JP7388011B2 - ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置 - Google Patents

ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
JP7388011B2
JP7388011B2 JP2019115395A JP2019115395A JP7388011B2 JP 7388011 B2 JP7388011 B2 JP 7388011B2 JP 2019115395 A JP2019115395 A JP 2019115395A JP 2019115395 A JP2019115395 A JP 2019115395A JP 7388011 B2 JP7388011 B2 JP 7388011B2
Authority
JP
Japan
Prior art keywords
polyimide
residue
less
polyimide film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019115395A
Other languages
English (en)
Other versions
JP2020002353A (ja
Inventor
勝哉 坂寄
貴之 太田
滉大 岡田
義弘 小林
綾 勝又
高徳 前田
敬輔 脇田
怜次郎 吉野
奈保美 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to PCT/JP2019/024862 priority Critical patent/WO2020004293A1/ja
Priority to TW112124116A priority patent/TW202342611A/zh
Priority to TW108122085A priority patent/TWI809133B/zh
Publication of JP2020002353A publication Critical patent/JP2020002353A/ja
Application granted granted Critical
Publication of JP7388011B2 publication Critical patent/JP7388011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置に関するものである。
薄い板ガラスは、硬度、耐熱性等に優れている反面、曲げにくく、落とすと割れやすく、加工性に問題があり、また、プラスチック製品と比較して重いといった欠点があった。このため、近年、樹脂基材や樹脂フィルム等の樹脂製品が、加工性、軽量化の観点でガラス製品と置き換わりつつあり、ガラス代替製品となる樹脂製品の研究が行われてきている。
例えば、液晶や有機EL等のディスプレイや、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。これらのデバイスには従来、薄い板ガラス上に様々な電子素子、例えば、薄型トランジスタや透明電極等が形成されているが、この薄い板ガラスを樹脂フィルムに変えることにより、パネル自体の耐衝撃性の強化、フレキシブル化、薄型化や軽量化が図れる。
一般にポリイミドは、芳香族テトラカルボン酸無水物と芳香族ジアミンとの縮合反応により得られたポリアミド酸を脱水閉環反応させて得られる高耐熱性の樹脂である。しかしながら、一般にポリイミドは黄色或いは褐色に着色を示すことから、ディスプレイ用途や光学用途など透明性が要求される分野に用いることは困難であった。そこで、透明性を向上したポリイミドを、ディスプレイ部材へ適用することが検討されている。例えば、特許文献1には、高耐熱性、高透明性、低吸水性のポリイミド樹脂として、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、特定の式で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを反応させてなるポリイミドが開示されており、フラットパネルディスプレイや携帯電話機器等の基板材料に好適であると記載されている。
さらに、特許文献2には、芳香族ジアンヒドリドおよび芳香族ジアミンに由来する単位構造を含み、引裂強度改善用添加剤、またはヘキサフルオロ基、スルホン基およびオキシ基よりなる群から選ばれる官能基を有するモノマーに由来する単位構造をさらに含む、透明ポリイミドフィルムが開示されている。
また、特許文献3には、フレキシブルデバイスの基板に用いられるポリイミドフィルムとして、無色透明であり、無機膜との間に発生する残留応力が低く、機械的物性及び熱物性に優れたポリイミドフィルムを得ることを目的として、特定のフッ素系芳香族ジアミンと、ケイ素原子数が3~200個のシロキサン骨格を有するシリコーン化合物とをモノマー成分として用いたポリイミド前駆体をイミド化したポリイミドフィルムが開示されている。特許文献3には、前記ポリイミド前駆体を用いて無機膜(SiN膜)付きポリイミドフィルムを形成したところ、折り曲げを10回繰り返し行った折り曲げ試験後にクラックも剥離も観察されないか(○)、クラックが観察された(△)と記載されている。
また、特許文献4には、低屈折率でかつ耐折性が高いポリイミドとして、ケイ素原子数が2~21個のシリコーンジアミンをジアミン原料重量の10重量%以上含むことが記載されている。
更に、発明者らは、特許文献5に、屈曲耐性を向上しながら、表面硬度の低下が抑制された樹脂フィルムとして、主鎖にケイ素原子を1個又は2個有するジアミン残基をジアミン残基の総量の10モル%以上50モル%以下含むポリイミドを含有し、特定の全光線透過率、特定の黄色度、特定のガラス転移温度、及び特定の引張弾性率を有するポリイミドフィルムを開示している。
特開2006-199945号公報 特表2014-501301号公報 国際公開2014/098235号公報 特開2008-64905号公報 特開2018-28073号公報
ガラス代替製品となる樹脂製品には、そもそも優れた透明性が求められる。
画面が折り畳めるモバイル機器は、持ち運ぶ際には折り畳んだ状態とし、使用する際には折り畳みを開いた状態とする。そのため、モバイル機器に搭載されるフレキシブルディスプレイには、繰り返し屈曲させても表示不良が発生しないことが求められ、フレキシブルディスプレイ用の基材や表面材には、繰り返し屈曲させたときの屈曲耐性(以下、動的屈曲耐性という場合がある)が求められる。更に、画面が折り畳めるモバイル機器は、折り畳んだ状態で持ち運ばれることが多いため、モバイル機器に搭載されるフレキシブルディスプレイには、長時間折り曲げられた状態が続いても、平坦に戻した時に元通りになることが求められ、フレキシブルディスプレイ用の基材や表面材にも、長時間折り曲げられた状態が続いた後の復元性(以下、静的屈曲耐性という場合がある)が求められる。
しかしながら、従来技術の透明性を有するポリイミドフィルムの屈曲耐性は更なる向上が求められていた。
本発明は、上記問題点に鑑みてなされたものであり、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することを主目的とする。
また、本発明は、前記ポリイミドフィルムを製造するためのポリイミド材料、前記ポリイミドを有する積層体、前記ポリイミドフィルム又は前記積層体であるディスプレイ用部材、並びに、前記ポリイミドフィルム又は前記積層体を備えるタッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置を提供することを目的とする。
本発明のポリイミドフィルムは、下記一般式(1)で表される構造を有するポリイミドを含有し、
フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であり、
JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。
Figure 0007388011000001
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
本発明のポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であることが、表面硬度に優れる点から好ましい。
本発明のポリイミドフィルムは、JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.10以下であることが、透明性に優れる点から好ましい。
本発明のポリイミドフィルムは、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。
本発明のポリイミドフィルムにおいては、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。
Figure 0007388011000002
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
本発明のポリイミドフィルムは、前記一般式(1)で表される構造を有するポリイミドにおいて、Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性及び表面硬度を向上する点から好ましい。
また、本発明は、前記本発明のポリイミドフィルム製造用ポリイミド材料であり、
前記一般式(1)で表される構造を有し、残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である、ポリイミド材料を提供する。
また、本発明は、前記本発明のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体を提供する。
また、本発明は、前記本発明のポリイミドフィルム、又は、前記本発明の積層体である、ディスプレイ用部材を提供する。当該ディスプレイ用部材は、フレキシブルディスプレイ用とすることができる。
また、本発明は、前記本発明のポリイミドフィルム又は前記本発明の積層体と、
前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有するタッチパネル部材を提供する。
また、本発明は、前記本発明のポリイミドフィルム又は前記本発明の積層体と、
前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、を有する液晶表示装置を提供する。
また、本発明は、前記本発明のポリイミドフィルム又は前記本発明の積層体と、
前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、を有する有機エレクトロルミネッセンス表示装置を提供する。
本発明によれば、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することができる。
また、本発明は、前記ポリイミドフィルムを製造するためのポリイミド材料、前記ポリイミドを有する積層体、前記ポリイミドフィルム又は前記積層体であるディスプレイ用部材、並びに、前記ポリイミドフィルム又は前記積層体を備えるタッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置を提供することができる。
静的屈曲試験の方法を説明するための図である。 本発明のタッチパネル部材の一例の一方の面の概略平面図である。 図2に示すタッチパネル部材のもう一方の面の概略平面図である。 図2及び図3に示すタッチパネル部材のA-A’断面図である。 本発明の積層体を備える導電性部材の一例を示す概略平面図である。 本発明の積層体を備える導電性部材の別の一例を示す概略平面図である。 本発明のタッチパネル部材の別の一例を示す概略断面図である。 本発明の液晶表示装置の一例を示す概略断面図である。 本発明の液晶表示装置の別の一例を示す概略断面図である。 本発明の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。 本発明の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。
以下、本発明に係るポリイミドフィルム、当該ポリイミドフィルムの製造用ポリイミド材料、当該ポリイミドフィルムを用いた積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置について詳細に説明する。
また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
また、本明細書において(メタ)アクリルとは、アクリル及びメタアクリルの各々を表す。
また、本明細書において「光」とは、活性光線又は放射線を意味し、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等が包含されるものである。
また、本明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある場合がある。
また、本明細書において、ポリイミドフィルム中の有機溶剤の含有量の単位として用いられている「ppm」は、質量ppmを表す。
I.ポリイミドフィルム
本発明のポリイミドフィルムは、下記一般式(1)で表される構造を有するポリイミドを含有し、
フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であり、
JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。
Figure 0007388011000003
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
本発明によれば、ポリイミドフィルムが含有するポリイミドが、芳香族環又は脂肪族環を有するテトラカルボン酸残基を有し、ジアミン残基として、主鎖にケイ素原子を有するジアミン残基を2.5モル%以上50モル%以下含み、ケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基を50モル%以上97.5モル%以下含む特定の構造を有し、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量を2000ppm以下、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量を100ppm以下とし、前記特定の全光線透過率を有するポリイミドフィルムとしたことにより、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することができる。
本発明者らは、特許文献5にも記載したように、主鎖にケイ素原子を1個又は2個有するジアミン残基をジアミン残基総量のうち適切な割合で含有すると、屈曲耐性が良好になることを開示している。また、特許文献4に記載されているように、ケイ素原子数が2~21個のシリコーンジアミンをジアミン原料重量の10重量%以上含むポリイミドフィルムは耐折性が高いと記載されている。しかし、ポリイミドフィルムを構成するポリイミドの構造が同じであっても、ポリイミドフィルムの製造の仕方によって、屈曲耐性が変化することがわかってきた。
本発明者らは、主鎖にケイ素原子を有するジアミン残基をジアミン残基総量のうち適切な割合で含有するポリイミドフィルムにおいて、フィルム内の残留溶剤のうち、1気圧下での沸点(以下、本明細書で単に“沸点”という場合がある)が100℃未満の有機溶剤の含有量を2000ppm以下、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量を100ppm以下とすることにより、前記ポリイミドフィルムの屈曲耐性が向上することを見出した。
残留溶剤は、ポリイミドフィルムの製造に使用された溶剤のため、基本的にポリイミドフィルムの良溶媒であることが多い。沸点が100℃以上の有機溶剤がフィルム内の残留溶剤量として100ppmを超えると、フィルムを構成するポリイミドの一部がその残留溶剤に溶解してしまい、動的屈曲時にフィルムが損傷を受けやすくなって破断しやすくなるのではないかと推定される。
一方、沸点が100℃未満の有機溶剤は、未だ理由は明らかではないが、沸点が100℃以上の有機溶剤に比べて、フィルムの動的屈曲耐性に影響を与え難く、より多い残留量が許容される。沸点が100℃未満の有機溶剤は、沸点が100℃以上の有機溶剤に比べて、フィルムの静的屈曲耐性に影響を与えやすい。これは、沸点が100℃未満の有機溶剤がフィルム中に多く残留していると、フィルムが長時間折り曲げられた状態で、沸点が100℃未満の有機溶剤の一部が揮発することにより、フィルムの一部が収縮してしまい、平坦に戻した時に復元し難くなるのではないかと推定される。
本発明においては、ポリイミドフィルム内の残留溶剤の含有量について、沸点が100℃未満の有機溶剤と、沸点が100℃以上の有機溶剤とをそれぞれ特定の含有割合以下としたことから、動的屈曲時にフィルムが損傷を受け難く、静的屈曲時に復元しやすいポリイミドフィルムを得ることができると推定される。
なお、後述の実施例と比較例で、同じ分子構造を有するポリイミド前駆体を用いてポリイミドフィルムを製造した場合であっても、ポリイミドの製法やポリイミドフィルムの製造方法が異なりフィルムの状態が異なると、残留溶剤量が変化し、屈曲耐性が変化することが示されている。このことは、ポリイミドフィルムの屈曲耐性は、ポリイミドの化学構造のみに依存するわけではないこと、また、残留溶剤量が、屈曲耐性に関連したポリイミドフィルムの状態を表すことを示している。
また、更に、前記特定の全光線透過率を有するポリイミドフィルムとしたことにより、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することができる。
以下、本発明に係るポリイミドフィルムについて詳細に説明する。
本発明に係るポリイミドフィルムは、ポリイミドを含有し、前記特定の特性を有するものである。本発明の効果が損なわれない限り、更にその他の成分を含有していても良いし、他の構成を有していてもよい。
1.ポリイミド
ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によってポリアミド酸を得てイミド化することが好ましい。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよい。また、熱イミド化と化学イミド化とを併用した方法で製造することもできる。
本発明で用いられるポリイミドは、下記一般式(1)で表される構造を有するポリイミドを含有する。
Figure 0007388011000004
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
ここで、テトラカルボン酸残基とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。
また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
前記一般式(1)のRにおけるテトラカルボン酸残基は、芳香族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基、又は、脂肪族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。
芳香族環を有するテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
脂肪族環を有するテトラカルボン酸二無水物としては、例えば、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物等が挙げられる。
これらは単独でも、2種以上を混合して用いることもできる。
前記一般式(1)のRにおける、主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。本発明に用いられるポリイミドフィルムは、主成分として芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を特定量導入することで、上述のように、屈曲耐性を向上することができる。また、後述するハードコート層などの機能層を積層した場合に、ハードコート層などの機能層との間の密着性を向上することができる。
主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。
主鎖にケイ素原子を有するジアミン残基としては、例えば、下記一般式(A)で表されるジアミンが挙げられる。
Figure 0007388011000005
(一般式(A)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。kは0~200の数である。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
10で表される1価の炭化水素基としては、炭素数1以上20以下のアルキル基、アリール基、及びこれらの組み合わせが挙げられる。アルキル基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
炭素数1以上20以下のアルキル基としては、炭素数1以上10以下のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。前記環状のアルキル基としては、炭素数3以上10以下のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。前記アリール基としては、炭素数6以上12以下のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。また、R10で表される1価の炭化水素基としては、アラルキル基であっても良く、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
酸素原子又は窒素原子を含んでいても良い炭化水素基としては、例えば後述する2価の炭化水素基と前記1価の炭化水素基とをエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
