WO2019193712A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2019193712A1
WO2019193712A1 PCT/JP2018/014597 JP2018014597W WO2019193712A1 WO 2019193712 A1 WO2019193712 A1 WO 2019193712A1 JP 2018014597 W JP2018014597 W JP 2018014597W WO 2019193712 A1 WO2019193712 A1 WO 2019193712A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
indoor
heat medium
temperature
source side
Prior art date
Application number
PCT/JP2018/014597
Other languages
English (en)
French (fr)
Inventor
博紀 鷲山
仁隆 門脇
直史 竹中
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020512182A priority Critical patent/JP7069298B2/ja
Priority to PCT/JP2018/014597 priority patent/WO2019193712A1/ja
Priority to EP18913344.0A priority patent/EP3779308A4/en
Priority to US16/969,611 priority patent/US20210025627A1/en
Publication of WO2019193712A1 publication Critical patent/WO2019193712A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner.
  • the present invention relates to an air conditioner that performs air conditioning by circulating a heat medium such as water different from a refrigerant.
  • the temperature of the heat medium supplied to the indoor unit is controlled according to the indoor set temperature of the indoor unit.
  • Data relating to the indoor space to which the indoor unit performs air conditioning is not used for temperature control of the heat medium.
  • the indoor unit is supplied with the heat medium having the same temperature, and control suitable for the situation of the indoor space is performed. I could't.
  • an object of the present invention is to obtain an air conditioner that can save energy by using indoor data.
  • An air conditioning apparatus includes water or brine, a pump that pressurizes a heat medium that is a medium for conveying heat, an indoor heat exchanger that exchanges heat between indoor air to be conditioned and the heat medium, A heat medium circulation circuit that circulates the heat medium by connecting a flow rate adjusting device that is installed corresponding to the indoor heat exchanger and adjusts the flow rate of the heat medium that passes through the indoor heat exchanger, and compresses the heat source side refrigerant
  • a heat source side heat exchanger that performs heat exchange between the heat source side refrigerant and outdoor air, a throttle device that decompresses the heat source side refrigerant, and heat medium heat that performs heat exchange between the heat source side refrigerant and the heat medium
  • a plurality of indoor heat exchangers are installed in each of the plurality of indoor units, and the plurality of indoor units relate to the amount of heat related to heat exchange of the indoor heat exchanger. It has a detection device that detects physical quantities It performs communication signals including data relating to the detection of
  • the indoor unit has a detection device that detects the amount of heat related to the heat exchange of the indoor heat exchanger, so that the data obtained by the detection in the indoor unit is stored in the heat source side refrigerant circulation circuit. Can be used for driving. For this reason, energy saving can be achieved.
  • FIG. 1 is a diagram schematically showing an installation example of the air-conditioning apparatus 0 according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus 0 which concerns on Embodiment 1 is demonstrated.
  • the air conditioner 0 includes a heat source side refrigerant circulation circuit A that circulates the heat source side refrigerant, and a heat medium circulation circuit B that circulates a heat medium such as water that transfers and transfers heat. Then, air conditioning is performed by cooling or heating.
  • the heat source side refrigerant circulation circuit A functions as a heat source side device that heats or cools the heat medium in the heat medium circulation circuit B.
  • an air conditioner 0 includes one outdoor unit 1 serving as a heat source unit, a plurality of indoor units 3 (indoor units 3a to 3c) serving as indoor units, and a relay unit 2.
  • the relay unit 2 is a unit that relays heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 6 serving as a heat source side refrigerant flow path.
  • a plurality of relay units 2 can be connected in parallel to one outdoor unit 1.
  • each indoor unit 3 is connected to the relay unit 2 through a heat medium main pipe 5 serving as a heat medium flow path.
  • each indoor unit 3 is connected to the heat medium main pipe 5 via the heat medium branch pipe 51.
  • Examples of the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A include single refrigerants such as R-22 and R-134a, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and R-407C. Non-azeotropic refrigerant mixtures can be used.
  • a refrigerant having a global warming potential such as CF 3 CF ⁇ CH 2 that includes a double bond in the chemical formula, a mixture thereof, a natural refrigerant such as CO 2 , or propane may be used. it can.
  • the heat medium circulating in the heat medium circuit B for example, brine (antifreeze), water, a mixed liquid of brine and water, a mixed liquid of an additive and water having a high anticorrosion effect, or the like can be used.
  • brine antifreeze
  • water a mixed liquid of brine and water
  • a mixed liquid of an additive and water having a high anticorrosion effect or the like
  • a highly safe thing can be used for a heat medium.
  • FIG. 2 is a diagram showing an example of the configuration of the air-conditioning apparatus 0 according to Embodiment 1 of the present invention. Based on FIG. 2, the structure of the apparatus etc. which the air conditioning apparatus 0 has is demonstrated. As described above, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 6. The relay unit 2 and each indoor unit 3 are connected by a heat medium main pipe 5. Here, in FIG. 2, three indoor units 3 are connected to the relay unit 2 via the heat medium main pipe 5. However, the number of connected indoor units 3 is not limited to three.
  • the outdoor unit 1 is a unit that conveys heat by circulating the heat source side refrigerant in the heat source side refrigerant circulation circuit A, and causes the heat medium heat exchanger 21 of the relay unit 2 to exchange heat with the heat medium.
  • cold heat is conveyed by the heat source side refrigerant.
  • the outdoor unit 1 has a compressor 10, a heat source side heat exchanger 12, a throttling device 13, and an accumulator 14 in a housing.
  • the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12, and the accumulator 14 are pipe-connected by the refrigerant pipe 6 and mounted.
  • the compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the compressor 10 may be configured by, for example, an inverter compressor capable of capacity control.
