JP7373105B2 - 亀裂検出装置及び方法 - Google Patents

亀裂検出装置及び方法 Download PDF

Info

Publication number
JP7373105B2
JP7373105B2 JP2020041186A JP2020041186A JP7373105B2 JP 7373105 B2 JP7373105 B2 JP 7373105B2 JP 2020041186 A JP2020041186 A JP 2020041186A JP 2020041186 A JP2020041186 A JP 2020041186A JP 7373105 B2 JP7373105 B2 JP 7373105B2
Authority
JP
Japan
Prior art keywords
light
detection
crack
workpiece
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020041186A
Other languages
English (en)
Other versions
JP2021143873A (ja
Inventor
和司 百村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2020041186A priority Critical patent/JP7373105B2/ja
Publication of JP2021143873A publication Critical patent/JP2021143873A/ja
Priority to JP2023179572A priority patent/JP2023174877A/ja
Application granted granted Critical
Publication of JP7373105B2 publication Critical patent/JP7373105B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Dicing (AREA)

Description

本発明は亀裂検出装置及び方法に係り、被加工物の内部に形成された亀裂を検出する亀裂検出装置及び方法に関する。
従来、シリコンウェーハやガラスウェーハ等の基板(以下、「被加工物」という。)の内部に集光点を合わせてレーザー光を切断予定ラインに沿って照射し、切断予定ラインに沿って被加工物の内部に切断の起点となるレーザー加工領域を形成するレーザー加工装置(レーザーダイシング装置ともいう。)が知られている。レーザー加工領域が形成された被加工物は、その後、エキスパンド又はブレーキングといった割断プロセスによって切断予定ラインで割断されて個々のチップに分断される。
ところで、レーザー加工装置により被加工物にレーザー加工領域を形成すると、そのレーザー加工領域から被加工物の厚さ方向に亀裂(クラック)が伸展する。その亀裂が被加工物の表面(レーザー光入射面)若しくは反対側の裏面まで到達していれば、割断プロセスにおいてチップへの分断を適正に行うことができる。その理由としては、被加工物の内部に形成された亀裂は、被加工物を分断する際の起点となるため、その亀裂の伸展度合いが被加工物の分断率を左右することによる。また、厚い被加工物の場合には、亀裂が被加工物の表面又は裏面に到達しないことがあるため、被加工物の表面又は裏面に亀裂が到達したか否かでは必ずしもレーザー加工領域が適正に形成されたか否かを適切に判断できない場合がある。
したがって、レーザー加工装置によりレーザー加工領域を形成した後、割断プロセス前において、被加工物を分断する際の起点となるレーザー加工領域が適正に形成されたか否か、すなわち、被加工物の内部に形成された亀裂の亀裂深さを検出することによって、割断プロセスにおけるチップへの分断の良否を正確に予測することが可能となる。そして、被加工物の内部にレーザー加工領域が適正に形成されていない箇所があれば、その部分だけ、再度、レーザー加工装置により再加工すること、又は割断プロセスにおける割断方法を変えるなどの対応が可能となる。これによって、その後の割断プロセスにおけるチップの損失を無くすことができる。また、不良箇所の発生状況などを参考にしてレーザー加工装置における加工条件を修正することもでき、その後に加工する被加工物でのレーザー加工領域の不良箇所の発生を低減させることができる。不良箇所のレーザー加工領域を再加工する場合には、不良箇所の発生を低減させることによって、再加工に要する時間の損失も低減させることができる。
一方、被加工物の内部に発生した亀裂の評価は、従来、試料を切断研磨するか、限られた条件下での観察が行われていた。そのため、レーザー加工装置を用いた加工プロセスへの適用は困難であった。
これに対し、被加工物の内部に形成された亀裂を非破壊で検査する技術が提案されている(例えば、特許文献1を参照)。
特許文献1に開示された技術では、被加工物の内部の亀裂を偏射照明して、亀裂が形成された領域において、亀裂に当たらずに被加工物の裏面で反射した光を検出し、亀裂により入射光が散乱されることに起因する検出光量の低下を利用して亀裂の検査を行っている。
特開2017-133997号公報
特許文献1に示すように、被加工物の内部に入射した光のうち、亀裂に当たらずに被加工物の裏面で反射した光を検出する場合、被加工物の表面で反射された反射光が外乱光(ノイズ)になるという問題がある。
図13は、被加工物の内部の亀裂を偏射照明した場合における被加工物からの反射光を示す断面図である。図13に示すように、集光レンズにより被加工物Wの内部の亀裂Kに対して光を集光させた場合、亀裂Kに当たらずに被加工物Wの裏面で反射した光(以下、裏面反射光(検出光)Mt(1)及びMt(2)という。)は、被加工物Wの裏面側で反射されて被加工物Wの表面側に戻り、検出光学系へ導かれる。そして、被加工物Wの内部に入射した光の一部が亀裂Kに当たると、裏面反射光Mt(1)及びMt(2)の検出光量が低下する。したがって、裏面反射光Mt(1)及びMt(2)の検出光量の変化に基づいて、亀裂Kの深さ位置を検出することができる。
ここで、被加工物Wに照射された光の一部は被加工物Wの表面で反射される。以下、被加工物Wの表面で反射される光を表面反射光N(1)及びN(2)という。この表面反射光N(1)及びN(2)を裏面反射光Mt(1)及びMt(2)からそれぞれ分離することができない場合、表面反射光N(1)及びN(2)が外乱光(ノイズ)となって、裏面反射光Mt(1)及びMt(2)の検出光量の変化を正確に測定することができない。
そこで、特許文献1では、集光レンズの集光点と共役な位置に視野絞り(開口絞り)を配置することにより、表面反射光N(1)及びN(2)の光検出器への入射を制限している。
図13の(a)は、検出光の集光位置が被加工物Wの裏面寄り(-Z側)にある場合を示しており、(b)は、検出光の集光位置が被加工物Wの表面寄り(+Z側)にある場合を示している。なお、図13に示す一点鎖線LDは、被加工物Wの深さ方向(Z方向)の中央位置を示す平面である。また、符号FS10及びFS12は、集光レンズの集光位置を示す焦点面を示している。
図13(a)に示すように、検出光の集光位置の深さ位置が平面LDよりも裏面側(-Z側)の場合、焦点面FS10において、裏面反射光Mt(1)の光線高hMt(1)が表面反射光N(1)の光線高hN(1)より低い。このため、集光レンズの集光点と共役な位置に配置された視野絞りの開口の大きさを適切に調整することにより両者を分離することが可能である。
一方、図13(b)に示すように、検出光の集光位置の深さ位置が平面LDよりも表面側(+Z側)の場合、焦点面FS12において、裏面反射光Mt(2)の光線高hMt(2)が表面反射光N(2)の光線高hN(2)がより高い。このため、視野絞りでは、両者を分離することが困難である。
このため、検出光の集光位置の深さ位置が表面寄り(+Z側)にある場合には、表面反射光N(2)を裏面反射光Mt(2)から分離することができず、亀裂Kの深さ位置の測定精度が低下あるいは測定不能になるという問題がある。
本発明はこのような事情に鑑みてなされたもので、亀裂の深さ位置に関わらず、亀裂の深さ位置を精度よく測定することが可能な亀裂検出装置及び方法を提供することを目的とする。
上記課題を解決するために、本発明の第1の態様に係る亀裂検出装置は、主光軸に対して平行であって主光軸から偏心した光源光軸に沿って検出光を出射する光源部と、主光軸と同軸のレンズ光軸を有し、光源部から出射した検出光を被加工物の内部に集光させる集光レンズと、集光レンズの集光点と共役な位置に配置されており、主光軸に対して、検出光のうち被加工物の表面で反射された表面反射光が到達する側の領域を遮蔽して表面反射光を遮光する遮光手段と、検出光のうち被加工物の裏面で反射された裏面反射光を検出し、検出した光に対応する検出信号を発生する光検出手段と、検出信号に基づき、被加工物の内部に形成された亀裂の亀裂深さを検出する亀裂検出手段とを備える。
本発明の第2の態様に係る亀裂検出装置は、第1の態様において、遮光手段は、集光レンズの集光点位置において、主光軸に対して、検出光が入射する側の領域と共役な領域を遮蔽する。
本発明の第3の態様に係る亀裂検出装置は、第1又は第2の態様において、光源部は、主光軸に対して平行であって主光軸に対して一方向に偏心した位置に配置された第1光源光軸に沿って第1検出光を出射する第1光源と、主光軸に対して平行であって主光軸に対して一方向とは反対側の他方向に偏心した位置に配置された第2光源光軸に沿って第2検出光を出射する第2光源とを備え、遮光手段はミラーであり、光検出手段は、ミラーに対して主光軸に沿う後方側に配置された第1検出器と、ミラーにより分岐された光路の下流側に配置された第2検出器とを備え、第1検出器は、第1検出光のうち、亀裂に当たらずに被加工物の裏面で反射された裏面反射光を検出し、第2検出器は、第2検出光のうち、亀裂に当たらずに被加工物の裏面で反射された裏面反射光を検出する。
本発明の第4の態様に係る亀裂検出装置は、第3の態様において、第1光源及び第2光源からそれぞれ出射される第1検出光及び第2検出光は、互いに直交する直線偏光であり、第1検出器の上流側に配置され、第1検出光と偏光方向が同じ第1偏光子と、第2検出器の上流側に配置され、第2検出光と偏光方向が同じ第2偏光子とをさらに備える。
本発明の第5の態様に係る亀裂検出装置は、第4の態様において、第1光源及び第2光源は、第1検出光及び第2検出光を同時に出射し、第1検出器及び第2検出器は、同時に出射された第1検出光及び第2検出光のうち、亀裂に当たらずに被加工物の裏面で反射された裏面反射光を検出する。
