JP7367387B2 - 感圧システム、及び感圧方法 - Google Patents

感圧システム、及び感圧方法 Download PDF

Info

Publication number
JP7367387B2
JP7367387B2 JP2019153548A JP2019153548A JP7367387B2 JP 7367387 B2 JP7367387 B2 JP 7367387B2 JP 2019153548 A JP2019153548 A JP 2019153548A JP 2019153548 A JP2019153548 A JP 2019153548A JP 7367387 B2 JP7367387 B2 JP 7367387B2
Authority
JP
Japan
Prior art keywords
voltage waveform
pressure
phase
pressure sensitive
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019153548A
Other languages
English (en)
Other versions
JP2021032717A (ja
Inventor
英明 山田
富美男 ▲高▼城
朋 池邊
瑞穂 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019153548A priority Critical patent/JP7367387B2/ja
Publication of JP2021032717A publication Critical patent/JP2021032717A/ja
Application granted granted Critical
Publication of JP7367387B2 publication Critical patent/JP7367387B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、感圧システム、及び感圧方法に関する。
特許文献1には、カーボンなどの導電体粒子を分散含有させ、荷重に応じて電気抵抗値が変化する感圧導電ゴムから成る荷重センサーが開示されている。この荷重センサーは、感圧導電ゴムを一対の電極で挟み込み、受けた荷重によって変化する抵抗値の変動を電圧値で計測することで、荷重を検出していた。
特開平1-150825号公報
しかしながら、従来技術のように、抵抗値に基づいて圧力を検出する感圧センサーでは、周囲環境による温度に対する抵抗値の温度特性が大きいため、圧力を精度良く求めることが困難であった。
感圧システムは、第1電圧波形を出力する電圧波形出力部と、前記電圧波形出力部と接続されて前記第1電圧波形を受信し、加えられた圧力に応じて前記第1電圧波形の位相が変動した第2電圧波形を出力する感圧部と、前記電圧波形出力部及び前記感圧部に接続され、前記第1電圧波形及び前記第2電圧波形を受信する検出部と、を備え、前記検出部は、前記第1電圧波形の位相と前記第2電圧波形の位相とに基づいて前記圧力を検出することを特徴とする。
上記の感圧システムにおいて、前記第1電圧波形の周波数は、前記感圧部における共振周波数であることが好ましい。
上記の感圧システムにおいて、前記検出部は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との位相差に基づいて検出することが好ましい。
上記の感圧システムにおいて、前記検出部は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との時間差に基づいて検出することが好ましい。
上記の感圧システムにおいて、前記感圧部は、第1電極と第2電極とを有し、前記第1電極及び前記第2電極は、櫛歯が互いに噛合って配置される櫛歯状電極であることが好ましい。
上記の感圧システムにおいて、前記感圧部は、シリコン基板であることが好ましい。
上記の感圧システムにおいて、前記感圧部は、一対の電極と、前記一対の電極に挟まれる導電性樹脂と、を有することが好ましい。
上記の感圧システムにおいて、前記検出部は、受信した前記第1電圧波形及び前記第2電圧波形の周波数を、低い周波数に変換する周波数変換回路を有することが好ましい。
感圧方法は、所定の電圧波形を出力する電圧波形出力部と、圧力を検知する感圧部と、前記電圧波形出力部及び前記感圧部からの出力信号に基づき圧力を検出する検出部とを有する感圧システムによる感圧方法であって、前記電圧波形出力部が第1電圧波形を出力する第1出力工程と、前記感圧部が前記第1電圧波形を受信し、加えられた前記圧力に応じて前記第1電圧波形の位相が変動した第2電圧波形を出力する第2出力工程と、前記検出部が前記第1電圧波形及び前記第2電圧波形を受信し、前記第1電圧波形の位相と前記第2電圧波形の位相とに基づいて前記圧力を検出する検出工程と、を含むことを特徴とする。
上記の感圧方法において、前記第1電圧波形の周波数は、前記感圧部における共振周波数であることが好ましい。
上記の感圧方法において、前記検出工程は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との位相差に基づいて検出することが好ましい。
上記の感圧方法において、前記検出工程は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との時間差によって検出することが好ましい。
上記の感圧方法において、前記検出工程は、受信した前記第1電圧波形及び前記第2電圧波形の周波数を、低い周波数に変換する周波数変換工程を含むことが好ましい。
実施形態1に係る感圧システムの構成を示すブロック図。 感圧部の構成を示す平面図。 図2におけるA-A線での断面図。 第1電極指を拡大して説明するための断面図。 第1電極指を拡大して説明するための断面図。 感圧システムによる感圧方法を説明するフローチャート図。 各部から出力される信号波形を説明する図。 荷重と電圧との関係を示すグラフ。 感圧システムの温度依存性を示すグラフ。 実施形態2に係る感圧システムの構成を示すブロック図。 実施形態3に係る感圧システムの構成を示すブロック図。 実施形態4に係る感圧部の構成を示す断面図。
1.実施形態1
1-1.感圧システムの構成
図1は、実施形態1に係る感圧システムの構成を示すブロック図である。
感圧システム100は、電圧波形出力部10、感圧部20及び検出部40を備えている。