  • the refrigerant flow switching device 11 is a device that switches the flow path of the heat source side refrigerant according to the cooling operation mode or the heating operation mode. When only cooling operation or heating operation is performed, it is not necessary to install the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 performs heat exchange between, for example, outdoor air supplied from the heat source side blower 15 and the heat source side refrigerant. In the heating operation mode, it functions as an evaporator and absorbs heat by the heat source side refrigerant. Further, in the cooling operation mode, it functions as a condenser or a radiator and dissipates heat to the heat source side refrigerant.
  • the expansion device 13 functions as a pressure reducing valve and an expansion valve, and is a device that decompresses and expands the heat source side refrigerant.
  • the expansion device 13 is preferably a device such as an electronic expansion valve that can control the opening degree to an arbitrary size and can arbitrarily adjust the flow rate of the heat source side refrigerant.
  • the accumulator 14 is provided on the suction side of the compressor 10.
  • the accumulator 14 stores, for example, surplus refrigerant generated in a transition period when the refrigerant amount is different between the heating operation mode and the cooling operation mode, or when the operation changes.
  • the accumulator 14 may not be installed in the heat source side refrigerant circulation circuit A.
  • the indoor unit 3 is a unit that sends harmonized air to the indoor space.
  • Each indoor unit 3 in the first embodiment includes an indoor heat exchanger 31 (indoor heat exchanger 31a to indoor heat exchanger 31c) and an indoor flow rate adjustment device 32 (indoor flow rate adjustment device 32a to indoor flow rate adjustment device) in a casing. 32c) and an indoor fan 33 (indoor fan 33a to indoor fan 33c).
  • the indoor heat exchanger 31 and the indoor flow rate adjustment device 32 are devices constituting the heat medium circulation circuit B.
  • the indoor flow rate adjusting device 32 is configured by, for example, a two-way valve that can control the opening degree (opening area) of the valve.
  • the indoor flow rate adjusting device 32 controls the flow rate of the heat medium flowing in and out of the indoor heat exchanger 31 by adjusting the opening degree. Then, the indoor flow rate adjusting device 32 adjusts the amount of the heat medium passing through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, and the indoor heat exchanger 31 enables heat exchange by the amount of heat corresponding to the heat load in the room.
  • the valve is fully closed to The supply can be stopped so that the heat medium does not flow into and out of the exchanger 31.
  • the indoor flow rate adjustment device 32 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but is not limited thereto.
  • the indoor flow rate adjusting device 32 may be installed on the heat medium inflow side of the indoor heat exchanger 31.
  • the indoor heat exchanger 31 has, for example, heat transfer tubes and fins. Then, the heat medium passes through the heat transfer tube of the indoor heat exchanger 31. The indoor heat exchanger 31 performs heat exchange between the air in the indoor space supplied from the indoor fan 33 and the heat medium. If a heat medium cooler than air passes through the heat transfer tube, the air is cooled and the indoor space is cooled. The indoor blower 33 generates a flow of air that passes the air in the indoor space through the indoor heat exchanger 31 and returns the air to the indoor space.
  • the relay unit 2 is a unit having a device related to heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B.
  • the relay unit 2 includes a heat medium heat exchanger 21 and a pump 22.
  • the heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant and the heat medium, and transfers heat from the heat source side refrigerant side to the heat medium side.
  • the heat medium heat exchanger 21 functions as a condenser or a radiator and dissipates heat to the heat source side refrigerant.
  • coolant absorb heat when cooling a heat medium, it functions as an evaporator and makes a heat source side refrigerant
  • the pump 22 is a device that sucks and pressurizes the heat medium and circulates the heat medium circuit B.
  • the pump 22 can perform capacity control, and adjusts the flow rate of the heat medium circulating in the heat medium circuit B (the amount of heat medium flowing per unit time) according to the size of the heat load in each indoor unit 3. can do.
  • the compressor 10 sucks the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the discharged heat source side refrigerant flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 performs heat exchange between the air supplied by the heat source side blower 15 and the heat source side refrigerant, and condenses and liquefies the heat source side refrigerant.
  • the heat-source-side refrigerant that has been condensed and liquefied passes through the expansion device 13.
  • the expansion device 13 depressurizes the condensed and liquefied heat source side refrigerant.
  • the decompressed heat source side refrigerant flows out of the outdoor unit 1, passes through the refrigerant pipe 6, and flows into the heat medium heat exchanger 21 of the relay unit 2.
  • the heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant passing through and the heat medium, and evaporates and gasifies the heat source side refrigerant. At this time, the heat medium is cooled.
  • the heat source side refrigerant flowing out of the heat medium heat exchanger 21 flows out of the relay unit 2, passes through the refrigerant pipe 6, and flows into the outdoor unit 1. And the compressor 10 suck
  • the compressor 10 sucks the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the discharged heat source side refrigerant flows out of the outdoor unit 1 through the refrigerant flow switching device 11, passes through the refrigerant pipe 6, and flows into the heat medium heat exchanger 21 of the relay unit 2.
  • the heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant passing through and the heat medium, and condenses and liquefies the heat source side refrigerant. At this time, the heat medium is heated.
  • the heat source side refrigerant that has been condensed and liquefied flows out from the relay unit 2, and the heat source side refrigerant that has flowed out of the heat medium heat exchanger 21 passes through the refrigerant pipe 6 and passes through the expansion device 13 of the outdoor unit 1.
  • the expansion device 13 depressurizes the condensed and liquefied heat source side refrigerant.
  • the decompressed heat source side refrigerant flows into the heat source side heat exchanger 12.
  • the heat source side heat exchanger 12 exchanges heat between the air supplied by the heat source side blower 15 and the heat source side refrigerant, and evaporates the heat source side refrigerant.
  • the compressor 10 suck
  • various sensors serving as detection devices for detecting physical quantities are installed.
  • a discharge temperature sensor 501 detects the temperature of the refrigerant discharged from the compressor 10 and outputs a discharge temperature detection signal.