本発明の第6の態様に係る亀裂検出方法は、主光軸に対して平行であって主光軸から偏心した光源光軸の方向に沿って検出光を出射する検出光出射工程と、主光軸と同軸のレンズ光軸を有する集光レンズにより検出光を被加工物の内部に集光させる集光工程と、集光レンズの集光点と共役な位置に配置されており、主光軸に対して、検出光のうち被加工物の表面で反射された表面反射光が到達する側の領域を遮蔽して表面反射光を遮光し、検出光のうち被加工物の裏面で反射された裏面反射光を検出し、検出した光に対応する検出信号を発生する光検出工程と、検出信号に基づき、被加工物の内部に形成された亀裂の亀裂深さを検出する亀裂検出工程とを備える。
本発明によれば、遮光手段により、外乱光となる表面反射光を確実に除去することができるので、亀裂が表面寄りにある場合であっても、亀裂の深さを正確に検出することが可能になる。
図1は、第1の実施形態に係る亀裂検出装置の概略を示した構成図である。 図2は、本発明の第1の実施形態に係る遮光手段(遮光板)を説明するための図である。 図3は、本発明の第1の実施形態に係る遮光手段(遮光板)を説明するための図である。 図4は、本発明の第1の実施形態に係る亀裂検出方法を示すフローチャートである。 図5は、本発明の第1の実施形態に係る光検出工程を示すフローチャートである。 図6は、本発明の第2の実施形態に係る遮光手段(分岐ミラー)を説明するための図である。 図7は、本発明の第2の実施形態に係る遮光手段(分岐ミラー)を説明するための図である。 図8は、本発明の第2の実施形態に係る光検出工程を示すフローチャートである。 図9は、本発明の第3の実施形態に係る亀裂検出装置の光学系を示す図である。 図10は、本発明の第3の実施形態に係る亀裂検出装置の光学系を示す図である。 図11は、本発明の第3の実施形態に係る亀裂検出方法を示すフローチャートである。 図12は、本発明の第3の実施形態に係る光検出工程を示すフローチャートである。 図13は、被加工物の内部の亀裂を偏射照明した場合における被加工物からの反射光を示す断面図である。
以下、添付図面に従って本発明に係る亀裂検出装置の実施の形態について説明する。
[第1の実施形態]
図1は、第1の実施形態に係る亀裂検出装置の概略を示した構成図である。図1に示すように、第1の実施形態に係る亀裂検出装置10は、被加工物Wに対して検出光L1を照射し、被加工物Wからの反射光L2を検出することで、被加工物Wの内部に形成された亀裂Kの亀裂深さの測定を行う装置である。なお、亀裂検出装置10は、被加工物Wの内部に改質領域を形成するレーザーダイシング装置(不図示)と組み合わされたものであるが、図1では、図面の複雑化を避けるため、本発明の説明を行う上で必要な亀裂検出装置に係る構成要素のみを図示している。また、本実施形態においては、亀裂Kの亀裂深さとは、被加工物Wの裏面から亀裂Kの下端位置もしくは上端位置までの距離を示すものとして説明するが、もちろん、これに限定されるものではなく、被加工物Wの表面(検出光照射面)からの距離としてもよい。
図1に示すように、亀裂検出装置10は、光源部14と、照明光学系16と、ダイクロイックミラー18と、集光レンズ20と、ハーフミラー22と、検出光学系24と、光検出器26と、フォーカス調整機構28と、アライメント機構29と、制御部30と、を備えている。なお、被加工物Wは、図示しないステージに載置される。
光源部14は、被加工物Wの内部に形成された亀裂Kの亀裂深さを検出するための検出光L1を出射するものである。ここで、被加工物Wがシリコンウェーハの場合、検出光L1には、波長1000nm以長の赤外光を用いるのが望ましい。光源部14は、集光レンズ20のレンズ光軸と同軸である主光軸Pに対して平行であって主光軸Pから一方向(図1の下側)に偏心した第1光源光軸QA及び第2光源光軸QBをそれぞれ有する第1光源32A及び第2光源32Bを備えている。すなわち、第1光源32A及び第2光源32Bは、主光軸Pから偏心した位置から主光軸Pに沿って検出光L1を出射する。なお、第1光源32A及び第2光源32Bは、制御部30と接続されており、制御部30により第1光源32A及び第2光源32Bの出射制御が行われる。
照明光学系16は、一対のリレーレンズ40、42と、第1光源32A及び第2光源32Bから被加工物Wに向けて照射される検出光L1の範囲を制限する視野絞り44とから構成されている。一対のリレーレンズ40、42はテレセントリックなアフォーカル光学系を構成するものであり、光源32を集光レンズ20のレンズ瞳位置20Aに投影する。視野絞り44は集光レンズ20の集光点と共役な位置となるように配置されている。これにより、検出光L1が被加工物Wの内部における集光レンズ20の像面(集光面)の1点に向かって集光して光スポットを形成するので、不要な反射光や散乱光を低減することができ、被加工物Wの内部に形成された亀裂Kの亀裂深さの検出精度を向上させることが可能となる。なお、第1光源32A及び第2光源32Bから出射された検出光L1がコリメート光(平行光)である場合には視野絞り44を省略してもよい。
ハーフミラー22は、照明光学系16とダイクロイックミラー18との間に配置されており、入射光の一部を透過し一部を反射する。すなわち、ハーフミラー22は、第1光源32A及び第2光源32Bから照明光学系16を経由して入射する検出光L1の一部を透過し、その透過光(検出光L1)をダイクロイックミラー18を経由して集光レンズ20に導くとともに、被加工物Wからの検出光L1の反射光L2の一部を反射し、その反射光(反射光L2)を検出光学系24に導く。
ダイクロイックミラー18は、主光軸Pを90度折り曲げるものである。すなわち、ダイクロイックミラー18は、第1光源32A及び第2光源32Bからの検出光L1を直角に反射して集光レンズ20に導くとともに、被加工物Wからの反射光L2を直角に反射してハーフミラー22に導く。なお、ダイクロイックミラー18の代わりに、全反射ミラーを配置してもよい。
集光レンズ20は、被加工物Wに対向する位置に配置されており、第1光源32A及び第2光源32Bから照明光学系16、ハーフミラー22及びダイクロイックミラー18を介して入射した検出光L1を被加工物Wの内部に集光する。なお、集光レンズ20のレンズ光軸は主光軸Pと同軸となっている。集光レンズ20により被加工物Wの内部に検出光L1が集光されると、被加工物Wからの反射光L2は、集光レンズ20及びダイクロイックミラー18を経由してハーフミラー22で反射され、検出光学系24に導かれる。
検出光学系24は、ハーフミラー22で反射した反射光L2を光検出器26に導くためのものであり、1対のリレーレンズ46、48と、被加工物Wからの反射光L2の範囲を制限する遮光板60とから構成されている。
一対のリレーレンズ46、48はテレセントリックなアフォーカル光学系を構成するものであり、集光レンズ20の瞳を光検出器26に投影する。
遮光板60は、集光レンズ20の集光点と共役な位置となるように配置されている。遮光板60は、被加工物Wの表面(検出光照射面)で反射して光検出器26に入射する光を遮光する遮光手段として機能する(図2参照)。
光検出器26は、集光レンズ20の集光レンズ瞳20aと共役な位置となるように配置されており、被加工物Wの内部に形成された亀裂Kの有無に応じて変化する反射光L2を検出するために設けられたものである。光検出器26は、2つのフォトディテクタ26A及び26Bからなる。フォトディテクタ26A及び26Bは、被加工物Wからの反射光L2をそれぞれ受光し、受光した光量に応じた検出信号を発生し、それぞれ制御部30に出力する。なお、光検出器26は、複数に分割された受光面を有する分割型光検出器であればよく、例えば、2つに分割された受光面(受光素子)を有する2分割フォトディテクタ、又は4分割フォトディテクタを用いてもよい。光検出器26は、光検出手段の一例である。また、光検出器26の代わりに、赤外線カメラで撮像し、画像処理を行ってもよい。
フォーカス調整機構28は、集光点変更手段の一例であり、集光レンズ20の集光点を被加工物Wの厚さ方向(Z方向)に調整するものである。このフォーカス調整機構28は、集光レンズ20を主光軸Pに沿った方向に移動させるレンズ駆動部(不図示)を備え、レンズ駆動部により集光レンズ20を主光軸Pに沿った方向に移動させることで集光レンズ20と被加工物Wとの間の距離を変化させることによって集光レンズ20の集光点を被加工物Wの厚さ方向(Z方向)に変化させる。なお、フォーカス調整機構28(レンズ駆動部)は制御部30に接続されており、制御部30により集光レンズ20の集光点の制御が行われる。
なお、本明細書において、集光レンズ20の集光点とは、集光レンズ20により集光された検出光L1の集光点の位置をいう。また、集光レンズ20の集光点の深さ位置(Z方向位置)は、被加工物Wの裏面からの距離で示すものとする。
アライメント機構29は、アライメント手段の一例であり、集光レンズ20と被加工物Wとの水平方向(XY方向)における相対的な位置合わせ(アライメント)を行うものである。アライメント機構29は、集光レンズ20をレンズ光軸に垂直な水平方向に微小移動させるレンズ駆動部(不図示)を有している。レンズ駆動部は制御部30に接続されており、制御部30によりレンズ駆動部を制御することで、集光レンズ20と被加工物Wとの水平方向における相対的な位置合わせが行われる。なお、アライメント機構29に代えて、被加工物Wを載置するステージ(不図示)を集光レンズ20に対して相対的に移動させるようにしてもよい。
制御部30は、CPU(Central Processing Unit)、メモリ、入出力回路部等からなり、亀裂検出装置10の各部の動作を制御する。具体的には、制御部30は、フォーカス調整機構28により集光レンズ20の集光点を被加工物Wの厚さ方向(Z方向)に変化させながら、光検出器26から出力された検出信号を順次取得し、取得した検出信号に基づいて被加工物Wの内部に形成された亀裂Kの亀裂深さ(亀裂上端位置又は亀裂下端位置)を検出する処理(亀裂検出処理)を行う。制御部30は、亀裂検出手段の一例である。
(遮光手段の例)
図2及び図3は、本発明の第1の実施形態に係る遮光手段(遮光板)を説明するための図である。以下の説明では、光の進行方向をz方向とするxyz直交座標系を用いて説明する。なお、図2及び図3では、光路を簡略化するために、ダイクロイックミラー18及びフォーカス調整機構28等の一部の光学部材を省略している。