検出部40は、周波数変換回路30を有し、第1リミッター41、第2リミッター42、論理回路43、低域通過フィルター44、計測部45を備える。周波数変換回路30は、局部発振器31、第1ミキサー32、第1増幅器33、第1フィルター34、及び第2ミキサー35、第2増幅器36、第2フィルター37を備える。
電圧波形出力部10は、所定の周波数を有する第1電圧波形の信号を出力する基準信号発生器である。電圧波形出力部10は、検出部40が有する周波数変換回路30の第1ミキサー32と、感圧部20とに接続される。
感圧部20は、電圧波形出力部10から第1電圧波形を受信し、感圧部20に加えられた圧力に応じて第1電圧波形の位相が変動した第2電圧波形を出力する。感圧部20は、検出部40が有する周波数変換回路30の第2ミキサー35に接続される。
第1ミキサー32及び第2ミキサー35は、局部発振器31と接続され、局部発振器31から発振出力が入力される。
第1ミキサー32は、電圧波形出力部10から受信した第1電圧波形を有する所定の周波数の信号と、局部発振器31で発振された周波数の信号とを合成した複数の周波数成分を含む信号を出力する。第1ミキサー32は、第1増幅器33を介して第1フィルター34に接続される。第1フィルター34は、所望の周波数成分を通過させる通過帯域フィルターであり、第1増幅器33で増幅された複数の周波数成分を含む信号から、所定の周波数よりも低い、通過帯域内の所望の周波数成分を通過させ、通過帯域外の周波数成分を抑圧させた信号を出力する。
第2ミキサー35は、感圧部20から受信した第2電圧波形を有する所定の周波数の信号と、局部発振器31で発振された周波数の信号とを合成した複数の周波数成分を含む信号を出力する。第2ミキサー35は、第2増幅器36を介して第2フィルター37に接続される。第2フィルター37は、所望の周波数成分を通過させる帯域通過型フィルターであり、第2増幅器36で増幅された複数の周波数成分を含む信号から、所定の周波数よりも低い、通過帯域内の所望の周波数成分を通過させ、通過帯域外の周波数成分を抑圧させた信号を出力する。すなわち周波数変換回路30は、所定の周波数の信号を所定の周波数よりも低い周波数の信号に変換する。なお、第1、第2フィルター34,37は、所定の周波数よりも低い所望の周波数成分を通過させ、所定の周波数よりも高い周波数成分を抑圧させる低域通過型フィルターであってもよい。
第1フィルター34は、検出部40の第1リミッター41に接続される。第1リミッター41は、波形整形回路であり、第1フィルター34を通過した所望の周波数の信号の波形を整形した信号を出力する。第1リミッター41は、論理回路43に接続される。
第2フィルター37は、検出部40の第2リミッター42に接続される。第2リミッター42は、波形整形回路であり、第2フィルター37を通過した所望の周波数の信号の波形を整形した信号を出力する。第2リミッター42は、論理回路43に接続される。
論理回路43は、第1リミッター41及び第2リミッター42の双方から入力された信号を排他的論理和演算した信号を出力する。論理回路43は、低域通過フィルター44を介して計測部45に接続される。論理回路43から出力される信号は、第1電圧波形と第2電圧波形との位相の位相差に基づく信号である。計測部45は、低域通過フィルター44で積分された信号を計測する。上述したように、検出部40は、第1電圧波形と第2電圧波形との位相の位相差に基づいて感圧部20に加えられた圧力を検出する。
なお、本実施形態では、感圧システム100の各部が1本の伝送線路で接続され、非平衡駆動するブロック図を示したが、感圧システムの少なくとも一部が2本の伝送線路で接続され、平衡駆動する感圧システムであってもよい。これにより、耐ノイズ性の高い感圧システムが得られる。
1-2.感圧部の構成
図2は、感圧部の構成を示す平面図である。図3は、図2におけるA-A線での断面図である。図4及び図5は、第1電極指を拡大して説明するための断面図である。なお、図2では、説明の便宜上、図3に示す支持基板25を透視して示している。また、図4は、感圧部20に荷重が加わる前の状態を表し、図5は、感圧部20に荷重が加わった後の状態を表している。また、図面に付記する座標において、Z軸に沿う方向は後述する半導体基板23の厚さ方向でありZ軸の矢印方向を「上」とする。
図2及び図3に示すように、感圧部20は、半導体基板23と、半導体基板23の一方の面である上面23aと接触して配置された第1、第2電極21,22と、第1、第2電極21,22を支持する支持基板25と、半導体基板23の他方の面である下面23bに配置された絶縁膜24と、絶縁膜24を覆う第3電極28とを有する。第1電極21は、Y軸に沿って延在するバスバー21bからX軸に沿って伸びる複数の第1電極指21aを有する櫛歯状電極である。第2電極22は、Y軸に沿って延在するバスバー22bからX軸に沿って伸びる複数の第2電極指22aを有する櫛歯状電極である。第1電極指21a及び第2電極指22aは、櫛歯が互いに噛合うように離間した状態で配置される。バスバー21bは、電圧波形出力部10に接続される引出配線26に接続され、バスバー22bは、第2ミキサー35に接続される引出配線27に接続される。また、半導体基板23は、導電性を有しており、この半導体基板23を介して第1電極21と第2電極22とが電気的に接続される。
感圧部20は、感圧部20の厚さ方向に圧力としての荷重Nが加わると、第1電極21と半導体基板23の上面23aとの接触面積が、図4に示す荷重Nが加わらない状態の接触面積より、図5に示す荷重Nが加わった状態の接触面積の方が増大する。また、第2電極22と半導体基板23の上面23aとの接触面積も同様に増大する。第1電極21および第2電極22は、それぞれ、半導体基板23の上面23aと結合力をもって接合されることなく接触している。このように、第1電極21および第2電極22を半導体基板23の上面23aと結合力を有さずに接触していることにより、受けた荷重Nに応じて第1、第2電極21,22と半導体基板23の上面23aとの接触面積が変化し易くなる。