  • the outdoor unit control device 100 described later obtains a discharge temperature detection signal output from the discharge temperature sensor 501.
  • the discharge temperature sensor 501 has a thermistor and the like. Further, it is assumed that the other temperature sensors described below also have a thermistor or the like.
  • the discharge pressure sensor 502 detects the pressure of the refrigerant discharged from the compressor 10 and outputs a discharge pressure detection signal.
  • the outdoor unit control device 100 described later obtains a discharge pressure detection signal output from the discharge pressure sensor 502.
  • the outdoor temperature sensor 503 is installed in the air inflow portion of the heat source side heat exchanger 12 in the outdoor unit 1.
  • the outdoor temperature sensor 503 detects, for example, the outdoor temperature that is the temperature around the outdoor unit 1 and outputs an outdoor temperature detection signal.
  • the outdoor unit control device 100 described later obtains an outdoor temperature detection signal output from the outdoor temperature sensor 503.
  • a first refrigerant temperature sensor 504 and a second refrigerant temperature sensor 505 are installed on the relay unit 2 side.
  • the first refrigerant temperature sensor 504 is installed in a pipe on the refrigerant inflow side of the heat medium heat exchanger 21 when the heat medium is cooled in the refrigerant flow in the heat source side refrigerant circulation circuit A.
  • coolant temperature sensor 505 detect the temperature of the refrigerant
  • the relay unit control device 200 described later obtains a refrigerant side detection signal output from the first refrigerant temperature sensor 504 and the second refrigerant temperature sensor 505.
  • the heat medium inlet side temperature sensor 511 and the heat medium outlet side temperature sensor 512 are installed on the relay unit 2 side.
  • the heat medium inlet side temperature sensor 511 is installed in the heat medium inflow side piping of the heat medium heat exchanger 21 in the flow of the heat medium in the heat medium circulation circuit B.
  • the heat medium inlet side temperature sensor 511 detects the temperature of the heat medium flowing into the heat medium heat exchanger 21, and outputs a heat medium inflow side detection signal.
  • the relay unit controller 200 described later obtains the heat medium inflow side detection signal output from the heat medium inflow side temperature sensor 511.
  • the heat medium outlet side temperature sensor 512 is installed in the heat medium outlet side piping of the heat medium heat exchanger 21 in the heat medium flow in the heat medium circuit B.
  • the heat medium outlet side temperature sensor 512 detects the temperature of the heat medium flowing out of the heat medium heat exchanger 21 and outputs a heat medium outflow side detection signal.
  • the relay unit control apparatus 200 described later obtains the heat medium outflow side detection signal output from the heat medium outflow side temperature sensor 512.
  • detection devices such as a pressure sensor and a flow rate sensor may be installed on the relay unit 2 side.
  • an indoor inlet side temperature sensor 513 (indoor inlet side temperature sensor 513a to indoor inlet side temperature sensor 513c) is installed on each indoor unit 3 side. Also, an indoor outlet side temperature sensor 514 (indoor outlet side temperature sensor 514a to indoor outlet side temperature sensor 514c) is installed.
  • the indoor inflow side temperature sensor 513 detects the temperature of the heat medium flowing into the indoor heat exchanger 31 and outputs an inflow side detection signal.
  • the indoor unit control device 300 included in each indoor unit 3 to be described later obtains an inflow side detection signal output from the corresponding indoor outlet side temperature sensor 514.
  • Each indoor outlet side temperature sensor 514 detects the temperature of the heat medium flowing out from the indoor heat exchanger 31 and outputs an outflow side detection signal.
  • the indoor unit control device 300 described later obtains the inflow side detection signal output from the corresponding indoor outlet side temperature sensor 514.
  • an indoor inflow pressure sensor 521 (indoor inflow pressure sensor 521a to indoor inflow pressure sensor 521c) is installed on the indoor unit 3 side.
  • an indoor outflow pressure sensor 522 (indoor outflow pressure sensor 522a to indoor outflow pressure sensor 522c) is installed.
  • the indoor inflow side pressure sensor 521 and the indoor outflow side pressure sensor 522 are respectively installed on the heat medium inflow / outflow side of the indoor flow rate adjusting device 32 of each indoor unit 3 and send signals corresponding to the detected pressure.
  • the indoor unit control device 300 included in each indoor unit 3 described later obtains a signal corresponding to the pressure output from the corresponding indoor inflow side pressure sensor 521 and indoor outflow side pressure sensor 522.
  • the indoor inflow side pressure sensor 521 is omitted. Can do. Moreover, you may make it install the flow volume detection apparatus which detects a flow volume instead of a pressure sensor. Moreover, you may make it install the calorie
  • Each indoor unit control device 300 obtains the amount of heat related to heat exchange in the indoor heat exchanger 31 by performing calculation or the like. Then, each indoor unit control device 300 sends a signal including the acquired heat quantity data to the relay unit control device 200.
  • an indoor temperature sensor 515 (indoor temperature sensor 515a to indoor temperature sensor 515c) is installed on each indoor unit 3 side.
  • the indoor temperature sensor 515 detects the suction temperature, which is the temperature of the air flowing into the indoor heat exchanger 31, by the flow of air by driving the indoor blower 33, and outputs a suction temperature detection signal.
  • the suction temperature can be the temperature of indoor air in the indoor space, which is a heat load.
  • each unit has a control device that controls equipment included in each unit.
  • Each control device performs processing based on signals such as physical quantity data included in signals sent from various sensors, instructions sent from an input device (not shown), settings, and the like.
  • each control device is connected to another control device by wired communication or wireless communication, and can communicate signals including various data with the other control device.
  • the outdoor unit 1 has an outdoor unit control device 100.
  • the relay unit 2 includes a relay unit control device 200.
  • Each indoor unit 3 has an indoor unit control device 300 (indoor unit control device 300a to indoor unit control device 300c).
