JP7341326B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP7341326B2
JP7341326B2 JP2022513738A JP2022513738A JP7341326B2 JP 7341326 B2 JP7341326 B2 JP 7341326B2 JP 2022513738 A JP2022513738 A JP 2022513738A JP 2022513738 A JP2022513738 A JP 2022513738A JP 7341326 B2 JP7341326 B2 JP 7341326B2
Authority
JP
Japan
Prior art keywords
heat exchanger
inflow
section
tube
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022513738A
Other languages
English (en)
Other versions
JPWO2021205536A5 (ja
JPWO2021205536A1 (ja
Inventor
大輔 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021205536A1 publication Critical patent/JPWO2021205536A1/ja
Publication of JPWO2021205536A5 publication Critical patent/JPWO2021205536A5/ja
Application granted granted Critical
Publication of JP7341326B2 publication Critical patent/JP7341326B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本開示は、冷凍サイクル装置に関する。
HFO1123は、地球温暖化係数(GWP:Global Warming Potential)が低い冷媒(低GWP冷媒)として知られている。一方で、HFO1123は不均化反応(自己分解反応)が生じる特性を有し、かつ燃性を有している。
国際公開第2020/003494号(特許文献1)には、R32、CF3I、およびHFO1123を含む非共沸混合冷媒が封止された冷凍サイクル装置が開示されている。特許文献1の冷凍サイクル装置では、冷凍サイクル装置に封止された状態の非共沸混合冷媒におけるR32、CF3I、およびHFO1123の各重量比率が特定されている。これにより、HFO1123がCF3IおよびR32と混ざり合って、HFO1123の不均化反応が抑制されるとともに、非共沸混合冷媒の温度勾配が抑制され、性能低下が抑制されている。
国際公開第2020/003494号
R32、CF3I、およびHFO1123の各々の密度の大小関係は、各々が液相状態にあるときと気相状態にあるときとで、変化する。各々が液相状態にあるとき、CF3Iの密度は、R32およびHFO1123の各密度より高い。一方、各々が気相状態にあるとき、CF3Iの密度は、R32およびHFO1123の各密度より低い。そのため、R32、CF3I、およびHFO1123を含む非共沸混合冷媒において、CF3Iは、R32およびHFO1123と混ざりにくい。CF3IがR32およびHFO1123と十分に混ざっていない状態では、CF3IはHFO1123の不均化反応を抑制する作用に寄与しにくく、当該作用へのCF3Iの寄与度は当該作用へのR32の寄与度よりも低くなる。
本開示の主たる目的は、不均化反応が生じる特性を有する冷媒と不均化反応が生じる特性を有さない冷媒とが混ざりやすく、不均化反応が生じる特性を有する冷媒の不均化反応が生じにくく、性能低下が抑制された冷凍サイクル装置を提供することにある。
本開示に係る冷凍サイクル装置は、非共沸混合冷媒が使用される冷凍サイクル装置である。冷凍サイクル装置は、圧縮機と、流路切り替え部と、非共沸混合冷媒が流出入する第1流出入部および第2流出入部と、第1流出入部と第2流出入部との間に互いに直列に接続されており非共沸混合冷媒が流れる第1管部および第2管部とを含む第1熱交換器と、減圧装置と、第2熱交換器とを備える。非共沸混合冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含む。流路切り替え部は、非共沸混合冷媒が圧縮機、第1熱交換器、減圧装置、および第2熱交換器をこの記載順に流れる第1状態と、非共沸混合冷媒が第1状態とは逆向きに流れる第2状態とを切り替える。第1状態では、非共沸混合冷媒が第1熱交換器内を第1流出入部、第1管部、第2管部、および第2流出入部の順に流れる。第2状態では、非共沸混合冷媒が第1熱交換器内を第2流出入部、第2管部、第1管部、および第1流出入部の順に流れる。第1管部は、凹凸が形成された第1内周面を有している。第2管部は、凹凸が形成された第2内周面を有している。第1管部の第1内周面の面積拡大率は、第2管部の第2内周面の面積拡大率よりも高い。
本開示に係る冷凍サイクル装置は、第1冷媒が循環する第1冷媒回路と、第2冷媒が循環する第2冷媒回路と、第1冷媒と第2冷媒との間で熱交換が行われる中間熱交換器とを備える。第1冷媒回路は、第1冷媒を圧縮する圧縮機と、流路切り替え部と、第1冷媒と空気との間で熱交換が行われる第3熱交換器と、第1冷媒を減圧する減圧装置と、中間熱交換器において、第1冷媒が通過する第1流路とを含む。第2冷媒回路は、第2冷媒を昇圧し搬送するポンプと、中間熱交換器において、第2冷媒が通過する第2流路と、第2冷媒と空気との間で熱交換が行われる第4熱交換器とを含む。第1冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含む非共沸混合冷媒である。中間熱交換器は、第1冷媒が第1流路に流出入する第5流出入部および第6流出入部を含む。第5流出入部は、第6流出入部よりも上方に配置されている。流路切り替え部は、非共沸混合冷媒が圧縮機、第3熱交換器、減圧装置、および中間熱交換器をこの記載順に流れる第1状態と、非共沸混合冷媒が第1状態とは逆向きに流れる第2状態とを切り替える。第1状態では、非共沸混合冷媒が中間熱交換器内を第5流出入部から第6流出入部に向かって流れる。第2状態では、非共沸混合冷媒が中間熱交換器内を第6流出入部から第5流出入部に向かって流れる。
本開示によれば、不均化反応が生じる特性を有する冷媒と不均化反応が生じる特性を有さない冷媒とが混ざりやすく、不均化反応が生じる特性を有する冷媒の不均化反応が生じにくく、性能低下が抑制された冷凍サイクル装置を提供できる。
実施の形態1に係る冷凍サイクル装置を示すブロック図である。 実施の形態1に係る冷凍サイクル装置の熱交換器を示す図である。 図2に示される熱交換器の上部伝熱管の断面図である。 図2に示される熱交換器の下部伝熱管の断面図である。 実施の形態1に係る冷凍サイクル装置の第1変形例の上部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の第1変形例の下部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の第2変形例の上部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の第2変形例の下部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の熱交換器の変形例を示す図である。 実施の形態1に係る冷凍サイクル装置の第3変形例の上部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の第3変形例の下部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の第4変形例の上部伝熱管の部分断面図である。 実施の形態1に係る冷凍サイクル装置の第4変形例の下部伝熱管の部分断面図である。 実施の形態2に係る冷凍サイクル装置を示すブロック図である。 実施の形態2に係る冷凍サイクル装置の熱交換器を示す図である。 R32、CF3I、HFO1123、および非相溶油を含み液温が10℃である液相の混合冷媒が、平滑な内周面を有しかつ水平方向に延在する円管内を流れるときの、各成分の分布を示す模式図である。 R32、CF3I、HFO1123、および非相溶油を含み液温が60℃である液相の混合冷媒が、平滑な内周面を有しかつ水平方向に延在する円管内を流れるときの、各成分の分布を示す模式図である。 R32、CF3I、HFO1123、および非相溶油を含む気相の混合冷媒が平滑な内周面を有しかつ水平方向に延在する円管内を流れるときの、各成分の分布のしやすさを示す模式図である。
以下、図面を参照して、本開示の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
実施の形態1.