図2及び図3に示すように、本実施形態に係る遮光板60は、集光レンズ20の前側焦点位置(焦点面)FS1と光学的に共役な位置(焦点面)FS2又はその近傍に配置されている。ここで、焦点面FS2は、4F光学系を構成するリレーレンズ46による集光位置(焦点位置)を含んでいる。
第1光源32Aを亀裂深さ検出用の光源として用いる場合を例に説明すると、遮光板60は、焦点面FS2において、主光軸Pを基準として光路を分割した領域のうち、一方の領域(FS(-)領域)を遮蔽するように配置される。ここで、FS(-)領域は、集光レンズ20の前側焦点位置(集光点位置)FS1において、第1光源32Aからの第1検出光L1Aが入射する側の領域(FS(-)領域)と共役な領域である。
遮光板60は、アクチュエータ62により移動可能となっている。制御部30は、第1光源32A及び第2光源32Bの発光制御を行い、かつ、アクチュエータ62を制御して検出対象の検出光に応じて遮光板60の位置を制御する。
なお、本実施形態では、アクチュエータ62を用いたが、例えば、磁力又は電磁石を利用して遮光板60の位置を制御してもよい。
以下、検出光と遮光板60の位置制御について、図2及び図3を参照して説明する。図2は、被加工物Wに照射された第1検出光L1Aのうち、亀裂Kに当たらずに被加工物Wの裏面で反射した成分を検出する場合を示している。
図2に示すように、第1光源32Aから出射された第1検出光L1Aは、被加工物Wに照射されて、集光レンズ20により被加工物Wの内部の前側焦点位置FS1に集光される。前側焦点位置FS1に集光された光のうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光(裏面反射光(第1裏面反射光)Mt(1))は、被加工物Wの裏面(FS(+)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第1裏面反射光Mt(1)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(+)領域(主光軸Pに対して-y側の領域)を通過する。その後、第1裏面反射光Mt(1)は、リレーレンズ48を介してフォトディテクタ26Aに到達する。
一方、被加工物Wに照射された第1検出光L1Aのうち、被加工物Wの表面(FS(-)領域側)で反射された表面反射光N(1)は、主光軸Pと交差した後、集光レンズ20を再び透過して、発散光束として検出光学系24に導かれる。表面反射光N(1)は、リレーレンズ46を透過した後、焦点面FS2においてFS(-)領域(主光軸Pに対して+y側の領域)に向かい、リレーレンズ46の焦点位置(焦点面FS2)よりも遠方(下流側)で主光軸Pと交差する光束となる。
上記のように、第1裏面反射光Mt(1)と表面反射光N(1)とは、集光レンズ20のレンズ瞳位置20Aにおいて同じ側を通るため、レンズ瞳位置20Aで両者を区別することはできない。しかしながら、焦点面FS1及びFS2では、第1裏面反射光Mt(1)と表面反射光N(1)とは、主光軸Pを挟んで互いに反対側の領域を通る。したがって、焦点面FS2において表面反射光N(1)が到達する側を遮光する遮光板60を配置することにより、表面反射光N(1)がフォトディテクタ26Aに到達することを防止することができる。
なお、焦点面FS1が被加工物Wの裏面に近いほど、第1裏面反射光Mt(1)が主光軸Pと交差する点が焦点面FS2に近づく。このため、被加工物Wに照射される光を集光させる焦点面FS1が被加工物Wの裏面に近い場合には、第1裏面反射光Mt(1)の収束光束の一部が遮光される場合がある。したがって、第1裏面反射光Mt(1)の収束光束を遮光しないように、遮光板60を+y側にオフセットして配置してもよい。
図3は、被加工物Wに照射された第1検出光L1Aのうち、亀裂Kに当たって全反射された成分を検出する場合を示している。
図3に示すように、前側焦点位置FS1に集光された第1検出光L1Aのうち、亀裂Kに当たった光は、亀裂Kにより全反射される。亀裂Kにより全反射された光(裏面反射光(第2裏面反射光)Mr(1))は、被加工物Wの裏面(FS(-)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第2裏面反射光Mr(1)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(-)領域を通過する。第2裏面反射光Mr(1)の検出時には、遮光板60は光路上(FS(-)領域)から退避されており、第2裏面反射光Mr(1)は、リレーレンズ48を介してフォトディテクタ26Bに到達する。
一方、被加工物Wに照射された第1検出光L1Aのうち、図2を参照して説明したように、表面反射光N(1)は、リレーレンズ46の焦点位置(焦点面FS2)よりも遠方(下流側)で主光軸Pと交差する光束となる。
第2裏面反射光Mr(1)と表面反射光N(1)とは、集光レンズ20のレンズ瞳において主光軸Pに対して互いに反対側を通るため、レンズ瞳で両者を区別することができる。そして、焦点面FS1及びFS2において、第2裏面反射光Mr(1)と表面反射光N(1)とは、主光軸Pに対して同じ側の領域(FS(-)領域)を通って、それぞれフォトディテクタ26B及び26Aに到達する。したがって、第2裏面反射光Mr(1)と表面反射光N(1)とが同じフォトディテクタ26Bに入射することはない。
以上により、被加工物Wの所定の深さ位置Ziの集光点に集光させることにより、亀裂Kに当たらずに被加工物Wの裏面で反射された第1裏面反射光Mt(1)と、亀裂Kにより全反射された後に被加工物Wの裏面で反射された第2裏面反射光Mr(1)とを検出することができる。
集光レンズ20の集光点に亀裂Kが存在しない場合には、図2に示すように、第1検出光L1Aは、亀裂に当たらずに被加工物Wの裏面で反射された後フォトディテクタ26Aにより検出される。一方、集光レンズ20の集光点に亀裂Kが存在する場合には、図3に示すように、第1検出光L1Aは、亀裂で全反射された後、被加工物Wの裏面で反射されてフォトディテクタ26Bにより検出される。
集光レンズ20の集光点と亀裂Kの亀裂下端位置又は亀裂上端位置とが一致する場合には、第1検出光L1Aは、亀裂に当たらずに被加工物Wの裏面で反射される非反射光成分と、亀裂で全反射された後、被加工物Wの裏面で反射される反射光成分とに分割される。そして、非反射光成分と反射光成分は、図2及び図3に示す経路に沿ってフォトディテクタ26A及び26Bにそれぞれ入射する。このとき、フォトディテクタ26A及び26Bにより検出された非反射光成分と反射光成分の検出信号のレベル(検出光量)は略等しくなる。本実施形態では、上記の性質を利用して、被加工物Wの内部に形成された亀裂Kの亀裂深さ(亀裂下端位置又は亀裂上端位置)を検出する。なお、以下の説明では、非反射光成分及び反射光成分についてもそれぞれ第1裏面反射光Mt(1)及び第2裏面反射光Mr(1)と記載する。
具体的には、フォトディテクタ26A及び26Bからそれぞれ出力される第1裏面反射光Mt(1)と及び第2裏面反射光Mr(1)の検出信号の出力をそれぞれD1及びD2としたとき、集光レンズ20の集光点と亀裂Kの亀裂深さとの関係を示す評価値は、式(1)で表すことができる。
S=(D1-D2)/(D1+D2) …(1)
式(1)において、S=0の条件を満たすとき、すなわち、フォトディテクタ26A及び26Bにより受光される光量が一致するとき、集光レンズ20の集光点と亀裂下端位置(又は亀裂上端位置)とが一致した状態を示す。
したがって、制御部30は、フォーカス調整機構28を制御して集光レンズ20の集光点を被加工物Wの厚さ方向(Z方向)に変化させながら、フォトディテクタ26A及び26Bから出力される検出信号を順次取得し、取得した検出信号に基づいて式(1)で示される評価値Sを算出し、この評価値Sを評価することによって亀裂Kの亀裂深さ(亀裂下端位置又は亀裂上端位置)を検出することができる。
さらに、本実施形態では、第2光源32Bを亀裂深さ検出用の光源として用いて、裏面反射光(第1裏面反射光Mt(2)及び第2裏面反射光Mr(2))の検出を行う。この場合、亀裂Kに当たらずに被加工物Wの裏面で反射された第1裏面反射光Mt(2)を検出する際には、焦点面FS2において表面反射光Lが到達する領域(図2に示す例とは反対側(-y側)のFS(+)領域)を遮蔽するように遮光板60を配置する。一方、亀裂Kにより全反射された後に被加工物Wの裏面で反射された第2裏面反射光Mr(2)を検出する際には、遮光板60を光路上(FS(+)領域)から退避させる。ここで、FS(+)領域は、集光レンズ20の前側焦点位置(集光点位置)FS1において、第2光源32Bからの第2検出光L1B(不図示)が入射する側の領域(FS(+)領域)と共役な領域である。
そして、第1光源32Aと第2光源32Bを用いて求めた亀裂Kの亀裂深さの平均値(例えば、相加平均)を算出する(図4のステップS32参照)。
(亀裂検出方法)
次に、第1の実施形態に係る亀裂検出方法について、図4及び図5を参照して説明する。図4は、本発明の第1の実施形態に係る亀裂検出方法を示すフローチャートである。なお、本実施形態では、集光レンズ20の集光点は被加工物Wの厚さ方向(Z方向)に予め設定された走査間隔Δzで走査が行われ、その走査範囲における各走査位置をZi(i=1,2,…,n)とする(但し、nは自然数とする)。また、集光レンズ20の集光点の走査範囲は検出対象となる亀裂Kの亀裂深さに応じて設定され、例えば、被加工物Wの厚さ方向の全範囲に設定されていてもよいし、その一部範囲に設定されていてもよい。例えば、亀裂Kの亀裂深さとして亀裂下端位置のみを検出する場合には、被加工物Wの深い位置(裏面に近い側)の一部範囲に走査範囲を限定することで検出効率を向上させることができる。
(ステップS10)
まず、操作部により亀裂検出処理の開始が指示されると、制御部30は、アライメント機構29を制御にして、集光レンズ20を水平方向に移動させることにより被加工物Wと集光レンズ20との相対的な位置合わせ(アライメント)を行う(アライメント工程)。
(ステップS12~S14)
次に、制御部30は、変数kを1に設定し(k=1)、変数iを1に設定する(i=1)。
(ステップS16)
次に、制御部30は、フォーカス調整機構28のレンズ駆動部を制御して、集光レンズ20の集光点をZiに設定する。例えば、1回目の走査が行われる場合(i=1の場合)には、集光レンズ20の集光点を走査開始位置Z1に設定する。2回目以降の走査が行われる場合(i≧2の場合)には、集光レンズ20の集光点の深さ位置(Z方向位置)をZi=Zi-1+Δzに設定する(集光点変更工程)。
(ステップS18)