第1電極21、第2電極22および第3電極28の構成材料としては、特に限定されず、例えば、金(Au)、白金(Pt)、銀(Ag)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)等の各種金属、またはこれらのうちの少なくとも1種を含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いてもよい。本実施形態では、第1電極21および第2電極22は、それぞれ、銅(Cu)、その中でも、可撓性を有する銅箔で構成されている。半導体基板23を構成するシリコン(Si)のヤング率が185Gpa程度であるのに対して、銅(Cu)のヤング率は、130Gpa程度である。つまり、第1電極21および第2電極22は、半導体基板23よりも柔らかく変形し易い。そのため、荷重Nが加わった際、第1電極21および第2電極22が半導体基板23に対してより大きく変形して、第1、第2電極21,22と半導体基板23の上面23aとの接触面積がより変化し易くなる。
本実施形態の半導体基板23には、シリコン基板が用いられている。これにより、感圧部20の機械的強度が増す。また、シリコン基板としては、単結晶シリコン基板を用いている。これにより、上述した効果がより顕著となる。なお、単結晶シリコン基板であれば、結晶方位は、限定されず、(110)単結晶シリコン基板、(100)単結晶シリコン基板等を用いることができる。
なお、半導体基板23としては、多結晶シリコン基板、アモルファスシリコン基板等、単結晶シリコン基板以外のシリコン基板を用いてもよい。多結晶シリコン基板やアモルファスシリコン基板は、単結晶シリコン基板と比べて安価であるため、これらを半導体基板23として用いることにより、感圧部20をより安価に製造することができる。また、半導体基板23としては、シリコン基板以外の半導体基板、例えば、Ge基板、GaP、GaAs、InP等の化合物半導体基板を用いてもよい。
第1電極21および第2電極22との接触面である半導体基板23の上面23aの表面粗さは、特に限定されず、例えば、算術平均粗さRaで1nm以上400nm以下の範囲内であることが好ましく、最大高さ粗さRzで10nm以上4500nm以下の範囲内であることが好ましい。これにより、荷重Nを受けた際に上面23aと第1、第2電極21,22との接触面積が変化し易くなる。なお、表面粗さRa、Rzは、JIS B 0681-6に準じた光干渉法により測定することができる。
半導体基板23の厚さとしては、特に限定されないが、例えば、400μm以上600μm以下程度とすることができる。これにより、感圧部20の過度な大型化を防ぎつつ、十分に機械的強度の高い感圧部20が得られる。
図3に示すように、半導体基板23の下面23bは、絶縁膜24を介して第3電極38で覆われている。絶縁膜24は、例えば、樹脂製の絶縁シートで構成され、本実施形態では、ポリイミドから構成された絶縁シートを用いている。第3電極38は、グランド電極であり、接地されている。絶縁膜24を設けることにより、半導体基板23が第3電極38と導通してしまうのを抑制することができる。なお、感圧部20は、感圧部20の設置される対象物に応じて、第3電極38が形成されない構成や、絶縁膜24及び第3電極38が形成されない構成であってもよい。
支持基板25は、第1、第2電極21,22の上側に設けられる。換言すると、第1、第2電極21,22は、半導体基板23と支持基板25との間に形成され、支持基板25は、半導体基板23に対して、第1電極21および第2電極22を支持している。また、第1、第2電極21,22が接続される引出配線26,27も同様に、半導体基板23と支持基板25との間に形成される。これにより、第1、第2電極21,22の電気的接続を、引出配線26,27を介して容易に引き出すことができる。
また、支持基板25は、その外縁部において、図示しない接合部材を介して半導体基板23の上面23aと接合されている。これにより、半導体基板23に対して第1、第2電極21,22がずれたり、離脱したりするのを抑制することができる。支持基板25は、硬質でも、軟質でもよいが、本実施形態では、可撓性を有するフレキシブルプリント配線基板が用いられている。これにより、支持基板25の構成が簡単なものとなる。ただし、支持基板25は、省略してもよい。
なお、本実施形態では、荷重Nが加わっていない状態において、第1、第2電極21,22が半導体基板23の上面23aに接触している感圧部20を例示したが、これに限定するものではない。感圧部は、例えば、荷重Nが加わっていない状態において、第1、第2電極21,22が半導体基板23の上面23aから離間しており、荷重Nが加わると第1、第2電極21,22が半導体基板23の上面23aと接触する構成であってもよい。
また、本実施形態では、受けた荷重Nが大きくなる程、第1、第2電極21,22と半導体基板23との接触面積が増加する感圧部20を例示したが、これに限定するものではない。感圧部は、受けた荷重Nが大きくなる程、第1、第2電極21,22と半導体基板23との接触面積が減少する構成であってもよい。また、感圧部は、荷重Nが加わると、第1電極21と半導体基板23との接触面積、及び第2電極22と半導体基板23との接触面積のいずれか一方の接触面積が変化する構成であってもよい。
この様に構成された感圧部20は、第1電圧波形を受信し、加えられた荷重Nに応じた第2電圧波形を出力する。詳しくは、感圧部20に構成される第1、第2電極21,22は、様々な寄生容量を構成する。例えば、第1、第2電極21,22は、半導体基板23及び絶縁膜24を介した第3電極28との間に並列容量を生じる。半導体基板23の比誘電率は、空気の比誘電率よりも遥かに大きい。このため、感圧部20の厚さ方向に荷重Nが加わると、第1、第2電極21,22と半導体基板23との接触面積の増加に伴い比誘電率も増大し、並列容量が大きくなる。並列容量の変動は、感圧部20に入力される第1電圧波形の位相を変動させる。すなわち、感圧部20は、加えられた荷重Nに応じて、入力された第1電圧波形の位相を変動させた第2電圧波形を出力する。第3電極28を設けた構成の感圧部20は、感圧部20の設置される対象物の影響を受けることなく安定した並列容量を形成するので、荷重Nの検出精度が向上する。
1-3.感圧方法
図6は、感圧システムによる感圧方法を説明するフローチャート図である。なお、図6におけるステップS103の周波数変換工程、及びステップS104の検波工程は、検出工程に相当する。換言すると、検出工程は、周波数変換工程を含んでいる。
ステップS101は、第1電圧波形を出力する第1出力工程としての第1電圧波形出力工程である。電圧波形出力部10は、所定の周波数を有する第1電圧波形を出力する。所定の周波数は、感圧部20における共振周波数であることが好ましい。共振周波数は、感圧部20のインピーダンスが最も低くなる周波数である。本実施形態の感圧部20の共振周波数は、50MHzであり、電圧波形出力部10は、例えば、周波数50MHz、振幅3Vの正弦波を第1ミキサー32及び感圧部20に出力する。