実施の形態1に係る冷凍サイクル装置100は、例えばRAC(Room Air Conditioner)として構成されている。図1に示されるように、冷凍サイクル装置100は、室外機110と、室内機120とを備える。室外機110は、圧縮機1と、四方弁2(流路切替部)と、室外熱交換器3(第1熱交換器)と、膨張弁4A(減圧装置)と、膨張弁4B(減圧装置)と、レシーバ5(冷媒容器)と、制御装置10と、室外ファン11と、温度センサ13とを含む。室内機120は、室内熱交換器6(第2熱交換器)と、室内ファン12とを含む。
冷凍サイクル装置100には、R32(ジフルオロメタン(CH22))、CF3I(トリフルオロヨードメタン(CF3I))、およびHFO1123(トリフルオロエチレン(CF=CHF))を含む非共沸混合冷媒が使用される。
冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるR32の重量比率は、例えば43wt%以下である。冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるCF3Iの重量比率は、例えばR32の重量比率以下である。冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるHFO1123の重量比率は、例えば14wt%以上である。不均化反応を抑制する観点から、HFO1123の重量比率が60wt%以上であるときには、CF3Iの重量比率は、好ましくは2wt%以上であり、より好ましくは5wt%程度である。つまり、HFO1123の重量比率が60wt%以上であるときには、CF3Iの重量比率は、2wt%以上5wt%以下である。HFO1123の重量比率が60wt%以上であるときには、CF3Iの重量比率が2wt%よりも多いとHFO1123の不均化反応が抑制され、CF3Iの重量比率が5wt%程度であればHFO1123の不均化反応が十分に抑制される。例えば、HFO1123,R32,およびCF3I間の重量比率は、HFO1123:R32:CF3I=65wt%:30wt%:5wt%である。冷凍サイクル装置100の出荷台数の増加に伴い、非共沸混合冷媒の使用量が増加した場合でも、冷媒に関する規制(例えばモントリオール議定書、あるいはF-gas規制)が満たされるように、R32の重量比率を30wt%以下として、GWPをより低減することが望ましい。R32のGWPは675、CF3IのGWPは約0.4、HFO1123のGWPは約0.3である。上記非共沸混合冷媒のGWPは、R32のGWPよりも低い。
R32、CF3I、およびHFOR1123の標準沸点は、それぞれ-52℃、-22℃、および-59℃である。このようにそれぞれの沸点が違うことによって、気相の非共沸混合冷媒において後述する濃度分布が生じる。
なお、冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるHFO1123、R32およびCF3Iの各重量比率の合計は、好ましくは99.5wt%以上であり、より好ましくは99.7wt%以上であり、最も好ましくは99.9wt%以上である。
なお、GWPの低減が妨げられない範囲で、非共沸混合冷媒は、R32、CF3I、およびHFO1123以外の冷媒(例えば、R1234yf(2,3,3,3-テトラフルオロプロペン(CF3CF=CH2))、R1234ze(E)(トランス-1,3,3,3-テトラフルオロプロペン(trans-CF3CH=CHF)、R290(プロパン(C38))、CO2(二酸化炭素)、またはR1132(トランス-1,2ジフルオロエチレン)を含んでもよい。R1132は不均化反応(自己分解反応)が生じる特性を有している。
圧縮機1には、潤滑油として、非共沸混合冷媒に相溶しない非相溶油が使用される。非相溶油は、例えばアルキルベンゼン油、鉱油、ナフタレン系鉱油およびポリアルファオレフィン油からなる群から選択される少なくとも1つを含む。
四方弁2は、圧縮機1の吐出口と接続されている第1ポートと、レシーバ5を介して圧縮機1の吸入口と接続されている第2ポートと、室外熱交換器3の上部流出入部3Aに接続されている第3ポートと、室内熱交換器6の上部流出入部6Aに接続されている第4ポートとを有している。四方弁2は、室外熱交換器3が凝縮器として作用し室内熱交換器6が蒸発器として作用する第1状態と、室内熱交換器6が凝縮器として作用し室外熱交換器3が蒸発器として作用する第2状態とを切り替えるように形成されている。第1状態は冷房運転時に実現され、第2状態は暖房運転時に実現される。
図2に示されるように、室外熱交換器3は、例えばフィンチューブ熱交換器である。室外熱交換器3は、非共沸混合冷媒が流出入する上部流出入部3A(第1流出入部)および下部流出入部3B(第2流出入部)と、上部流出入部3Aと下部流出入部3Bとの間に互いに直列に接続された複数の上部伝熱管31A(第1管部)および複数の下部伝熱管31B(第2管部)と、各上部伝熱管31Aおよび各下部伝熱管31Bと接続された複数のフィン32とを有している。
上部流出入部3Aは、下部流出入部3Bよりも上方に配置されている。上部流出入部3Aは、延長配管を介して四方弁2の第3ポートと接続されている。下部流出入部3Bは、膨張弁4Aと接続されている。複数の上部伝熱管31Aの各々は、複数の下部伝熱管31Bの各々よりも上方に配置されている。複数の上部伝熱管31Aの各々は、例えば上下方向Aにおいて室外熱交換器3の中心よりも上方に配置されている。複数の下部伝熱管31Bの各々は、例えば上下方向Aにおいて室外熱交換器3の中心よりも下方に配置されている。各上部伝熱管31Aおよび各下部伝熱管31Bは、上下方向Aと交差する方向Bに沿って延びている。
複数の上部伝熱管31Aのうち最も下方に配置された上部伝熱管31Aの方向Bの一端は、例えば、複数の下部伝熱管31Bのうち最も上方に配置された下部伝熱管31Bの方向Bの一端と屈曲部31Cを介して直列に接続されている。複数の上部伝熱管31Aのうち最も下方に配置された上部伝熱管31A以外の各上部伝熱管31Aの方向Bの一端は、屈曲部31Cを介して互いに直列に接続されている。複数の下部伝熱管31Bのうち最も上方に配置された下部伝熱管31B以外の各下部伝熱管31Bの方向Bの一端は、屈曲部31Cを介して互いに直列に接続されている。室外熱交換器3において、上部流出入部3A、複数の上部伝熱管31A、複数の下部伝熱管31B、および下部流出入部3Bは、この記載順に直列に接続されている。
複数のフィン32は、方向Bにおいて互いに間隔を隔てて並んで配置されている。複数の上部伝熱管31Aおよび複数の下部伝熱管31Bの各々は各フィン32を貫通している。
図2に示されるように、室内熱交換器6は、例えばフィンチューブ熱交換器である。室内熱交換器6は、非共沸混合冷媒が流出入する上部流出入部6A(第3流出入部)および下部流出入部6B(第4流出入部)と、上部流出入部6Aと下部流出入部6Bとの間に互いに直列に接続された複数の上部伝熱管61A(第3管部)および複数の下部伝熱管61B(第4管部)と、各上部伝熱管61Aおよび各下部伝熱管61Bと接続された複数のフィン62とを有している。
上部流出入部6Aは、下部流出入部6Bよりも上方に配置されている。上部流出入部6Aは、延長配管を介して四方弁2の第4ポートと接続されている。下部流出入部6Bは、延長配管を介して膨張弁4Bと接続されている。複数の上部伝熱管61Aの各々は、複数の下部伝熱管61Bの各々よりも上方に配置されている。複数の上部伝熱管61Aの各々は、例えば上下方向Aにおいて室内熱交換器6の中心よりも上方に配置されている。複数の下部伝熱管61Bの各々は、例えば上下方向Aにおいて室内熱交換器6の中心よりも下方に配置されている。各上部伝熱管61Aおよび各下部伝熱管61Bは、上下方向Aと交差する方向Bに沿って延びている。
複数の上部伝熱管61Aのうち最も下方に配置された上部伝熱管61Aの方向Bの一端は、例えば、複数の下部伝熱管61のうち最も上方に配置された下部伝熱管61Bの方向Bの一端と屈曲部61Cを介して直列に接続されている。複数の上部伝熱管61Aのうち最も下方に配置された上部伝熱管61A以外の各上部伝熱管61Aの方向Bの一端は、屈曲部61Cを介して互いに直列に接続されている。複数の下部伝熱管61Bのうち最も上方に配置された下部伝熱管61B以外の各下部伝熱管61Bの方向Bの一端は、屈曲部61Cを介して互いに直列に接続されている。室内熱交換器6において、上部流出入部6A、複数の上部伝熱管61A、複数の下部伝熱管61B、および下部流出入部6Bは、この記載順に直列に接続されている。