  • each indoor unit control device 300 includes data such as pressure and temperature detected by a sensor in the corresponding indoor unit 3 in a signal, and the relay unit 2 has a relay. It can be sent to the unit controller 200.
  • each indoor unit control device 300 includes, in addition to, data relating to the indoor set temperature input from a remote controller (not shown), the flow rate of the heat medium passing through the corresponding indoor heat exchanger 31, as will be described later. Data obtained by performing arithmetic processing such as the amount of heat related to heat exchange with the air in the indoor space in the indoor heat exchanger 31 can be sent to the relay unit controller 200 included in the relay unit 2.
  • the indoor unit control device 300 can calculate the differential pressure of the heat medium before and after passing through the indoor flow rate adjustment device 32 based on the pressures detected by the indoor inflow side pressure sensor 521 and the indoor outflow side pressure sensor 522. Further, the flow rate of the heat medium passing through the indoor heat exchanger 31 can be calculated from at least the differential pressure and the Cv value representing the characteristics of the valve of the indoor flow rate adjusting device 32.
  • the Cv value is a value determined by the type and port diameter of the valve in the flow rate adjusting device, and is a capacity coefficient of the valve.
  • the Cv value is a numerical value representing the flow rate of the fluid passing through the valve with a certain differential pressure. Furthermore, from the temperature detected by the indoor inlet side temperature sensor 513 and the indoor outlet side temperature sensor 514 and the flow rate of the heat medium passing through the indoor heat exchanger 31, the heat with the air in the indoor space in the indoor heat exchanger 31 is calculated. The amount of heat related to the exchange can be calculated.
  • each control device obtains the aforementioned Cv value from the opening of the valve in the corresponding flow rate adjusting device.
  • the flow rate of the heat medium flowing through the heat exchanger and the flow rate adjusting device is calculated from the Cv value and the differential pressure of the heat medium before and after passing through the flow rate adjusting device.
  • the Cv value is large, the flow rate of the heat medium increases.
  • the differential pressure of the heat medium is large, the flow rate of the heat medium increases.
  • the amount of heat supplied to the heat load by heat exchange is calculated from the temperature difference between the flow rate of the heat medium flowing through the corresponding heat exchanger and the temperature of the heat medium flowing into the heat exchanger and the temperature of the heat medium flowing out.
  • the control device of each unit compares the calculated amount of heat to the required heat load with the required capacity (the amount of heat that needs to be supplied to the heat load), and if the required capacity is large, Increase the opening of the corresponding flow control device.
  • the drive frequency of the compressor 10 of the outdoor unit 1 that increases the output of the pump 22 of the relay unit 2 is set. Raise it.
  • FIG. 3 is a diagram showing a configuration of relay unit control apparatus 200 according to Embodiment 1 of the present invention. As described above, the relay unit control apparatus 200 performs the processing related to the control in the first embodiment.
  • the relay unit control device 200 includes a control processing device 210, a storage device 220, a timing device 230, and a communication device 240.
  • the storage device 220 stores data used when the control processing device 210 performs processing.
  • the storage device 220 includes a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data and a non-volatile auxiliary storage device (not shown) such as a flash memory that can store data for a long time. Z).
  • the storage device 220 stores a program, and the control processing device 210 executes processing based on the program, thereby realizing processing performed by each unit of the control processing device 210.
  • the time measuring device 230 has a timer and the like, and the control processing device 210 measures the time used for calculation and the like.
  • the communication device 240 is an interface device that performs signal conversion and the like when the control processing device 210 communicates a signal including data with a control device of another unit. Hereinafter, communication between the control processing device 210 and the control device of another unit is assumed to be performed via the communication device 240.
  • the control processing device 210 includes a temperature gradient setting processing unit 211, an arithmetic processing unit 212, a determination processing unit 213, and a heat source side control processing unit 214.
  • the temperature gradient setting processing unit 211 generates a target temperature gradient in each indoor unit 3 from the suction temperature and indoor set temperature data at the start of operation of the indoor unit 3 sent from the indoor unit control device 300 of each indoor unit 3. To do. Then, one of the generated target temperature gradients is set as a reference target temperature gradient (hereinafter referred to as a reference temperature gradient).
  • the reference temperature gradient is a temperature gradient that serves as a reference for determining the temperature of the heat medium that exchanges heat in the heat medium heat exchanger 21 when controlling the heat source side refrigerant circulation circuit A.
  • the suction temperature is a temperature related to detection by the indoor temperature sensor 515 and can be the temperature of air in the indoor space.
  • the arithmetic processing unit 212 calculates the temperature difference between the suction temperatures in each indoor unit 3 at preset time intervals. Further, the determination processing unit 213 determines whether to change the temperature of the heat medium from the state of the air in the indoor space that is a thermal load in each indoor unit 3 obtained from the calculated temperature difference. Then, the heat source side control processing unit 214 gives an instruction based on the processing performed by the determination processing unit 213 to the equipment on the heat source side refrigerant circulation circuit A side, and controls the heat source side refrigerant circulation circuit A.
  • a signal such as an instruction to change the driving frequency of the compressor 10 is sent to the outdoor unit control device 100 of the outdoor unit 1 to be controlled. Then, the evaporation temperature or the condensation temperature of the heat source side refrigerant in the heat medium heat exchanger 21 is changed, and the temperature of the heat medium flowing out from the heat medium heat exchanger 21 is changed.
  • the control processing device 210 is configured by, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit).
  • the relay unit control device 200 performs processing based on the data sent from the indoor unit control device 300, sends an instruction to the outdoor unit control device 100, etc., and heat source side refrigerant circulation It is assumed that the circuit A is controlled.
