は、図14Bに示すように、液膜Lに開口100を形成する際(開口形成工程)においても継続され、図14Cおよび14Dに示すように、開口100を拡大する際(開口拡大工程)においても継続される。
第3実施形態によれば、第1実施形態と同様に、基板Wの上面から低表面張力液体を良好に排除できる。その結果、低表面張力液体の表面張力によるパターン倒壊や乾燥不良によるパーティクル発生を抑制できる。
<その他の実施形態>
この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。
たとえば、第2実施形態に係る基板処理装置1Pにおいて、ヒータユニット6の代わりに、第3実施形態に係る加熱流体ノズル13を設けることも可能である。
また、低表面張力液体ノズル10がランプユニット12と気体ノズル11との間に配置されていてもよい。詳しくは、低表面張力液体ノズル10がランプユニット12のランプハウジング81の外壁面81aに取り付けられており、気体ノズル11が、ランプユニット12とは反対側の位置で低表面張力液体ノズル10に取り付けられていてもよい。また、ランプユニット12、低表面張力液体ノズル10、気体ノズル11が、それぞれ独立して移動可能なように構成されていてもよい。
液膜排除工程の終了後に、基板Wの上面から液体を振り切るスピンドライ工程が実行されてもよい。具体的には、基板Wの上面から液膜Lが排除された後、スピンモータ23が基板Wの回転を加速し、基板Wを所定の乾燥速度で高速回転させる。乾燥速度は、たとえば、1500rpmである。スピンドライ工程は、所定時間、たとえば、30秒の間実行される。それによって、基板W上に低表面張力液体が僅かに残っている場合であっても、その低表面張力液体に大きな遠心力が作用し、低表面張力液体が基板Wの周囲に振り切られる。
その他、特許請求の範囲に記載した範囲で種々の変更を行うことができる。
1 :基板処理装置
1P :基板処理装置
1Q :基板処理装置
3 :コントローラ
6 :ヒータユニット
12 :ランプユニット(照射ユニット)
13 :加熱流体ノズル(基板加熱ユニット)
20 :チャックピン(基板保持ユニット)
21 :スピンベース(基板保持ユニット)
23 :スピンモータ(基板回転ユニット)
35 :第3移動ユニット(移動ユニット)
100 :開口
A1 :回転軸線
HR :加熱領域
L :液膜
LR :液膜形成領域
OR :開口形成領域
VL :気相層
W :基板

Claims (10)