10で表される1価の炭化水素基が有していても良い置換基としては、本発明の効果が損なわれない範囲で特に限定されず、例えば、フッ素原子、塩素原子等のハロゲン原子、水酸基等が挙げられる。
10で表される1価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上3以下のアルキル基、又は炭素数6以上10以下のアリール基であることが好ましく、炭素数1以上3以下のアルキル基であることがより好ましい。炭素数1以上3以下のアルキル基としては、メチル基であることがより好ましく、前記炭素数6以上10以下のアリール基としては、フェニル基であることがより好ましい。
11で表される2価の炭化水素基としては、炭素数1以上20以下のアルキレン基、アリーレン基、及びこれらの組み合わせの基が挙げられる。アルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
炭素数1以上20以下のアルキレン基としては、炭素数1以上10以下のアルキレン基であることが好ましく、例えば、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、シクロヘキシレン基等の直鎖状又は分岐状アルキレン基と環状アルキレン基との組合せの基などを挙げることができる。
前記アリーレン基としては、炭素数6以上12以下のアリーレン基であることが好ましく、アリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基等が挙げられ、更に後述する芳香族環に対する置換基を有していてもよい。
酸素原子又は窒素原子を含んでいても良い2価の炭化水素基としては、前記2価の炭化水素基同士をエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
11で表される2価の炭化水素基が有していても良い置換基としては、前記R10で表される1価の炭化水素基が有していても良い置換基と同様であって良い。
11で表される2価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上6以下のアルキレン基、又は炭素数6以上10以下のアリーレン基であることが好ましく、更に、炭素数2以上4以下のアルキレン基であることがより好ましく、当該アルキレン基は、直鎖状又は分岐状であることが好ましい。
kは0~200の数である。kの平均は、屈曲耐性の向上と表面硬度の両立性の点から、0以上6以下であることが好ましく、0以上4以下であることが好ましい。中でもkは0又は1であることが好ましい。
前記Rにおける、前記主鎖にケイ素原子を有するジアミン残基としては、中でも、屈曲耐性に優れ、表面硬度との両立性にも優れる点から、主鎖にケイ素原子を1個又は2個有するジアミン残基であることが好ましい。
主鎖にケイ素原子を1個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=0である下記一般式(A-1)で表されるジアミンが挙げられる。また、主鎖にケイ素原子を2個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=1である下記一般式(A-2)で表されるジアミンが挙げられる。
Figure 0007388011000006
(一般式(A-1)及び一般式(A-2)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
分子の運動性を抑制しつつ屈曲耐性を付与する点、表面硬度の両立性の点から、主鎖にケイ素原子を有するジアミン残基の分子量は、3000以下であることが好ましく、2000以下であることが好ましく、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
更に、主鎖にケイ素原子を1個又は2個有するジアミン残基の分子量は、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
ジアミン残基の分子量は、ジアミンの分子量からアミノ基(-NH)2個の分子量(32)を減じて算出される。
主鎖にケイ素原子を有するジアミン残基は単独でも、2種以上を混合して用いることもできる。
また、前記一般式(1)で表される構造を有するポリイミドは、前記一般式(1)中のRにおける主鎖にケイ素原子を有するジアミン残基が、ケイ素原子を2個有するジアミン残基であることが、光透過性の点、及び屈曲耐性及び表面硬度の点から好ましく、更に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、1,3-ビス(5-アミノペンチル)テトラメチルジシロキサン等が、入手容易性や光透過性と表面硬度の両立の観点から好ましい。
前記一般式(1)のRにおける、ケイ素原子を有さず芳香族環を有するジアミン残基は、ケイ素原子を有さず芳香族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
ケイ素原子を有さず芳香族環を有するジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(2,2-ビス(トリフルオロメチル)ベンジジン)、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等、及び、前記ジアミンの芳香族環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。
これらは単独でも、2種以上を混合して用いることもできる。
前記一般式(1)のRにおける、ケイ素原子を有さず脂肪族環を有するジアミン残基は、脂肪族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
脂肪族環を有するジアミンとしては、例えば、1,4-シクロヘキサンジアミン、trans-1,4-ビスメチレンシクロヘキサンジアミン、2,6-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン等が挙げられる。
これらは単独でも、2種以上を混合して用いることもできる。
本発明に用いられるポリイミドフィルムは、前記一般式(1)のRにおいて、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることにより、静的屈曲耐性及び動的屈曲耐性が良好になる。
前記一般式(1)のRは、屈曲耐性の点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の3モル%以上であることが好ましく、更に4モル%以上であることが好ましく、より更に5モル%以上であることが好ましい。また、光学歪みを低減する点からは、主鎖にケイ素原子を有するジアミン残基が、Rの総量の10モル%以上であっても良く、15モル%以上であっても良い。一方、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の45モル%以下であることが好ましく、更に40モル%以下であることが好ましく、優れた表面硬度と動的屈曲耐性の両立性の点から、10モル%未満であることも好ましい。
一方で、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基は、表面硬度と光透過性を向上する点から、Rの総量の55モル%以上であることが好ましく、更に60モル%以上であることが好ましく、優れた表面硬度の点から、90モル%超過であっても良い。また、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基は、屈曲耐性の点から、Rの総量の97モル%以下であることが好ましく、更に96モル%以下であることが好ましく、より更に95モル%以下であることが好ましい。
なお、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることを満たせば、前記一般式(1)のRに、主鎖にケイ素原子を有するジアミン残基及びケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基とは異なる他のジアミン残基を含むことを妨げるものではない。当該他のジアミン残基は、Rの総量の10モル%以下であることが好ましく、更に5モル%以下であることが好ましく、より更に3モル%以下であることが好ましく、特に1モル%以下であることが好ましい。当該他のジアミン残基としては、例えば、ケイ素原子を有さず、且つ芳香族環及び脂肪族環を有しないジアミン残基等が挙げられる。
中でも、屈曲耐性及び表面硬度を両立させて向上する点から、前記一般式(1)におけるRは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
前記一般式(1)のRは、屈曲耐性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の3モル%以上であることが好ましく、更に4モル%以上であることが好ましく、より更に5モル%以上であることが好ましい。また、光学歪みを低減する点からは、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の10モル%以上であっても良く、15モル%以上であっても良い。一方、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の45モル%以下であることが好ましく、更に40モル%以下であることが好ましく、優れた表面硬度と動的屈曲耐性の両立性の点から、10モル%未満であることも好ましい。
中でも、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残り(100%-x%)である50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
また、優れた表面硬度と動的屈曲耐性の両立性の点からは、Rの総量の2.5モル%以上10モル%未満が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残り(100%-x%)である90モル%超過97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることも好ましい。
また、本発明で用いられるポリイミドは、屈曲耐性及び表面硬度の点から、ポリイミド中のケイ素原子の含有割合(質量%)が0.7質量%以上6.5質量%以下であることが好ましく、0.7質量%以上5.5質量%以下であることがより好ましく、0.7質量%以上4.2質量%以下であることがより更に好ましい。
ここで、ポリイミド中のケイ素原子の含有割合(質量%)は、ポリイミドが2種以上の場合は2種以上の全ポリイミド中のケイ素原子の含有割合(質量%)をいい、以下のように、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中のケイ素原子の含有割合(質量%)は、下記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
(ポリイミドのケイ素原子含有割合(質量%))
例えば、酸二無水物成分として4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)1モルに対して、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)0.9モルと1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)0.1モルを用いた場合、以下のように算出することができる。
ポリイミド繰り返し単位1モル分の分子量は、
6FDA由来:(C)12.01×19+(F)19.00×6+(O)16.00×4+(H)1.01×6=412.25
TFMB由来:{(C)12.01×14+(F)19.00×6+(N)14.01×2+(H)1.01×6}×0.9=284.60
AprTMOS由来:{(C)12.01×10+(O)16.00×1+(N)14.01×2+(Si)28.09×2+(H)1.01×24}×0.1=24.45
から、412.25+284.60+24.45=721.30と算出される。
ポリイミド繰り返し単位1モル中のケイ素原子含有割合(質量%)は、
(28.09×2×0.1)/721.30×100=0.8(質量%)と求められる。
前記一般式(1)で表される構造を有するポリイミドとしては、光透過性を向上し、且つ、表面硬度を向上する点から、中でも、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むポリイミドであることが好ましい。前記一般式(1)で表される構造を有するポリイミドは、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり配向性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。
ポリイミドに(i)フッ素原子を含むとポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。
ポリイミドに(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
ポリイミドに(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
前記一般式(1)で表される構造を有するポリイミドとしては、中でも、フッ素原子を含むポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。
フッ素原子の含有割合は、ポリイミド表面をX線光電子分光法により測定したフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上であることが好ましく、更に0.05以上であることが好ましい。一方でフッ素原子の含有割合が高すぎるとポリイミド本来の耐熱性などが低下する恐れがあることから、前記フッ素原子数(F)と炭素原子数(C)の比率(F/C)が1以下であることが好ましく、更に0.8以下であることが好ましい。
ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
また、前記一般式(1)で表される構造を有するポリイミドは、表面硬度が向上する点から、前記一般式(1)におけるR及びRの合計を100モル%としたときに、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。
また、前記一般式(1)で表される構造を有するポリイミドは、表面硬度と光透過性が向上する点から、Rのテトラカルボン酸残基、及びRのケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基の少なくとも1つが、芳香族環とフッ素原子とを含むことが好ましく、更に、Rのテトラカルボン酸残基、及びRのケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基の両方が、芳香族環とフッ素原子とを含むことが好ましい。
前記一般式(1)で表される構造を有するポリイミドは、表面硬度と光透過性が向上する点から、前記一般式(1)におけるR及びRの合計を100モル%としたときに、芳香族環及びフッ素原子を有するテトラカルボン酸残基及び芳香族環及びフッ素原子を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。
また、前記一般式(1)で表される構造を有するポリイミドは、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、更に、60%以上であることが好ましく、より更に70%以上であることが好ましい。
ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、大気中における加熱工程を経ても、例えば200℃以上で延伸を行っても、光学特性、特に全光線透過率や黄色度YI値の変化が少ない点から好ましい。ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、酸素との反応性が低いため、ポリイミドの化学構造が変化し難いことが推定される。ポリイミドフィルムはその高い耐熱性を利用し、加熱を伴う加工工程が必要なデバイスなどに用いられる場合が多いが、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、これら後工程を透明性維持のために不活性雰囲気下で実施する必要が生じないので、設備コストや雰囲気制御にかかる費用を抑制できるというメリットがある。
ここで、ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、ポリイミドの分解物を高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計及びNMRを用いて求めることができる。例えば、サンプルを、アルカリ水溶液、又は、超臨界メタノールにより分解し、得られたポリイミドの分解物を、高速液体クロマトグラフィーで分離し、当該分離した各ピークの定性分析をガスクロマトグラフ質量分析計及びNMR等を用いて行い、高速液体クロマトグラフィーを用いて定量することでポリイミドに含まれる全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合を求めることができる。
前記一般式(1)で表される構造を有するポリイミドは、中でも、光透過性の点、及び屈曲耐性及び表面硬度の点から、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが好ましい。
前記Rにおいて、これらの好適な残基を合計で、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
特に光透過性と表面硬度のバランスが良い点から、前記一般式(1)中のRは、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることがより好ましい。
前記一般式(1)のRとしては、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、及び、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基からなる群から選択される少なくとも一種のような剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選択される少なくとも一種のような光透過性を向上するのに適したテトラカルボン酸残基群(グループB)とを混合して用いることも好ましい。この場合、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)との含有比率は、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)1モルに対して、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、より更に0.3モル以上4モル以下であることが好ましい。
中でも、前記グループBとしては、フッ素原子を含む、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、及び3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の少なくとも一種を用いることが、表面硬度と光透過性の向上の点から好ましい。
前記一般式(1)で表される構造を有するポリイミドは、前記一般式(1)中のRにおける前記ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性の点、及び屈曲耐性及び表面硬度の点から好ましく、特に光透過性と表面硬度の両立の点から、更に、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び、下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましく、下記一般式(2)で表される2価の基であることがより好ましい。下記一般式(2)で表される2価の基としては、R及びRがパーフルオロアルキル基であることがより好ましく、中でも、炭素数1以上3以下のパーフルオロアルキル基が好ましく、トリフルオロメチル基又はパーフルオロエチル基であることがより好ましい。また、下記一般式(2)中のR及びRにおけるアルキル基としては、炭素数1以上3以下のアルキル基が好ましく、メチル基又はエチル基であることがより好ましい。
Figure 0007388011000007
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
ポリイミド中の各繰り返し単位の含有割合、各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中の各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、上記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
前記一般式(1)で表される構造において、nは繰り返し単位数を表し、1以上である。
ポリイミドにおける繰り返し単位数nは、後述する好ましいガラス転移温度を示すように、構造に応じて適宜選択することが好ましいが、特に限定されない。
平均繰り返し単位数は、通常10~2000であり、更に15~1000であることが好ましい。
なお、各繰り返し単位におけるRは各々同一であっても異なっていても良く、各繰り返し単位におけるRは各々同一でも異なっていても良い。
また、前記一般式(1)で表される構造を有するポリイミドは、フィルムとした際の強度及び屈曲耐性の点から、数平均分子量が10000以上であることが好ましく、20000以上であることがより好ましく、30000以上であることがより更に好ましく、50000以上であることが特に好ましい。上限は特に限定はされないが、合成が容易であり、入手し易い点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
なお、ポリイミドの数平均分子量は、後述するポリイミド前駆体の数平均分子量と同様にして測定することができる。