  • the relay unit control apparatus 200 will be mainly described as performing the processing of the first embodiment, but the present invention is not limited to this. Any one or a plurality of control devices of the outdoor unit control device 100 or the indoor unit control device 300 may perform control or the like. A control device outside the unit may perform control or the like. Further, for example, the processing performed by the arithmetic processing unit 212 may be performed by each indoor unit control device 300, and the processing performed by the heat source side control processing unit 214 may be performed by the outdoor unit control device 100.
  • the outdoor unit 1 circulates the heat source side refrigerant with the relay unit 2 through the refrigerant pipe 6. At this time, the heat source side refrigerant exchanges heat with the heat medium when passing through the heat medium heat exchanger 21 in the relay unit 2 described later.
  • the heat medium is heated or cooled by heat exchange. In Embodiment 1, the heat-source-side refrigerant is heated and the heat medium is cooled.
  • the heat medium cooled in the relay unit 2 is circulated between each indoor unit 3 through the heat medium main pipe 5 by a pump 22 described later. At this time, the heat medium exchanges heat with the air sent by the blower in the indoor heat exchanger 31 in the indoor unit 3 to be described later. The air exchanged with the heat medium is subjected to air conditioning in the indoor space.
  • FIG. 4 is a diagram showing a flow of control performed by the relay unit control apparatus 200 according to Embodiment 1 of the present invention. Based on FIG. 4, the control in the air conditioning apparatus 0 in Embodiment 1 is demonstrated. Here, the control processing device 210 of the relay unit control device 200 performs processing related to control.
  • the temperature gradient setting processing unit 211 of the control processing device 210 generates a target temperature gradient in each indoor unit 3 as data from the suction temperature and indoor set temperature data sent from the indoor unit control device 300 of each indoor unit 3 ( Step S1).
  • a target temperature gradient in each indoor unit 3 is calculated using the same method, formula, etc., so that the processing is not complicated.
  • the time ta is an ideal time for the temperature of the air in the indoor space to reach the set temperature. For example, if the temperature of the air reaches the set temperature within the time ta, the time is such that a person in the indoor space does not feel uncomfortable.
  • the temperature gradient setting processing unit 211 sets a temperature gradient having the maximum gradient among the temperature gradients associated with each indoor unit 3 as a reference temperature gradient (step S2). Therefore, by setting a reference temperature gradient in accordance with the maximum heat load, the amount of heat is covered with respect to the heat loads related to all the indoor units 3.
  • the temperature gradient setting processing unit 211 determines the temperature of the heat medium related to heat exchange of the heat medium heat exchanger 21 based on the set target temperature gradient (step S3). For example, in the cooling operation, the temperature gradient setting processing unit 211 causes the temperature of the heat medium to decrease as the temperature gradient increases. Therefore, the target evaporation temperature of the heat source side refrigerant in the heat medium heat exchanger 21 is set low. In the case of heating operation, the temperature gradient setting processing unit 211 increases the temperature of the heat medium as the temperature gradient increases. Therefore, the target condensation temperature of the heat source side refrigerant in the heat medium heat exchanger 21 is set high.
  • the heat source side control processing unit 214 instructs the equipment on the heat source side refrigerant circulation circuit A side to control the heat source side refrigerant circulation circuit A so that the temperature of the heat medium determined by the temperature gradient setting processing unit 211 is reached. Then, operation is performed (step S4).
  • the arithmetic processing unit 212 of the control processing device 210 determines whether or not the set time has elapsed (step S5).
  • the temperature difference is calculated by setting the set time as 1 minute, but the set time is not limited to 1 minute.
  • the arithmetic processing unit 212 calculates the temperature difference of the suction temperature in each indoor unit 3 at set time intervals (step S6). At this time, when the temperature T at the time t is expressed by a linear function, the equation (1) is obtained.
  • T ((Tp-T0) / ta) t + T0 ... (1)
  • the determination processing unit 213 determines whether to change the temperature of the heat medium related to the heat exchange of the heat medium heat exchanger 21 based on the temperature change of the indoor air due to the temperature difference calculated by the arithmetic processing unit 212. (Step S7).
  • the determination processing unit 213 determines the temperature of the heat medium related to the heat exchange of the heat medium heat exchanger 21 (step S8).
  • the upper and lower limits of the temperature difference threshold range are ⁇ 1 ° C.
  • the present invention is not limited to this.
  • the upper and lower limits of the temperature difference threshold range may be determined in the range of ⁇ 0.5 ° C. to 1 ° C.
  • the heat source side control processing unit 214 instructs the equipment on the heat source side refrigerant circulation circuit A side to control the heat source side refrigerant circulation circuit A so that the temperature of the heat medium determined by the determination processing unit 213 is reached. Then, operation is performed (step S9).
  • determination processing unit 213 determines a temperature at which the heat medium is changed by 2 ° C.
  • the temperature is not limited to 2 ° C., and the temperature to be determined may be changed. For example, you may make it determine the space
  • step S10 if it is determined that the temperature difference is equal to or greater than the temperature difference threshold, the temperature of the heat medium is not changed.
  • the arithmetic processing unit 212 and the determination processing unit 213 continue the processing from step S5 to step S10 until it is determined that the air in the indoor space in all the indoor units 3 related to the operation has reached the indoor set temperature (step S11). ).
  • FIG. 5 is a diagram showing an example of a result of operating the air-conditioning apparatus 0 according to Embodiment 1 of the present invention.
  • FIG. 5 shows a case where the cooling operation is performed in the indoor unit 3 of the air conditioner 0.
  • the target temperature gradient of the indoor unit 3a is set as the reference temperature gradient.
  • the evaporation temperature is raised so that the temperature of the indoor space follows the target temperature gradient while changing the temperature of the heat medium.
  • the target temperature gradient corresponding to the maximum load is set as the reference temperature gradient, and the temperature of the heat medium supplied to the indoor unit 3 side is determined. For this reason, the indoor unit 3 with a small heat load reaches the set temperature before the indoor unit 3 that supplies heat to the maximum load.