ステップS102は、第2電圧波形を出力する第2出力工程としての第2電圧波形出力工程である。感圧部20は、電圧波形出力部10から第1電圧波形を受信し、感圧部20に加えられた荷重Nに応じて位相変動した第2電圧波形を第2ミキサー35に出力する。
ステップS103は、所定の周波数を所定の周波数よりも低い周波数に変換する周波数変換工程である。局部発振器31は、例えば、47MHzの発振出力を第1ミキサー32及び第2ミキサー35に出力する。周波数変換回路30は、第1電圧波形を第1ミキサー32、第1増幅器33及び第1フィルター34を介して周波数変換する第1系統と、第2電圧波形を第2ミキサー35、第2増幅器36及び第2フィルター37を介して周波数変換する第2系統と、を有している。2つの系統とも、周波数変換方法は同じであるので、以下では、第1系統での周波数変換について説明し、第2系統での周波数変換についての説明は省略する。
第1ミキサー32は、周波数50MHzの第1電圧波形と、周波数47MHzの発振出力とから、加算された97MHzの周波数成分と、減算された3MHzの周波数成分とを含む信号を第1増幅器33に出力する。第1増幅器33は、入力された信号を所定の利得に増幅し、第1フィルター34に出力する。第1フィルター34は、3MHzの周波数成分を通過させる帯域通過型フィルターであり、入力された信号から97MHzの周波数成分や、不要な高調波などを含む通過帯域外の周波数成分を抑圧させ、3MHzの周波数成分を通過させた信号を出力する。第1フィルター34から出力される信号は、第1電圧波形の位相が維持したまま3MHzに周波数変換された正弦波の信号である。同様に、第2フィルター37から出力される信号は、第2電圧波形の位相が維持したまま3MHzに周波数変換された正弦波の信号である。このように、周波数変換回路30は、受信した周波数50MHzの第1電圧波形及び第2電圧波形の信号を周波数3MHzに周波数変換する。
ステップS104は、位相差に基づく信号を生成して検波する検波工程である。図7は、各部から出力される信号を説明する図である。図7の横軸は、時間Tを示し、図7の縦軸は、電圧Vを示す。図7には、最上段の第1段目から最下段の第4段目に向かって、第1リミッター41の出力信号、第2リミッター42の出力信号、論理回路43の出力信号、及び低域通過フィルター44の出力信号を、同一時間軸上に示している。
図7の第1段目に示す出力信号は、第1リミッター41から出力され、論理回路43に入力される信号を図示している。以下では、この信号を「第1出力信号」という。図7の第2段目に示す出力信号は、第2リミッター42から出力され、論理回路43に入力される信号を図示している。以下では、この信号を「第2出力信号」という。
第1リミッター41は、第1フィルター34から出力された正弦波の信号を二値化した矩形波の第1出力信号に変換する。第1出力信号の位相は、感圧部20に入力された第1電圧波形の位相と同位相となる。
第2リミッター42は、第2フィルター37から出力された正弦波の出力を二値化した矩形波の第2出力信号に変換する。第2出力信号の位相は、感圧部20から出力された第2電圧波形の位相と同位相となる。第2出力信号は、第1出力信号の位相に対して、感圧部20に加えられた荷重Nに応じて位相遅れ又は位相進みした信号となる。
図7の第3段目に示す出力信号は、論理回路43から出力され、低域通過フィルター44に入力される信号を図示している。以下では、この信号を「第3出力信号」という。
論理回路43は、入力された第1出力信号と第2出力信号とから排他的論理演算した第3出力信号を出力する。第3出力信号は、第1出力信号と第2出力信号との位相差に応じて時間軸の幅が異なる矩形波となる。
図7の第4段目に示す出力信号は、低域通過フィルター44から出力され、計測部45に入力される信号を図示している。以下では、この信号を「第4出力信号」という。
低域通過フィルター44は、入力された第3出力信号を積分した第4出力信号を出力する。第4出力信号は、第1出力信号と第2出力信号との位相差に応じて電圧値の異なる直流電圧を表す。
計測部45は、入力された第4出力信号の電圧を計測する。すなわち、計測部45は、感圧部20に入力される第1電圧波形と、感圧部20から出力される第2電圧波形との位相差に応じて変化する電圧を計測し、その電圧から感圧部20に加えられた荷重Nを求めることができる。したがって、検出工程及び、検出部40は、第1電圧波形の位相と第2電圧波形の位相との位相差に基づいて感圧部20の圧力を検出する。
図8は、荷重と電圧との関係を示すグラフである。図8の横軸は、感圧部20に加えられた荷重Nを表している。図8の縦軸は、第4出力信号の電圧値Vを表している。図8に示すように、荷重Nと電圧値Vとは、比例関係であり、計測部45で計測された電圧値Vから感圧部20に加えられた荷重Nを求めることができる。
図9は、感圧システムの温度依存性を示すグラフである。図9の横軸は、経過時間を秒で表している。図9の縦軸は、第4出力信号の電圧値の変動を変動率で表している。破線Pは、本実施形態の感圧システム100の位相に基づいて計測される電圧値の変動率を示し、実線Rは、従来技術の感圧システムの抵抗値に基づいて計測される電圧値の変動率を示している。横軸に示す経過時間T1は、感圧システム100及び従来技術の感圧システムに所定の荷重Nを加えた状態を維持したまま、加熱を開始した点を示し、経過時間T2は、加熱を停止した点を示している。
経過時間0~T1の間は、室温での温度一定の区間であり、経過時間T1~T2の間は、室温から約200℃までの加熱区間であり、経過時間T2以降は、約200℃から自然放熱の区間である。破線Pと実線Rとの比較でわかるように、従来技術の感圧システムで計測される電圧値は、周囲環境の温度変化により最大25%変動する。これに対し、感圧システム100で計測される電圧値の変動率は、1%以内であり、感圧システム100の温度特性が極めて優れていることがわかる。
本実施形態によれば、以下の効果を得ることができる。
感圧システム100は、第1電圧波形を出力する電圧波形出力部10と、加えられた荷重Nに応じた第2電圧波形を出力する感圧部20と、第1電圧波形と第2電圧波形との位相に基づいて荷重Nを検出する検出部40とを備える。検出部40は、第1電圧波形と第2電圧波形との位相に応じて感圧部20に加えられた荷重Nを検知する。発明者らは、位相に応じて出力される信号は、周囲温度の温度変化に対する変動が極めて小さいことを見出した。これにより、温度特性に優れ、圧力としての荷重Nの計測精度を向上させた感圧システム100を提供することができる。