複数のフィン62は、方向Bにおいて互いに間隔を隔てて並んで配置されている。複数の上部伝熱管61Aおよび複数の下部伝熱管61Bの各々は各フィン62を貫通している。
図3および図4に示されるように、各上部伝熱管31Aおよび各下部伝熱管31Bは、円管として構成されている。
図3に示されるように、各上部伝熱管31Aは、凹凸が形成された第1内周面33Aを有している。第1内周面33Aは、上部伝熱管31Aの内部を流れる非共沸混合冷媒と接する面である。第1内周面33Aには、複数の第1溝部34Aが形成されている。各第1溝部34Aの構成は、例えば互いに等しい。各第1溝部34Aは、上部伝熱管31Aの周方向において互いに間隔を隔てて配置されている。各第1溝部34Aは、上部伝熱管31Aの中心軸Oに対して螺旋状に延在している。各第1溝部34Aの上記周方向の幅は、例えば上部伝熱管31Aの径方向の外周に向かうにつれて狭くなるように形成されている。
図4に示されるように、各下部伝熱管31Bは、凹凸が形成された第2内周面33Bを有している。第2内周面33Bは、下部伝熱管31Bの内部を流れる非共沸混合冷媒と接する面である。第2内周面33Bには、複数の第2溝部34Bが形成されている。各第2溝部34Bの構成は、例えば互いに等しい。各第2溝部34Bは、下部伝熱管31Bの周方向において互いに間隔を隔てて配置されている。各第2溝部34Bは、下部伝熱管31Bの中心軸Oに対して螺旋状に延在している。各第2溝部34Bの上記周方向の幅は、例えば下部伝熱管31Bの径方向の外周に向かうにつれて狭くなるように形成されている。
各上部伝熱管31Aの外形は、例えば各下部伝熱管31Bの外形と同一である。各上部伝熱管31Aの外径は、例えば各下部伝熱管31Bの外径に等しい。各上部伝熱管31Aの内径は、例えば各下部伝熱管31Bの内径に等しい。
上部伝熱管31Aの第1内周面33Aおよび下部伝熱管31Bの第2内周面33Bの各面積は、上記内径が第1内周面33Aおよび第2内周面33Bの内径と等しいが溝部が形成されていない内周面の面積よりも大きい。言い換えると、上部伝熱管31Aの第1内周面33Aおよび下部伝熱管31Bの第2内周面33Bの各面積拡大率は、1以上である。第1内周面33Aおよび第2内周面33Bの各面積拡大率とは、方向Bの長さが互いに等しく、かつ上記内径が第1内周面33Aおよび第2内周面33Bの内径と等しいが溝部が形成されていない内周面の面積を基準とした、比率である。
上部伝熱管31A(第1管部)の第1内周面33Aの面積拡大率は、下部伝熱管31B(第2管部)の第2内周面33Bの面積拡大率よりも高い。図3に示されるように、第1溝部34Aの条数は、上部伝熱管31Aの上記軸方向に垂直な断面において上記周方向に並んで配置されている第1溝部34Aの数と定義される。図4に示されるように、第2溝部34Bの条数は、下部伝熱管31Bの上記軸方向に垂直な断面において上記周方向に並んで配置されている第2溝部34Bの数と定義される。第1溝部34Aの条数は、第2溝部34Bの条数よりも多い。言い換えると、上記周方向における各第1溝部34Aの幅は、上記周方向における各第2溝部34Bの幅よりも狭い。図3および図4に示される上部伝熱管31Aおよび下部伝熱管31Bでは、第1溝部34Aおよび第2溝部34Bとの間の条数の上記大小関係により、上部伝熱管31Aの第1内周面33Aおよび下部伝熱管31Bの第2内周面33Bとの間の面積拡大率の上記大小関係が実現されている。
この場合、各第1溝部34Aの深さ(詳細は後述する)は、例えば各第2溝部34Bの深さと等しい。各第1溝部34Aのリード角(詳細は後述する)は、例えば各第2溝部34Bのリード角と等しい。各上部伝熱管31Aの管肉厚(詳細は後述する)は、例えば各下部伝熱管31Bの管肉厚と等しい。
図3および図4に示されるように、各上部伝熱管61Aおよび各下部伝熱管61Bは、円管として構成されている。
図3に示されるように、各上部伝熱管61Aは、凹凸が形成された第3内周面63Aを有している。内周面63Aは、上部伝熱管61Aの内部を流れる非共沸混合冷媒と接する面である。第3内周面63Aには、複数の溝部64Aが形成されている。各溝部64Aの構成は、例えば互いに等しい。各溝部64Aは、上部伝熱管61Aの周方向において互いに間隔を隔てて配置されている。各溝部64Aは、上部伝熱管61Aの中心軸Oに対して螺旋状に形成されている。各溝部64Aの上記周方向の幅は、例えば上部伝熱管61Aの径方向の外周に向かうにつれて狭くなるように形成されている。
図4に示されるように、各下部伝熱管61Bは、凹凸が形成された第4内周面63Bを有している。第4内周面63Bは、下部伝熱管61Bの内部を流れる非共沸混合冷媒と接する面である。第4内周面63Bには、複数の溝部64Bが形成されている。各溝部64Bの構成は、例えば互いに等しい。各溝部64Bは、下部伝熱管61Bの周方向において互いに間隔を隔てて配置されている。各溝部64Bは、下部伝熱管61Bの中心軸Oに対して螺旋状に形成されている。各溝部64Bの上記周方向の幅は、例えば下部伝熱管61Bの径方向の外周に向かうにつれて狭くなるように形成されている。
各上部伝熱管61Aの外形は、例えば各下部伝熱管61Bの外形と同一である。各上部伝熱管61Aの外径は、例えば各下部伝熱管61Bの外径に等しい。各上部伝熱管61Aの内径は、例えば各下部伝熱管61Bの内径に等しい。
上部伝熱管61Aの第3内周面63Aおよび下部伝熱管61Bの第4内周面63Bの各面積は、上記内径が第3内周面63Aおよび第4内周面63Bの内径と等しいが溝部が形成されていない内周面の面積よりも大きい。言い換えると、上部伝熱管61Aの第3内周面63Aおよび下部伝熱管61Bの第4内周面63Bの各面積拡大率は、1以上である。第3内周面63Aおよび第4内周面63Bの各面積拡大率とは、上記内径が第3内周面63Aおよび第4内周面63Bの内径と等しいが溝部が形成されていない内周面の面積を基準とした、比率である。
上部伝熱管61A(第3管部)の第3内周面63Aの面積拡大率は、下部伝熱管61B(第4管部)の第4内周面63Bの面積拡大率よりも高い。図3に示されるように、溝部64Aの条数は、上部伝熱管61Aの上記軸方向に垂直な断面において上記周方向に並んで配置されている溝部64Aの数と定義される。図4に示されるように、溝部64Bの条数は、下部伝熱管61Bの上記軸方向に垂直な断面において上記周方向に並んで配置されている溝部64Bの数と定義される。溝部64Aの条数は、溝部64Bの条数よりも多い。言い換えると、上記周方向における各溝部64Aの幅は、上記周方向における各溝部64Bの幅よりも狭い。図3および図4に示される上部伝熱管61Aおよび下部伝熱管61Bでは、溝部64Aおよび溝部64Bとの間の条数の大小関係により、上部伝熱管61Aの第3内周面63Aおよび下部伝熱管61Bの第4内周面63Bとの間の面積拡大率の大小関係が実現されている。
この場合、各第1溝部34Aの深さ(詳細は後述する)は、例えば各第2溝部34Bの深さと等しい。各第1溝部34Aのリード角(詳細は後述する)は、例えば各第2溝部34Bのリード角と等しい。各上部伝熱管31Aの管肉厚(詳細は後述する)は、例えば各下部伝熱管31Bの管肉厚と等しい。
制御装置10は、圧縮機1の駆動周波数を制御することにより、不図示の温度センサによって取得する室内機120内の温度が所望の温度(例えばユーザによって設定された温度)となるように圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置10は、非共沸混合冷媒の過熱度または過冷却度が所望の範囲の値となるように膨張弁4A,4Bの開度を制御する。制御装置10は、室外ファン11および室内ファン12の単位時間当たりの送風量を制御する。制御装置10は、温度センサ13から圧縮機1から吐出される非共沸混合冷媒の吐出温度Tdを取得する。制御装置10は、四方弁2を制御して、非共沸混合冷媒の循環方向を切り替える。
制御装置10は、四方弁2を制御して、冷房運転(第1状態)と暖房運転(第2状態)とを切り替える。