また、前記一般式(1)で表される構造を有するポリイミドは、フィルムとした際の強度及び屈曲耐性の点から、重量平均分子量が、20000以上であることが好ましく、30000以上であることがより好ましく、40000以上であることがより更に好ましく、80000以上であることが特に好ましい。上限は特に限定はされないが、合成が容易であり、入手し易い点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
ポリイミドの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。具体的には、ポリイミドを0.1重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、37℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
また、本発明に用いられるポリイミドは、本発明の効果が損なわれない限り、その一部に前記一般式(1)で表される構造とは異なる構造を有していても良い。本発明に用いられるポリイミドは、前記一般式(1)で表される構造が、ポリイミドの全繰り返し単位数の95%以上であることが好ましく、98%以上であることがより好ましく、100%であることがより更に好ましい。
前記一般式(1)で表される構造とは異なる構造としては、例えば、芳香族環又は脂肪族環を有しないテトラカルボン酸残基等が含まれる場合や、ポリアミド構造が挙げられる。
含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
本発明に用いられるポリイミドは、損失弾性率を貯蔵弾性率で除した値であるtanδ曲線において、ピークの頂点を150℃以上の温度領域にのみ有するものであることが、屈曲耐性を向上する点から好ましい。本発明に用いられるポリイミドは、屈曲耐性や表面硬度を向上する点から、前記tanδ曲線で、ピークの頂点を200℃以上の温度領域にのみ有するものであることがより好ましく、220℃以上の温度領域にのみ有するものであることがより更に好ましい。一方、ベーク温度を低減することができる点から、前記tanδ曲線で、ピークの頂点は380℃以下の温度領域に有することが好ましい。また、本発明に用いられるポリイミドは、150℃以上400℃以下の温度領域に1つのtanδ曲線のピークを有することが好ましい。
また、本発明に用いられるポリイミドは、-150℃以上150℃未満の温度領域に、更に、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましく、これにより、ポリイミドフィルムの室温での表面硬度を向上することができる。
本発明に用いられるポリイミドのtanδ曲線は、後述するポリイミドフィルムのtanδ曲線と同様にして測定することができる。
2.添加剤
本発明のポリイミドフィルムは、前記ポリイミドの他に、必要に応じて更に添加剤を含有していてもよい。前記添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられる。
3.ポリイミドフィルムの特性
本発明のポリイミドフィルムは、前記特定の残留溶剤量、及び前記特定の全光線透過率を有する。本発明のポリイミドフィルムは、更に後述する特性を有することが好ましい。
(1)残留溶剤量
本発明のポリイミドフィルムは、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である。
沸点が100℃未満の有機溶剤の含有量は、静的屈曲耐性及び動的屈曲耐性を向上する点から、1000ppm以下が好ましく、400ppm以下がより好ましく、100ppm以下がより更に好ましい。中でも、沸点が60℃以下の有機溶剤の含有量は2000ppm以下であってよく、1000ppm以下が好ましく、400ppm以下がより好ましく、100ppm以下がより更に好ましい。沸点が100℃未満の有機溶剤の含有量は、静的屈曲耐性及び動的屈曲耐性を向上する点から、少なければ少ないほど良く、0ppmであってもよい。
一方、沸点が100℃以上の有機溶剤の含有量は、動的屈曲耐性を向上する点から、80ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がより更に好ましく、20ppm以下がより更に好ましい。沸点が100℃以上の有機溶剤の含有量も、動的屈曲耐性を向上する点から、少なければ少ないほど良く、0ppmであってもよい。
1気圧下での沸点が70℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が70℃超過の有機溶剤の含有量が100ppm以下であってもよく、更に、1気圧下での沸点が60℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が60℃超過の有機溶剤の含有量が100ppm以下であってもよく、より更に、1気圧下での沸点が50℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が50℃超過の有機溶剤の含有量が100ppm以下であってもよい。
残留溶剤として含まれる1気圧下での沸点が100℃未満の有機溶剤としては、ポリイミドフィルムの製造工程で用いられる有機溶剤が挙げられ、例えば、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,2-ジクロロエチレン、トリクロルエチレン、アセトン、イソプロピルアルコール、ジエチルエーテル、酢酸イソプロピル、酢酸エチル、酢酸メチル、ジクロロメタン、テトラヒドロフラン、1,1,1-トリクロロエタン、ノルマルヘキサン、2-ブタノール、メタノール、メチルエチルケトン等が挙げられ、中でも1気圧下での沸点が70℃以下の有機溶剤としては、クロロホルム、1,2-ジクロロエチレン、アセトン、ジエチルエーテル、酢酸メチル、ジクロロメタン、テトラヒドロフラン、ノルマルヘキサン、メタノール等が挙げられる。
残留溶剤として含まれる1気圧下での沸点が100℃以上の有機溶剤としても、ポリイミドフィルムの製造工程で用いられる有機溶剤が挙げられ、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、オルト-ジクロロベンゼン、キシレン、オルト-クレゾール、クロロベンゼン、酢酸イソブチル、酢酸イソペンチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、酢酸ノルマル-ブチル、シクロヘキサノール、シクロヘキサノン、1,4-ジオキサン、テトラクロロエチレン、トルエン、メチルイソブチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン等が挙げられる。
ポリイミドフィルムの残留溶剤量は、以下のように測定することができる。
[残留溶剤の種類の特定]
まず、残留溶剤の種類の特定を、パージ&トラップ装置(加熱脱着装置)が連結したGC-MSを用いて行う。
パージ&トラップ装置(製品名JTD505-III、日本分析工業株式会社)に、ポリイミドフィルム10mgを入れた試料管をセットし、200℃で30分保持して加熱して発生したガスを、-60℃のトラップ管で捕集し、捕集したものを315℃で加熱して飛ばしてGC-MSへ送り込み、発生した有機ガスの成分の定性分析を行なう。
(パージ&トラップ装置条件)
総スプリット比(導入量/排気量)1:10、
キャリアガス ヘリウム1.0ml/min定量
(GC-MS条件)
装置名:GC-MS装置(Agilent社、6890/5973 GC/MS)
カラム:UA-5 内径250μm×長さ30m×膜厚0.25μm(フロンティア・ラボ製)、昇温条件 50℃(5分保持) → 10℃/分(昇温) → 320℃(3分保持)
[残留溶剤の定量]
ポリイミドフィルムの濃度が5質量%濃度となるように、N,N-ジメチルホルムアミド(DMF)にポリイミドフィルムを添加して、ポリイミドフィルム/N,N-ジメチルホルムアミド(DMF)溶液を調製し、この溶液に、内部標準液(0.2質量%濃度アニソール/DMF溶液)を添加してサンプル溶液を調製する。当該サンプル溶液について、GC-MS装置(例えば、Agilent社、6890/5973 GC/MS)を用いて、下記条件で、GC-MS測定を行う。当該GC-MS測定は3回行い、測定結果は3回の平均値とする。
(GC条件)
カラム:InertCapWax 内径250μm×長さ30m×膜厚0.25μm(ジーエルサイエンス製)、
サンプル打ち込み量0.2uL、スプリット比(導入量/排気量)1:50、キャリアガス ヘリウム94.3kPa定圧、注入口温度250℃、昇温条件 40℃(5分保持) → 5℃/分 → 120℃ → 20℃/分 → 240℃(6分保持)、トランスファーライン温度 250℃
(MS条件)
イオン化法 EI、測定モード SIM、イオン源温度 250℃、四重極温度 150℃、イオン化電圧 70eV
前記のように特定された各残留溶剤について、検量線を作成し、当該検量線を基準として、各残留溶剤量を定量する。
例えば、含まれている残留溶剤がN,N-ジメチルアセトアミド(DMAc)の場合、DMAc含有量が例えば0.01質量%、0.05質量%、0.1質量%となるようにそれぞれ調製した各DMAc(測定対象化合物)/DMF溶液に、上記したサンプル溶液と同様に内部標準液を添加して調製した各検量線液について、GC-MS測定を行い、検量線を作成する。なお、GC-MS測定は3回行い、測定結果は3回の平均値とする。
そして、当該検量線を基準として、ポリイミドフィルムに対する質量比としてDMAcの含有量を算出する。なお、検出量によって検量線を適宜作成し直す。
含まれている残留溶剤が2種以上ある場合、各残留溶剤に対して上記DMAcのように検量線液を調製し、当該各検量線液についてのGC-MS測定による測定結果から作成された検量線を基準とする。
なお、N,N-ジメチルホルムアミド(DMF)が残留溶剤として含まれている場合、例えばN-メチル-2-ピロリドンなど、残留溶剤として含まれていないポリイミドの良溶媒を用いてサンプル溶液を調製する。
(2)全光線透過率
また、本発明のポリイミドフィルムは、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。本発明のポリイミドフィルムの前記JIS K7361-1に準拠して測定する全光線透過率は、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
JIS K7361-1に準拠して測定する全光線透過率は、例えば、ヘイズメーター(例えば村上色彩技術研究所製 HM150)により測定することができる。なお、ある厚みの全光線透過率の測定値から、異なる厚みの全光線透過率は、ランベルトベールの法則により換算値を求めることができ、それを利用することができる。
具体的には、ランベルトベールの法則によれば、透過率Tは、
Log10(1/T)=kcb
(k=物質固有の定数、c=濃度、b=光路長)で表される。
フィルムの透過率の場合、膜厚が変化しても密度が一定であると仮定するとcも定数となるので、上記式は、定数fを用いて
Log10(1/T)=fb
(f=kc)と表すことができる。ここで、ある膜厚の時の透過率がわかれば、各物質の固有の定数fを求めることができる。従って、T=1/10f・b の式を用いて、fに固有の定数、bに目標の膜厚を代入すれば、所望の膜厚の時の透過率を求めることができる。
(3)黄色度
また、本発明のポリイミドフィルムは、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が、12以下であることが好ましい。このように黄色度が低いと、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料となり得る。前記JIS K7373-2006に準拠して算出される黄色度(YI値)は、10以下であることが好ましく、7以下であることが更に好ましく、5以下であることがより更に好ましい。
なお、黄色度(YI値)は、前記JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出することができる。
YI=100(1.2769X-1.0592Z)/Y
なお、ある厚みの黄色度の測定値から、異なる厚みの黄色度は、ある特定の膜厚のサンプルの250nm以上800nm以下の間の1nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
また、本発明のポリイミドフィルムは、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で除した値(YI値/膜厚(μm))が0.10以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることがより更に好ましい。
なお、本発明において、前記黄色度(YI値)を膜厚(μm)で除した値(YI値/膜厚(μm))は、JIS Z8401:1999の規則Bに従い、小数点以下第2位に丸めた値とする。
(4)引張弾性率
本発明のポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が、1.8GPa以上であることが好ましい。このように、25℃(室温)での引張弾性率が高いと、保護フィルムとして十分な表面硬度を室温でも維持することができ、表面材乃至基材として用いることができる。前記引張弾性率は、2.0GPa以上であることが好ましく、2.1GPa以上であることがより好ましく、2.3GPa以上であることが更に好ましい。一方で、前記引張弾性率は、屈曲耐性を向上させる点から、5.2GPa以下であることが好ましい。屈曲耐性を向上させる点から、前記引張弾性率は4.0GPa以下であっても良く、3.5GPa以下であっても良く、2.9GPa以下であっても良い。
前記引張弾性率は、引張り試験機(例えば島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用い、幅15mm×長さ40mmの試験片をポリイミドフィルムから切り出して、25℃で、引張り速度8mm/分、チャック間距離は20mmとして測定することができる。前記引張弾性率を求める際のポリイミドフィルムは厚みが55μm±5μmであることが好ましい。
(5)tanδ曲線
本発明のポリイミドフィルムは、損失弾性率を貯蔵弾性率で除した値であるtanδ曲線において、ピークの頂点を150℃以上の温度領域にのみ有するものであることが好ましい。前記tanδ曲線で、ピークの頂点が150℃未満に存在すると、ポリイミドの分子鎖が動きやすく、塑性変形しやすくなって、屈曲耐性が悪くなる恐れがあるのに対し、ピークの頂点が150℃未満に存在しないと、分子鎖の運動性が抑制され、塑性変形し難くなり、屈曲耐性を向上することが出来るからである。
また、前記tanδ曲線で、ピークの頂点を150℃以上の温度領域にのみ有すると、高温環境下、例えば夏の車内などにおいても、熱変形によって屈曲耐性が損なわれることが抑制されるため、高温環境下でも屈曲耐性が向上したものとなる。
また、前記tanδ曲線で、ピークの頂点を150℃以上の温度領域にのみ有すると、引張弾性率が高くなる傾向があり、表面硬度が高くなる傾向がある。
本発明のポリイミドフィルムは、屈曲耐性や表面硬度を向上する点から、前記tanδ曲線で、ピークの頂点を200℃以上の温度領域にのみ有するものであることがより好ましく、220℃以上の温度領域にのみ有するものであることがより更に好ましい。一方、ベーク温度を低減することができる点から、前記tanδ曲線で、ピークの頂点は380℃以下の温度領域に有することが好ましい。
また、本発明のポリイミドフィルムは、中でも、-150℃以上150℃未満の温度領域に、更に、-70℃以上150℃未満の温度領域に、前記tanδ曲線におけるピークの頂点を有しないことが好ましく、更に、100℃以下の温度領域に、前記tanδ曲線におけるピークの頂点を有しないことが好ましく、0℃以下の温度領域に、前記tanδ曲線におけるピークの頂点を有しないことがより好ましい。主鎖に長いシロキサン結合を有するジアミン残基を有する場合や主鎖にケイ素原子を有するジアミン残基を多量に含有する場合にはこのように低い温度領域に前記tanδ曲線におけるピークの頂点を有する場合がある。
前記tanδ曲線は、動的粘弾性測定によって、温度とtanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))の関係から求められるものであり、ピークの極大値が最大であるピークの頂点の温度をガラス転移温度の指標とすることができるものである。動的粘弾性測定は、例えば、動的粘弾性測定装置 RSA-G2(ティー・エイ・インスツルメント・ジャパン(株))によって、測定範囲を-150℃以上490℃以下として、周波数1Hz、昇温速度5℃/minにより行うことができる。また、サンプル幅を5mm、チャック間距離を20mmとして測定することができる。ピーク及び変曲点の解析時は、目視評価せず、データを数値化して、数値から解析する。
なお、温度(横軸)とtanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))(縦軸)の曲線において、ピークとは、tanδの値が0.2以上、好ましくは0.3以上であって極大値を有し、且つ、ピークの谷と谷の間であるピーク幅が3℃以上であるものをいい、ノイズ等測定由来の曲線における細かい上下変動については、前記ピークの頂点のピークとして観測しない。
tanδ曲線を測定するサンプルとしては、23℃±2℃ RH30~50%の環境下に24時間静置したポリイミドフィルムを10cm角以上にサンプリングしたフィルムのさらに中央部を、剃刀またはメスにて5mm幅にスリットの入った切り出し治具を用いて、幅5mm×長さ50mmに(チャック時にサンプル長が20mmとなるように)切り出した物を用いる。幅の測定はノギスを用いて、位置を変えて3回計測した平均値を記録する。この際、幅測定の一部に平均値の3%以上の変動幅のある場合、そのサンプルは使用しない。
(6)鉛筆硬度
本発明のポリイミドフィルムにおいて、鉛筆硬度は2B以上であることが好ましく、B以上であることがより好ましく、HB以上であることがより更に好ましい。
前記ポリイミドフィルムの鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行うことができる。例えば東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
(7)フィルムの密着性
また、本発明のポリイミドフィルムにおいては、下記密着性試験方法に従って、密着性試験を行った場合に、塗膜の剥がれが生じないことが、ポリイミドフィルムとハードコート層との密着性の点及びポリイミドフィルムに隣接してハードコート層を積層した積層体の表面硬度の点から好ましい。
[密着性試験方法]
ペンタエリスリトールトリアクリレートの40質量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100質量部に対して10質量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを添加して調製した密着性評価用樹脂組成物を、10cm×10cmに切り出したポリイミドフィルムの試験片上に塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させることにより、10μm膜厚の硬化膜を形成する。当該硬化膜について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、塗膜の剥がれの有無を観察する。
4.ポリイミドフィルムの構成
本発明のポリイミドフィルムの厚さは、用途により適宜選択されれば良いが、1μm以上であることが好ましく、更に5μm以上であることが好ましく、より更に10μm以上であることが好ましい。一方、200μm以下であることが好ましく、更に150μm以下であることが好ましく、より更に100μm以下であることが好ましく、より更に90μm以下であることが好ましい。
厚みが薄いと強度が低下し、厚みが厚いと屈曲時の内径と外径の差が大きくなり、フィルムへの負荷が大きくなることから屈曲耐性が低下する恐れがある。
また、本発明のポリイミドフィルムには、例えば、けん化処理、グロー放電処理、コロナ放電処理、紫外線処理、火炎処理等の表面処理が施されていてもよい。
5.ポリイミドフィルムの製造方法
本発明のポリイミドフィルムの製造方法としては、前記本発明のポリイミドフィルムを製造できる方法であれば特に制限はない。
<第1の製造方法>
本発明のポリイミドフィルムの製造方法としては、例えば、第1の製造方法として、
ポリイミド前駆体であるポリアミド酸と、有機溶剤とを含むポリイミド前駆体樹脂組成物を調製する工程(以下、ポリイミド前駆体樹脂組成物調製工程という)と、
前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程(以下、ポリイミド前駆体樹脂塗膜形成工程という)と、
加熱をすることにより、前記ポリイミド前駆体をイミド化する工程(以下、イミド化工程という)と、
を含むポリイミドフィルムの製造方法が挙げられる。
本発明のポリイミドフィルムの製造方法には、更に、得られたポリイミドフィルムの残留溶剤量を測定し、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であるか判定する工程を有することが好ましい。得られたポリイミドフィルムの残留溶剤量が、本発明で特定した値を超えていた場合には、更にポリイミドフィルムを加熱する工程を行うことにより、ポリイミドフィルムの残留溶剤量を、本発明で特定した値以下とすることが好ましい。
前記第1の製造方法においては、更に、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する工程(以下、延伸工程という)を有していてもよい。
以下、各工程について詳細に説明する。
(1)ポリイミド前駆体樹脂組成物調製工程