電圧波形出力部10は、感圧部20における共振周波数で第1電圧波形を出力する。共振周波数は、インピーダンスが最も小さくなる周波数であり、感圧部20から出力される第2電圧波形のノイズ成分が小さくなるので、荷重Nの計測精度が向上する。
検出部40は、第1電圧波形と第2電圧波形との位相の位相差に応じて電圧値の異なる直流電圧を生成する。これにより、第2電圧波形の位相変化、すなわち感圧部20に加えられた荷重Nを容易に検出することができる。
感圧部20は、櫛歯状の第1電極21及び第2電極22を有する。第1電極21と第2電極22とを、櫛歯が互いに噛合うように離間させることにより、第1電極21および第2電極22の接触を防止しつつ、第1電極21および第2電極22を半導体基板23の上面23a側に効率的に配置することができる。
感圧部20は、シリコン基板からなる半導体基板23を有する。シリコン基板は、機械的強度に優れているので、感圧部20の信頼性が向上する。
検出部40は、所定の周波数を、所定の周波数より低い周波数に変換する周波数変換回路30を備える。第1、第2電圧波形の周波数は、周波数変換回路30によって、より低い周波数に変換されるので、位相変化の検出精度が向上する。
感圧方法は、電圧波形出力部10から第1電圧波形を出力する第1出力工程と、感圧部20に加えられた荷重Nに応じた第2電圧波形を出力する第2出力工程と、第1電圧波形と第2電圧波形との位相に基づいて荷重Nを検出する検出工程とを有する。検出工程において、第1電圧波形と第2電圧波形との位相に応じて感圧部20に加えられた荷重Nが検知される。発明者らは、位相に応じて出力される信号は、周囲温度の温度変化に対する変動が極めて小さいことを見出した。これにより、温度特性に優れ、圧力としての荷重Nの計測精度を向上させた感圧方法を提供することができる。
第1出力工程において、感圧部20における共振周波数で第1電圧波形が電圧波形出力部10から出力される。共振周波数は、インピーダンスが最も小さくなる周波数であり、感圧部20から出力される第2電圧波形のノイズ成分が小さくなるので、荷重Nの計測精度が向上する。
検出工程において、第1電圧波形と第2電圧波形との位相の位相差に応じて電圧値の異なる直流電圧が生成される。これにより、第2電圧波形の位相変化、すなわち感圧部20に加えられた荷重Nを容易に検出することができる。
検出工程における周波数変換工程にて、第1、第2電圧波形の周波数は、所定の周波数から所定の周波数より低い周波数に変換される。第1、第2電圧波形の周波数は、周波数変換回路30によって、より低い周波数に変換されるので、位相変化の検出精度が向上する。
2.実施形態2
図10は、実施形態2に係る感圧システムの構成を示すブロック図である。本実施形態の感圧システム200は、実施形態1の検出部40の構成が異なっている。なお、実施形態1と同一の構成部位については、同一の番号を使用し、重複する説明は省略する。
感圧システム200は、電圧波形出力部10、感圧部20及び検出部240を備える。検出部240は、周波数変換回路30、第1リミッター41、第2リミッター42及び計測部245を有する。
検出工程において、検出部240は、感圧部20に加わる荷重Nを第1電圧波形と第2電圧波形との位相の時間差に基づいて検出する。計測部245は、第1リミッター41から出力される第1出力信号の所定の位相角における時間と、第2リミッター42から出力される第2出力信号の所定の位相角における時間との時間差を計測する。これにより、第2電圧波形の位相変化、すなわち感圧部20に加えられた荷重Nを容易に検出することができる。位相に応じて出力される信号は、周囲温度の温度変化に対する変動が極めて小さいので、温度特性に優れ、圧力としての荷重Nの計測精度を向上させた感圧システム200を提供することができる。
3.実施形態3
図11は、実施形態3に係る感圧システムの構成を示すブロック図である。本実施形態の感圧システム300は、実施形態1の検出部40の構成が異なっている。なお、実施形態1と同一の構成部位については、同一の番号を使用し、重複する説明は省略する。
感圧システム300は、電圧波形出力部10、感圧部20及び検出部340を備える。検出部340は、周波数変換回路330及び計測部45を有し、周波数変換回路330は、ミキサー332及び低域通過フィルター334を備える。
ミキサー332には、電圧波形出力部10から出力された第1電圧波形と、感圧部20から出力された第2電圧波形とが入力される。例えば、ミキサー332は、周波数50MHzの第1電圧波形と、第1電圧波形の周波数と等しい周波数50MHzの第2電圧波形とから、加算された100MHzの周波数成分と、減算された0MHz周波数成分、すなわち直流成分とを含む信号を低域通過フィルター334に出力する。
低域通過フィルター334は、入力された信号から100MHzの周波数成分や、不要な高調波などを含む所定の周波数以上の周波数成分を抑圧させ、直流成分を通過させた信号を出力する。これにより、周波数変換回路330は、周波数50MHzの電圧波形の信号を直流の信号に変換する。低域通過フィルター334から出力される信号は、第2電圧波形の位相変動に応じて電圧値の異なる直流電圧であり、これを計測部45で計測することにより、感圧部20に加えられた荷重Nを求めることができる。位相に応じて出力される信号は、周囲温度の温度変化に対する変動が極めて小さいので、温度特性に優れ、圧力としての荷重Nの計測精度を向上させた感圧システム300を提供することができる。
4.実施形態4
図12は、実施形態4に係る感圧部の構成を示す断面図である。本実施形態の感圧システム400は、実施形態1で説明した感圧部20の構成が異なっている。なお、実施形態1と同一の構成部位については、同一の番号を使用し、重複する説明は省略する。
感圧部420は、一対の電極としての第1電極421及び第2電極422と、第1電極421及び第2電極422に挟まれる導電性樹脂423とを有する。詳しくは、感圧部420は、導電性樹脂423と、導電性樹脂423の上面423aと接して配置された第1電極421と、導電性樹脂423の下面423bと接して配置された第2電極422と、第1電極421を支持する第1支持基板424と、第2電極422を支持する第2支持基板425とを有する。第1、第2電極421,422は、導電性樹脂423を介して互いに対向する平行平板電極である。第1、第2電極421,422の形状は特に限定されず、平面視にて、円形、矩形などで構成することができる。