冷房運転において、非共沸混合冷媒は、圧縮機1、四方弁2、室外熱交換器3膨張弁4A、レシーバ5、膨張弁4B、室内熱交換器6、四方弁2、およびレシーバ5を、この記載順に循環する。膨張弁4Aからレシーバ5に流入した非共沸混合冷媒の一部は、液相の非共沸混合冷媒と気相の非共沸混合冷媒とに分離し、レシーバ5に貯留される。冷房運転において、室外熱交換器3は凝縮器として作用し、室内熱交換器6は蒸発器として作用する。
冷房運転において、非共沸混合冷媒は、室外熱交換器3の内部を、上部流出入部3A、複数の上部伝熱管31A、複数の下部伝熱管31B、および下部流出入部3Bの順に流れて凝縮する。上部流出入部3Aおよび複数の上部伝熱管31Aには、主に気相の非共沸混合冷媒が流れる。複数の下部伝熱管31Bおよび下部流出入部3Bには、主に液相の非共沸混合冷媒が流れる。
冷房運転において、非共沸混合冷媒は、室内熱交換器6の内部を、下部流出入部6B、複数の下部伝熱管61B、複数の上部伝熱管61A、および上部流出入部6Aの順に流れて蒸発する。下部流出入部Bおよび複数の下部伝熱管1Bには、主に気液二相の非共沸混合冷媒が流れる。複数の上部伝熱管1Aおよび上部流出入部6Aには、主に気相の非共沸混合冷媒が流れる。
暖房運転において、非共沸混合冷媒は、圧縮機1、四方弁2、室内熱交換器6、膨張弁4B、レシーバ5、膨張弁4A、室外熱交換器3、四方弁2、およびレシーバ5を、この記載順に循環する。膨張弁4Bからレシーバ5に流入した非共沸混合冷媒の一部は、液相の非共沸混合冷媒と気相の非共沸混合冷媒とに分離し、レシーバ5に貯留される。暖房運転において、室外熱交換器3は蒸発器として作用し、室内熱交換器6は凝縮器として作用する。
暖房運転において、非共沸混合冷媒は、室内熱交換器6の内部を、上部流出入部6A、複数の上部伝熱管61A、複数の下部伝熱管61B、および下部流出入部6Bの順に流れて凝縮する。上部流出入部6Aおよび複数の上部伝熱管61Aには、主に気相の非共沸混合冷媒が流れる。複数の下部伝熱管61Bおよび下部流出入部6Bには、主に液相の非共沸混合冷媒が流れる。
暖房運転において、非共沸混合冷媒は、室外熱交換器3の内部を、下部流出入部3B、複数の下部伝熱管31B、複数の上部伝熱管31A、および上部流出入部3Aの順に流れて蒸発する。下部流出入部3Bおよび複数の下部伝熱管31Bには、主に気液二相の非共沸混合冷媒が流れる。複数の上部伝熱管31Aおよび上部流出入部3Aには、主に気相の非共沸混合冷媒が流れる。
<作用効果>
表1は、R32、CF3I、HFO1123、および非相溶油の一例としてアルキルベンゼン油の各密度を示す。図16~図18は、R32、CF3I、HFO1123、および上記非相溶油の混合冷媒が水平方向に延在しかつ内周面が平滑である円管内を流れるときの状態を示す模式図である。図16は、液相でありかつ温度が10℃である上記混合冷媒の状態を示す模式図である。図17は、液相でありかつ温度が60℃である上記混合冷媒の状態を示す模式図である。図18は、気相の上記混合冷媒の状態を示す模式図である。表1および図16~図18に示されるように、R32、CF3I、およびHFO1123の各々の密度の大小関係は、各々が液相状態にあるときと気相状態にあるときとで、変化する。
Figure 0007341326000001
各冷媒が液相状態にあるとき、各冷媒の温度が10℃であるときの各密度の大小関係は、各冷媒の温度が60℃であるときの各密度の大小関係と等しい。各冷媒が液相状態にあるとき、各冷媒の温度によらず、CF3Iの密度はR32およびHFO1123の各密度より高く、かつR32およびHFO1123の各密度は等しい。
各冷媒が液相状態にあるとき、各冷媒と非相溶油との密度の大小関係は、各々の温度が10℃であるときと、各々の温度が60℃であるときとで、変化する。上記各冷媒が液相状態にありかつ各冷媒および上記非相溶油の各温度が10℃であるとき、各冷媒の密度は非相溶油の密度よりも高い。一方、上記各冷媒が液相状態にありかつ各冷媒および上記非相溶油の各温度が60℃であるとき、R32およびHFO1123の各密度は非相溶油の密度より低いが、CF3Iの密度は非相溶油の密度よりも高い。
つまり、図16および図17に示されるように、非共沸混合冷媒が液相状態にあるときには、その温度によらず、CF3Iは、R32、HFO1123、および非相溶油よりも下方に分布しやすい。図16に示されるように、非共沸混合冷媒が液相状態にありかつその温度が10℃であるときには、CF3IはHFO1123およびR32と接するように分布しやすい。図17に示されるように、非共沸混合冷媒が液相状態にありかつその温度が60℃であるときには、上下方向AにおいてCF3IとHFO1123との間に非相溶油が分布しやすい。
各冷媒が気相状態にあるとき、各冷媒の温度が10℃であるときの各密度の大小関係は、各冷媒の温度が60℃であるときの各密度の大小関係と等しい。各冷媒が気相状態にあるとき、各冷媒の温度によらず、CF3Iの密度はR32およびHFO1123の各密度より低く、かつHFO1123の密度はR32の密度よりも高い。
つまり、図18に示されるように、非共沸混合冷媒が気相状態にあるときには、その温度によらず、CF3Iは、R32、HFO1123、および非相溶油よりも上方に分布しやすい。非共沸混合冷媒が気相状態にあるときには、上下方向AにおいてCF3IとHFO1123との間にR32が分布しやすい。
そのため、例えば各熱交換器の伝熱管の内周面が平滑な面として構成されている比較例としての冷凍サイクル装置では、非共沸混合冷媒が撹拌されにくく、CF3IがHFO1123と混合しにくいため、HFO1123の不均化反応を抑制する作用へのCF3Iの寄与度は、当該作用へのR32の寄与度よりも低くなる。
これに対し、冷凍サイクル装置100では、室外熱交換器3の上部伝熱管31Aおよび下部伝熱管31Bの各々が第1溝部34Aおよび第2溝部34Bを有しているため、上記比較例としての冷凍サイクル装置と比べて、非共沸混合冷媒が撹拌されやすい。
さらに、冷凍サイクル装置100では、上部伝熱管31Aの第1内周面33Aの面積拡大率は下部伝熱管31Bの第2内周面33Bの面積拡大率よりも高いため、非共沸混合冷媒は下部伝熱管31Bにおいてよりも上部伝熱管31Aにおいて撹拌されやすい。
例えば室外熱交換器3が凝縮器として作用する冷房運転時には、CF3IとHFO1123との間にR32が分布しやすい気相状態の非共沸混合冷媒が上部伝熱管31Aを流れる。上述のように上部伝熱管31Aを流れる非共沸混合冷媒は撹拌されやすいため、CF3I、HFO1123、および両者の間に分布したR32が撹拌されやすく、CF3IがHFO1123と混合しやすくなる。その結果、冷凍サイクル装置100では、上記比較例としての冷凍サイクル装置と比べて、CF3IがR32およびHFO1123と混ざりやすいため、HFO1123の不均化反応が生じにくく、性能低下が抑制されている。
さらに、冷凍サイクル装置100では、室内熱交換器6の上部伝熱管61Aおよび下部伝熱管61Bの各々が溝部64Aおよび溝部64Bを有しているため、上記比較例としての冷凍サイクル装置と比べて、非共沸混合冷媒が撹拌されやすい。
さらに、冷凍サイクル装置100では、上部伝熱管61Aの内周面の面積拡大率は下部伝熱管61Bの内周面の面積拡大率よりも高いため、非共沸混合冷媒は下部伝熱管61Bよりも上部伝熱管61Aにおいて撹拌されやすい。
例えば室内熱交換器6が凝縮器として作用する暖房運転時には、CF3IとHFO1123との間にR32が分布しやすい気相状態の非共沸混合冷媒が上部伝熱管61Aを流れるため、R32が撹拌されてCF3IがHFO1123と混合しやすくなる。その結果、冷凍サイクル装置100では、上記比較例としての冷凍サイクル装置と比べて、CF3IがR32およびHFO1123と混ざりやすいため、HFO1123の不均化反応が生じにくく、性能低下が抑制されている。
また、冷凍サイクル装置100では、下部伝熱管31Bの第2内周面33Bの面積拡大率が上部伝熱管31Aの第1内周面33Aの面積拡大率と同等である場合、下部伝熱管61Bの第4内周面63Bの面積拡大率が上部伝熱管61Aの第3内周面63Aの面積拡大率と同等である場合、と比べて、室外熱交換器3および室内熱交換器6の全体での非共沸混合冷媒の圧力損失が低減されている。そのため、冷凍サイクル装置100では、性能低下がより効果的に抑制されている。
<変形例>