前記第1の製造方法において調製するポリイミド前駆体樹脂組成物は、ポリイミド前駆体と、有機溶剤とを含有し、必要に応じて添加剤等を含有していてもよい。前記ポリイミド前駆体としては、例えば、下記一般式(1’)で表されるポリイミド前駆体が挙げられる。前記一般式(1’)で表されるポリイミド前駆体は、前記一般式(1’)のRにおけるテトラカルボン酸残基となるテトラカルボン酸成分と、前記一般式(1’)のRにおけるジアミン残基となるジアミン成分との重合によって得られるポリアミド酸である。
Figure 0007388011000008
(一般式(1’)において、R、R及びnは、前記一般式(1)と同様である。)
ここで、前記一般式(1’)のR、R及びnは、前記ポリイミドにおいて説明した前記一般式(1)のR、R及びnと同様のものを用いることができる。
前記一般式(1’)で表されるポリイミド前駆体は、数平均分子量、または重量平均分子量の少なくともいずれかが、フィルムとした際の強度の点から、10000以上であることが好ましく、更に20000以上であることが好ましい。また、前記一般式(1’)で表されるポリイミド前駆体は、屈曲耐性を向上する点から、重量平均分子量が、70000以上であることが好ましく、更に80000以上であることが好ましく、より更に85000以上であることが好ましい。
一方、平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
ポリイミド前駆体の数平均分子量は、NMR(例えば、BRUKER製、AVANCEIII)により求めることができる。例えば、ポリイミド前駆体溶液をガラス板に塗布して100℃で5分乾燥後、固形分10mgをジメチルスルホキシド-d6溶媒7.5mlに溶解し、NMR測定を行い、芳香族環に結合している水素原子のピーク強度比から数平均分子量を算出することができる。
ポリイミド前駆体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。
ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
前記ポリイミド前駆体溶液は、上述のテトラカルボン酸二無水物と、上述のジアミンとを、溶剤中で反応させて得られる。ポリイミド前駆体(ポリアミド酸)の合成に用いる溶剤としては、上述のテトラカルボン酸二無水物及びジアミンを溶解可能であれば特に制限はなく、例えば非プロトン性極性溶剤または水溶性アルコール系溶剤等を用い得る。本発明においては、中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることが好ましい。中でも、前記ポリイミド前駆体溶液(ポリアミド酸溶液)をそのままポリイミド前駆体樹脂組成物の調製に用いる場合は、窒素原子を含む有機溶剤を用いることが好ましく、中でも、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンもしくはこれらの組み合わせを用いることが好ましい。なお、有機溶剤とは、炭素原子を含む溶剤である。
また、前記ポリイミド前駆体溶液が、少なくとも2種のジアミンを組み合わせて調製される場合、少なくとも2種のジアミンの混合溶液に酸二無水物を添加し、ポリアミド酸を合成してもよいし、少なくとも2種のジアミン成分を適切なモル比で段階を踏んで反応液に添加し、ある程度、各原料が高分子鎖へ組み込まれるシーケンスをコントロールしてもよい。
たとえば、主鎖にケイ素原子を有するジアミンが溶解された反応液に、主鎖にケイ素原子を有するジアミンの0.5等量のモル比の酸二無水物を投入し反応させることで、酸二無水物の両端に主鎖にケイ素原子を有するジアミンが反応したアミド酸を合成し、そこへ、残りのジアミンを全部、又は一部投入し、酸二無水物を加えてポリアミド酸を重合しても良い。この方法で重合すると、主鎖にケイ素原子を有するジアミンが1つの酸二無水物を介して、連結した形でポリアミド酸の中に導入される。
このような方法でポリアミド酸を重合することは、主鎖にケイ素原子を有するアミド酸の位置関係がある程度特定され、表面硬度を維持しつつ屈曲耐性の優れた膜を得易い点から好ましい。
前記ポリイミド前駆体溶液(ポリアミド酸溶液)中のジアミンのモル数をa、テトラカルボン酸二無水物のモル数をbとしたとき、b/aを0.9以上1.1以下とすることが好ましく、0.95以上1.05以下とすることがより好ましく、0.97以上1.03以下とすることがさらに好ましく、0.99以上1.01以下とすることが特に好ましい。このような範囲とすることにより得られるポリアミド酸の分子量(重合度)を適度に調整することができる。
重合反応の手順は、公知の方法を適宜選択して用いることができ、特に限定されない。
また、合成反応により得られたポリイミド前駆体溶液をそのまま用い、そこに必要に応じて他の成分を混合しても良いし、ポリイミド前駆体溶液の溶剤を乾燥させ、別の溶剤に溶解して用いても良い。
前記ポリイミド前駆体溶液の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上200000cps以下であることが好ましい。
ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で測定することができる。
前記ポリイミド前駆体樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、例えば、ポリイミドフィルムの光学的歪みを低減するための無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられ、前述のポリイミドフィルムにおいて説明したものと同様のものを用いることができる。
前記ポリイミド前駆体樹脂組成物に用いられる有機溶剤は、前記ポリイミド前駆体が溶解可能であれば特に制限はない。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることができるが、中でも、前述した理由により窒素原子を含む有機溶剤を用いることが好ましい。
前記ポリイミド前駆体樹脂組成物中の前記ポリイミド前駆体の含有量は、均一な塗膜及びハンドリング可能な強度を有するポリイミドフィルムを形成する点から、樹脂組成物の固形分中に50質量%以上であることが好ましく、更に60質量%以上であることが好ましく、上限は含有成分により適宜調整されればよい。
前記ポリイミド前駆体樹脂組成物中の有機溶剤は、均一な塗膜及びポリイミドフィルムを形成する点から、樹脂組成物中に40質量%以上であることが好ましく、更に50質量%以上であることが好ましく、また99質量%以下であることが好ましい。
また、前記ポリイミド前駆体樹脂組成物は、含有水分量が1000ppm以下であることが、ポリイミド前駆体樹脂組成物の保存安定性が良好になり、生産性を向上することができる点から好ましい。ポリイミド前駆体樹脂組成物中に水分を多く含むと、ポリイミド前駆体が分解しやすくなる恐れがある。
なお、ポリイミド前駆体樹脂組成物の含有水分量は、カールフィッシャー水分計(例えば、三菱化学株式会社製、微量水分測定装置CA-200型)を用いて求めることができる。
前記ポリイミド前駆体樹脂組成物の固形分15重量%濃度の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上100000cps以下であることが好ましい。
ポリイミド前駆体樹脂組成物の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定することができる。
(2)ポリイミド前駆体樹脂塗膜形成工程
前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程において、用いられる支持体としては、表面が平滑で耐熱性および耐溶剤性のある材料であれば特に制限はない。例えばガラス板などの無機材料、表面を鏡面処理した金属板等が挙げられる。また支持体の形状は塗布方式によって選択され、例えば板状であってもよく、またドラム状やベルト状、ロールに巻き取り可能なシート状等であってもよい。
前記塗布手段は目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えばダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、リップコータ等の公知のものを用いることができる。
塗布は、枚葉式の塗布装置により行ってもよく、ロールtoロール方式の塗布装置により行ってもよい。
ポリイミド前駆体樹脂組成物を支持体に塗布した後は、塗膜がタックフリーとなるまで、150℃以下の温度、好ましくは30℃以上120℃以下で前記塗膜中の溶剤を乾燥する。溶剤の乾燥温度を150℃以下とすることにより、ポリアミド酸のイミド化を抑制することができる。
乾燥時間は、ポリイミド前駆体樹脂塗膜の膜厚や、溶剤の種類、乾燥温度等に応じて適宜調整されれば良いが、通常1分~60分、好ましくは2分~30分とすることが好ましい。上限値を超える場合には、ポリイミドフィルムの作製効率の面から好ましくない。一方、下限値を下回る場合には、急激な溶剤の乾燥によって、得られるポリイミドフィルムの外観等に影響を与える恐れがある。
溶剤の乾燥方法は、上記温度で溶剤の乾燥が可能であれば特に制限はなく、例えばオーブンや、乾燥炉、ホットプレート、赤外線加熱等を用いることが可能である。
光学特性の高度な管理が必要な場合、溶剤の乾燥時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が100ppm以下であることが好ましく、50ppm以下であることがより好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
(3)イミド化工程
前記第1の製造方法においては、加熱をすることにより、前記ポリイミド前駆体をイミド化する。
本発明においては、ポリイミドフィルムの残留溶剤量を本発明で特定した値以下とするために、ポリイミド前駆体樹脂塗膜を、塗布する際に用いた支持体から剥離後、加熱をすることにより、前記ポリイミド前駆体をイミド化する工程を行うことが好ましい。塗布する際に用いた支持体から剥離して、フィルムの両表面が支持体等に接していない状態で加熱することにより、フィルムの両表面から溶剤を揮発させることができ、残留溶剤を本発明で特定した値以下に、十分に低減することができる。
また、支持体から剥離後のポリイミド前駆体樹脂塗膜は、加熱時の収縮を防止する点から、端部を固定後に加熱することが好ましい。
ポリイミド前駆体樹脂塗膜の端部を固定する方法としては、例えば、ポリイミド前駆体樹脂塗膜が枚様の場合、ポリイミド前駆体樹脂塗膜と概略同様の外寸と適切な内寸を有する金属枠を2枚使用して、ポリイミド前駆体樹脂塗膜を挟持し、固定治具で2枚の金属枠とポリイミド前駆体樹脂塗膜とを固定する方法が挙げられる。
また、例えば、ポリイミド前駆体樹脂塗膜がロール状の場合、例えば、連続する樹脂フィルムの左右両端をクリップ等の固定治具で把持して樹脂フィルムを搬送可能な装置を用いて、ポリイミド前駆体樹脂塗膜の端部を固定する方法が挙げられる。
当該製造方法において、延伸工程を有する場合、イミド化工程は、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程後の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体及び延伸工程後の膜中に存在するポリイミド前駆体の両方に対して行っても良い。
イミド化の温度は、ポリイミド前駆体の構造に合わせて適宜選択されれば良い。
通常、昇温開始温度を30℃以上とすることが好ましく、100℃以上とすることがより好ましい。一方、昇温終了温度は250℃以上とすることが好ましく、270℃以上とすることがより好ましい。一方で、フィルムの外観不良や強度低下を抑制し、光透過性が向上する点から、昇温終了温度は、400℃以下とすることが好ましく、350℃以下とすることがより好ましい。
昇温速度は、得られるポリイミドフィルムの膜厚によって適宜選択することが好ましく、ポリイミドフィルムの膜厚が厚い場合には、昇温速度を遅くすることが好ましい。
ポリイミドフィルムの製造効率の点から、5℃/分以上とすることが好ましく、10℃/分以上とすることが更に好ましい。一方、昇温速度の上限は、通常50℃/分とされ、好ましくは40℃/分以下、さらに好ましくは30℃/分以下である。上記昇温速度とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化をコントロールでき、光透過性が向上する点から好ましい。
昇温は、連続的でも段階的でもよいが、連続的とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化のコントロールの面から好ましい。また、上述の全温度範囲において、昇温速度を一定としてもよく、また途中で変化させてもよい。
イミド化の昇温時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
ただし、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合は、光学特性に対する酸素の影響が少なく、不活性ガス雰囲気を用いなくても光透過性の高いポリイミドが得られる。
イミド化のための加熱方法は、上記温度で昇温が可能であれば特に制限はなく、例えばオーブンや、加熱炉、赤外線加熱、電磁誘導加熱等を用いることが可能である。
中でも、延伸工程前に、ポリイミド前駆体のイミド化率を50%以上とすることがより好ましい。延伸工程前にイミド化率を50%以上とすることにより、当該工程後に延伸を行い、その後さらに高い温度で一定時間加熱を行い、イミド化を行った場合であっても、フィルムの外観不良や白化が抑制される。中でもポリイミドフィルムの表面硬度が向上する点から、延伸工程前に、当該イミド化工程において、イミド化率を80%以上とすることが好ましく、90%以上、さらには100%まで反応を進行させることが好ましい。イミド化後に延伸することにより、剛直な高分子鎖が配向しやすいことから表面硬度が向上すると推定される。
なお、イミド化率の測定は、赤外測定(IR)によるスペクトルの分析等により行うことができる。
最終的なポリイミドフィルムを得るには、イミド化を90%以上、さらには95%以上、さらには100%まで反応を進行させることが好ましい。
イミド化を90%以上、さらには100%まで反応を進行させるには、昇温終了温度で一定時間保持することが好ましく、当該保持時間は、通常1分~180分、更に、5分~150分とすることが好ましい。
(4)延伸工程
前記第1の製造方法は、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する延伸工程を有していてもよい。当該延伸工程を有する場合は、中でも、イミド化後塗膜を延伸する工程を含むことが、ポリイミドフィルムの表面硬度が向上する点から好ましい。
前記第1の製造方法では、延伸を実施する前の初期の寸法を100%とした時に101%以上10000%以下延伸する工程を、80℃以上で加熱しながら行うことが好ましい。
延伸時の加熱温度は、ポリイミド乃至ポリイミド前駆体のガラス転移温度±50℃の範囲内であることが好ましく、ガラス転移温度±40℃の範囲内であることが好ましい。延伸温度が低すぎるとフィルムが変形せず充分に配向を誘起できない恐れがある。一方で、延伸温度が高すぎると延伸によって得られた配向が温度で緩和し、充分な配向が得られない恐れがある。
延伸工程は、イミド化工程と同時に行っても良い。イミド化率80%以上、更に90%以上、より更に95%以上、特に実質的に100%イミド化を行った後のイミド化後塗膜を延伸することが、ポリイミドフィルムの表面硬度を向上する点から好ましい。
ポリイミドフィルムの延伸倍率は、好ましくは101%以上10000%以下であり、さらに好ましくは101%以上500%以下である。上記範囲で延伸を行うことにより、得られるポリイミドフィルムの表面硬度をより向上することができる。
延伸時におけるポリイミドフィルムの固定方法は、特に制限はなく、延伸装置の種類等に合わせて選択される。また、延伸方法は特に制限はなく、例えばテンター等の搬送装置を有する延伸装置を用い、加熱炉を通しながら延伸することが可能である。ポリイミドフィルムは、一方向のみに延伸(縦延伸または横延伸)してもよく、また同時2軸延伸、もしくは逐次2軸延伸、斜め延伸等によって、二方向に延伸処理を行ってもよい。
<第2の製造方法>
また、本発明のポリイミドフィルムの製造方法としては、第2の製造方法として、
ポリイミドと、有機溶剤とを含むポリイミド樹脂組成物を調製する工程(以下、ポリイミド樹脂組成物調製工程という)と、
前記ポリイミド樹脂組成物を支持体に塗布して、溶剤を乾燥させてポリイミド樹脂塗膜を形成する工程(以下、ポリイミド樹脂塗膜形成工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
前記ポリイミドが有機溶剤に良好に溶解する場合には、ポリイミド前駆体樹脂組成物ではなく、前記ポリイミドを有機溶剤に溶解させ、必要に応じて添加剤を含有させたポリイミド樹脂組成物も好適に用いることができる。
前記ポリイミドが25℃で有機溶剤に5質量%以上溶解するような溶剤溶解性を有する場合には、当該製造方法を好適に用いることができる。
なお、本発明において、ポリイミドフィルムの製造に用いられるポリイミドをポリイミド材料という場合がある。当該ポリイミド材料は、残留溶剤が所定量以下含まれていても良いポリイミドである。
本発明の第2のポリイミドフィルムの製造方法には、更に、前記ポリイミド樹脂組成物を調製する工程の前に、用いられるポリイミド(ポリイミド材料)の残留溶剤量を測定し、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であるか判定する工程を有することが好ましい。用いられるポリイミド(ポリイミド材料)の残留溶剤量が、本発明で特定した値を超えていた場合には、更に後述する洗浄工程を用いて、用いられるポリイミド(ポリイミド材料)の残留溶剤量を本発明で特定した値以下に低減する工程を含むことが好ましい。
そして、前記ポリイミド樹脂組成物を調製する工程で用いられるポリイミドは、前記一般式(1)で表される構造を有し、残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である、ポリイミド材料であることが好ましい。
ポリイミド材料においても、沸点が100℃未満の有機溶剤の含有量は、静的屈曲耐性及び動的屈曲耐性を向上する点から、1000ppm以下が好ましく、400ppm以下がより好ましく、100ppm以下がより更に好ましい。一方、沸点が100℃以上の有機溶剤の含有量は、動的屈曲耐性を向上する点から、80ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がより更に好ましく、20ppm以下がより更に好ましい。
ポリイミド材料においても、1気圧下での沸点が70℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が70℃超過の有機溶剤の含有量が100ppm以下であってもよく、更に、1気圧下での沸点が60℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が60℃超過の有機溶剤の含有量が100ppm以下であってもよく、より更に、1気圧下での沸点が50℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が50℃超過の有機溶剤の含有量が100ppm以下であってもよい。
また、本発明の第2のポリイミドフィルムの製造方法にも、更に、得られたポリイミドフィルムの残留溶剤量を測定し、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であるか判定する工程を有することが好ましい。得られたポリイミドフィルムの残留溶剤量が、本発明で特定した値を超えていた場合には、更にポリイミドフィルムを加熱する工程を行うことにより、ポリイミドフィルムの残留溶剤量を、本発明で特定した値以下とすることが好ましい。
ポリイミド樹脂組成物調製工程において、前記ポリイミドは、前記ポリイミドフィルムにおいて説明したものと同様のポリイミドの中から、前述した溶剤溶解性を有するポリイミドを選択して用いることができる。
イミド化する方法としては、ポリイミド前駆体の脱水閉環反応について、加熱脱水の代わりに、化学イミド化剤を用いて行う化学イミド化を用いることが好ましい。化学イミド化を行う場合は、脱水触媒としてピリジンやβ-ピコリン酸等のアミン、ジシクロヘキシルカルボジイミドなどのカルボジイミド、無水酢酸等の酸無水物等、公知の化合物を用いても良い。酸無水物としては無水酢酸に限らず、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられるが特に限定されない。また、その際にピリジンやβ―ピコリン酸等の3級アミンを併用してもよい。ただし、これらアミン類は、フィルム中に残存すると光学特性、特に黄色度(YI値)を低下させるため、ポリイミド前駆体からポリイミドへと反応させた反応液をそのままキャストして製膜するのではなく、再沈殿などにより精製し、ポリイミド以外の成分をそれぞれ、ポリイミド全重量の100ppm以下まで除去してから製膜することが好ましい。
ポリイミド樹脂組成物調製工程において、ポリイミド前駆体の化学イミド化を行う反応液に用いられる有機溶剤としては、例えば、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。
また、ポリイミドへと反応させた反応液を再沈殿などにより精製する際に用いられる有機溶剤としては、ポリイミドへと反応させた反応液からポリイミドを析出させるためのポリイミドの貧溶媒と、必要に応じて反応液を希釈するためのポリイミドの良溶媒と、を適宜選択して用いればよい。
ポリイミドを析出させるために前記貧溶媒を滴下するときの、前記反応液(ポリイミド溶液)の固形分濃度は、収率の点及び不純物を効率良く除去する点から、0.1質量%以上30質量%以下であることが好ましく、1質量%以上10質量%以下であることがより好ましい。
ポリイミドの析出に適した、前記ポリイミド溶液の固形分濃度とするために、適宜ポリイミドの良溶媒を用いて希釈してもよい。
なお、ポリイミドの良溶媒は、目安として、ポリイミドの溶解度が25℃で20g/100g以上である溶媒の中から適宜選択して用いることができる。