次に、第1裏面反射光及び第2裏面反射光の検出を行う(光検出工程)。図5は、本発明の第1の実施形態に係る光検出工程を示すフローチャートである。
まず、制御部30は、第1光源32Aを制御して、第1光源32Aから第1検出光L1Aを出射させる(ステップS50:検出光出射工程)。第1光源32Aからの第1検出光L1Aは、照明光学系16、ハーフミラー22及びダイクロイックミラー18を経由して集光レンズ20に導かれる。そして、集光レンズ20に導かれた第1検出光L1Aは、集光レンズ20により被加工物Wの内部に集光する(集光工程)。
次に、図2に示すように、制御部30は、アクチュエータ62を制御して、遮光板60を光路上のFS(-)領域に挿入する(ステップS52)。これにより、表面反射光N(1)が遮光され、第1裏面反射光Mt(1)のみが、集光レンズ20、ダイクロイックミラー18、ハーフミラー22及び検出光学系24を経由してフォトディテクタ26Aに導かれる。そして、第1裏面反射光Mt(1)は、フォトディテクタ26Aで受光され、受光光量に応じた検出信号が制御部30に出力される(ステップS54:第1検出工程)。
次に、図3に示すように、制御部30は、アクチュエータ62を制御して、遮光板60を光路上(FS(-)領域)から退避させる(ステップS56)。そして、フォトディテクタ26Bにより、第2裏面反射光Mr(1)を検出する(ステップS58:第2検出工程)。
なお、k=2の場合には、第2光源32Bを用いて、第1裏面反射光Mt(2)の検出時に遮光板60を光路上のFS(+)領域に挿入し、第2裏面反射光Mr(2)の検出時に光路上(FS(+)領域)から退避させる。
図5に示す例では、偏射照明の実行中に遮光板60の挿入及び退避を行うようにしたが、本発明はこれに限定されない。例えば、遮光板60の挿入及び退避の後に、その都度偏射照明を実行するようにしてもよい。
これにより、制御部30は、フォトディテクタ26A及び26Bからそれぞれ出力される第1裏面反射光Mt(1)と及び第2裏面反射光Mr(1)の検出信号D1及びD2を取得する。
(ステップS20)
次に、制御部30は、ステップS18で取得した検出信号D1、D2に基づき、現在の走査位置(集光レンズ20の集光点)Ziに対応する評価値Siを算出する。なお、評価値Siは、式(2)によって算出される。なお、制御部30は、算出した評価値Siを図示しない記憶部に記憶する。
i=(D1-D2)/(D1+D2) …(2)
(ステップS22)
次に、制御部30は、変数i=nであるか否かを判断する。i=nでない場合(すなわち、変数iがn未満である場合)にはステップS24に進み、i=nである場合にはステップS26に進む。
(ステップS24)
ステップS22においてi=nでない場合には、制御部30は、iを1つインクリメントして(i=i+1)、ステップS14に戻り、ステップS14からステップS22までの処理を繰り返し行う。
(ステップS26)
ステップS22においてi=nである場合には、制御部30は、ステップS20において走査位置Zi毎に算出した評価値Siに基づき、被加工物Wの内部に形成された亀裂Kの亀裂深さを検出する(亀裂検出工程)。
具体的には、制御部30は、各走査位置Ziに対応する評価値Siの中から、評価値が0(ゼロ)となるときの走査位置(すなわち、集光レンズ20の集光点の深さ位置)を亀裂Kの亀裂深さ(亀裂下端位置又は亀裂上端位置)として検出する。なお、各走査位置Ziに対応する評価値Siの中に0となる評価値が含まれていない場合には、最も0に近い評価値に対応する走査位置を亀裂Kの亀裂深さとして検出するようにしてもよい。
なお、各走査位置Ziに対応する評価値Siの中に0となる評価値が含まれていない場合には、各走査位置Ziに対応する評価値Siを補間処理することによって評価値が0となるときの走査位置を算出し、その走査位置を亀裂Kの亀裂深さとして検出するようにしてもよい。
また、各走査位置Ziに対応する評価値Siがいずれも同じ極性(プラスまたはマイナス)である場合には集光レンズ20の集光点の走査範囲には亀裂Kは存在しない、あるいは、全ての範囲にわたって亀裂Kが存在すると判定することが可能である。
(ステップS28)
次に、制御部30は、k=2であるか否かを判断する。k=2でない場合にはステップS30に進み、k=2である場合にはステップS32に進む。
(ステップS30)
ステップS28においてk=2でない場合には、kを1つインクリメントして(k=k+1)、ステップS14に戻り、第2光源32Bを用いて、ステップS14からステップS26までの処理を繰り返し行う。
(ステップS32)
次に、制御部30は、第1光源32Aを用いて検出した亀裂Kの亀裂深さ(第1亀裂深さ)dAと、第2光源32Bを用いて検出した亀裂Kの亀裂深さ(第2亀裂深さ)dBとの平均値dM(=(dA+dB)/2)を真の亀裂深さ(亀裂下端位置)として算出する。なお、制御部30は、被加工物Wの内部に形成された亀裂Kの亀裂深さの検出結果として、上述のようにして算出した真の亀裂深さdMを図示しない表示装置(モニタ)に表示する。
本実施形態では、表面反射光N(1)を遮光するための遮光手段として、可動式の遮光板60を用いる。これにより、外乱光となる表面反射光N(1)を確実に除去することができるので、亀裂Kが表面寄りにある場合であっても、亀裂Kの深さを正確に検出することが可能になる。
[第2の実施形態]
次に、本発明の第2の実施形態について説明する。以下の説明において、第1の実施形態と同様の構成については、同一の符号を付して説明を省略する。
第1の実施形態では、遮光手段として可動式の遮光板60を用いたが、第2の実施形態では、これに代えて分岐ミラー70を用いる。
図6及び図7は、本発明の第2の実施形態に係る遮光手段(分岐ミラー)を説明するための図である。図6及び図7は、それぞれ第1光源32A及び第2光源32Bから出射された第1検出光L1A及び第2検出光L1Bの光路を示している。なお、図6及び図7では、光路を簡略化するために、ダイクロイックミラー18及びフォーカス調整機構28等の一部の光学部材を省略している。
図6及び図7に示すように、本実施形態に係る分岐ミラー70は、集光レンズ20の前側焦点位置(焦点面)FS1と光学的に共役な位置(焦点面)FS2又はその近傍に配置されている。ここで、焦点面FS2は、4F光学系を構成するリレーレンズ46による集光位置(焦点位置)を含んでいる。
分岐ミラー70は、例えば、全反射ミラーである。分岐ミラー70は、焦点面FS2に対してやや上流側の領域であって、主光軸Pに対して+y側のFS(-)領域に固定されており、FS(-)領域を通る光を折り曲げる。なお、分岐ミラー70の配置は、図6及び図7に示す例に限定されない。分岐ミラー70は、例えば、焦点面FS2に対してやや下流側の領域であって、主光軸Pに対して-y側のFS(+)領域に配置してもよい。ここで、分岐ミラー70の一端は、主光軸Pの近傍に配置される。
分岐ミラー70の主光軸Pに沿う後方側には、フォトディテクタ26A(第1検出器)が配置されている。分岐ミラー70により分岐された光路の下流側には、リレーレンズ50及びフォトディテクタ26C(第2検出器)が順に配置されている。リレーレンズ50は、リレーレンズ46等と検出光学系24(4F光学系)を構成する。
まず、第1光源32Aからの第1検出光L1Aについて説明する。図6に示すように、第1光源32Aから出射された第1検出光L1Aは、被加工物Wに照射されて、集光レンズ20により被加工物Wの内部の前側焦点位置FS1に集光される。前側焦点位置FS1に集光された光のうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光の非反射光成分(裏面反射光(第1裏面反射光)Mt(1))は、被加工物Wの裏面(FS(+)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第1裏面反射光Mt(1)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(+)領域を通過する。その後、第1裏面反射光Mt(1)は、リレーレンズ48を介してフォトディテクタ26Aに到達する。
前側焦点位置FS1に集光された第1検出光L1Aのうち、亀裂Kに当たった光は、亀裂Kにより全反射される。亀裂Kにより全反射された光の反射光成分(裏面反射光(第2裏面反射光)Mr(1))は、被加工物Wの裏面(FS(-)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第2裏面反射光Mr(1)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2のFS(-)領域に向かう。そして、第2裏面反射光Mr(1)は、分岐ミラー70によって反射され、リレーレンズ50を介してフォトディテクタ26Cに到達する。
被加工物Wに照射された第1検出光L1Aのうち、被加工物Wの表面(FS(-)領域側)で反射された表面反射光N(1)は、主光軸Pと交差した後、集光レンズ20を再び透過して、発散光束として検出光学系24に導かれる。表面反射光N(1)は、リレーレンズ46を透過した後、焦点面FS2においてFS(-)領域に向かい、主光軸Pの+y側を通ってリレーレンズ46の焦点位置(焦点面FS2)よりも遠方(下流側)で主光軸Pと交差する光束となる。
図6に示す例では、第1裏面反射光Mt(1)と表面反射光N(1)とは、集光レンズ20のレンズ瞳位置20Aにおいて同じ側を通るため、レンズ瞳位置20Aで両者を区別することはできない。しかしながら、焦点面FS1及びFS2では、第1裏面反射光Mt(1)と表面反射光N(1)とは、主光軸Pを挟んで互いに反対側の領域を通る。したがって、焦点面FS2において表面反射光N(1)が到達する側に分岐ミラー70が配置されており、表面反射光N(1)のフォトディテクタ26Aへの経路が遮断されている。表面反射光N(1)は、分岐ミラー70によって反射されて、リレーレンズ50により、主光軸Pに対してフォトディテクタ26Cの反対側に導光される。
なお、焦点面FS1が被加工物Wの裏面に近いほど、第1裏面反射光Mt(1)が主光軸Pと交差する点が焦点面FS2に近づく。このため、被加工物Wに照射される光を集光させる焦点面FS1が被加工物Wの裏面に近い場合には、第1裏面反射光Mt(1)の収束光束の一部が遮光される場合がある。したがって、第1裏面反射光Mt(1)の収束光束を遮光しないように、分岐ミラー70を+y側にオフセットして配置してもよい。