冷凍サイクル装置100では、第1溝部34Aの数が第2溝部34Bの数よりも多いことのみによって、上部伝熱管31Aの内周面の面積拡大率が下部伝熱管31Bの内周面の面積拡大率よりも大きくされているが、これに限られるものではない。上部伝熱管31Aと下部伝熱管31Bとの間の内周面の面積拡大率の大小関係は、第1溝部34Aおよび第2溝部34Bの数、深さ、およびリード角の少なくともいずれかの大小関係によって、実現されていてもよい。
図5および図6は、上部伝熱管31Aと下部伝熱管31Bとの間の内周面の面積拡大率の大小関係が第1溝部34Aおよび第2溝部34Bの深さの大小関係によって実現されている冷凍サイクル装置100の第1の変形例を示している。
図5に示されるように、第1溝部34Aの深さH1は、第1溝部34Aの上記周方向の中心における、第1内周面33Aを延長した仮想線L1と第1溝部34Aの内面との間の距離と定義される。各第1溝部34Aの深さH1は、互いに等しい。
図6に示されるように、第2溝部34Bの深さH2は、第2溝部34Bの上記周方向の中心における、第2内周面33Bを延長した仮想線L2と第2溝部34Bの内面との間の距離と定義される。各第2溝部34Bの深さH2は、互いに等しい。
上記第1変形例では、第1溝部34Aの深さH1は、第2溝部34Bの深さH2よりも深い。この場合、第1溝部34Aの数が第2溝部34Bの数と等しく、第1溝部34Aのリード角が第2溝部34Bのリード角と等しくても、上部伝熱管31Aの第1内周面33Aの面積拡大率が下部伝熱管31Bの第2内周面33Bの面積拡大率よりも大きくなる。上記第1変形例では、1つの第1溝部34Aのみが上部伝熱管31Aに形成され、1つの第2溝部34Bのみが下部伝熱管31Bに形成されていてもよい。
図7および図8は、上部伝熱管31Aと下部伝熱管31Bとの間の内周面の面積拡大率の大小関係が第1溝部34Aおよび第2溝部34Bのリード角の大小関係によって実現されている冷凍サイクル装置100の第2の変形例を示している。
図7に示されるように、第1溝部34Aのリード角θ1は、上部伝熱管31Aの中心軸に沿った断面において、第1溝部34Aの延在方向が上部伝熱管31Aの中心軸Oに対して成す角度と定義される。各第1溝部34Aのリード角θ1は、互いに等しい。
図8に示されるように、第2溝部34Bのリード角θ2は、下部伝熱管31Bの中心軸に沿った断面において、第2溝部34Bの延在方向が下部伝熱管31Bの中心軸Oに対して成す角度と定義される。各第2溝部34Bのリード角θ2は、互いに等しい。
第2変形例では、各第1溝部34Aのリード角θ1が、各第2溝部34Bのリード角θ2よりも大きい。この場合、第1溝部34Aの数が第2溝部34Bの数と等しく、第1溝部34Aの深さが第2溝部34Bの深さと等しくても、上部伝熱管31Aの第1内周面33Aの面積拡大率が下部伝熱管31Bの第2内周面33Bの面積拡大率よりも大きくなる。上記第2変形例では、1つの第1溝部34Aのみが上部伝熱管31Aに形成され、1つの第2溝部34Bのみが下部伝熱管31Bに形成されていてもよい。
なお、冷凍サイクル装置100では、実施の形態1、第1変形例、および第2変形例のうちの2つが組み合わされていてもよいし、実施の形態1、第1変形例、および第2変形例のうちの全てが組み合わされていてもよい。例えば、第1溝部34Aの数が第2溝部34Bの数よりも多く、各第1溝部34Aのリード角θ1が各第2溝部34Bのリード角θ2よりも大きく、かつ各第1溝部34Aのリード角θ1が、各第2溝部34Bのリード角θ2よりも大きくてもよい。
同様に、冷凍サイクル装置100では、上部伝熱管61Aと下部伝熱管61Bとの間の内周面の面積拡大率の大小関係が、溝部64Aおよび溝部64Bの数、深さ、およびリード角の少なくともいずれかの大小関係によって、実現されていてもよい。
また、冷凍サイクル装置100では、上部伝熱管31A,下部伝熱管31B、上部伝熱管61A、および下部伝熱管61Bの各々は円管として構成されているが、これに限られるものではない。図10~図13に示されるように、上部伝熱管31A、下部伝熱管31B、上部伝熱管61A、および下部伝熱管61Bの各々は、扁平管として構成されていていてもよい。上部伝熱管31Aの外形は下部伝熱管31Bの外形と同一である。上部伝熱管31Aの管肉厚Wは例えば下部伝熱管31Bの管肉厚Wと等しい。上部伝熱管31Aおよび下部伝熱管31Bには、内部空間を複数の微小空間に区画する少なくとも1つの壁部、および内部空間に面する少なくとも1つの凹凸、の少なくともいずれかが形成されている。この場合、上部伝熱管31Aおよび下部伝熱管31Bの各面積拡大率とは、方向Bの長さおよび管肉厚が上部伝熱管31Aおよび下部伝熱管31Bと等しいが、壁部および凹凸が形成されていない内周面の面積を基準とした、比率として定義される。
図10および図11に示されるように、上部伝熱管31A,61Aおよび下部伝熱管31B,61Bには、例えば複数の壁部38A,38B,68A,68Bが形成されている。上部伝熱管31A,61Aに形成されている壁部38A,68Aの数(言い換えると微小空間の数)は、例えば下部伝熱管31B,61Bに形成されている壁部38B,68Bの数(言い換えると微小空間の数)よりも多い。
図12および図13に示されるように、上部伝熱管31A,61Aおよび下部伝熱管31B,61Bには、例えば複数の壁部38A,38B,68A,68Bと、各壁部によって区画された各微小空間に面する複数の凹凸39A,39B,69A,69Bが形成されている。各壁部および各凹凸は、上部伝熱管31A,61Aが延在する方向に沿って延びている。上部伝熱管31A,61Aに形成されている凹凸39A,69Aの数は、例えば下部伝熱管31B,61Bに形成されている凹凸39B,69Bの数よりも多い。なお、図12および図13に示される上部伝熱管31A,61Aおよび下部伝熱管31B,61Bにおいて、壁部38A,68Aの数は、例えば下部伝熱管31B,61Bに形成されている壁部38B,68Bの数と同じであってもよいが、これよりも多くてもよい。
また、冷凍サイクル装置100の室外熱交換器3および室内熱交換器6の各々は、フィンチューブ熱交換器として構成されているが、これに限られるものではない。図9に示されるように、室外熱交換器3および室内熱交換器6の各々は、コルゲート熱交換器として構成されていてもよい。
図9に示されるように、コルゲート熱交換器として構成された室外熱交換器3は、上部流出入部3A(第1流出入部)に接続された上部ヘッダ35A(第1ヘッダ)と、下部流出入部3B(第2流出入部)に接続された下部ヘッダ35B(第2ヘッダ)と、上部ヘッダ35Aと下部ヘッダ35Bとの間に接続され上下方向Aに沿って延びる複数の伝熱管36と、複数のコルゲートフィン37とを含む。上部ヘッダ35Aは、下部ヘッダ35Bよりも上方に配置されている。上部ヘッダ35Aは、複数の伝熱管36の各上端と接続されている。下部ヘッダ35Bは、複数の伝熱管36の各下端と接続されている。上部ヘッダ35Aおよび下部ヘッダ35Bは、非共沸混合冷媒を複数の伝熱管36に分配し、または複数の伝熱管36を流れた非共沸混合冷媒を合流する。上部ヘッダ35Aおよび下部ヘッダ35Bは、上下方向Aと交差する方向Bに沿って延びている。上部ヘッダ35Aの内周面の面積拡大率は、下部ヘッダ35Bの内周面の面積拡大率よりも高い。
図9に示されるように、コルゲート熱交換器として構成された室内熱交換器6は、上部流出入部6A(第3流出入部)に接続された上部ヘッダ65A(第3ヘッダ)と、下部流出入部6B(第2流出入部)に接続された下部ヘッダ65B(第4ヘッダ)と、上部ヘッダ65Aと下部ヘッダ65Bとの間に接続され上下方向Aに沿って延びる複数の伝熱管66と、複数のコルゲートフィン67とを含む。上部ヘッダ65Aは、下部ヘッダ65Bよりも上方に配置されている。上部ヘッダ65Aは、複数の伝熱管66の各上端と接続されている。下部ヘッダ65Bは、複数の伝熱管66の各下端と接続されている。上部ヘッダ65Aおよび下部ヘッダ65Bは、非共沸混合冷媒を複数の伝熱管66に分配し、または複数の伝熱管66を流れた非共沸混合冷媒を合流する。上部ヘッダ65Aおよび下部ヘッダ65Bは、上下方向Aと交差する方向Bに沿って延びている。上部ヘッダ65Aは、凹凸が形成された内周面(第1内周面)を有している。下部ヘッダ65Bは、凹凸が形成された内周面(第2内周面)を有している。上部ヘッダ65Aの内周面(第1内周面)の面積拡大率は、下部ヘッダ65Bの内周面(第2内周面)の面積拡大率よりも高い。