また、ポリイミドの貧溶媒は、目安として、ポリイミドの溶解度が25℃で20g/100g未満の溶媒の中から適宜選択して用いることができる。
例えば、ポリイミドへと反応させた反応液に、例えば、酢酸ノルマル-ブチル等のポリイミドの良溶媒である有機溶剤を加え均一になるまで撹拌して反応液を希釈し、次にt-ブタノール、メタノール、エタノール、イソプロピルアルコール、2-ブタノール、シクロヘキサノール、t-アミルアルコール等のアルコール系有機溶剤を徐々に加えてポリイミドを析出させ、白色スラリーを得て、当該スラリーをろ過してポリイミドを得る。前記アルコール系有機溶剤としては、中でも、ポリイミドの安定性に優れる点から、2級又は3級アルコールを用いることが好ましく、3級アルコールを用いることがより好ましい。
上記のように再沈殿させて得られたポリイミドは、残留溶剤量を測定することが好ましい。ポリイミドの残留溶剤量は、前記ポリイミドフィルムの残留溶剤量の測定法において、ポリイミドフィルムの代わりにポリイミドを用いる以外は同様にして行うことができる。なお、ポリイミド(ポリイミド材料)の残留溶剤量を測定する際には、真空乾燥機を用いて100℃~120℃でポリイミド(ポリイミド材料)の乾燥を行う。乾燥時間は、ポリイミド(ポリイミド材料)の量により適宜調整されれば良い。例えば、固形分100gのポリイミド(ポリイミド材料)の場合、3時間程度乾燥を行い、乾燥が不十分な場合には適宜1時間ずつ乾燥時間を追加していくことが挙げられる。真空乾燥機を用いたポリイミド(ポリイミド材料)の乾燥は、当該乾燥前後でポリイミド(ポリイミド材料)の質量変化が0.1質量%以下となるまで行うことを目安とすることができる。
上記のように再沈殿させて得られたポリイミドは、更に残留溶剤を除くために有機溶剤を用いた洗浄工程を繰り返すことが好ましい。
例えば、再沈殿させて得られたポリイミドを洗浄用有機溶剤が入ったビーカーで洗浄し、その後ろ過する、という洗浄工程を繰り返し、真空乾燥機を用いて100℃~120℃で乾燥し、ポリイミド(ポリイミド材料)を得る。
洗浄用有機溶剤としては、再沈殿させて得られたポリイミドに含まれる残留溶剤と相溶性が高く、ポリイミドの貧溶媒であって、且つ、真空乾燥機を用いて100℃~120℃で乾燥すれば全て揮発することが可能なように沸点が真空乾燥機の乾燥温度未満の有機溶剤から選択する。
例えば、残留溶剤が、ポリイミド前駆体を調製する際に用いられるN,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の場合、イソプロピルアルコール、メタノール等が洗浄用有機溶剤として好適に用いられる。洗浄用有機溶剤としては、1種又は2種以上用いることができる。
上記のように洗浄工程後に得られたポリイミドは、残留溶剤量を測定して、本発明で特定した値以下であるか判定し、本発明で特定した値を超えていた場合には、更に洗浄工程を用いて、用いられるポリイミド(ポリイミド材料)の残留溶剤量を本発明で特定した値以下に低減する工程を含むことが好ましい。
このようにして、前記ポリイミド樹脂組成物を調製するために用いられる、沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、沸点が100℃以上の有機溶剤の含有量が100ppm以下のポリイミド(ポリイミド材料)を得ることができる。
前記ポリイミド樹脂組成物を調製するために用いられるポリイミド材料は、ポリイミド粉体であることが好ましく、ポリイミド粉体の平均粒径は、粉体としての取り扱い易さの点から、50μm~1000μmであることが好ましく、100μm~500μmであることがより好ましい。
なお、本発明におけるポリイミド材料(ポリイミド粉体)の平均粒径は、ポリイミド材料(ポリイミド粉体)を光学顕微鏡(キーエンス製デジタルマイクロスコープVHX-5000)により倍率100倍で観察し、その観察画像から無作為に、150個のポリイミド材料の粒子を任意に抽出し、抽出した粒子のそれぞれの粒子径を測定し、その平均値を算出する。また、ポリイミド材料の粒子形状が球形でない場合には、その長径を測定する。
ポリイミド樹脂組成物調製工程において、反応液から精製したポリイミド(ポリイミド材料)を再溶解させる際に用いられる有機溶剤としては、例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、オルト-ジクロルベンゼン、キシレン、クレゾール、クロルベンゼン、酢酸エチル、酢酸イソブチル、酢酸イソペンチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、シクロヘキサノール、シクロヘキサノン、1.4-ジオキサン、テトラクロルエチレン、トルエン、メチルイソブチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン、ジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、及びこれらの混合溶剤等が挙げられる。
後述するポリイミド樹脂塗膜形成工程において、開放系の環境下で塗布を行う場合、ポリイミドを再溶解させる有機溶剤は、残留溶剤量も低減しやすい点から、酢酸ノルマル-ブチル、酢酸エチル、及びプロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる少なくとも1種であることが好ましい。
後述するポリイミド樹脂塗膜形成工程において、ポリイミドを再溶解させる有機溶剤は、中でも特にフィルム製造時の残留溶剤量を低減しやすい点から、沸点が100℃未満の有機溶剤、中でも沸点が70℃以下の有機溶剤を用いることが好ましい。沸点が100℃未満の有機溶剤、中でも沸点が70℃以下の有機溶剤を用いる場合、密閉系の環境下で塗布を行う場合であっても、残留溶剤量を低減しやすい。
中でも、残留溶剤量を低減しやすく、乾燥工程などの製膜工程に有利な点から、ジクロロメタン、酢酸エチル、クロロホルム、テトラヒドロフラン、酢酸ノルマル-ブチル、及びプロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる少なくとも1種を好ましく用いることができ、中でも、残留溶剤量を低減しやすく、乾燥工程などの製膜工程に有利な点から、ジクロロメタン、クロロホルム、テトラヒドロフラン、及び酢酸エチルからなる群から選ばれる少なくとも1種を好ましく用いることができる。
前記ポリイミド樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。
また、前記第2の製造方法において、前記ポリイミド樹脂組成物の含有水分量1000ppm以下とする方法、前記無機粒子を有機溶剤中に分散させる方法としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明した方法と同様の方法を用いることができる。
また、前記第2の製造方法におけるポリイミド樹脂塗膜形成工程において、支持体や、塗布方法は、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明したものと同様のものを用いることができる。
前記第2の製造方法のポリイミド樹脂塗膜形成工程における乾燥工程は、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明した、乾燥工程、及び、イミド化工程を行う際の加熱工程と同様に行うことができる。
すなわち、まず、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程の乾燥工程と同様に、支持体上でポリイミド樹脂組成物中の溶剤を乾燥させ、次いで、ポリイミド樹脂塗膜を、支持体から剥離後、更に乾燥する工程を有することが、ポリイミドフィルムの残留溶剤量を本発明で特定した値以下として屈曲耐性を向上する点から、好ましい。
支持体から剥離後にポリイミド樹脂塗膜を更に乾燥する温度としては、第1の製造方法のイミド化の加熱温度ほど高くする必要はなく、塗膜形成時に用いられた有機溶剤や残留溶剤の種類や量で適宜調整すればよい。常圧下では80℃以上250℃以下の範囲とすることが好ましく、更に100℃以上220℃以下の範囲とすることが好ましい。減圧下では10℃以上200℃以下の範囲とすることが好ましく、更に30℃以上160℃以下の範囲とすることが好ましい。乾燥時間も塗膜形成時に用いられた有機溶剤や残留溶剤量で適宜調整すればよいが、通常2分~60分、好ましくは5分~40分とすることが好ましい。上限値を超える場合には、ポリイミドフィルムの作製効率の面から好ましくない。一方、下限値を下回る場合には、残留溶剤を十分に低減できない恐れがあり、更に、急激な溶剤の乾燥によって、得られるポリイミドフィルムの外観等に影響を与える恐れがある。
また、支持体から剥離後、更に乾燥する工程においては、加熱時の収縮を防止する点から、支持体から剥離後にポリイミド樹脂塗膜の端部を固定して乾燥することが好ましい。支持体から剥離後のポリイミド樹脂塗膜の端部を固定する方法としては、前述のポリイミド前駆体樹脂塗膜と同様に行うことができる。
また、前記第2の製造方法は、前記ポリイミド樹脂塗膜形成工程の後、ポリイミド樹脂塗膜を延伸する延伸工程を有していてもよい。当該延伸工程は、前記第1の製造方法における延伸工程と同様にすることができる。
前記第2の製造方法は、ポリイミドフィルムの黄色度(YI値)を低減しやすい点から好ましい。前記第2の製造方法によれば、JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.04以下であるポリイミドフィルムを好適に形成可能である。
10.ポリイミドフィルムの用途
本発明のポリイミドフィルムの用途は特に限定されるものではなく、従来薄い板ガラス等ガラス製品が用いられていた基材や表面材等の部材として用いることができる。本発明のポリイミドフィルムは、屈曲耐性が向上し、保護フィルムとして十分な表面硬度を有し、光学的歪みが低減したものであるため、中でも、曲面に対応できるディスプレイ用部材として好適に用いることができる。
本発明のポリイミドフィルムは、具体的には例えば、薄くて曲げられるフレキシブルタイプの有機ELディスプレイや、スマートフォンや腕時計型端末などの携帯端末、自動車内部の表示装置、腕時計などに使用するフレキシブルパネル等、フレキシブルディスプレイ用の基材や表面材に好適に用いることができる。また、本発明のポリイミドフィルムは、液晶表示装置、有機EL表示装置等の画像表示装置用部材や、タッチパネル用部材、フレキシブルプリント基板、表面保護膜や基板材料等の太陽電池パネル用部材、光導波路用部材、その他半導体関連部材等に適用することもできる。
III.積層体
本発明の積層体は、前述した本発明のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体である。
本発明の積層体は、前述した本発明のポリイミドフィルムを用いたものであるため、透明性に優れ、屈曲耐性が向上したものであり、更にハードコート層を有するため、表面硬度がより向上したフィルム乃至樹脂フィルムである。
また、本発明の積層体は、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を含有するため、ポリイミドフィルムとハードコート層との密着性が優れる点から好ましいものである。これは、前記特定のポリイミドフィルムとハードコート層とのミキシングに優れるためと推定される。
また、本発明の積層体において、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を含有するため、光学的歪みが低減する点から好ましいものである。この場合、本発明の積層体をディスプレイ用表面材乃至基材等のディスプレイ用部材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。
1.ポリイミドフィルム
本発明の積層体に用いられるポリイミドフィルムとしては、前述した本発明のポリイミドフィルムを用いることができるので、ここでの説明を省略する。
2.ハードコート層
本発明の積層体に用いられるハードコート層は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
(1)ラジカル重合性化合物
ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
前記ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーを好ましく使用できる。
なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
前記ラジカル重合性化合物としては、具体的には、例えば、ジビニルベンゼンなどのビニル化合物;エチレングリコールジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、アルキレンオキサイド変性ビスフェノールAジ(メタ)アクリレート(例えば、エトキシ化(エチレンオキサイド変性)ビスフェノールAジ(メタ)アクリレートなど)、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート類、ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類、ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を挙げることができる。
(2)カチオン重合性化合物
カチオン重合性化合物とは、カチオン重合性基を有する化合物である。前記カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、前記カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、密着性の点及び光透過性と表面硬度の点から、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2つ以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層をエポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
上記脂環族エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(UVR-6105、UVR-6107、UVR-6110)、ビス-3,4-エポキシシクロヘキシルメチルアディペート(UVR-6128)(以上、カッコ内は商品名で、ダウ・ケミカル製である。)が挙げられる。
また、上記グリシジルエーテル型エポキシ樹脂としては、ソルビトールポリグリシジルエーテル(デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-614B、デナコールEX-622)、ポリグリセロールポリグリシジルエーテル(デナコールEX-512、デナコールEX-521)、ペンタエリスリトルポリグリシジルエーテル(デナコールEX-411)、ジグリセロールポリグリシジルエーテル(デナコールEX-421)、グリセロールポリグリシジルエーテル(デナコールEX-313、デナコールEX-314)、トリメチロールプロパンポリグリシジルエーテル(デナコールEX-321)、レソルチノールジグリシジルエーテル(デナコールEX-201)、ネオペンチルグリコールジグリシジルエーテル(デナコールEX-211)、1,6ヘキサンジオールジグリシジルエーテル(デナコールEX-212)、ヒドロジビスフェノールAジグリシジルエーテル(デナコールEX-252)、エチレングリコールジグリシジルエーテル(デナコールEX-810、デナコールEX-811)、ポリエチレングリコールジグリシジルエーテル(デナコールEX―850、デナコールEX―851、デナコールEX―821)、プロピレングリコールグリシジルエーテル(デナコールEX-911)、ポリプロピレングリコールグリシジルエーテル(デナコールEX―941、デナコールEX-920)、アリルグリシジルエーテル(デナコールEX-111)、2-エチルヘキシルグリシジルエーテル(デナコールEX-121)、フェニルグリシジルエーテル(デナコールEX-141)、フェノールグリシジルエーテル(デナコールEX-145)、ブチルフェニルグリシジルエーテル(デナコールEX-146)、ジグリシジルフタレート(デナコールEX-721)、ヒドロキノンジグリシジルエーテル(デナコールEX-203)、ジグリシジルテレフタレート(デナコールEX-711)、グリシジルフタルイミド(デナコールEX-731)、ジブロモフェニルグリシジルエーテル(デナコールEX-147)、ジブロモネオペンチルグリコールジグリシジルエーテル(デナコールEX-221) (以上、カッコ内は商品名で、ナガセケムテックス製である。)が挙げられる。
また、その他の市販品のエポキシ樹脂としては、商品名エピコート825、エピコート827、エピコート828、エピコート828EL、エピコート828XA、エピコート834、エピコート801、エピコート801P、エピコート802、エピコート815、エピコート815XA、エピコート816A、エピコート819、エピコート834X90、エピコート1001B80、エピコート1001X70、エピコート1001X75、エピコート1001T75、エピコート806、エピコート806P、エピコート807、エピコート152、エピコート154、エピコート871、エピコート191P、エピコートYX310、エピコートDX255、エピコートYX8000、エピコートYX8034等(以上商品名、ジャパンエポキシレジン製)が挙げられる。
オキセタニル基を有するカチオン重合性化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン(OXT-101)、1,4-ビス-3-エチルオキセタン-3-イルメトキシメチルベンゼン(OXT-121)、ビス-1-エチル-3-オキセタニルメチルエーテル(OXT-221)、3-エチル-3-2-エチルへキシロキシメチルオキセタン(OXT-212)、3-エチル-3-フェノキシメチルオキセタン(OXT-211)(以上、カッコ内は商品名で東亜合成製である。)や、商品名エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上商品名、宇部興産製)が挙げられる。
(3)重合開始剤
本発明に用いられるハードコート層が含有する前記ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物は、例えば、前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種に、必要に応じて重合開始剤を添加して、公知の方法で重合反応させることにより得ることができる。
前記重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
ラジカル重合開始剤は、光照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であれば良い。例えば、光ラジカル重合開始剤としては、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられ、更に具体的には、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名イルガキュア651、チバ・ジャパン(株)製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・ジャパン(株)製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(商品名イルガキュア369、チバ・ジャパン(株)製)、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム)(商品名イルガキュア784、チバ・ジャパン(株)製)等が挙げられるが、これらに限定されるものではない。
上記以外にも、市販品が使用でき、具体的には、チバ・ジャパン(株)製のイルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR TPO、DAROCUR1173、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure ONE、Esacure KIP150、Esacure KTO46、日本化薬(株)製のKAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI等が挙げられる。
また、カチオン重合開始剤は、光照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であれば良い。カチオン重合開始剤としては、スルホン酸エステル、イミドスルホネート、ジアルキル-4-ヒドロキシスルホニウム塩、アリールスルホン酸-p-ニトロベンジルエステル、シラノール-アルミニウム錯体、(η-ベンゼン)(η-シクロペンタジエニル)鉄(II)等が例示され、さらに具体的には、ベンゾイントシレート、2,5-ジニトロベンジルトシレート、N-トシフタル酸イミド等が挙げられるが、これらに限定されるものではない。
ラジカル重合開始剤としても、カチオン重合開始剤としても用いられるものとしては、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩、トリアジン化合物、鉄アレーン錯体等が例示され、更に具体的には、ジフェニルヨードニウム、ジトリルヨードニウム、ビス(p-tert-ブチルフェニル)ヨードニウム、ビス(p-クロロフェニル)ヨードニウム等のヨードニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のヨードニウム塩、トリフェニルスルホニウム、4-tert-ブチルトリフェニルスルホニウム、トリス(4-メチルフェニル)スルホニウム等のスルホニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のスルホニウム塩、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等の2,4,6-置換-1,3,5トリアジン化合物等が挙げられるが、これらに限定されるものではない。