次に、第2光源32Bからの第2検出光L1Bについて説明する。図7に示すように、第2光源32Bから出射された第2検出光L1Bは、被加工物Wに照射されて、集光レンズ20により被加工物Wの内部の前側焦点位置FS1に集光される。前側焦点位置FS1に集光された光のうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光の非反射光成分(裏面反射光(第1裏面反射光)Mt(2))は、被加工物Wの裏面(FS(-)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第1裏面反射光Mt(2)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(-)領域に向かう。そして、第1裏面反射光Mt(2)は、分岐ミラー70によって反射され、リレーレンズ50を介してフォトディテクタ26Cに到達する。
前側焦点位置FS1に集光された第2検出光L1Bのうち、亀裂Kに当たった光は、亀裂Kにより全反射される。亀裂Kにより全反射された光の反射光成分(裏面反射光(第2裏面反射光)Mr(2))は、被加工物Wの裏面(FS(+)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第2裏面反射光Mr(2)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(+)領域を通過する。その後、第2裏面反射光Mr(2)は、リレーレンズ48を介してフォトディテクタ26Aに到達する。
被加工物Wに照射された検出光L1のうち、被加工物Wの表面(FS(+)領域側)で反射された表面反射光N(2)は、主光軸Pと交差した後、集光レンズ20を再び透過して、発散光束として検出光学系24に導かれる。表面反射光N(2)は、リレーレンズ46を透過した後、焦点面FS2においてFS(+)領域に向かい、主光軸Pの-y側を通ってリレーレンズ46の焦点位置(焦点面FS2)よりも遠方(下流側)で主光軸Pと交差する光束となる。
第2裏面反射光Mr(2)と表面反射光N(2)とは、集光レンズ20のレンズ瞳位置20Aにおいて主光軸Pに対して互いに反対側を通るため、レンズ瞳位置20Aで両者を区別することができる。そして、焦点面FS1及びFS2において、第2裏面反射光Mr(2)と表面反射光N(2)とは、主光軸Pに対して同じ側の領域を通る。その後、表面反射光N(2)は、主光軸Pに対してフォトディテクタ26Aの反対側の領域に到達する。したがって、第2裏面反射光Mr(2)と表面反射光N(2)とが同じフォトディテクタ26Aに入射することはない。
次に、本実施形態に係る亀裂検出方法について説明する。本実施形態の亀裂検出方法は、図4に示した光検出工程(ステップS18)が第1の実施形態とは異なる。そこで、本実施形態に係る光検出工程のみについて説明し、その他の工程の説明を省略する。
図8は、本発明の第2の実施形態に係る光検出工程を示すフローチャートである。図8に示すように、制御部30は、第1光源32Aを制御して(k=1の場合。図4参照)、第1光源32Aから検出光L1を出射させる(ステップS60:検出光出射工程)。
そして、図6に示すように、フォトディテクタ26A及び26Cにより、それぞれ第1裏面反射光Mt(1)及び第2裏面反射光Mr(1)を検出する(ステップS62:検出工程)。一方、k=2の場合には、図7に示すように、フォトディテクタ26C及び26Aにより、それぞれ第1裏面反射光Mt(2)及び第2裏面反射光Mr(2)を検出する。
本実施形態では、表面反射光N(1)を遮光するための遮光手段として、固定式の分岐ミラー70を用いることにより、遮光手段を移動させる手段を設けることなく、外乱光となる表面反射光N(1)を確実に除去することができる。
なお、第1及び第2の実施形態では、2つの光源(第1光源32A及び第2光源32B)からの検出光を用いて亀裂Kの亀裂深さを検出し、その深さの平均値を算出したが、本発明はこれに限定されない。例えば、1つの光源からの検出光のみを用いて亀裂Kの亀裂深さを検出してもよい。
[変形例]
第1及び第2の実施形態では、亀裂Kに当たらずに被加工物Wの裏面で反射した非反射光成分(第1裏面反射光Mt(1)及びMt(2))と、亀裂Kで全反射された反射光成分(第2裏面反射光Mr(1)及びMr(2))を用いて評価値S(式(1)及び(2)参照)を算出したが、本発明はこれに限定されない。例えば、亀裂Kの面が荒れている場合には反射光成分の測定精度が低下する場合がある。このため、非反射光成分のみを用いて亀裂検出を行うことが考えられる。
この場合、集光レンズ20の走査位置(集光点)Ziごとに、非反射光成分(第1裏面反射光Mt(1)及びMt(2))の検出信号の出力Diを記憶する。集光レンズ20の走査位置Ziを裏面側又は表面側から移動させた場合、亀裂Kがない領域を通過した非反射光成分の出力が最大となり、検出光L1(L1A及びL1B)の光束が亀裂Kに当たると、非反射光成分の出力が徐々に減少していく。このため、例えば、検出信号の出力の最大値Dmaxの2分の1となる深さZiを亀裂下端位置又は亀裂上端位置として検出する。
なお、各走査位置Ziに対応する出力Diの中にDi=Dmax/2となる出力が含まれていない場合には、各走査位置Ziに対応する出力DiをZiの関数として補間処理を行って、Di=Dmax/2となる走査位置Ziを算出し、その走査位置を亀裂Kの亀裂深さとして検出するようにしてもよい。
第1の実施形態において、非反射光成分のみを用いて亀裂検出を行う場合、反射光成分(第2裏面反射光Mr(1))の検出のために遮光板60を退避させる必要はないため、図5のステップS56及びS58を省略することができる(図3参照)。さらに、この場合において、第2光源32Bを省略して第1光源32Aのみにより亀裂検出を行う場合には、遮光板60は固定式にすることができ、アクチュエータ62及びフォトディテクタ26Bは不要になる。また、第1光源32Aを省略して第2光源32Bのみとする場合には、フォトディテクタ26Aを省略することができる。
第2の実施形態において、非反射光成分のみを用いて亀裂検出を行う場合、反射光成分(第2裏面反射光Mr(1)及びMr(2))の検出を省略することができる。さらに、この場合において、第1光源32Aを省略して第2光源32Bのみとする場合には、フォトディテクタ26Aを省略することができる。
[第3の実施形態]
次に、本発明の第3の実施形態について説明する。以下の説明において、第1及び第2の実施形態と同様の構成については、同一の符号を付して説明を省略する。
第1及び第2の実施形態では、第1光源32A及び第2光源32Bによる偏射照明を別々に行ったが、本実施形態では、ポラライザー(偏光子)80及び82を用いることにより、第1光源32A及び第2光源32Bによる偏射照明を同時に行う。
図9及び図10は、本発明の第3の実施形態に係る亀裂検出装置の光学系を示す図である。図9及び図10は、それぞれ第1光源32A及び第2光源32Bから出射された第1検出光L1A及び第2検出光L1Bの光路を示している。なお、図9及び図10では、光路を簡略化するために、第1光源32A、第2光源32B、ハーフミラー22、リレーレンズ40及び42、ダイクロイックミラー18並びにフォーカス調整機構28等の一部の光学部材を省略している。
本実施形態では、第1光源32A及び第2光源32Bからそれぞれ出射される第1検出光L1A及び第2検出光L1Bは、互いに直交する直線偏光である。以下の説明では、第1光源32Aから出射される第1検出光L1Aの偏光方向を紙面に垂直とし、第2光源32Bから出射される第2検出光L1Bの偏光方向を紙面に平行とする。
図9及び図10に示すように、本実施形態の亀裂検出装置では、フォトディテクタ26A及び26Cの上流側にそれぞれ第1偏光子80及び第2偏光子82が配置されている。第1偏光子80の偏光方向は紙面に垂直であり、偏光子82の偏光方向は紙面に平行である。
なお、図9及び図10では、第1検出光L1A及び第2検出光L1B並びに第1偏光子80及び第2偏光子82にそれぞれの偏光方向を示す矢印又は鏃を付してある。
まず、第1光源32Aからの第1検出光L1Aについて説明する。図9に示すように、第1光源32Aから出射された第1検出光L1Aは、被加工物Wに照射されて、集光レンズ20により被加工物Wの内部の前側焦点位置FS1に集光される。前側焦点位置FS1に集光された光のうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光の非反射光成分(裏面反射光(第1裏面反射光)Mt(1))は、被加工物Wの裏面(FS(+)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第1裏面反射光Mt(1)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(+)領域を通過する。その後、第1裏面反射光Mt(1)は、リレーレンズ48を介してフォトディテクタ26Aに向かう。
リレーレンズ48とフォトディテクタ26Aの間(フォトディテクタ26Aの上流側)には、偏光方向が紙面に垂直な第1偏光子80が配置されているが、第1裏面反射光Mt(1)の偏光方向も紙面に垂直であるため、第1裏面反射光Mt(1)は、第1偏光子80を通過してフォトディテクタ26Aに到達する。
前側焦点位置FS1に集光された第1検出光L1Aのうち、亀裂Kに当たった光は、亀裂Kにより全反射される。亀裂Kにより全反射された光の反射光成分(裏面反射光(第2裏面反射光)Mr(1))は、被加工物Wの裏面(FS(-)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第2裏面反射光Mr(1)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2のFS(-)領域に向かう。そして、第2裏面反射光Mr(1)は、分岐ミラー70によって反射され、リレーレンズ50を介してフォトディテクタ26Cに向かう。
リレーレンズ50とフォトディテクタ26Cの間(フォトディテクタ26Cの上流側)には、偏光方向が紙面に平行な偏光子82が配置されている。第2裏面反射光Mr(1)の偏光方向は紙面に垂直であるため、第2裏面反射光Mr(1)は、偏光子82により遮光される。
被加工物Wに照射された第1検出光L1Aのうち、被加工物Wの表面(FS(-)領域側)で反射された表面反射光N(1)は、主光軸Pと交差した後、集光レンズ20を再び透過して、発散光束として検出光学系24に導かれる。表面反射光N(1)は、リレーレンズ46を透過した後、焦点面FS2においてFS(-)領域に向かい、主光軸Pの+y側を通ってリレーレンズ46の焦点位置(焦点面FS2)よりも遠方(下流側)で主光軸Pと交差する光束となる。