上部ヘッダ35Aおよび上部ヘッダ65Aは、図3、図5、および図7の各々に示される第1管部としての上部伝熱管31Aおよび上部伝熱管61Aと同様の構成を備えている。下部ヘッダ35Bおよび下部ヘッダ65Bは、図4、図6、および図8の各々に示される第2管部としての下部伝熱管31Bおよび下部伝熱管61Bと同様の構成を備えている。
冷凍サイクル装置100では、室外熱交換器3および室内熱交換器6の一方が図2に示されるフィンチューブ熱交換器であって、室外熱交換器3および室内熱交換器6の他方が図9に示されるコルゲート熱交換器であってもよい。
また、冷凍サイクル装置100では、室外熱交換器3および室内熱交換器6の少なくとも一方が上記構成を備えている限りにおいて、室外熱交換器3または室内熱交換器6が従来の熱交換器として構成されていてもよい。例えば室外熱交換器3の上部伝熱管31Aの第1内周面の面積拡大率が下部伝熱管31Bの第2内周面の面積拡大率よりも高く、室内熱交換器6の上部伝熱管61Aの第3内周面の面積拡大率は下部伝熱管61Bの第4内周面の面積拡大率と等しくてもよい。また、例えば室内熱交換器6の上部伝熱管61Aの内周面の面積拡大率は下部伝熱管61Bの内周面の面積拡大率よりも高く、室外熱交換器3の上部伝熱管31Aの内周面の面積拡大率が下部伝熱管31Bの内周面の面積拡大率と等しくてもよい。
実施の形態2.
実施の形態2に係る冷凍サイクル装置100は、第1冷媒が循環する第1冷媒回路130と、第2冷媒が循環する第2冷媒回路140とを備える。第1冷媒回路130は、「室外側サイクル」、「熱源側サイクル」または「一次回路」に相当する。第2冷媒回路140は、「室内側サイクル」、「利用側サイクル」または「二次回路」に相当する。
第1冷媒回路130は、圧縮機1、四方弁2、室外熱交換器3(第3熱交換器)、膨張装置4、中間熱交換器7の第1流路H1を含む。
第1冷媒は、R32、CF3I、およびHFO1123が混合されることによってGWPが低減された非共沸混合冷媒である。第1冷媒は、実施の形態1における非共沸混合冷媒と同等の構成を備えている。第2冷媒は、燃焼下限濃度が第1冷媒と比べて低い冷媒であり、例えばCF3I単一冷媒またはCF3Iを含むR466A等の混合冷媒である。
圧縮機1は、第1冷媒を圧縮して吐出する。圧縮機1は、実施の形態1における圧縮機1と同様の構成を備えている。
四方弁2は、第1冷媒の流路を切り替える。四方弁2は、圧縮機1の吐出口と接続されている第1ポートと、圧縮機1の吸入口と接続されている第2ポートと、室外熱交換器3に接続されている第3ポートと、中間熱交換器7の下部流出入部7Bと接続されている第4ポートとを有している。四方弁2は、圧縮機1から吐出された第1冷媒の流路を切替える。図14において実線矢印で示す方向に第1冷媒を循環させる冷房運転時には、四方弁2は、圧縮機1から室外熱交換器3に向かう流路を形成する。一方、図14において破線矢印で示す方向に第1冷媒を循環させる暖房運転時には、四方弁2は、圧縮機1から中間熱交換器7に向かう流路を形成する。
室外熱交換器3では、第1冷媒と室外の空気との間で熱交換が行われる。膨張装置4は、内部を通過する冷媒を減圧および膨張させて低温かつ低圧の冷媒にするものである。膨張装置4として、例えば、電子膨張弁を使用することができる。
第2冷媒回路140は、中間熱交換器7の第2流路H2、ポンプ150、室内温調ユニット160,170,180を含む。室内温調ユニット160,170,180は、互いに並列的に接続されている。
ポンプ150は、回転方向を正逆可能に切替え可能に構成されている。ポンプ150は、冷房運転時には液状態の第2冷媒をポンプ150から室内熱交換器161,171,181へ導き、暖房運転時には液状態の第2冷媒をポンプ150から中間熱交換器7の第2流路H2へ導くように、第2冷媒の循環方向を切替える。
室内温調ユニット160は、室内熱交換器161(第4熱交換器)と、室内空気を室内熱交換器161に送るためのファン(図示せず)と、第2冷媒の流量を調整する流量調整弁162とを含む。室内熱交換器161は、第2冷媒と室内空気との熱交換を行なう。
室内温調ユニット170は、室内熱交換器171と、室内空気を室内熱交換器171に送るためのファン(図示せず)と、第2冷媒の流量を調整する流量調整弁172とを含む。室内熱交換器171は、第2冷媒と室内空気との熱交換を行なう。
室内温調ユニット180は、室内熱交換器181と、室内空気を室内熱交換器181に送るためのファン(図示せず)と、第2冷媒の流量を調整する流量調整弁182とを含む。室内熱交換器181は、第2冷媒と室内空気との熱交換を行なう。
なお、本実施の形態においては3台の室内温調ユニットを有する空調装置を例に挙げているが、室内温調ユニットの台数は特に制限されない。
図15は、中間熱交換器7の側面模式図である。図15において、破線で示される構造は、中間熱交換器7において第1流路H1に係る主な内部構造を示す。図14および図15に示されるように、中間熱交換器7は、プレート式熱交換器として構成されている。中間熱交換器7は、上下方向Aと交差する方向Bに積層された複数の伝熱プレート71を含む。複数の伝熱プレート71の間には、複数の第1流路H1と複数の第2流路H2とが方向Bに交互に配置される。複数の伝熱プレート71の各々には、方向Bに連なりかつ相対的に上方に配置された上部貫通孔と、方向Bに連なりかつ上部貫通孔よりも下方に配置された下部貫通孔とが形成されている。中間熱交換器7の複数の上部貫通孔内には、方向Bに延びかつ各第1流路H1と連なる上部分配領域72Aが形成されている。中間熱交換器7の複数の下部貫通孔内には、方向Bに延びかつ各第1流路H1と連なる下部分配領域72Bが形成されている。
なお、中間熱交換器7において第2流路H2に係る主な内部構造は、中間熱交換器7において第1流路H1に係る主な内部構造と同等である。
中間熱交換器7では、各第1流路H1を流れる第1冷媒と各第2流路H2を流れる第2冷媒との間で熱交換が行なわれる。中間熱交換器7は、例えば第1流路H1と第2流路H2とが対向流となるように、第1冷媒回路130および第2冷媒回路140に接続されている。
中間熱交換器7は、第1流路H1に第1冷媒が流出入する上部流出入部7A(第5流出入部)および下部流出入部7B(第6流出入部)と、第2流路H2に第2冷媒が流出入する上部流出入部7Cおよび下部流出入部7Dとをさらに含む。上部流出入部7Aは、下部流出入部7Bよりも上方に配置されている。上部流出入部7Aは、方向Bにおいて上部分配領域72Aと連なっている。下部流出入部7Bは、方向Bにおいて下部分配領域72Bと連なっている。上部流出入部7Cは、下部流出入部7Dよりも上方に配置されている。
上部流出入部7Aは、膨張装置4と接続されている。下部流出入部7Bは、四方弁2の上記第4ポートに接続されている。上部流出入部7Cは、ポンプ150に接続されている。下部流出入部7Dは、室内熱交換器161,171,181に接続されている。
冷凍サイクル装置101では、冷房運転時には第1冷媒回路130を循環する第1冷媒により、第2冷媒回路140を循環する第2冷媒が冷却される。一方、暖房運転時には第1冷媒回路130を循環する第1冷媒により、第2冷媒回路140を循環する第2冷媒が加熱される。
特に、冷房運転時には、比較的低温の気液二相の第1冷媒が中間熱交換器7の第1流路H1を上方から下方に流れながら蒸発して気相に変化する。暖房運転時には、気相の第1冷媒が中間熱交換器7の第1流路H1を下方から上方に流れながら凝縮して液相に変化する。
制御装置10は、冷凍サイクル装置101の全体の動作を制御する。制御装置10は、圧力センサ、温度センサ等の出力に応じて圧縮機1、膨張装置4,ポンプ150、流量調整弁152,172,182および熱交換器3、161、171、181に取り付けた図示しないファンの回転速度を制御する。
制御装置10は、冷媒運転と暖房運転で、第1冷媒回路130の第1冷媒の循環方向を四方弁2により切替える。これに連動させて、制御装置10は、中間熱交換器7で第2冷媒が第1冷媒と対向流で熱交換し、ポンプ150の吸入口で過冷却状態となるように、第2冷媒回路140のポンプ150の回転方向を切替える。
<作用効果>