(4)添加剤
本発明に用いられるハードコート層は、前記重合物の他に、必要に応じて、帯電防止剤、防眩剤、防汚剤、硬度を向上させるための無機又は有機微粒子、レべリング剤、各種増感剤等の添加剤を含有していてもよい。
なお、本発明に用いられるハードコート層に含まれるラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物等は、フーリエ変換赤外分光光度計(FTIR)、熱分解ガスクロマトグラフ装置(GC-MS)や、重合物の分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等の組み合わせを用いて分析することができる。
3.積層体の構成
本発明の積層体は、前記ポリイミドフィルムと、前記ハードコート層とを有するものであれば特に限定はされず、前記ポリイミドフィルムの一方の面側に前記ハードコート層が積層されたものであってもよいし、前記ポリイミドフィルムの両面に前記ハードコート層が積層されたものであってもよい。また、本発明の積層体は、本発明の効果を損なわない範囲で、前記ポリイミドフィルム及び前記ハードコート層の他に、例えば、前記ポリイミドフィルムと前記ハードコート層との密着性を向上させるためのプライマー層等の他の層を有するものであってもよく、前記ポリイミドフィルムと前記ハードコート層とがプライマー層等の他の層を介して積層されたものであっても良い。また、本発明の積層体は、前記ポリイミドフィルムと、前記ハードコート層とが隣接して位置するものであってもよい。また、本発明の積層体はさらに、耐衝撃層、指紋付着防止層、接着乃至粘着層等を有していても良い。
本発明の積層体の全体厚さは、用途により適宜選択されれば良いが、強度の点から、10μm以上であることが好ましく、更に40μm以上であることが好ましい。一方、屈曲耐性の点から、300μm以下であることが好ましく、更に250μm以下であることが好ましい。
また、本発明の積層体において、各ハードコート層の厚さは、用途により適宜選択されれば良いが、2μm以上80μm以下であることが好ましく、3μm以上50μm以下であることがより好ましい。また、カール防止の観点からポリイミドフィルムの両面にハードコート層を形成しても良い。
4.積層体の特性
本発明の積層体は、ハードコート層側表面の鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがより更に好ましい。
本発明の積層体の鉛筆硬度は、前記ポリイミドフィルムの鉛筆硬度の測定方法において、荷重を9.8Nとする以外は同様にして測定することができる。
本発明の積層体は、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に90%以上であることが好ましい。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。
本発明の積層体の前記全光線透過率は、前記ポリイミドフィルムのJIS K7361-1に準拠して測定する全光線透過率と同様にして測定することができる。
本発明の積層体は、JIS K7373-2006に準拠して算出される黄色度(YI値)が、20以下であることが好ましく、15以下であることがより好ましく、10以下であることがより更に好ましく、5以下であることが特に好ましい。
また、本発明の積層体は、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で割った値(YI値/膜厚(μm))が0.10以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることがより更に好ましい。
本発明の積層体の前記黄色度(YI値)は、前記ポリイミドフィルムのJIS K7373-2006に準拠して算出される黄色度(YI値)と同様にして測定することができる。
5.積層体の用途
本発明の積層体の用途は特に限定されるものではなく、例えば、前述した本発明のポリイミドフィルムの用途と同様の用途に用いることができる。
6.積層体の製造方法
本発明の積層体の製造方法としては、例えば、
前記本発明のポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有するハードコート層形成用組成物の塗膜を形成する工程と、
前記塗膜を硬化する工程と、を含む製造方法が挙げられる。
前記ハードコート層形成用組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有し、必要に応じて更に重合開始剤、溶剤及び添加剤等を含有していてもよい。
ここで、前記ハードコート層形成用組成物が含有するラジカル重合性化合物、カチオン重合性化合物、重合開始剤及び添加剤については、前記ハードコート層において説明したものと同様のものを用いることができ、溶剤は、公知の溶剤から適宜選択して用いることができる。
ポリイミドフィルムの少なくとも一方の面に、前記ハードコート層形成用組成物の塗膜を形成する方法としては、例えば、ポリイミドフィルムの少なくとも一方の面に、前記ハードコート層形成用組成物を、公知の塗布手段により塗布する方法が挙げられる。
前記塗布手段は、目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えば、前記ポリイミド前駆体樹脂組成物を支持体に塗布する手段と同様のものが挙げられる。
前記ハードコート層用硬化性樹脂組成物の塗膜は必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、更にはこれらの乾燥を組み合わせる方法等が挙げられる。また、常圧で乾燥させる場合は、30℃以上110℃以下で乾燥させることが好ましい。
前記ハードコート層用硬化性樹脂組成物を塗布、必要に応じて乾燥させた塗膜に対し、当該硬化性樹脂組成物に含まれるラジカル重合性化合物及びカチオン重合性化合物の重合性基に応じて、光照射及び加熱の少なくともいずれかにより塗膜を硬化させることにより、ポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を形成することができる。
光照射には、主に、紫外線、可視光、電子線、電離放射線等が使用される。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用する。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~5000mJ/cm程度である。
加熱をする場合は、通常40℃以上120℃以下の温度にて処理する。また、室温(25℃)で24時間以上放置することにより反応を行っても良い。
IV.ディスプレイ用部材
本発明のディスプレイ用部材は、前述した本発明のポリイミドフィルム、或いは、本発明の積層体を含む。
本発明のディスプレイ用部材としては、例えば、ディスプレイ用表面材やディスプレイ用基材等が挙げられる。
本発明のディスプレイ用部材は、前述した本発明のポリイミドフィルム、或いは、本発明の積層体であってよい。
本発明のディスプレイ用部材は、例えばディスプレイ用表面材として、各種ディスプレイの表面に位置するように配置して用いられる。本発明のディスプレイ用部材は、前述した本発明のポリイミドフィルム及び本発明の積層体と同様に、透明性に優れ、屈曲耐性が向上し、保護フィルムとして十分な表面硬度を有するため、フレキシブルディスプレイ用として特に好適に用いることができる。
本発明のディスプレイ用部材は、公知の各種ディスプレイに用いることができ、特に限定はされないが、例えば、前記本発明のポリイミドフィルムの用途で説明したディスプレイ等に用いることができる。
なお、本発明のディスプレイ用部材が前記本発明の積層体である場合、当該積層体をディスプレイの表面に配置した後に最表面となる面は、ポリイミドフィルム側の表面であってもよいし、ハードコート層側の表面であってもよい。中でも、ハードコート層側の表面が、より表側の面となるように本発明のディスプレイ用部材を配置することが好ましい。また、本発明のディスプレイ用部材は、最表面に指紋付着防止層を有するものであっても良い。
また、本発明のディスプレイ用部材をディスプレイの表面に配置する方法としては、特に限定はされないが、例えば、接着層を介する方法等が挙げられる。前記接着層としては、ディスプレイ用部材の接着に用いることができる従来公知の接着層を用いることができる。
V.タッチパネル部材
本発明のタッチパネル部材は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、
前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有する。
本発明のタッチパネル部材は、前述した本発明のポリイミドフィルム又は積層体を備えるものであることから、屈曲耐性に優れたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、また光学特性に優れる。
本発明のタッチパネル部材に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
また、本発明のタッチパネル部材は、特に限定はされないが、前記透明電極が、前記積層体の一方の面側に接して積層されてなるものであることが好ましい。
本発明のタッチパネル部材は、例えば、各種ディスプレイの表面に位置するように配置して用いることができる。また、各種ディスプレイの表面に、本発明のタッチパネル部材と、表面材としての本発明のポリイミドフィルム又は積層体とを、この順に配置して用いることもできる。
以下、本発明のタッチパネル部材について、前述した本発明の積層体を用いた例で説明するが、前述した本発明の積層体の代わりに、前述した本発明のポリイミドフィルムも同様に用いることができる。
図2は、本発明のタッチパネル部材の一例の一方の面の概略平面図であり、図3は、図2に示すタッチパネル部材のもう一方の面の概略平面図であり、図4は、図2及び図3に示すタッチパネル部材のA-A’断面図である。図2、図3及び図4に示すタッチパネル部材20は、本発明の積層体10と、積層体10の一方の面に接して配置された第一の透明電極4と、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第一の透明電極4においては、x軸方向に伸長するように延在する短冊状の電極片である複数の第一の導電部41が、所定の間隔を空けて配置されている。第一の導電部41には、その長手方向の端部のいずれか一方において、当該第一の導電部41と電気的に接続される第一の取出し線7が接続されている。積層体10の端縁21まで延設された第一の取出し線7の端部には、外部回路と電気的に接続するための第一の端子71を設けることがよい。第一の導電部41と第一の取出し線7とは、一般には、タッチパネルの使用者が視認可能なアクティブエリア22の外側に位置する、非アクティブエリア23内において接続される。
第一の導電部41と第一の取出し線7との接続は、例えば図2に示すように、接続部24を介在させた接続構造を採用することができる。接続部24は、具体的には、第一の導電部41の長手方向端部から、非アクティブエリア23内の所定の位置まで導電性材料の層を延設することにより形成することができる。さらに、当該接続部24上に、第一の取出し線7の少なくとも一部を重ねることにより、第一の導電部41と第一の取出し線7との接続構造を形成することができる。
第一の導電部41と第一の取出し線7との接続は、図2に示すような、接続部24を形成する構造には限定されない。例えば、図示は省略するが、第一の導電部41の長手方向端部を非アクティブエリア23まで伸長させ、非アクティブエリア23内において、当該非アクティブエリア23まで伸長させた第一の導電部41の端部に、第一の取出し線7を乗り上げさせることによって、両者を電気的に接続させてもよい。
なお、図2では、第一の導電部41の長手方向端部のいずれか一方と、第一の取出し線7とを接続する形態を示したが、本発明においては、1つの第一の導電部41の長手方向の両端に、それぞれ、第一の取出し線7を電気的に接続する形態としてもよい。
図3に示すように、タッチパネル部材20は、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第二の透明電極5においては、y軸方向に伸長するように延在する複数の短冊状の電極片である第二の導電部51が、x軸方向に所定の間隔を空けて配置されている。
第二の導電部51には、その長手方向端部の一方において、当該第二の導電部51と電気的に接続される第二の取出し線8が接続されている。
第二の取出し線8は、積層体10の端縁のうち、前述した第一の取出し線7が延設された端縁21における、第一の端子71と重ならない位置まで延設されている。
積層体10の端縁21まで延設された第二の取出し線8の端部には、外部回路と電気的に接続するための第二の端子81を設けることがよい。
第二の導電部51と第二の取出し線8との電気的な接続は、第一の取出し線7と第一の導電部41との電気的な接続と同様の形態を適用することができる。
なお、図2及び図3に示すような、第1取出し線7を長尺配線とし、第2取出し線8を短尺配線とするパターンは、本発明のタッチパネル部材の一実施形態に過ぎず、例えば、第一の取出し線7を短尺配線とし、第二の取出し線8を長尺配線とするパターンとすることも可能である。また、第一の取出し線7の伸長方向及び第二の取出し線8の伸長方向も、図2及び図3に示す方向に限られず、任意に設計することが可能である。
本発明のタッチパネル部材が備える導電部は、タッチパネル部材において透明電極を構成するものを適宜選択して適用することができ、導電部のパターンは、図2及び図3に示すものに限定されない。例えば、静電容量方式によって、指などの接触または接触に近い状態による電気容量の変化を検知可能な透明電極のパターンを適宜選択して適用することができる。
前記導電部の材料としては、光透過性の材料であることが好ましく、例えば、インジウム錫オキサイド(ITO)、酸化インジウム、インジウム亜鉛オキサイド(IZO)等を主たる構成成分とする酸化インジウム系透明電極材料、酸化錫(SnO)、酸化亜鉛(ZnO)等を主たる構成成分とする透明導電膜、ポリアニリン、ポリアセチレン等の導電性高分子化合物等が挙げられるが、これらに限定されるものではない。また、第一の導電部41及び第二の導電部51は、互いに同種の導電性材料を用いて形成してもよいし、異種の材料を用いて形成してもよい。特に同種の導電性材料を用いて第一の導電部41及び第2導電部51を形成すると、タッチパネル部材の反りや歪みの発生をより効果的に抑制できる観点で好ましい。
前記導電部の厚みは、特に限定されないが、例えばフォトリソグラフィ手法により導電部を形成する場合には、一般的には、10nm~500nm程度に形成することができる。
本発明のタッチパネル部材が備える取出し線を構成する導電材料は、光透過性の有無を問わない。一般的には、取出し線は、高い導電性を有する銀や銅などの金属材料を用いて形成することができる。具体的には、金属単体、金属の複合体、金属と金属化合物の複合体、金属合金を挙げることができる。金属単体としては、銀、銅、金、クロム、プラチナ、アルミニウムの単体などを例示することができる。金属の複合体としては、MAM(モリブデン、アルミニウム、モリブデンの3層構造体)等を例示することができる。金属と金属化合物の複合体としては、酸化クロムとクロムの積層体等を例示することができる。金属合金としては、銀合金や銅合金が汎用される。また、金属合金としては、APC(銀、パラジウム及び銅の合金)等を例示することができる。また、前記取出し線には、前述した金属材料に、適宜樹脂成分が混在していてもよい。
本発明のタッチパネル部材において、取出し線の端部に設けられる端子は、例えば、前記取出し線と同じ材料を用いて形成することができる。
前記取出し線の厚み、及び幅寸法は、特に限定されないが、例えばフォトリソグラフィ手法により取出し線を形成する場合には、一般的には、厚みは10nm~1000nm程度に形成され、幅寸法は5μm~200μm程度に形成される。一方、スクリーン印刷などの印刷により取出し線を形成する場合には、一般的には、厚みは5μm~20μm程度に形成され、幅寸法は20μm~300μm程度に形成される。
本発明のタッチパネル部材は、図2~図4に示す形態には限られず、例えば、第一の透明電極と、第二の透明電極とが、それぞれ別個の積層体の上に積層されて構成されるものであってもよい。
図5及び図6は、各々本発明の積層体を備える導電性部材の一例を示す概略平面図である。図5に示す第一の導電性部材201は、本発明の積層体10と、当該積層体10の一方の面に接して配置された第一の透明電極4とを有し、当該第一の透明電極4は、複数の第一の導電部41を有する。図6に示す第二の導電性部材202は、本発明の積層体10’と、当該積層体10’の一方の面に接して配置された第二の透明電極5とを有し、当該第二の透明電極5は、複数の第二の導電部51を有する。
図7は、本発明のタッチパネル部材の別の一例を示す概略断面図であり、図7に示すタッチパネル部材20’は、図5に示す第一の導電性部材201と、図6に示す第二の導電性部材202とを備える。タッチパネル部材20’においては、第一の導電性部材201の第一の透明電極4を有しない面と、第二の導電性部材202の透明電極5を有する面とが、接着層6を介して貼り合わせられている。なお、本発明において、例えば、本発明の積層体と本発明のタッチパネル部材とを接着するための接着層、本発明のタッチパネル部材同士を接着するための接着層、本発明のタッチパネル部材と表示装置等とを接着するための接着層としては、光学部材に用いられている従来公知の接着層を適宜選択して用いることができる。本発明のタッチパネル部材に用いられる導電性部材において、透明電極、取出し線及び端子の構成及び材料は、前述した本発明のタッチパネル部材に用いられる透明電極、取出し線及び端子と各々同様とすることができる。
VI.液晶表示装置
本発明の液晶表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部とを有する。
本発明の液晶表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、屈曲耐性に優れ、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
本発明の液晶表示装置に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
また、本発明の液晶表示装置は、前述した本発明のタッチパネル部材を備えるものであっても良い。
また、本発明の液晶表示装置が有する対向基板は、本発明のポリイミドフィルム又は積層体を備えるものであっても良い。
以下、本発明の液晶表示装置について、前述した本発明の積層体を用いた例で説明するが、前述した本発明の積層体の代わりに、前述した本発明のポリイミドフィルムも同様に用いることができる。
図8は、本発明の液晶表示装置の一例を示す概略断面図である。図8に示す液晶表示装置100は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、液晶表示部30とを有する。液晶表示装置100において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。
本発明の液晶表示装置に用いられる液晶表示部は、対向配置された基板の間に形成された液晶層を有するものであり、従来公知の液晶表示装置に用いられている構成を採用することができる。
本発明の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができ、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。
本発明の液晶表示装置に用いられる対向基板としては、液晶表示装置の駆動方式等に応じて適宜選択して用いることができ、本発明のポリイミドフィルム又は積層体を備えるものを用いても良い。
液晶層を構成する液晶としては、本発明の液晶表示装置の駆動方式等に応じて、誘電異方性の異なる各種液晶、及びこれらの混合物を用いることができる。
液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。前記方法によって液晶層を形成後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。
本発明の液晶表示装置において、対向配置された基板の間には、さらに複数色の着色層や、画素を画定する遮光部を有していてもよい。また、液晶表示部は、対向配置された基板の外側において、タッチパネル部材が位置する側とは反対側の位置に、発光素子や蛍光体を有するバックライト部を有していてもよい。また、対向配置された基板の外表面には、それぞれ偏光板を有していてもよい。
図9は、本発明の液晶表示装置の別の一例を示す概略断面図である。図9に示す液晶表示装置200は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本発明の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、液晶表示部30とを有する。液晶表示装置200において、積層体10と第一の導電性部材201、及び第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図7に示すタッチパネル部材20’の構成と同様にすることができる。本発明の液晶表示装置に用いられる導電性部材としては、本発明のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。
VII.有機エレクトロルミネッセンス表示装置
本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部とを有する。
本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、屈曲耐性に優れたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
本発明の有機エレクトロルミネッセンス表示装置に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