図9に示すように、焦点面FS2において表面反射光N(1)が到達する側に分岐ミラー70が配置されており、表面反射光N(1)は、分岐ミラー70によって反射されて、リレーレンズ50により、主光軸Pに対してフォトディテクタ26Cの反対側に導光される。そして、表面反射光N(1)も偏光子82により遮光される。
次に、第2光源32Bからの第2検出光L1Bについて説明する。図10に示すように、第2光源32Bから出射された第2検出光L1Bは、被加工物Wに照射されて、集光レンズ20により被加工物Wの内部の前側焦点位置FS1に集光される。前側焦点位置FS1に集光された光のうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光の非反射光成分(裏面反射光(第1裏面反射光)Mt(2))は、被加工物Wの裏面(FS(-)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第1裏面反射光Mt(2)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(-)領域に向かう。そして、第1裏面反射光Mt(2)は、分岐ミラー70によって反射され、リレーレンズ50を介してフォトディテクタ26Cに向かう。
第1裏面反射光Mt(2)の偏光方向は、偏光子82と同様に紙面に平行であるため、第1裏面反射光Mt(2)は、偏光子82を通過してフォトディテクタ26Cに到達する。
前側焦点位置FS1に集光された第2検出光L1Bのうち、亀裂Kに当たった光は、亀裂Kにより全反射される。亀裂Kにより全反射された光の反射光成分(裏面反射光(第2裏面反射光)Mr(2))は、被加工物Wの裏面(FS(+)領域側)で反射され、集光レンズ20を再び透過して、収束光束として検出光学系24に導かれる。第2裏面反射光Mr(2)は、リレーレンズ46を透過した後、リレーレンズ46の焦点位置(焦点面FS2)の手前(上流側)で主光軸Pと交差し、焦点面FS2においてFS(+)領域を通過する。その後、第2裏面反射光Mr(2)は、リレーレンズ48を介してフォトディテクタ26Aに向かう。
第2裏面反射光Mr(2)の偏光方向は紙面に平行であるのに対して、第1偏光子80の偏光方向は紙面に垂直であるため、第2裏面反射光Mr(2)は、第1偏光子80により遮光される。
被加工物Wに照射された検出光L1のうち、被加工物Wの表面(FS(+)領域側)で反射された表面反射光N(2)は、主光軸Pと交差した後、集光レンズ20を再び透過して、発散光束として検出光学系24に導かれる。表面反射光N(2)は、リレーレンズ46を透過した後、焦点面FS2においてFS(+)領域に向かい、主光軸Pの-y側を通ってリレーレンズ46の焦点位置(焦点面FS2)よりも遠方(下流側)で主光軸Pと交差する光束となる。そして、表面反射光N(2)は、主光軸Pに対してフォトディテクタ26Aの反対側の領域に到達する。そして、表面反射光N(2)も偏光子80により遮光される。したがって、第2裏面反射光Mr(2)と表面反射光N(2)とが同じフォトディテクタ26Aに入射することはない。
上記のように、本実施形態では、第1検出光L1A及び第2検出光L1Bを互いに直交する直線偏光とし、フォトディテクタ26A及び26Cの上流側に、それぞれ第1検出光L1A及び第2検出光L1Bとそれぞれ偏光方向が同じ第1偏光子80及び第2偏光子82を配置した。このため、図9に示すように、第1検出光L1Aのうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光の非反射光成分(第1裏面反射光Mt(1))は、第1偏光子80を通過してフォトディテクタ26Aに到達する。一方、図10に示すように、第2検出光L1Bのうち、亀裂Kにより全反射された光の反射光成分(第2裏面反射光Mr(2))は、第1偏光子80により遮光される。また、図10に示すように、第2検出光L1Bのうち、亀裂Kに当たらずに被加工物Wの裏面で反射した光の非反射光成分(第1裏面反射光Mt(2))は、第2偏光子82を通過してフォトディテクタ26Cに到達する。一方、図9に示すように、第1検出光L1Aのうち、亀裂Kにより全反射された光の反射光成分(第2裏面反射光Mr(1))は、第2偏光子82により遮光される。
すなわち、本実施形態では、フォトディテクタ26A及び26Cに向かう反射光成分(第2裏面反射光Mr(2)及びMr(1))を遮光することができる。したがって、本実施形態によれば、第1光源32A及び第2光源32Bから第1検出光L1A及び第2検出光L1Bをそれぞれ同時に出射したとしても、非反射光成分(第1裏面反射光Mt(1)及びMt(2))を同時に検出することができる。
制御部30は、集光レンズ20の走査位置(集光点)Ziごとに、非反射光成分(第1裏面反射光Mt(1)及びMt(2))の検出信号Di(1)及びDi(2)を記憶する。そして、変形例と同様に、検出信号Di(1)及びDi(2)が、検出信号の出力の最大値Dmaxの2分の1となる深さZiを亀裂下端位置又は亀裂上端位置として検出する。
次に、第3の実施形態に係る亀裂検出方法について、図11及び図12を参照して説明する。図11は、本発明の第3の実施形態に係る亀裂検出方法を示すフローチャートである。
(ステップS70)
まず、操作部により亀裂検出処理の開始が指示されると、制御部30は、アライメント機構29を制御にして、集光レンズ20を水平方向に移動させることにより被加工物Wと集光レンズ20との相対的な位置合わせ(アライメント)を行う(アライメント工程)。
(ステップS72)
次に、制御部30は、変数iを1に設定する(i=1)。
(ステップS74)
次に、制御部30は、フォーカス調整機構28のレンズ駆動部を制御して、集光レンズ20の集光点をZiに設定する。例えば、1回目の走査が行われる場合(i=1の場合)には、集光レンズ20の集光点を走査開始位置Z1に設定する。2回目以降の走査が行われる場合(i≧2の場合)には、集光レンズ20の集光点の深さ位置(Z方向位置)をZi=Zi-1+Δzに設定する(集光点変更工程)。
(ステップS76)
次に、第1裏面反射光及び第2裏面反射光の検出を行う(光検出工程)。図12は、本発明の第3の実施形態に係る光検出工程を示すフローチャートである。
まず、制御部30は、第1光源32A及び第2光源32Bを制御して、それぞれ第1検出光L1A及び第2検出光L1Bを出射させる(ステップS70:検出光出射工程)。そして、図9及び図10に示すように、制御部30は、フォトディテクタ26A及び26Cにより、それぞれ第1裏面反射光Mt(1)及びMt(2)を検出する(ステップS92)。
(ステップS78)
次に、制御部30は、変数i=nであるか否かを判断する。i=nでない場合(すなわち、変数iがn未満である場合)にはステップS80に進み、i=nである場合にはステップS82に進む。
(ステップS80)
ステップS78においてi=nでない場合には、制御部30は、iを1つインクリメントして(i=i+1)、ステップS74に戻り、ステップS74からステップS80までの処理を繰り返し行う。
(ステップS82)
ステップS78においてi=nである場合には、制御部30は、ステップS76において走査位置Zi毎に算出した検出信号Di(1)及びDi(2)に基づき、被加工物Wの内部に形成された亀裂Kの亀裂深さを検出する(亀裂検出工程)。検出信号Di(1)及びDi(2)が、それぞれ検出信号の出力の最大値Dmaxの2分の1となる深さdA及びdBを亀裂下端位置又は亀裂上端位置として検出する。
(ステップS84)
次に、制御部30は、第1光源32Aを用いて検出した亀裂Kの亀裂深さ(第1亀裂深さ)dAと、第2光源32Bを用いて検出した亀裂Kの亀裂深さ(第2亀裂深さ)dBとの平均値dM(=(dA+dB)/2)を真の亀裂深さ(亀裂下端位置)として算出する。なお、制御部30は、被加工物Wの内部に形成された亀裂Kの亀裂深さの検出結果として、上述のようにして算出した真の亀裂深さdMを図示しない表示装置(モニタ)に表示する。
本実施形態によれば、第1光源32A及び第2光源32Bから第1検出光L1A及び第2検出光L1Bをそれぞれ同時に出射することができ、第1光源32A及び第2光源32Bの切り替えが不要となる。このため、亀裂検出に要する時間を短縮することができる。
なお、本実施形態では、第1偏光子80及び第2偏光子82の偏光方向を逆にすることにより、亀裂Kにより全反射される反射光成分(第2裏面反射光Mr(1)及びMr(2))を用いて亀裂深さの検出を行うことも可能である。しかしながら、上記の通り、第2裏面反射光Mr(1)及びMr(2)は、亀裂Kの面の荒れの影響を受けるため、非反射光成分である第1裏面反射光Mt(1)及びMt(2)を用いることが好ましい。
また、第1偏光子80及び第2偏光子82の代わりに偏光ビームスプリッタを用いてもよい。この場合、フォトディテクタ26A及び26Cに加えて、第2裏面反射光Mr(1)及びMr(2)の検出用のフォトディテクタを設ける。これにより、第1裏面反射光Mt(1)及びMt(2)に加えて、第2裏面反射光Mr(1)及びMr(2)を同時に検出することが可能になる。この場合、第1裏面反射光Mt(1)及びMt(2)に加えて、第2裏面反射光Mr(1)及びMr(2)の検出信号を用いて、亀裂Kの亀裂深さを検出することができる。亀裂深さの具体的な算出方法としては、例えば、下記の[A]及び[B]が考えられる。
[A]図11のステップS82及びS84と同様に、第2裏面反射光Mr(1)及びMr(2)の検出信号が、それぞれ検出信号の出力の最大値の2分の1となる深さを亀裂深さとして検出する。そして、第1裏面反射光Mt(1)及びMt(2)並びに第2裏面反射光Mr(1)及びMr(2)から検出した4つの亀裂深さの平均値を真の亀裂深さとして算出する。
[B]第1光源32Aを用いて得られる第1裏面反射光Mt(1)と第2裏面反射光Mr(1)とが等しくなる深さを第1亀裂深さとして検出する。また、第2光源32Bを用いて得られる第1裏面反射光Mt(2)と第2裏面反射光Mr(2)とが等しくなる深さを第2亀裂深さとして検出する。そして、第1亀裂深さ及び第2亀裂深さの平均値を真の亀裂深さとして算出する。
10…亀裂検出装置、14…光源部、16…照明光学系、18…ダイクロイックミラー、20…集光レンズ、22…ハーフミラー、24…検出光学系、26…光検出器、28…フォーカス調整機構、29…アライメント機構、30…制御部、32A…第1光源、32B…第2光源、60…遮光板、70…分岐ミラー、80…第1偏光子、82…第2偏光子