  • the indoor space that is the heat load of the indoor unit 3b and the indoor unit 3c reaches the set temperature sooner than the indoor space that is the air-conditioning target of the indoor unit 3a. Therefore, in the indoor unit 3 in which the air in the indoor space serving as a heat load has reached the set temperature, the indoor unit control device 300 performs control to close the indoor flow rate adjustment device 32. By closing the indoor flow rate adjusting device 32, the heat medium is prevented from passing through the indoor heat exchanger 31, the supply of heat is stopped, and the air in the indoor space is prevented from becoming lower than the set temperature.
  • the indoor conditions were not reflected in the control of heat supply to a heat medium such as water. For this reason, heat is supplied with the temperature of the heat medium constant.
  • signals including data related to detection of physical quantities such as temperature, flow rate, and heat quantity can be communicated between the indoor unit 3, the outdoor unit 1 and the relay unit 2, respectively. it can. And the data which show the indoor condition in the indoor unit 3 can be sent to another unit.
  • control in cooperation with the heat source side refrigerant circulation circuit A side can be performed in accordance with the air conditioning status in the indoor unit 3, the indoor space status, and the like, such as temperature change of the heat medium.
  • the air conditioner 0 can save energy.
  • the reference temperature gradient is set and set from the target temperature gradient of each indoor unit 3 obtained from the temperature of the air in the indoor space related to the detection of the indoor temperature sensor 515 installed in each indoor unit 3 and the set temperature set Based on the target temperature gradient, the temperature of the heat medium related to heat exchange of the heat medium heat exchanger 21 is determined, and the heat source side refrigerant circulation circuit A is operated. Then, based on the change in the indoor temperature detected on the indoor unit 3 side, it is determined whether or not the temperature of the heat medium is changed. Thus, the temperature of the heat medium is changed to change the indoor space as a heat load. It is possible to cope with the air, reducing power consumption and saving energy.
  • the target temperature gradient be a gradient that gradually approaches the indoor set temperature. A gentle temperature adjustment is easier to control and energy saving. Further, by controlling the heat source side refrigerant circulation circuit A in accordance with the temperature change of the indoor air, the temperature of the indoor space and the temperature of the heat medium can be controlled with a certain width.
  • FIG. FIG. 6 is a diagram showing an example of the configuration of the air-conditioning apparatus 0 according to Embodiment 2 of the present invention.
  • an air conditioner 0 according to Embodiment 2 of the present invention will be described.
  • the apparatus etc. which have the function and effect
  • the outdoor unit 1 and the relay unit 2 are connected using two refrigerant pipes 6, and the relay unit 2 and each of the indoor units 3 a to 3 c are connected to two heat medium branch pipes 51. Is connected using.
  • the air conditioner 0 can be installed by connecting the outdoor unit 1 and the relay unit 2 and between the relay unit 2 and the indoor units 3a to 3c using two pipes. It can be done easily.
  • the outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 14, and a heat source side blower 15, as in the first embodiment.
  • the outdoor unit 1 of the second embodiment is further provided with a first connection pipe 16, a second connection pipe 17, and first backflow prevention devices 18a to 18d.
  • check valves are used as the first backflow prevention devices 18a to 18d.
  • the first backflow prevention device 18a is a device that prevents high-temperature and high-pressure gas refrigerant from flowing back from the first connection pipe 16 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode. is there.
  • the first backflow prevention device 18b prevents the high-pressure liquid or the gas-liquid two-phase refrigerant from flowing backward from the first connection pipe 16 to the accumulator 14 in the cooling only operation mode and the cooling main operation mode. It is.
  • the first backflow prevention device 18c is a device that prevents a high-pressure liquid or a gas-liquid two-phase refrigerant from flowing back from the second connection pipe 17 to the accumulator 14 in the cooling only operation mode and the cooling main operation mode. It is.
  • the first backflow prevention device 18d prevents a high-temperature and high-pressure gas refrigerant from flowing back from the discharge-side flow path of the compressor 10 to the second connection pipe 17 in the heating only operation mode and the heating main operation mode. It is a device to do.
  • the flow of the refrigerant flowing into the relay unit 2 can be made regardless of the operation required by the indoor unit 3. It can be in a certain direction.
  • check valves are used as the first backflow prevention devices 18a-16, but any device that can prevent the backflow of the refrigerant may be used.
  • an opening / closing device, a throttling device having a fully closed function, or the like can be used as the first backflow prevention devices 18a to 18d.
  • the relay unit 2 in the second embodiment has the two heat medium heat exchangers 21 and the pumps 22 described in the first embodiment.
  • the relay unit 2 includes two relay-side throttle devices 23, two opening / closing devices 24, and two relay-side refrigerant flow switching devices 25.
  • the relay unit 2 corresponds to each indoor unit 3 and includes three first heat medium flow switching devices 26, three second heat medium flow switching devices 27, and three heat medium flow control devices. 28.
  • the two heat medium heat exchangers 21 (the heat medium heat exchanger 21a and the heat medium heat exchanger 21b) in Embodiment 2 function as a condenser (heat radiator) or an evaporator.
  • the heat medium heat exchanger 21a is provided between the relay side expansion device 23a and the relay side refrigerant flow switching device 25a in the heat source side refrigerant circulation circuit A, and heats the heat medium in the cooling / heating mixed operation mode. It becomes a heat exchanger.
  • the heat medium heat exchanger 21b is provided between the relay side expansion device 23b and the relay side refrigerant flow switching device 25b in the heat source side refrigerant circulation circuit A, and in the cooling / heating mixed operation mode, the heat medium It becomes a heat exchanger that cools.
  • the two relay-side throttle devices 23 function as a pressure reducing valve and an expansion valve, and decompress and expand the heat source side refrigerant.