また、本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のタッチパネル部材を備えるものであっても良い。
また、本発明の有機エレクトロルミネッセンス表示装置が有する対向基板は、本発明のポリイミドフィルム又は積層体を備えるものであっても良い。
図10は、本発明の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。図10に示す有機エレクトロルミネッセンス表示装置300は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置300において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。
本発明の有機エレクトロルミネッセンス表示装置(有機EL表示装置)に用いられる有機エレクトロルミネッセンス表示部(有機EL表示部)は、対向配置された基板の間に形成された有機エレクトロルミネッセンス層(有機EL層)を有するものであり、従来公知の有機EL表示装置に用いられている構成を採用することができる。
有機EL表示部は、さらに、支持基板と、有機EL層並びに有機EL層を挟持する陽極層及び陰極層を含む有機EL素子と、有機EL素子を封止する封止基材と、を有していてもよい。前記有機EL層としては、少なくとも有機EL発光層を有するものであれば良いが、例えば、上記陽極層側から、正孔注入層、正孔輸送層、有機EL発光層、電子輸送層および電子注入層がこの順で積層した構造を有するものを有するものを用いることができる。
本発明の有機EL表示装置は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。本発明の有機EL表示装置に用いられる対向基板としては、有機EL表示装置の駆動方式等に応じて適宜選択して用いることができ、本発明の積層体を備えるものを用いても良い。
図11は、本発明の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。図11に示す有機エレクトロルミネッセンス表示装置400は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本発明の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置400において、積層体10と第一の導電性部材201、第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図7に示すタッチパネル部材20’の構成と同様にすることができる。本発明の有機エレクトロルミネッセンス表示装置に用いられる導電性部材としては、本発明のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。
[評価方法]
以下、特に断りがない場合は、25℃で測定又は評価を行った。
フィルムの試験片は、フィルムの中央部付近から切り出した。切り出したフィルムの四隅と中央の計5点の膜厚を、前記膜厚の測定方法で測定し、5点の平均膜厚と各点の膜厚の差が、平均膜厚の6%以内である試験片を用いた。
<ポリイミド前駆体の重量平均分子量>
ポリイミド前駆体の重量平均分子量は、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行った。ポリイミド前駆体の重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360、27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド前駆体溶液の粘度>
ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<ポリイミドの重量平均分子量>
ポリイミド粉体15mgを、15000mgのN-メチルピロリドン(NMP)に浸漬し、ウォーターバスで60℃に加熱しながら、スターラーを用いて回転速度200rpmで、目視で溶解を確認するまで3~60時間撹拌することにより、0.1重量%の濃度のNMP溶液を得た。その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、検出器:示差屈折率(RID)検出器、使用カラム:SHODEX製GPC LF-804を2本直列に接続)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、カラム温度37℃、検出器温度37℃の条件で測定を行った。ポリイミドの重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360,27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド溶液の粘度>
ポリイミド溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<ポリイミド材料(ポリイミド粉体)の平均粒径>
ポリイミド材料(ポリイミド粉体)を光学顕微鏡(キーエンス製、デジタルマイクロスコープVHX-5000)により倍率100倍で観察し、その観察画像から無作為に、150個のポリイミド材料の粒子を任意に抽出し、抽出した粒子のそれぞれの粒子径を測定し、その平均値を算出して、ポリイミド材料の平均粒径とした。
なお、ポリイミド材料の粒子形状が球形でない場合には、その長径を測定した。
<ポリイミドフィルムの残留溶剤量>
ポリイミドフィルム中の残留溶剤の種類を特定した後、特定された残留溶剤の含有量を定量した。
[残留溶剤の種類の特定]
残留溶剤の種類の特定を、パージ&トラップ装置(加熱脱着装置)が連結したGC-MSを用いて行った。
パージ&トラップ装置(製品名JTD505-III、日本分析工業株式会社)に、ポリイミドフィルム10mgを入れた試料管をセットし、200℃で30分保持して加熱して発生したガスを、-60℃のトラップ管で捕集し、捕集したものを315℃で加熱して飛ばしてGC-MSへ送り込み、発生した有機ガスの成分の定性分析を行なった。
(パージ&トラップ装置条件)
総スプリット比(導入量/排気量)1:10、
キャリアガス ヘリウム1.0ml/min定量
(GC-MS条件)
装置名:GC-MS装置(Agilent社、6890/5973 GC/MS)
カラム:UA-5 内径250μm×長さ30m×膜厚0.25μm(フロンティア・ラボ製)、昇温条件 50℃(5分保持) → 10℃/分(昇温) → 320℃(3分保持)
[残留溶剤の定量]
ポリイミドフィルムの濃度が5質量%濃度となるように、N,N-ジメチルホルムアミド(DMF)にポリイミドフィルムを添加して、ポリイミドフィルム/N,N-ジメチルホルムアミド(DMF)溶液を調製し、この溶液に、内部標準液(0.2質量%濃度アニソール/DMF溶液)を添加してサンプル溶液を調製した。当該サンプル溶液について、GC-MS装置(例えば、Agilent社、6890/5973 GC/MS)を用いて、下記条件で、GC-MS測定を行った。当該GC-MS測定は3回行い、測定結果は3回の平均値とした。
(GC条件)
カラム:InertCapWax 内径250μm×長さ30m×膜厚0.25μm(ジーエルサイエンス製)、
サンプル打ち込み量0.2uL、スプリット比50:1、キャリアガス ヘリウム94.3kPa定圧、注入口温度250℃、昇温条件 40℃(5分保持) → 5℃/分 → 120℃ → 20℃/分 → 240℃(6分保持)、トランスファーライン温度 250℃
(MS条件)
イオン化法 EI、測定モード SIM、イオン源温度 250℃、四重極温度 150℃、イオン化電圧 70eV
(定量イオン)
DMAc m/z = 72,87
ジクロロメタン m/z = 49,84
酢酸エチル m/z = 43,88
酢酸ブチル m/z = 43,56,73
PGMEA m/z = 45,90
アニソール m/z = 93,108
例えば、残留溶剤がDMAcである場合、DMAc含有量が、0.01質量%、0.05質量%、0.1質量%となるようにそれぞれ調製した各DMAc(測定対象化合物)/DMF溶液に、上記したサンプル溶液と同様に内部標準液を添加して調製した各検量線液について、GC-MS測定を行い、検量線を作成した。なお、GC-MS測定は3回行い、測定結果は3回の平均値とした。
そして、当該検量線を基準として、ポリイミドフィルムに対する質量比としてDMAcの含有量を算出した。
含まれている残留溶剤が2種以上の場合、各残留溶剤に対して上記DMAcのように検量線液を調製し、当該各検量線液についてのGC-MS測定による測定結果から作成された検量線を基準とした。
<ポリイミド材料の残留溶剤量>
ポリイミド材料の残留溶剤量は、前記ポリイミドフィルムの残留溶剤量の測定法において、ポリイミドフィルムの代わりにポリイミド材料を用いた以外は同様にして行った。
<ポリイミドフィルムの全光線透過率>
JIS K7361-1に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
<静的屈曲試験(φ2mm、24時間静置)>
以下、静的屈曲試験の方法について、図1を参照して説明する。
15mm×40mmに切り出したポリイミドフィルムの試験片1を長辺の半分の位置で折り曲げ、試験片1の長辺の両端部が厚み2mmの金属片2(100mm×30mm×2mm)を上下面から挟むようにして配置し、試験片1の両端部と金属片2との上下面での重なりしろが各々10mmずつになるようにテープで固定した。試験片1が固定された金属片2を、上下からガラス板(100mm×100mm×0.7mm)3a、3bで挟み、試験片1を内径2mmで屈曲した状態で固定した。その際に、金属片2上で試験片1がない部分にダミーの試験片4a、4bを挟み込み、ガラス板3a、3bが平行になるようにテープで固定した。
このようにして屈曲した状態で固定した試験片を、60±2℃、93±2%相対湿度(RH)の環境下で24時間静置した後、ガラス板と試験片固定用のテープを外し、試験片にかかる力を解放した。その後、試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後に試験片の内角を測定した。
なお、当該静的屈曲試験によってフィルムが影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
(評価基準)
内径2mmで屈曲した状態で固定し、60±2℃、93±2%相対湿度(RH)の環境下で24時間静置、という従来技術よりも厳しい条件下で静的屈曲試験を行ったため、試験片の内角は以下のように評価された。A,Bであれば静的屈曲耐性が良好であるが、Aであるとより優れている。
A:110°以上
B:90°以上110°未満
C:90°未満
<動的屈曲試験(MIT法 往復折曲げ試験)>
幅15.0mm×長さ110mmの大きさに切り出したポリイミドフィルムの試験片を、JIS 8115-2001に準拠して、MIT試験機(東洋精機製作所製、耐折疲労試験機MIT D-2)を用いて、屈曲半径1mm、荷重500gの条件で、試験片が破断するまでの往復折曲げ回数を測定した。前記往復折曲げ試験を3回行い、3回の試験結果の往復折曲げ回数の平均値を求めた。
(評価基準)
AA,A,Bであれば動的屈曲耐性が良好であるが、AA,Aであるとより優れている。
AA:50000回以上
A:45000回以上50000回未満
B:35000回以上45000回未満
C:35000回未満
<ポリイミドフィルムのYI値(黄色度)>
YI値は、JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出した。
YI=100(1.2769X-1.0592Z)/Y
<膜厚測定法>
10cm×10cmの大きさに切り出したポリイミドフィルムの試験片の四隅と中央の計5点の膜厚を、デジタルリニアゲージ(株式会社尾崎製作所製、型式PDN12 デジタルゲージ)を用いて測定し、測定値の平均をポリイミドフィルムの膜厚とした。
<ポリイミドフィルムの引張弾性率>
15mm×40mmに切り出したポリイミドフィルムの試験片を、温度25℃、相対湿度60%の条件で2時間調湿した後、JIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして、25℃における引張弾性率を測定した。引張り試験機は(島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用いた。
<鉛筆硬度>
鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用い、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行った。
(合成例1)
5Lのセパラブルフラスコに、脱水されたN,N-ジメチルアセトアミド(DMAc)(2903g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(15.9g)を溶解させた溶液を入れ、液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(14.6g)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(387g)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(548g)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体Aが溶解したポリイミド前駆体A溶液(固形分25質量%)を合成した。ポリイミド前駆体Aに用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。
(合成例2)
前記合成例1と同様にして、ポリイミド前駆体A溶液を得た。
窒素雰囲気下で、5Lのセパラブルフラスコに、室温に下げた上記ポリイミド前駆体A溶液(400g)を加えた。そこへ、脱水されたN,N-ジメチルアセトアミド(109g)を加え均一になるまで撹拌した。次に触媒であるピリジン(41.4g)と無水酢酸(53.4g)を加え24時間室温で撹拌し、ポリイミドA溶液を合成した。
得られたポリイミドA溶液に酢酸ブチル(406g)を加え均一になるまで撹拌し、次にt-ブタノール(3000g)を徐々に加え白色スラリーを得た。上記スラリーをろ過し、スラリーをイソプロピルアルコール(130g)が入ったビーカーで洗浄し、その後ろ過するという工程を18回繰り返し、真空乾燥機を用いて110℃で乾燥し、ポリイミドA1(ポリイミド材料、ポリイミド粉体)を得た。
なお、t-ブタノール(3000g)を徐々に加えて得られた白色スラリーをろ過後のポリイミド粉体(0回目)、並びに、イソプロピルアルコール洗浄を5回後、10回後、13回後、及び15回後で得られたポリイミド粉体それぞれについて、残留溶剤量を確認したところ、それぞれ、0回:16754ppm、5回後:2500ppm、10回後:220ppm、13回後:95ppm、15回後、50ppmであった。
GPCによって測定したポリイミドA1の重量平均分子量は175000であった。ポリイミドA1の平均粒径は250μmであった。
ポリイミドA1の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが17ppmであった。
(比較合成例1)
合成例2と同様にして、ポリイミドA溶液を得た。
得られたポリイミドA溶液(346.4g)を5Lのセパラブルフラスコに移し、酢酸ノルマル-ブチル(以下、酢酸ブチルという)(235.3g)を加え均一になるまで撹拌した。次にメタノール(523.5g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りのみられる溶液にメタノール(1.221kg)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミドCA1(65.8g)を得た。
ポリイミドCA1の平均粒径は230μmであった。
ポリイミドCA1の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが2500ppmであった。
(合成例3~4、比較合成例2~3)
合成例2と同様にして、ポリイミドA溶液を得た。
得られたポリイミドA溶液に酢酸ブチル(406g)を加え均一になるまで撹拌し、次にt-ブタノール(3000g)を徐々に加え白色スラリーを得た。上記スラリーをろ過し、スラリーをIPA(130g)が入ったビーカーで洗浄し、その後ろ過するという工程を表3に示す回数だけ繰り返した以外は、合成例1と同様にして、ポリイミドA2及びA3、並びに、ポリイミドCA2及びCA3を得た。
ポリイミドA2は、平均粒径が240μm、残留溶剤量としてDMAcが50ppmであった。
ポリイミドA3は、平均粒径が230μm、残留溶剤量としてDMAcが95ppmであった。
ポリイミドCA2は、平均粒径が250μm、残留溶剤量としてDMAcが220ppmであった。
ポリイミドCA3は、平均粒径が240μm、残留溶剤量としてDMAcが2500ppmであった。
(実施例1~4、比較例1~2)
合成例2のポリイミドA1を用い、下記(C1)~(C3)の手順を行うことで、表1に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(C1)ポリイミドA1の固形分濃度が17質量%となるように、ポリイミドA1にジクロロメタンを添加して、固形分17質量%のポリイミドA1ジクロロメタン溶液を作製した。ポリイミドA1ジクロロメタン溶液(固形分17質量%)の25℃における粘度は4600cpsであった。
(C2)シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、ポリイミドA1ジクロロメタン溶液(固形分濃度17質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表1に示した膜厚になるように塗布し、自然乾燥後、ポリイミド樹脂塗膜を剥離した。
(C3)剥離したポリイミド樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド樹脂塗膜を挟持し固定治具で金属枠とポリイミド樹脂塗膜とを固定した。固定したポリイミド樹脂塗膜を循環オーブン中で、表1に示す加熱温度(℃)及び時間(分)で乾燥し、ポリイミドフィルムを作製した。
得られたポリイミドフィルムの評価結果を表1に示す。
(実施例5~6、比較例3~5)
合成例1のポリイミド前駆体A溶液を用い、下記(H1)~(H2)の手順を行うことで、表1に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(H1)合成例1のポリイミド前駆体A溶液(固形分濃度25質量%)を、シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、後述する窒素気流下での加熱後のフィルム膜厚が表1に示した膜厚になるように塗布し、支持体と塗布されたポリイミド前駆体A溶液を循環オーブンで、40℃で60分間乾燥し、その後、120℃で15分間乾燥し、ポリイミド前駆体樹脂塗膜を形成後、ポリイミド前駆体樹脂塗膜を剥離した。
(H2)剥離したポリイミド前駆体樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して切り出したポリイミド前駆体樹脂塗膜を挟持し固定治具で金属枠とポリイミド前駆体樹脂塗膜とを固定した。固定したポリイミド前駆体樹脂塗膜を、オーブン中で、窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、表1に示す加熱温度(℃)まで昇温し、その温度で表1に示す時間(分)加熱し、ポリイミドフィルムを形成した。
Figure 0007388011000009
*1:沸点が100℃未満
*2:沸点が100℃以上
ジクロロメタン:沸点40℃
DMAc(ジメチルアセトアミド):沸点165.5℃
(比較例6)
比較合成例1のポリイミドCA1を酢酸ブチルとPGMEAの混合溶媒(8:2、体積比)に溶かし、固形分25質量%のポリイミドCA1溶液を作製した。ポリイミドCA1溶液(固形分25重量%)の25℃における粘度は40000cpsであった。
上述のように得られたポリイミドCA1溶液を用いて、下記(iv)~(vi)の手順を行うことで、50μmの厚みのポリイミドフィルムを作製した。
(iv)ポリイミドCA1溶液をガラス上に塗布し、120℃の循環オーブンで10分乾燥した。
(v)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、250℃まで昇温し、250℃で1時間保持後、室温まで冷却した。
(vi)ガラスより剥離し、ポリイミドフィルムを得た。
(比較例7)
合成例1のポリイミド前駆体A溶液を用い、下記(i)~(iii)の手順を行うことで、表2に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(i)ポリイミド前駆体A溶液をガラス上に塗布し、120℃の循環オーブンで10分乾燥した。
(ii)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、300℃まで昇温し、300℃で60分間保持後、室温まで冷却した。
(iii)ガラスより剥離し、各ポリイミドフィルムを得た。
Figure 0007388011000010
*2:沸点が100℃以上
DMAc(ジメチルアセトアミド):沸点165.5℃
酢酸ブチル:沸点126℃
PGMEA(プロピレングリコールモノメチルエーテルアセテート):沸点145℃
(実施例7~8、比較例8~9)
実施例1において、合成例2のポリイミドA1を用いる代わりに、合成例3~4のポリイミドA2、A3、比較合成例2~3のポリイミドCA2、CA3をそれぞれ用いた以外は、実施例1と同様にして、表3に記載の厚みのポリイミドフィルムをそれぞれ作製した。
得られたポリイミドフィルムの評価結果を表3に示す。
Figure 0007388011000011
(実施例9~11)