  1. 水平に保持された基板の上面に処理液を供給して、前記処理液の液膜を前記基板の上面に形成する液膜形成工程と、
    前記処理液の沸点よりも低い温度に前記基板の全体を加熱することによって、前記液膜を保温する液膜保温工程と、
    前記液膜保温工程を実行しながら、前記基板の上面に対向する照射ユニットから前記基板の上面の中央部に設定される照射領域に光を照射して前記基板の上面の中央部を加熱することによって、前記基板の上面の中央部に接する前記処理液を蒸発させて前記基板の上面に接し前記処理液を保持する気相層を前記液膜の中央部に形成する気相層形成工程と、
    前記気相層によって保持される前記処理液を排除することによって、前記液膜の中央部に開口を形成する開口形成工程と、
    前記基板の上面の中央部を通り鉛直方向に延びる回転軸線の周りに前記基板を回転させる基板回転工程と、
    前記液膜保温工程および前記基板回転工程を実行しながら前記基板の周縁部に向けて前記照射領域を移動させることによって、前記液膜の内周縁に前記気相層が形成された状態を維持しながら前記開口を拡大させる開口拡大工程とを含む、基板処理方法。
  2. 前記開口拡大工程が、前記基板の上面において前記液膜が形成されている液膜形成領域と、前記基板の上面において前記開口が形成されている開口形成領域とに前記照射領域が跨って配置されるように、前記開口の拡大に追従して前記照射領域を移動させる工程を含む、請求項1に記載の基板処理方法。
  3. 前記液膜保温工程が、前記基板の下面から離間した位置で前記基板の下面に対向するヒータユニットによって前記基板を加熱することによって前記液膜を保温するヒータ加熱工程を含む、請求項1または2に記載の基板処理方法。
  4. 前記液膜保温工程が、前記基板の下面の中央部に加熱流体を供給して前記基板を加熱することによって前記液膜を保温する流体加熱工程を含む、請求項1または2に記載の基板処理方法。
  5. 前記開口形成工程が、前記気相層が形成された後に前記照射領域を前記基板の上面の中央部に維持することによって、前記液膜の中央部に前記開口を形成する工程を含む、請求項1~4のいずれか一項に記載の基板処理方法。
  6. 前記気相層が形成されている前記液膜の中央部に向けて気体を吹き付けることによって、前記開口の形成を促進する開口形成促進工程をさらに含む、請求項5に記載の基板処理方法。
  7. 前記液膜の内周縁が前記基板の上面の周縁部に達したときに、前記基板の上面において前記液膜の内周縁よりも内側に気体を吹き付けることによって、前記開口の拡大を促進する拡大促進工程をさらに含む、請求項1~6のいずれか一項に記載の基板処理方法。
  8. 前記開口形成工程において、前記照射ユニットの高さ位置を離隔位置にした状態で前記開口が形成され、
    前記開口が形成された後に、前記照射ユニットの高さ位置を前記離隔位置よりも前記基板の上面に近い近接位置に変更する照射ユニット近接工程と、
    前記開口拡大工程において、前記照射ユニットの高さ位置を前記近接位置に維持しながら前記照射ユニットを前記基板の周縁部に向けて移動させることによって、前記基板の周縁部に向けて前記照射領域を移動させる近接移動工程とをさらに含む、請求項1~7のいずれか一項に記載の基板処理方法。
  9. 前記照射ユニットから照射される光が、前記処理液を透過する波長を有している、請求項1~7のいずれか一項に記載の基板処理方法。
  10. 基板を水平に保持する基板保持ユニットと、
    水平に保持された前記基板の上面に処理液を供給する処理液供給ユニットと、
    水平に保持された前記基板の全体を前記処理液の沸点よりも低い温度に加熱する基板加熱ユニットと、
    水平に保持された前記基板の上面に対向するように構成されており、前記基板の上面の中央部に向けて光を照射する照射ユニットと、
    前記照射ユニットを水平方向に移動させる移動ユニットと、
    水平に保持された前記基板の上面の中央部を通り鉛直方向に延びる回転軸線の周りに前記基板を回転させる基板回転ユニットと、
    前記処理液供給ユニット、前記基板加熱ユニット、前記照射ユニット、前記移動ユニット、および前記基板回転ユニットを制御するコントローラとを含み、
    前記コントローラが、前記基板保持ユニットに保持された基板の上面に、前記処理液供給ユニットから処理液を供給することによって、前記処理液の液膜を前記基板の上面に形成する液膜形成工程と、前記基板加熱ユニットに前記基板の全体を加熱させることによって前記液膜を保温する液膜保温工程と、前記液膜保温工程を実行しながら、前記基板の上面に設定される照射領域に向けて前記照射ユニットから光を照射することによって、前記基板の上面の中央部に接する前記処理液を蒸発させて、前記基板の上面に接し前記処理液を保持する気相層を、前記液膜の中央部に形成する気相層形成工程と、前記気相層によって保持される前記処理液を排除して前記液膜の中央部に開口を形成する開口形成工程と、前記基板回転ユニットに前記基板を回転させる基板回転工程と、前記液膜保温工程および前記基板回転工程を実行しながら前記移動ユニットに前記照射ユニットを移動させて前記基板の周縁部に向けて前記照射領域を移動させることによって、前記液膜の内周縁に前記気相層が形成された状態を維持しながら前記開口を拡大させる開口拡大工程とを実行するようにプログラムされている、基板処理装置。
JP2020034469A 2019-12-27 2020-02-28 基板処理方法および基板処理装置 Active JP7406404B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020034469A JP7406404B2 (ja) 2020-02-28 2020-02-28 基板処理方法および基板処理装置
CN202011545248.8A CN113053728B (zh) 2019-12-27 2020-12-24 基板处理方法以及基板处理装置
KR1020200182966A KR102508052B1 (ko) 2019-12-27 2020-12-24 기판 처리 방법 및 기판 처리 장치
US17/133,647 US12042813B2 (en) 2019-12-27 2020-12-24 Substrate processing method and substrate processing apparatus
TW109146154A TWI771844B (zh) 2019-12-27 2020-12-25 基板處理方法以及基板處理裝置
US18/638,692 US20240261814A1 (en) 2019-12-27 2024-04-18 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034469A JP7406404B2 (ja) 2020-02-28 2020-02-28 基板処理方法および基板処理装置