Claims (6)

  1. 主光軸に対して平行であって前記主光軸から偏心した光源光軸に沿って検出光を出射する光源部と、
    前記主光軸と同軸のレンズ光軸を有し、前記光源部から出射した前記検出光を被加工物の内部に集光させる集光レンズと、
    前記集光レンズの集光点と共役な位置に配置されており、前記主光軸に対して、前記検出光のうち前記被加工物の表面で反射された表面反射光が到達する側の領域を遮蔽して前記表面反射光を遮光する遮光手段と、
    前記検出光のうち前記被加工物の裏面で反射された裏面反射光を検出し、検出した光に対応する検出信号を発生する光検出手段と、
    前記検出信号に基づき、前記被加工物の内部に形成された亀裂の亀裂深さを検出する亀裂検出手段と、
    を備える亀裂検出装置。
  2. 前記遮光手段は、前記集光レンズの集光点位置において、前記主光軸に対して、前記検出光が入射する側の領域と共役な領域を遮蔽する、
    請求項1記載の亀裂検出装置。
  3. 前記光源部は、
    前記主光軸に対して平行であって前記主光軸に対して一方向に偏心した位置に配置された第1光源光軸に沿って第1検出光を出射する第1光源と、
    前記主光軸に対して平行であって前記主光軸に対して前記一方向とは反対側の他方向に偏心した位置に配置された第2光源光軸に沿って第2検出光を出射する第2光源とを備え、
    前記遮光手段はミラーであり、
    前記光検出手段は、前記ミラーに対して前記主光軸に沿う後方側に配置された第1検出器と、前記ミラーにより分岐された光路の下流側に配置された第2検出器とを備え、
    前記第1検出器は、前記第1検出光のうち、前記亀裂に当たらずに前記被加工物の裏面で反射された裏面反射光を検出し、
    前記第2検出器は、前記第2検出光のうち、前記亀裂に当たらずに前記被加工物の裏面で反射された裏面反射光を検出する、
    請求項1又は2記載の亀裂検出装置。
  4. 前記第1光源及び第2光源からそれぞれ出射される第1検出光及び第2検出光は、互いに直交する直線偏光であり、
    前記第1検出器の上流側に配置され、前記第1検出光と偏光方向が同じ第1偏光子と、
    前記第2検出器の上流側に配置され、前記第2検出光と偏光方向が同じ第2偏光子と、
    をさらに備える、請求項3記載の亀裂検出装置。
  5. 前記第1光源及び前記第2光源は、前記第1検出光及び前記第2検出光を同時に出射し、
    前記第1検出器及び前記第2検出器は、同時に出射された前記第1検出光及び前記第2検出光のうち、前記亀裂に当たらずに前記被加工物の裏面で反射された裏面反射光を検出する、
    請求項4記載の亀裂検出装置。
  6. 主光軸に対して平行であって前記主光軸から偏心した光源光軸の方向に沿って検出光を出射する検出光出射工程と、
    前記主光軸と同軸のレンズ光軸を有する集光レンズにより前記検出光を被加工物の内部に集光させる集光工程と、
    前記集光レンズの集光点と共役な位置に配置されており、前記主光軸に対して、前記検出光のうち前記被加工物の表面で反射された表面反射光が到達する側の領域を遮蔽して前記表面反射光を遮光し、前記検出光のうち前記被加工物の裏面で反射された裏面反射光を検出し、検出した光に対応する検出信号を発生する光検出工程と、
    前記検出信号に基づき、前記被加工物の内部に形成された亀裂の亀裂深さを検出する亀裂検出工程と、
    を備える亀裂検出方法。
JP2020041186A 2020-03-10 2020-03-10 亀裂検出装置及び方法 Active JP7373105B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020041186A JP7373105B2 (ja) 2020-03-10 2020-03-10 亀裂検出装置及び方法
JP2023179572A JP2023174877A (ja) 2020-03-10 2023-10-18 光検出装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020041186A JP7373105B2 (ja) 2020-03-10 2020-03-10 亀裂検出装置及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023179572A Division JP2023174877A (ja) 2020-03-10 2023-10-18 光検出装置及び方法