合成例2のポリイミドA1を用い、下記(C1’)~(C3’)の手順を行うことで、表4に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(C1’)ポリイミドA1の固形分濃度が17質量%となるように、ポリイミドA1に酢酸エチル(沸点77℃)を添加して、固形分17質量%のポリイミドA1酢酸エチル溶液を作製した。ポリイミドA1酢酸エチル溶液(固形分17質量%)の25℃における粘度は4800cpsであった。
(C2’)シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、ポリイミドA1酢酸エチル溶液(固形分17質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表4に示した膜厚になるように塗布し、自然乾燥後、ポリイミド樹脂塗膜を剥離した。
(C3’)剥離したポリイミド樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド樹脂塗膜を挟持し固定治具で金属枠とポリイミド樹脂塗膜とを固定した。固定したポリイミド樹脂塗膜を循環オーブン中で、表4に示す加熱温度(℃)及び時間(分)で乾燥し、ポリイミドフィルムを作製した。
得られたポリイミドフィルムの評価結果を表4に示す。
(実施例12~14、比較例10)
合成例2のポリイミドA1を用い、下記(C1”)~(C3”)の手順を行うことで、表4に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(C1”)ポリイミドA1の固形分濃度が17質量%となるように、ポリイミドA1に酢酸ブチル(沸点126℃)を添加して、固形分17質量%のポリイミドA1酢酸ブチル溶液を作製した。ポリイミドA1酢酸ブチル溶液(固形分17質量%)の25℃における粘度は5000cpsであった。
(C2”)シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、ポリイミドA1酢酸ブチル溶液(固形分17質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表4に示した膜厚になるように塗布し、自然乾燥後、ポリイミド樹脂塗膜を剥離した。
(C3”)剥離したポリイミド樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド樹脂塗膜を挟持し固定治具で金属枠とポリイミド樹脂塗膜とを固定した。固定したポリイミド樹脂塗膜を循環オーブン中で、表4に示す加熱温度(℃)及び時間(分)で乾燥し、ポリイミドフィルムを作製した。
得られたポリイミドフィルムの評価結果を表4に示す。
Figure 0007388011000012
*1:沸点が100℃未満
*2:沸点が100℃以上
酢酸エチル:沸点77℃
酢酸ブチル:沸点126℃
DMAc(ジメチルアセトアミド):沸点165.5℃
(合成例5~10)
合成例1のポリイミド前駆体Aの合成に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)を、95:5から、表5に示すように変更した以外は、合成例1と同様にして、ポリイミド前駆体A4~A9溶液をそれぞれ得た。
合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A4~A9溶液をそれぞれ用いた以外は、合成例2と同様にして、ポリイミドA4~A9(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
ポリイミドA4~A9のそれぞれについて、GPCによって測定した重量平均分子量、残留溶剤(DMAc)量を表5に示す。
Figure 0007388011000013
(実施例15~20)
実施例1においてポリイミドA1を用いる代わりに、合成例5~10で得られたポリイミドA4~A9をそれぞれ用いた以外は、実施例1と同様の手順を行うことで、表6に記載の厚みのポリイミドフィルムをそれぞれ作製した。
得られたポリイミドフィルムの評価結果を表6に示す。
Figure 0007388011000014
(合成例11~17)
合成例1のポリイミド前駆体Aの合成において、Siを含有しないジアミンとして用いられたTFMBの代わりに、TFMBと等モル量の表7に示すジアミン1を用いるように変更した以外は、合成例1と同様にして、ポリイミド前駆体A10~A16溶液をそれぞれ得た。
合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A10~A16溶液をそれぞれ用いた以外は、合成例2と同様にして、ポリイミドA10~A16(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
ポリイミドA10~A16のそれぞれについて、GPCによって測定した重量平均分子量、残留溶剤(DMAc)量を表7に示す。
Figure 0007388011000015
(実施例21~27)
実施例1においてポリイミドA1を用いる代わりに、合成例11~17で得られたポリイミドA10~A16をそれぞれ用いた以外は、実施例1と同様の手順を行うことで、表8に記載の厚みのポリイミドフィルムをそれぞれ作製した。
得られたポリイミドフィルムの評価結果を表8に示す。
Figure 0007388011000016
(合成例18)
合成例1のポリイミド前駆体Aの合成において、酸二無水物として用いられた6FDAの半分を、6FDAと等モル量のピロメリット酸二無水物を用いるように変更した以外は、合成例1と同様にして、ポリイミド前駆体A17溶液(固形分25質量%)を合成した。
ポリイミド前駆体A17に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。
合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A17溶液を用いた以外は、合成例2と同様にして、ポリイミドA17(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
GPCによって測定したポリイミドA17の重量平均分子量は176000であった。
ポリイミドA17の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが22ppmであった。
(合成例19)
合成例1のポリイミド前駆体Aの合成において、酸二無水物として用いられた6FDAの代わりに、6FDAと等モル量の4,4’-オキシジフタル酸無水物を用いるように変更した以外は、合成例1と同様にして、ポリイミド前駆体A18溶液を得た。ポリイミド前駆体A18に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。
合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A18溶液を用いた以外は、合成例2と同様にして、ポリイミドA18(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
GPCによって測定したポリイミドA18の重量平均分子量は178000であった。
ポリイミドA18の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが20ppmであった。
(実施例28~29)
実施例1においてポリイミドA1を用いる代わりに、合成例18~19で得られたポリイミドA17~A18をそれぞれ用いた以外は、実施例1と同様の手順を行うことで、表8に記載の厚みのポリイミドフィルムをそれぞれ作製した。
得られたポリイミドフィルムの評価結果を表9に示す。
Figure 0007388011000017
(実施例30~58:積層体の製造)
ペンタエリスリトールトリアクリレートの40質量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100質量部に対して10質量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF製、イルガキュア184)を添加して、ハードコート層用樹脂組成物を調製した。
実施例1~29の各ポリイミドフィルム上に前記ハードコート層用樹脂組成物を塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させ、10μm膜厚の硬化膜を形成し、積層体を製造した。
ポリイミドフィルム中にケイ素原子を含むため、ハードコート層との密着性も良好であった。

Claims (15)

  1. 下記一般式(1)で表される構造を有するポリイミドを含有し、
    フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であり、
    JIS K7361-1に準拠して測定する全光線透過率が、85%以上である、ポリイミドフィルム。
    Figure 0007388011000018
    (一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
  2. 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上である、請求項1に記載のポリイミドフィルム。
  3. JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.10以下である、請求項1又は2に記載のポリイミドフィルム。
  4. 前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、請求項1乃至3のいずれか一項に記載のポリイミドフィルム。
  5. 前記一般式(1)中のRにおける、前記ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、請求項1乃至4のいずれか一項に記載のポリイミドフィルム。
    Figure 0007388011000019
    (一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
  6. 前記一般式(1)中、Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である、請求項1乃至5のいずれか一項に記載のポリイミドフィルム。
  7. フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である(但し、フィルム内の残留溶剤が検出限界値以下である場合を除く)、請求項1乃至6のいずれか一項に記載のポリイミドフィルム。
  8. フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が14ppm以上100ppm以下である、請求項1乃至7のいずれか一項に記載のポリイミドフィルム。
  9. 請求項1乃至のいずれか一項に記載のポリイミドフィルム製造用ポリイミド材料であり、
    前記一般式(1)で表される構造を有し、残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である、ポリイミド材料。
  10. 請求項1乃至のいずれか一項に記載のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体。
  11. 請求項1乃至のいずれか一項に記載のポリイミドフィルム、又は、請求項10に記載の積層体である、ディスプレイ用部材。
  12. フレキシブルディスプレイ用である、請求項11に記載のディスプレイ用部材。
  13. 請求項1乃至のいずれか一項に記載のポリイミドフィルム又は請求項10に記載の積層体と、
    前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
    前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有するタッチパネル部材。
  14. 請求項1乃至のいずれか一項に記載のポリイミドフィルム又は請求項10に記載の積層体と、
    前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、を有する液晶表示装置。
  15. 請求項1乃至のいずれか一項に記載のポリイミドフィルム又は請求項10に記載の積層体と、
    前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、を有する有機エレクトロルミネッセンス表示装置。
JP2019115395A 2018-06-25 2019-06-21 ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置 Active JP7388011B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/024862 WO2020004293A1 (ja) 2018-06-25 2019-06-24 ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
TW112124116A TW202342611A (zh) 2018-06-25 2019-06-25 聚醯亞胺膜、聚醯亞胺材料、積層體、顯示器用構件、觸控面板構件、液晶顯示裝置、及有機電致發光顯示裝置
TW108122085A TWI809133B (zh) 2018-06-25 2019-06-25 聚醯亞胺膜、聚醯亞胺材料、積層體、顯示器用構件、觸控面板構件、液晶顯示裝置、及有機電致發光顯示裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018120020 2018-06-25
JP2018120020 2018-06-25

Publications (2)

Publication Number Publication Date
JP2020002353A JP2020002353A (ja) 2020-01-09
JP7388011B2 true JP7388011B2 (ja) 2023-11-29

Family

ID=69098809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115395A Active JP7388011B2 (ja) 2018-06-25 2019-06-21 ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Country Status (2)

Country Link
JP (1) JP7388011B2 (ja)
TW (1) TWI809133B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082682B (zh) * 2023-03-03 2024-04-05 四川大学 一种聚酰亚胺/氟化纳米Al2O3复合薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292616A (ja) 2007-05-23 2008-12-04 Ricoh Co Ltd 電子写真用シームレスベルトとその製造方法、電子写真装置
JP2014034590A (ja) 2012-08-07 2014-02-24 Mitsui Chemicals Inc ポリイミドフィルム及びその製造方法
JP2014118463A (ja) 2012-12-14 2014-06-30 Mitsubishi Chemicals Corp ポリイミド樹脂成型体及びフィルム
JP2017025204A (ja) 2015-07-22 2017-02-02 住友化学株式会社 ポリイミド系フィルム、及びポリイミド系フィルムの製造方法
JP2017186467A (ja) 2016-04-07 2017-10-12 コニカミノルタ株式会社 ポリイミドフィルム、その製造方法、透明導電フィルム及びタッチパネル
WO2018030410A1 (ja) 2016-08-10 2018-02-15 大日本印刷株式会社 ポリイミドフィルム、積層体、及びディスプレイ用表面材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192773A (ja) * 1997-01-13 1998-07-28 Sumitomo Bakelite Co Ltd ポリイミド系フィルムの乾燥方法
JP6939225B2 (ja) * 2016-08-10 2021-09-22 大日本印刷株式会社 ポリイミドフィルム、積層体、及びディスプレイ用表面材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292616A (ja) 2007-05-23 2008-12-04 Ricoh Co Ltd 電子写真用シームレスベルトとその製造方法、電子写真装置
JP2014034590A (ja) 2012-08-07 2014-02-24 Mitsui Chemicals Inc ポリイミドフィルム及びその製造方法
JP2014118463A (ja) 2012-12-14 2014-06-30 Mitsubishi Chemicals Corp ポリイミド樹脂成型体及びフィルム
JP2017025204A (ja) 2015-07-22 2017-02-02 住友化学株式会社 ポリイミド系フィルム、及びポリイミド系フィルムの製造方法
JP2017186467A (ja) 2016-04-07 2017-10-12 コニカミノルタ株式会社 ポリイミドフィルム、その製造方法、透明導電フィルム及びタッチパネル
WO2018030410A1 (ja) 2016-08-10 2018-02-15 大日本印刷株式会社 ポリイミドフィルム、積層体、及びディスプレイ用表面材

Also Published As

Publication number Publication date
TW202006028A (zh) 2020-02-01
JP2020002353A (ja) 2020-01-09
TWI809133B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
JP6973476B2 (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
KR102434812B1 (ko) 폴리이미드 필름, 적층체 및 디스플레이용 표면재
JP7363019B2 (ja) ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2020204022A (ja) ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2018230495A1 (ja) 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2018059075A (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
WO2019065624A1 (ja) フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7009902B2 (ja) ポリイミドフィルムの製造方法、ポリイミド前駆体の製造方法、積層体の製造方法及びディスプレイ用表面材の製造方法
JP7547792B2 (ja) 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2019137864A (ja) ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7139715B2 (ja) ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7155533B2 (ja) ポリイミド前駆体溶液の製造方法、ポリイミドフィルムの製造方法、積層体の製造方法、及びディスプレイ用表面材の製造方法
JP7027867B2 (ja) フレキシブルディスプレイ用表面材
WO2018062190A1 (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
WO2018030410A1 (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
JP2023154059A (ja) ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2020004293A1 (ja) ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7226312B2 (ja) ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2018117145A1 (ja) ポリイミドフィルム、ポリイミド、ポリイミド前駆体、積層体、及びディスプレイ用表面材
JP7351084B2 (ja) ポリイミド組成物、ポリイミド組成物の製造方法、ポリイミドフィルムの製造方法、積層体の製造方法、ディスプレイ用光学部材の製造方法、タッチパネル部材の製造方法、液晶表示装置の製造方法、及び有機エレクトロルミネッセンス表示装置の製造方法
JP7388011B2 (ja) ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2019078051A1 (ja) ポリイミドフィルム、ポリイミドフィルムの製造方法、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2018190179A1 (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
JP7247510B2 (ja) ポリイミドフィルム、ポリイミドフィルムの製造方法、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2020255864A1 (ja) ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7388011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150