冷房運転時に比較的低温の気液二相の第1冷媒が下方から上方に流れるように配置された中間熱交換器を備える比較例としての冷凍サイクル装置では、下部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図16に示されるように分布しやすく、CF3IはR32およびHFO1123よりも下方に分布しやすい。この場合、CF3Iの流れやすさ(流動性)は、各伝熱プレートにおいて下部貫通孔よりも下方に位置するプレート部分によって阻害される。また、上部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすく、CF3IはR32およびHFO1123よりも上方に分布しやすい。この場合、CF3Iの流動性は、各伝熱プレートにおいて上部貫通孔よりも上方に位置するプレート部分によって阻害される。
また、上記比較例としての冷凍サイクル装置の暖房運転時には、上部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすく、CF3IはR32およびHFO1123よりも上方に分布しやすい。この場合、CF3Iの流動性は、各伝熱プレートにおいて上部貫通孔よりも上方に位置するプレート部分によって阻害される。また、下部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図17に示されるように分布しやすく、CF3IはR32およびHFO1123よりも下方に分布しやすい。この場合、CF3Iの流れやすさ(流動性)は、各伝熱プレートにおいて下部貫通孔よりも下方に位置するプレート部分によって阻害される。
これに対し、冷凍サイクル装置101の冷房運転時には、比較的低温の気液二相の第1冷媒が、中間熱交換器7内を、上部流出入部7A、上部分配領域72A、各第1流路H1、下部分配領域72B、下部流出入部7Bの順に流れる。そのため、上部分配領域72Aを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図16に示されるように分布しやすい。つまり、CF3Iは、上部分配領域72A内において、R32およびHFO1123よりも下方に分布しやすい。さらに、下部分配領域72Bを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすい。つまり、CF3Iは、下部分配領域72B内において、R32およびHFO1123よりも上方に分布しやすい。
さらに、冷凍サイクル装置101の暖房運転時には、比較的高温の気相の第1冷媒が、中間熱交換器7内を、下部流出入部7B、下部分配領域72B、各第1流路H1、上部分配領域72A、上部流出入部7Aの順に流れる。そのため、下部分配領域72Bを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすい。つまり、CF3Iは、下部分配領域72B内において、R32およびHFO1123よりも上方に分布しやすい。さらに、上部分配領域72Aを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図17に示されるように分布しやすい。つまり、CF3Iは、上部分配領域72A内において、R32およびHFO1123よりも下方に分布しやすい。
そのため、冷凍サイクル装置101では、上記比較例に係る冷凍サイクル装置と比べて、中間熱交換器7内での第1冷媒中のCF3Iの流動性が高い。中間熱交換器7内でのCF3Iの流動性が高いため、CF3IはHFO1123と混ざりやすいため、HFO1123の不均化反応が生じにくく、性能低下が抑制されている。
また、冷凍サイクル装置101では、上記比較例に係る冷凍サイクル装置と比べて、冷房運転時には各第1流路H1よりも上流側に配置された上部分配領域72AでのCF3Iの流動性が高く、暖房運転時には各第1流路H1よりも上流側に配置された下部分配領域72BでのCF3Iの流動性が高い。そのため、冷凍サイクル装置101では、上記比較例に係る冷凍サイクル装置と比べて、各第1流路H1を流れるCF3Iの流量のばらつきが少ない。
冷凍サイクル装置100,101は、RACに限られるものではない。冷凍サイクル装置100,101の用途および能力は、任意に設定され得る。
以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
1 圧縮機、2 四方弁、3,6,7,161,171,181 熱交換器、3A,6A,7A,7C 上部流出入部、3B,6B,7B,7D 下部流出入部、4,4A,4B 膨張装置、5 レシーバ、10 制御装置、11 室外ファン、12 室内ファン、13 温度センサ、31B,61B 下部伝熱管、31A,61A 上部伝熱管、31C,61C 屈曲部、32,62 フィン、33A,33B,63A,63B 内周面、34A,34B,64A,64B 溝部、35A,65A 上部ヘッダ、35B,65B 下部ヘッダ、36,66 伝熱管、37,67 コルゲートフィン、71 伝熱プレート、72A 上部分配領域、72B 下部分配領域、100,101 冷凍サイクル装置、110 室外機、120 室内機、130 第1冷媒回路、140 第2冷媒回路、150 ポンプ、152,162,172,182 流量調整弁、160,170,180 室内温調ユニット。

Claims (8)

  1. 非共沸混合冷媒が使用される冷凍サイクル装置であって、
    圧縮機と、
    流路切り替え部と、
    前記非共沸混合冷媒が流出入する第1流出入部および第2流出入部と、前記第1流出入部と前記第2流出入部との間に互いに直列に接続されており前記非共沸混合冷媒が流れる第1管部および第2管部とを含む第1熱交換器と、
    減圧装置と、
    第2熱交換器とを備え、
    前記非共沸混合冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含み、
    前記流路切り替え部は、前記非共沸混合冷媒が前記圧縮機、前記第1熱交換器、前記減圧装置、および前記第2熱交換器をこの記載順に流れる第1状態と、前記非共沸混合冷媒が前記第1状態とは逆向きに流れる第2状態とを切り替え、
    前記第1状態では、前記非共沸混合冷媒が前記第1熱交換器内を前記第1流出入部、前記第1管部、前記第2管部、および前記第2流出入部の順に流れ、
    前記第2状態では、前記非共沸混合冷媒が前記第1熱交換器内を前記第2流出入部、前記第2管部、前記第1管部、および前記第1流出入部の順に流れ、
    前記第1管部は、凹凸が形成された第1内周面を有し、
    前記第2管部は、凹凸が形成された第2内周面を有し、
    前記第1管部の前記第1内周面の面積拡大率は、前記第2管部の前記第2内周面の面積拡大率よりも高い、冷凍サイクル装置。
  2. 前記第1内周面には、螺旋状に延在する少なくとも1つの第1溝部が形成されており、 前記第2内周面には、螺旋状に延在する少なくとも1つの第2溝部が形成されており、
    前記少なくとも1つの第1溝部および前記少なくとも1つの第2溝部の数、深さ、およびリード角の少なくともいずれかについて、前記少なくとも1つの第1溝部は、前記少なくとも1つの第2溝部を超えている、請求項1に記載の冷凍サイクル装置。
  3. 前記第2熱交換器は、前記非共沸混合冷媒が流出入する第3流出入部および第4流出入部と、前記第3流出入部と前記第4流出入部との間に配置されており前記非共沸混合冷媒が流れる第3管部および第4管部とを含み、
    前記第1状態では、前記非共沸混合冷媒が前記第2熱交換器内を前記第4流出入部、前記第4管部、前記第3管部、および前記第3流出入部の順に流れ、
    前記第2状態では、前記非共沸混合冷媒が前記第2熱交換器内を前記第3流出入部、前記第3管部、前記第4管部、および前記第4流出入部の順に流れ、
    前記第3管部は、凹凸が形成された第3内周面を有し、
    前記第4管部は、凹凸が形成された第4内周面を有し、
    前記第3管部の前記第3内周面の面積拡大率は、前記第4管部の前記第4内周面の面積拡大率よりも高い、請求項1または2に記載の冷凍サイクル装置。
  4. 前記第1管部および前記第2管部は、上下方向と交差する方向に延びている、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5. 前記第1熱交換器は、前記第1管部および前記第2管部が伝熱管として構成されたフィンチューブ熱交換器である、請求項1~4のいずれか1項に記載の冷凍サイクル装置。