第1支持基板424は、第1電極421の上側に設けられ、導電性樹脂423に対して、第1電極421を支持している。第2支持基板425は、第2電極422の上側に設けられ、導電性樹脂423に対して、第2電極422を支持している。第1、第2支持基板424,425は、硬質でも、軟質でもよいが、本実施形態では、可撓性を有するフレキシブルプリント配線基板が用いられている。
第1電極421は、電圧波形出力部10に接続される引出配線に接続され、第2電極422は、第2ミキサー35に接続される引出配線に接続される。なお、図12では、引出配線の図示を省略している。
導電性樹脂423は、カーボンなどの導電性を有する粒子を、シリコーンに分散して含有させ、シート状に形成される。導電性樹脂423の樹脂材料は、シリコーンに限らず、ウレタン、エポキシなどを用いることができる。
この様に構成された感圧部420は、第1電圧波形を受信し、加えられた荷重Nに応じた第2電圧波形を出力する。詳しくは、感圧部420に構成される第1電極421と第2電極422とは、導電性樹脂423を介した直列容量を生じる。導電性樹脂423は、可撓性を有するため、感圧部420の厚さ方向に荷重Nが加わると、導電性樹脂423が圧縮され、第1電極421と第2電極422の間隔が狭くなり、直列容量が大きくなる。直列容量の変動は、感圧部420に入力される第1電圧波形の位相を変動させる。すなわち、感圧部420は、加えられた荷重Nに応じて、入力された第1電圧波形の位相を変動させた第2電圧波形を出力する。このような感圧部420を用いることにより、第1電圧波形と第2電圧波形との位相に基づいて感圧部420に加えられた荷重Nを求めることが可能な感圧システム400が構成できる。位相に応じて出力される信号は、周囲温度の温度変化に対する変動が極めて小さいので、温度特性に優れ、圧力としての荷重Nの計測精度を向上させた感圧システム400を提供することができる。
以下に、実施形態から導き出される内容を記載する。
感圧システムは、第1電圧波形を出力する電圧波形出力部と、前記電圧波形出力部と接続されて前記第1電圧波形を受信し、加えられた圧力に応じて前記第1電圧波形の位相が変動した第2電圧波形を出力する感圧部と、前記電圧波形出力部及び前記感圧部に接続され、前記第1電圧波形及び前記第2電圧波形を受信する検出部と、を備え、前記検出部は、前記第1電圧波形の位相と前記第2電圧波形の位相とに基づいて前記圧力を検出することを特徴とする。
この構成によれば、検出部は、感圧部に入力される第1電圧波形と、感圧部から出力される第2電圧波形との位相を指標として圧力を検出する。発明者らは、感圧部に交流電圧を印加すると、感圧部に加えられた圧力に応じて位相が変化し、その位相は周囲環境による温度変化に対して安定していること、すなわち温度特性が良好であることを見出した。これにより、圧力の計測精度を向上させる感圧システムを提供することができる。
上記の感圧システムにおいて、前記第1電圧波形の周波数は、前記感圧部における共振周波数であることが好ましい。
この構成によれば、感圧部には、感圧部の共振周波数である第1電圧波形が入力される。共振周波数は、インピーダンスが最も小さくなるので、感圧部から出力される第2電圧波形のノイズ成分が小さくなり、圧力の計測精度が向上する。
上記の感圧システムにおいて、前記検出部は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との位相差に基づいて検出することが好ましい。
この構成によれば、検出部は、感圧部から出力される第2電圧波形の位相変化を、第1電圧波形と第2電圧波形との位相差で求める。これにより、第2電圧波形の位相変化を容易に検出することができる。
上記の感圧システムにおいて、前記検出部は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との時間差に基づいて検出することが好ましい。
この構成によれば、検出部は、感圧部から出力される第2電圧波形の位相変化を、所定の位相角における第1電圧波形と第2電圧波形との時間差で求める。これにより、第2電圧波形の位相変化を容易に検出することができる。
上記の感圧システムにおいて、前記感圧部は、第1電極と第2電極とを有し、前記第1電極及び前記第2電極は、櫛歯が互いに噛合って配置される櫛歯状電極であることが好ましい。
この構成によれば、第1電極及び第2電極を櫛歯状電極とすることで、第1電極および第2電極の接触を防止しつつ、第1電極および第2電極を同一平面上に配置することができる。
上記の感圧システムにおいて、前記感圧部は、シリコン基板であることが好ましい。
この構成によれば、シリコン基板は、機械的強度に優れているので、感圧部の信頼性が向上する。
上記の感圧システムにおいて、前記感圧部は、一対の電極と、前記一対の電極に挟まれる導電性樹脂と、を有することが好ましい。
この構成によれば、一対の電極で挟んだ導電性樹脂から成る感圧部においても、加えられた圧力に応じて位相が変化する現象が得られるので、圧力の計測精度を向上させる感圧システムを提供することができる。
上記の感圧システムにおいて、受信した前記第1電圧波形及び前記第2電圧波形の周波数を、低い周波数に変換する周波数変換回路を有することが好ましい。
この構成によれば、第1、第2電圧波形は、低い周波数に変換されるので、位相変化の検出精度が向上する。
感圧方法は、所定の電圧波形を出力する電圧波形出力部と、圧力を検知する感圧部と、前記電圧波形出力部及び前記感圧部からの出力信号に基づき圧力を検出する検出部とを有する感圧システムによる感圧方法であって、前記電圧波形出力部が第1電圧波形を出力する第1出力工程と、前記感圧部が前記第1電圧波形を受信し、加えられた前記圧力に応じて前記第1電圧波形の位相が変動した第2電圧波形を出力する第2出力工程と、前記検出部が前記第1電圧波形及び前記第2電圧波形を受信し、前記第1電圧波形の位相と前記第2電圧波形の位相とに基づいて前記圧力を検出する検出工程と、を含むことを特徴とする。
この方法によれば、検出工程において、検出部は、感圧部に入力される第1電圧波形と、感圧部から出力される第2電圧波形との位相を指標として圧力を検出する。発明者らは、感圧部に交流電圧を印加すると、感圧部に加えられた圧力に応じて位相が変化し、その位相は周囲環境による温度変化に対して安定していること、すなわち温度特性が良好であることを見出した。これにより、圧力の計測精度を向上させる感圧方法を提供することができる。