  • the relay side expansion device 23a is provided on the upstream side of the heat medium heat exchanger 21a in the flow of the heat source side refrigerant during the cooling operation.
  • the relay side expansion device 23b is provided on the upstream side of the heat medium heat exchanger 21b in the flow of the heat source side refrigerant during the cooling operation.
  • the two relay-side throttle devices 23 may be configured by, for example, an electronic expansion valve that can control the opening degree.
  • the two opening / closing devices 24 are configured by a two-way valve or the like and open / close the refrigerant pipe 6.
  • the opening / closing device 24a is provided in the refrigerant pipe 6 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 24b is provided in a pipe connecting the refrigerant pipe 6 on the inlet side and the outlet side of the heat source side refrigerant.
  • the two relay-side refrigerant flow switching devices 25 are composed of four-way valves and the like, and flow of the heat source side refrigerant according to the operation mode. Switch.
  • the relay side refrigerant flow switching device 25a is provided on the downstream side of the heat medium heat exchanger 21a in the flow of the heat source side refrigerant during the cooling operation.
  • the relay-side refrigerant flow switching device 25b is provided on the downstream side of the heat medium heat exchanger 21b in the flow of the heat source-side refrigerant during the cooling only operation.
  • the two pumps 22 pressurize the heat medium conducted through the heat medium main pipe 5 and circulate the heat medium circuit B.
  • the pump 22 a is provided in the heat medium main pipe 5 between the heat medium heat exchanger 21 a and the second heat medium flow switching device 27.
  • the pump 22 b is provided in the heat medium main pipe 5 between the heat medium heat exchanger 21 b and the second heat medium flow switching device 27.
  • the three first heat medium flow switching devices 26 are configured by three-way valves or the like. Switch.
  • the first heat medium flow switching device 26 is provided in a number (three in this case) corresponding to the number of indoor units 3 installed.
  • one of the three flow paths is connected to the heat medium heat exchanger 21a.
  • the other one is connected to the heat medium heat exchanger 21b.
  • the other is connected to the heat medium flow control device 28.
  • the first heat medium flow switching device 26 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 31.
  • FIG. 6 the first heat medium flow switching device 26 a, the first heat medium flow switching device 26 b, and the first heat medium flow switching device 26 c are illustrated from the lower side of the drawing corresponding to the indoor unit 3. Show.
  • the three second heat medium flow switching devices 27 are configured by three-way valves, etc. Switch.
  • the number of second heat medium flow switching devices 27 (three in this case) according to the number of indoor units 3 installed is provided.
  • one of the three flow paths is connected to the heat medium heat exchanger 21a.
  • the other one is connected to the heat medium heat exchanger 21b.
  • the other is connected to the indoor heat exchanger 31.
  • the second heat medium flow switching device 27 is provided on the inlet side of the heat medium flow path in the indoor heat exchanger 31.
  • the second heat medium flow switching device 27 a, the second heat medium flow switching device 27 b, and the second heat medium flow switching device 27 c are illustrated from the lower side of the drawing corresponding to the indoor unit 3. Show.
  • the three heat medium flow control devices 28 are devices provided on the relay unit 2 side instead of the indoor flow control device 32 described in the first embodiment. It is.
  • the heat medium flow control device 28 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate that flows through the heat medium branch pipe 51.
  • the number of heat medium flow control devices 28 (three in this case) corresponding to the number of indoor units 3 installed is provided.
  • One end of the heat medium flow control device 28 is connected to the indoor heat exchanger 31.
  • the other is connected to the first heat medium flow switching device 26.
  • the heat medium flow control device 28 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 31.
  • the heat medium flow control device 28 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 31.
  • the heat medium flow rate adjustment device 28 a, the heat medium flow rate adjustment device 28 b, and the heat medium flow rate adjustment device 28 c are illustrated from the lower side of the drawing corresponding to the indoor unit 3.
  • a discharge temperature sensor 501 In the heat source side refrigerant circulation circuit A, a discharge temperature sensor 501, a discharge pressure sensor 502, and an outdoor temperature sensor 503 are installed on the outdoor unit 1 side as in the first embodiment.
  • the first refrigerant temperature sensor 504 installed on the relay unit 2 side corresponds to the two heat medium heat exchangers 21, and the first refrigerant temperature sensor 504a and the first refrigerant temperature sensor 504a.
  • a refrigerant temperature sensor 504b is installed.
  • the second refrigerant temperature sensor 505 is provided with a second refrigerant temperature sensor 505 a and a second refrigerant temperature sensor 505 b corresponding to the two heat medium heat exchangers 21.
  • the heat source side refrigerant pressure sensor 506 (heat source side refrigerant pressure sensor 506a, heat source side refrigerant pressure sensor 506b) is installed.
  • the heat source side refrigerant pressure sensor 506a detects the pressure of the heat source side refrigerant flowing into and out of the heat medium heat exchanger 21a.
  • the heat source side refrigerant pressure sensor 506b detects the pressure of the heat source side refrigerant flowing between the heat medium heat exchanger 21b and the relay side expansion device 23b.
  • the indoor inflow pressure sensor 521 (indoor inflow pressure sensor 521a to indoor inflow pressure sensor 521c) and the indoor outflow pressure sensor 522 (indoor outflow pressure sensor 522a to indoor outflow pressure).
  • the sensor 522c) was installed on the indoor unit 3 side.
  • each is installed on the heat medium inflow / outflow side in the heat medium flow rate adjustment device 28 installed in the relay unit 2. , Send a signal according to the detected pressure.
  • the indoor unit side temperature sensor 513 (the indoor inlet side temperature sensor 513a to the indoor inlet side temperature sensor 513c) and the indoor outlet side temperature sensor 514 are provided on each indoor unit 3 side.
  • indoor outlet side temperature sensor 514a to indoor outlet side temperature sensor 514c and indoor temperature sensor 515 (indoor temperature sensor 515a to indoor temperature sensor 515c) are installed.