Publications (2)

Publication Number Publication Date
JP2021141086A JP2021141086A (ja) 2021-09-16
JP7406404B2 true JP7406404B2 (ja) 2023-12-27

Family

ID=77669000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034469A Active JP7406404B2 (ja) 2019-12-27 2020-02-28 基板処理方法および基板処理装置

Country Status (1)

Country Link
JP (1) JP7406404B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023076165A (ja) * 2021-11-22 2023-06-01 株式会社Screenホールディングス 基板処理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038472A1 (ja) 2004-10-06 2006-04-13 Ebara Corporation 基板処理装置及び基板処理方法
JP2015029041A (ja) 2013-03-07 2015-02-12 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
JP2015185805A (ja) 2014-03-26 2015-10-22 株式会社Screenホールディングス 基板処理装置
JP2016136599A (ja) 2015-01-23 2016-07-28 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2017041512A (ja) 2015-08-18 2017-02-23 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2017183634A (ja) 2016-03-31 2017-10-05 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2017201728A (ja) 2017-08-16 2017-11-09 株式会社Screenホールディングス 基板処理装置
JP2019046939A (ja) 2017-08-31 2019-03-22 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2019134073A (ja) 2018-01-31 2019-08-08 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2020017633A (ja) 2018-07-25 2020-01-30 東京エレクトロン株式会社 基板処理装置、および基板処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866662B1 (ko) * 2016-10-27 2018-07-04 주식회사 아이엠티 레이저를 이용한 웨이퍼 표면 건조 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038472A1 (ja) 2004-10-06 2006-04-13 Ebara Corporation 基板処理装置及び基板処理方法
JP2015029041A (ja) 2013-03-07 2015-02-12 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
JP2015185805A (ja) 2014-03-26 2015-10-22 株式会社Screenホールディングス 基板処理装置
JP2016136599A (ja) 2015-01-23 2016-07-28 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2017041512A (ja) 2015-08-18 2017-02-23 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2017183634A (ja) 2016-03-31 2017-10-05 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2017201728A (ja) 2017-08-16 2017-11-09 株式会社Screenホールディングス 基板処理装置
JP2019046939A (ja) 2017-08-31 2019-03-22 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2019134073A (ja) 2018-01-31 2019-08-08 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2020017633A (ja) 2018-07-25 2020-01-30 東京エレクトロン株式会社 基板処理装置、および基板処理方法

Also Published As

Publication number Publication date
JP2021141086A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US10854481B2 (en) Substrate processing method and substrate processing apparatus
CN107871691B (zh) 基板处理方法和基板处理装置
JP5043406B2 (ja) 基板乾燥方法および基板乾燥装置
US10900127B2 (en) Substrate processing method and substrate processing apparatus
KR102508052B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP7386922B2 (ja) 基板処理方法および基板処理装置
KR102476555B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP7406404B2 (ja) 基板処理方法および基板処理装置
TW202102314A (zh) 基板處理方法以及基板處理裝置
TWI667076B (zh) 基板處理方法及基板處理裝置
JP7465164B2 (ja) 基板処理方法
JP7286534B2 (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150