上記の感圧方法において、前記第1電圧波形の周波数は、前記感圧部における共振周波数であることが好ましい。
この方法によれば、第1出力工程において、電圧波形出力部は、感圧部の共振周波数である第1電圧波形を出力する。共振周波数は、インピーダンスが最も小さくなるので、感圧部から出力される第2電圧波形のノイズ成分が小さくなり、圧力の計測精度が向上する。
上記の感圧方法において、前記検出工程は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との位相差に基づいて検出することが好ましい。
この方法によれば、検出工程において、検出部は、第2電圧波形の位相変化を、第1電圧波形と第2電圧波形との位相差で求める。これにより、第2電圧波形の位相変化を容易に検出することができる。
上記の感圧方法において、前記検出工程は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との時間差によって検出することが好ましい。
この方法によれば、検出工程では、感圧部から出力される第2電圧波形の位相変化を、所定の位相角における第1電圧波形と第2電圧波形との時間差で求める。これにより、第2電圧波形の位相変化を容易に検出することができる。
上記の感圧方法において、前記検出工程は、受信した前記第1電圧波形及び前記第2電圧波形の周波数を、低い周波数に変換する周波数変換工程を含むことが好ましい。
この方法によれば、周波数変換工程において、第1、第2電圧波形の周波数は、低い周波数に変換されるので、位相変化の検出精度が向上する。
10…電圧波形出力部、20,420…感圧部、21,421…第1電極、22,422…第2電極、23…半導体基板、30,330…周波数変換回路、40,240,340…検出部、100,200,300,400…感圧システム、423…導電性樹脂。

Claims (13)

  1. 第1電圧波形を出力する電圧波形出力部と、
    前記電圧波形出力部と接続されて前記第1電圧波形を受信し、加えられた圧力に応じて前記第1電圧波形の位相が変動した第2電圧波形を出力する感圧部と、
    前記電圧波形出力部及び前記感圧部に接続され、前記第1電圧波形及び前記第2電圧波形を受信する検出部と、を備え、
    前記感圧部は、一対の電極と、導電性を有し、前記一対の電極に挟まれて前記一対の電極のそれぞれと接触する導電性部材と、前記導電性部材と接合して前記一対の電極の少なくとも一方を支持する支持基板と、を有し、
    前記検出部は、前記第1電圧波形の位相と前記第2電圧波形の位相とに基づいて前記圧力を検出すること、
    を特徴とする感圧システム。
  2. 前記第1電圧波形の周波数は、前記感圧部における共振周波数であること、
    を特徴とする請求項1に記載の感圧システム。
  3. 前記検出部は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との位相差に基づいて検出すること、
    を特徴とする請求項1又は請求項2に記載の感圧システム。
  4. 前記検出部は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との時間差に基づいて検出すること、
    を特徴とする請求項1又は請求項2に記載の感圧システム。
  5. 前記一対の電極は、第1電極と第2電極とを有し、
    前記第1電極及び前記第2電極は、複数の櫛歯が互いに噛合って配置される櫛歯状電極であること、
    を特徴とする請求項1から請求項4のいずれか一項に記載の感圧システム。
  6. 前記導電性部材は、シリコン基板であること、
    を特徴とする請求項1から請求項5のいずれか一項に記載の感圧システム。
  7. 前記導電性部材は、導電性樹脂であること、
    を特徴とする請求項1から請求項4のいずれか一項に記載の感圧システム。
  8. 前記検出部は、受信した前記第1電圧波形及び前記第2電圧波形の周波数を、低い周波数に変換する周波数変換回路を有すること、
    を特徴とする請求項1から請求項6のいずれか一項に記載の感圧システム。
  9. 所定の電圧波形を出力する電圧波形出力部と、一対の電極、導電性を有し、前記一対の電極に挟まれて前記一対の電極のそれぞれと接触する導電性部材、前記導電性部材と接合して前記一対の電極の少なくとも一方を支持する支持基板を有し、圧力を検知する感圧部と、前記電圧波形出力部及び前記感圧部からの出力信号に基づき圧力を検出する検出部とを有する感圧システムによる感圧方法であって、
    前記電圧波形出力部が第1電圧波形を出力する第1出力工程と、
    前記感圧部が前記第1電圧波形を受信し、加えられた前記圧力に応じて前記第1電圧波形の位相が変動した第2電圧波形を出力する第2出力工程と、
    前記検出部が前記第1電圧波形及び前記第2電圧波形を受信し、前記第1電圧波形の位相と前記第2電圧波形の位相とに基づいて前記圧力を検出する検出工程と、を含むこと、
    を特徴とする感圧方法。
  10. 前記第1電圧波形の周波数は、前記感圧部における共振周波数であること、
    を特徴とする請求項9に記載の感圧方法。
  11. 前記検出工程は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との位相差に基づいて検出すること、
    を特徴とする請求項9又は請求項10に記載の感圧方法。
  12. 前記検出工程は、前記圧力を前記第1電圧波形の位相と前記第2電圧波形の位相との時間差によって検出すること、
    を特徴とする請求項9又は請求項10に記載の感圧方法。
  13. 前記検出工程は、受信した前記第1電圧波形及び前記第2電圧波形の周波数を、低い周波数に変換する周波数変換工程を含むこと、
    を特徴とする請求項9から請求項12のいずれか一項に記載の感圧方法。
JP2019153548A 2019-08-26 2019-08-26 感圧システム、及び感圧方法 Active JP7367387B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019153548A JP7367387B2 (ja) 2019-08-26 2019-08-26 感圧システム、及び感圧方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019153548A JP7367387B2 (ja) 2019-08-26 2019-08-26 感圧システム、及び感圧方法