  6. 前記第1熱交換器は、上端および下端を有し上下方向に沿って延びる伝熱管をさらに含み、
    前記第1熱交換器および前記第2熱交換器の各々は、前記第1管部が前記伝熱管の前記上端と接続されている第1ヘッダとして構成されており、かつ前記第2管部が前記伝熱管の前記下端と接続されている第2ヘッダとして構成されたコルゲート熱交換器である、請求項1~4のいずれか1項に記載の冷凍サイクル装置。
  7. 前記非共沸混合冷媒は、R32と、CF3Iと、HFO1123とを含む、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  8. 前記冷凍サイクル装置に封止された状態の前記非共沸混合冷媒における前記HFO1123の重量比率は、60wt%以上であり、
    前記冷凍サイクル装置に封止された状態の前記非共沸混合冷媒における前記CF3Iの重量比率は、2wt%以上5wt%以下である、請求項7に記載の冷凍サイクル装置。
JP2022513738A 2020-04-07 2020-04-07 冷凍サイクル装置 Active JP7341326B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015651 WO2021205536A1 (ja) 2020-04-07 2020-04-07 冷凍サイクル装置

Publications (3)

Publication Number Publication Date
JPWO2021205536A1 JPWO2021205536A1 (ja) 2021-10-14
JPWO2021205536A5 JPWO2021205536A5 (ja) 2022-10-18
JP7341326B2 true JP7341326B2 (ja) 2023-09-08

Family

ID=78023057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022513738A Active JP7341326B2 (ja) 2020-04-07 2020-04-07 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP4134601A4 (ja)
JP (1) JP7341326B2 (ja)
WO (1) WO2021205536A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095260A1 (ja) * 2021-11-25 2023-06-01 三菱電機株式会社 空気調和機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221537A (ja) 2000-02-14 2001-08-17 Sanyo Electric Co Ltd 冷却装置
WO2015140887A1 (ja) 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
JP2017116242A (ja) 2015-12-26 2017-06-29 株式会社コロナ ヒートポンプ装置
JP6281293B2 (ja) 2014-01-22 2018-02-21 株式会社リコー 画像形成装置
JP6307738B2 (ja) 2012-03-09 2018-04-11 キーケルト アクツィーエンゲゼルシャフト パネル又はドア用ロック
WO2019193712A1 (ja) 2018-04-05 2019-10-10 三菱電機株式会社 空気調和装置
WO2020003494A1 (ja) 2018-06-29 2020-01-02 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281293A (ja) * 1993-03-31 1994-10-07 Toshiba Corp 熱交換器
JPH06307738A (ja) * 1993-04-21 1994-11-01 Hitachi Ltd 非共沸混合冷媒用凝縮器
EP3115730B1 (en) * 2014-03-07 2020-05-27 Mitsubishi Electric Corporation Refrigeration cycle device
EP3121538A1 (en) * 2014-03-17 2017-01-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221537A (ja) 2000-02-14 2001-08-17 Sanyo Electric Co Ltd 冷却装置
JP6307738B2 (ja) 2012-03-09 2018-04-11 キーケルト アクツィーエンゲゼルシャフト パネル又はドア用ロック
JP6281293B2 (ja) 2014-01-22 2018-02-21 株式会社リコー 画像形成装置
WO2015140887A1 (ja) 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
JP2017116242A (ja) 2015-12-26 2017-06-29 株式会社コロナ ヒートポンプ装置
WO2019193712A1 (ja) 2018-04-05 2019-10-10 三菱電機株式会社 空気調和装置
WO2020003494A1 (ja) 2018-06-29 2020-01-02 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
WO2021205536A1 (ja) 2021-10-14
EP4134601A1 (en) 2023-02-15
JPWO2021205536A1 (ja) 2021-10-14
EP4134601A4 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US6477848B1 (en) Refrigerating apparatus
KR0142506B1 (ko) 비공비혼합 냉매를 채용한 공기 조화기
JP4832355B2 (ja) 冷凍空調装置
EP2249104A1 (en) Refrigerating apparatus
US6571575B1 (en) Air conditioner using inflammable refrigerant
JP2009257740A (ja) 冷凍装置
WO2015140886A1 (ja) 冷凍サイクル装置
WO2016059696A1 (ja) 冷凍サイクル装置
JP2007192447A (ja) 蒸発器
KR20040036874A (ko) 냉동 사이클장치
JPWO2018029784A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
JP4118254B2 (ja) 冷凍装置
JP7341326B2 (ja) 冷凍サイクル装置
JP2011112327A (ja) 冷暖房装置および冷凍装置
WO2015140885A1 (ja) 冷凍サイクル装置
WO2016009565A1 (ja) 冷凍サイクル装置
JP2009222360A (ja) 熱交換器
JP5646257B2 (ja) 冷凍サイクル装置
JP2011033289A (ja) 冷凍サイクル装置
JPWO2021205536A5 (ja)
WO2017150221A1 (ja) 熱交換器及び空気調和機
WO2021176651A1 (ja) 熱交換器及び空気調和機
WO2016016999A1 (ja) 冷凍サイクル装置
WO2019021364A1 (ja) 冷凍装置及び冷凍装置の運転方法
JP6766980B1 (ja) 熱交換器及び熱交換器を搭載した空気調和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230829

R150 Certificate of patent or registration of utility model

Ref document number: 7341326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150