Publications (2)

Publication Number Publication Date
JP2021143873A JP2021143873A (ja) 2021-09-24
JP7373105B2 true JP7373105B2 (ja) 2023-11-02

Family

ID=77766307

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020041186A Active JP7373105B2 (ja) 2020-03-10 2020-03-10 亀裂検出装置及び方法
JP2023179572A Pending JP2023174877A (ja) 2020-03-10 2023-10-18 光検出装置及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023179572A Pending JP2023174877A (ja) 2020-03-10 2023-10-18 光検出装置及び方法

Country Status (1)

Country Link
JP (2) JP7373105B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349837A (ja) 2000-06-12 2001-12-21 Kirin Techno-System Corp Ptp製剤検査装置および検査方法
JP2005181070A (ja) 2003-12-18 2005-07-07 Nippon Sheet Glass Co Ltd 透明板状体の欠点検出方法及び欠点検出装置
JP2006072147A (ja) 2004-09-03 2006-03-16 Lasertec Corp 検査装置及び検査方法並びにパターン基板の製造方法
JP2014153326A (ja) 2013-02-13 2014-08-25 Lasertec Corp 検査装置、及び検査方法
JP2017133997A (ja) 2016-01-29 2017-08-03 株式会社東京精密 亀裂検出装置及び亀裂検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349837A (ja) 2000-06-12 2001-12-21 Kirin Techno-System Corp Ptp製剤検査装置および検査方法
JP2005181070A (ja) 2003-12-18 2005-07-07 Nippon Sheet Glass Co Ltd 透明板状体の欠点検出方法及び欠点検出装置
JP2006072147A (ja) 2004-09-03 2006-03-16 Lasertec Corp 検査装置及び検査方法並びにパターン基板の製造方法
JP2014153326A (ja) 2013-02-13 2014-08-25 Lasertec Corp 検査装置、及び検査方法
JP2017133997A (ja) 2016-01-29 2017-08-03 株式会社東京精密 亀裂検出装置及び亀裂検出方法

Also Published As

Publication number Publication date
JP2023174877A (ja) 2023-12-08
JP2021143873A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6906897B2 (ja) 亀裂検出装置及び亀裂検出方法
TWI632972B (zh) Position detecting device and laser processing device having the same
TWI586467B (zh) Laser alignment of the laser beam and the use of laser optical axis alignment method of laser processing device
US7916287B2 (en) Surface inspection method and surface inspection apparatus
US7633053B2 (en) Microscope, particularly a laser scanning microscope with adaptive optical arrangement
EP1985973B1 (en) Optical displacement measuring apparatus
TW201538260A (zh) 雷射切割裝置及切割方法
JP6898557B2 (ja) レーザー加工装置及び亀裂検出方法
KR101279578B1 (ko) 레이저 가공용 오토포커싱 장치 및 이를 이용한 오토포커싱 방법
JP7373105B2 (ja) 亀裂検出装置及び方法
JP2020077767A (ja) レーザー加工方法及び装置
KR101361776B1 (ko) 레이저 가공용 오토포커싱 장치 및 이를 이용한 오토포커싱 방법
JP2022117054A (ja) 亀裂検出における検出光の入射角測定方法及び装置並びに亀裂検出方法及び装置
JP7077523B2 (ja) 亀裂検出装置及び亀裂検出方法
JP2023010281A (ja) 亀裂検出装置及び方法
JP7212833B2 (ja) 亀裂検出装置及び方法
JP7333502B2 (ja) 亀裂検出装置
JP2010164354A (ja) オートコリメータ
KR102116618B1 (ko) 광학 시편 표면 검사 장치 및 그 제어 방법
JP2022117053A (ja) 亀裂検出装置及び方法
JP2023137929A (ja) 亀裂検出装置
CN210071136U (zh) 一种对非可见光波段埃里斑图像进行采样的采样机构
JP7417019B2 (ja) 亀裂検出装置及び方法
JP2021156674A (ja) 亀裂検出装置
JPH10133117A (ja) 焦点検出装置を備えた顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230210

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7373105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150