Publications (2)

Publication Number Publication Date
JP2021032717A JP2021032717A (ja) 2021-03-01
JP7367387B2 true JP7367387B2 (ja) 2023-10-24

Family

ID=74676492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153548A Active JP7367387B2 (ja) 2019-08-26 2019-08-26 感圧システム、及び感圧方法

Country Status (1)

Country Link
JP (1) JP7367387B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257217A (ja) 2010-06-08 2011-12-22 Konica Minolta Business Technologies Inc センサ用材料およびこれを備えた感圧センサ
JP5346357B2 (ja) 2011-06-21 2013-11-20 住友ゴム工業株式会社 サイドウォール用ゴム組成物及び空気入りタイヤ
JP2014238268A (ja) 2013-06-05 2014-12-18 日本写真印刷株式会社 圧力検出装置および入力装置
WO2018151268A1 (ja) 2017-02-17 2018-08-23 ソニー株式会社 センサ、入力装置および電子機器
JP2019505771A (ja) 2015-12-18 2019-02-28 レイトラム,エル.エル.シー. コンベヤ測定システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020736B2 (ja) * 1992-06-16 2000-03-15 和廣 岡田 静電容量の変化を利用したセンサ用の信号処理回路
JP6519384B2 (ja) * 2015-07-30 2019-05-29 株式会社デンソー Sawセンサの共振周波数検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257217A (ja) 2010-06-08 2011-12-22 Konica Minolta Business Technologies Inc センサ用材料およびこれを備えた感圧センサ
JP5346357B2 (ja) 2011-06-21 2013-11-20 住友ゴム工業株式会社 サイドウォール用ゴム組成物及び空気入りタイヤ
JP2014238268A (ja) 2013-06-05 2014-12-18 日本写真印刷株式会社 圧力検出装置および入力装置
JP2019505771A (ja) 2015-12-18 2019-02-28 レイトラム,エル.エル.シー. コンベヤ測定システム
WO2018151268A1 (ja) 2017-02-17 2018-08-23 ソニー株式会社 センサ、入力装置および電子機器

Also Published As

Publication number Publication date
JP2021032717A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
US7138809B2 (en) Electrical capacitance proximity sensor
JP5144110B2 (ja) 電圧測定装置
US10340850B2 (en) Crystal oscillator device and method of measuring crystal oscillator characteristic
US8508104B2 (en) Piezoelectric actuator driver circuit
JPH09243447A (ja) 振動検出センサー
US10333480B2 (en) Crystal oscillator device and method of measuring crystal oscillator characteristic
US7343802B2 (en) Dynamic-quantity sensor
US9678144B2 (en) Piezoelectric or electret sensing device
JP2007018839A (ja) 静電容量式近接センサ
US7034551B2 (en) Electrostatic capacitance detection circuit and microphone device
EP1821127A1 (en) Deformable mirror
JP7367387B2 (ja) 感圧システム、及び感圧方法
US20140338469A1 (en) Load sensor
JPH06213918A (ja) 半導体加速度検出装置
JP2009222669A (ja) 質量測定装置
JP6171866B2 (ja) 距離センサー
JP4511207B2 (ja) 圧力センサモジュール
JP4788270B2 (ja) 紙葉類計数装置およびこれを用いた紙葉類検査システム
JP4511206B2 (ja) 圧力センサモジュール
JP2001074767A (ja) 加速度センサおよびその製造方法
JP4511208B2 (ja) 圧力センサモジュール
JP2000338143A (ja) 電流量センサ
US11940337B2 (en) Pressure sensing device, pressure sensing method and electronic terminal with compact structure and high sensitivity
JP2001066317A (ja) 加速度センサ
JP4847807B2 (ja) Qcmセンサ

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7367387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150