  • the operation mode of the air-conditioning apparatus 0 is the all-cooling operation mode in which all the driven indoor units 3 execute the cooling operation and the all the indoor units 3 that are driven perform the heating operation.
  • ⁇ Cooling operation mode> In the case of the cooling only operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 and dissipates heat to the surrounding air to condense and liquefy. Then, it becomes high-pressure liquid refrigerant and flows out of the outdoor unit 1 through the first backflow prevention device 18a. Then, the refrigerant flows into the relay unit 2 through the refrigerant pipe 6.
  • the refrigerant flowing into the relay unit 2 passes through the opening / closing device 24a, expands in the relay side expansion device 23a and the relay side expansion device 23b, and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into each of the heat medium heat exchanger 21a and the heat medium heat exchanger 21b acting as an evaporator, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature and low-pressure gas refrigerant. .
  • the gas refrigerant flows out of the relay unit 2 via the relay side refrigerant flow switching device 25a and the relay side refrigerant flow switching device 25b.
  • the refrigerant flows again into the outdoor unit 1 through the refrigerant pipe 6.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 18d, and is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 14.
  • the heat medium is cooled by the refrigerant in both the heat medium heat exchanger 21a and the heat medium heat exchanger 21b.
  • the cooled heat medium flows through the heat medium main pipe 5 and the heat medium branch pipe 51 by the pump 22a and the pump 22b.
  • the heat medium flowing into the indoor heat exchangers 31a to 31c via the second heat medium flow switching devices 27a to 27c absorbs heat from the indoor air.
  • the indoor air is cooled to cool the air-conditioning target space.
  • the refrigerant that has flowed out of the indoor heat exchangers 31a to 31c flows into the heat medium flow control devices 28a to 28c.
  • the refrigerant passes through the first heat medium flow switching devices 26a to 26c, flows into the heat medium heat exchanger 21a and the heat medium heat exchanger 21b, is cooled, and is sucked into the pump 22a and the pump 22b again.
  • the heat medium flow control devices 28a to 28c corresponding to the indoor heat exchangers 31a to 31c having no heat load are fully closed.
  • the heat medium flow control devices 28a to 28c corresponding to the indoor heat exchangers 31a to 31c having a heat load adjust the opening degree to adjust the heat loads in the indoor heat exchangers 31a to 31c.
  • ⁇ Cooling operation mode> In the cooling main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11, dissipates heat to the surrounding air, and condenses. It becomes a two-phase refrigerant and flows out of the outdoor unit 1 through the first backflow prevention device 18a. Then, the refrigerant flows into the relay unit 2 through the refrigerant pipe 6.
  • the refrigerant that has flowed into the relay unit 2 passes through the relay-side refrigerant flow switching device 25b, flows into the heat medium heat exchanger 21b that acts as a condenser, and dissipates heat to the heat medium that circulates in the heat medium circulation circuit B to generate a high pressure. It becomes a liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the relay side expansion device 23b and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the heat medium heat exchanger 21a acting as an evaporator via the relay side expansion device 23a, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant.
  • the heat of the refrigerant is transmitted to the heat medium by the heat medium heat exchanger 21b.
  • the heated heat medium flows in the heat medium main pipe 5 and the heat medium branch pipe 51 by the pump 22b.
  • the heat medium that has flowed into the indoor heat exchangers 31a to 31c for which heating is requested by operating the first heat medium flow switching devices 26a to 26c and the second heat medium flow switching devices 27a to 27c radiates heat to the indoor air. .
  • the indoor air is heated to heat the air-conditioning target space.
  • cold heat of the refrigerant is transmitted to the heat medium by the heat medium heat exchanger 21a.
  • the cooled heat medium flows through the heat medium main pipe 5 and the heat medium branch pipe 51 by the pump 22a.
  • the heat medium that has flowed into the indoor heat exchangers 31a to 31c for which cooling is requested by operating the first heat medium flow switching devices 26a to 26c and the second heat medium flow switching devices 27a to 27c absorbs heat from the room air. .
  • the indoor air is cooled to cool the air-conditioning target space.
  • the heat medium flow control devices 28a to 28c corresponding to the indoor heat exchangers 31a to 31c having no heat load are fully closed.
  • the heat medium flow control devices 28a to 28c corresponding to the indoor heat exchangers 31a to 31c having a heat load adjust the opening degree to adjust the heat loads in the indoor heat exchangers 31a to 31c.
  • ⁇ Heating operation mode> In the heating only operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the refrigerant flow switching device 11 and the first connection pipe 16 and the first backflow prevention device 18b. To do. Then, the refrigerant flows into the relay unit 2 through the refrigerant pipe 6. The refrigerant that has flowed into the relay unit 2 flows into the heat medium heat exchanger 21a and the heat medium heat exchanger 21b through the relay side refrigerant flow switching device 25a and the relay side refrigerant flow switching device 25b. The heat is radiated to the heat medium circulating in the medium circulation circuit B to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the relay-side throttle device 23a and the relay-side throttle device 23b to become a low-temperature and low-pressure two-phase refrigerant, and flows out from the relay unit 2 through the opening / closing device 24b. Then, the refrigerant flows again into the outdoor unit 1 through the refrigerant pipe 6.
  • the refrigerant flowing into the outdoor unit 1 passes through the second connection pipe 17 and the first backflow prevention device 18c, flows into the heat source side heat exchanger 12 that acts as an evaporator, absorbs heat from the surrounding air, and has a low temperature and low pressure. It becomes a gas refrigerant.
  • the gas refrigerant is sucked again into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 14.
  • the operation of the heat medium in the heat medium circuit B is the same as in the cooling only operation mode.
  • the heat medium heat exchanger 21a and the heat medium heat exchanger 21b the heat medium is heated by the refrigerant, and is radiated to the indoor air by the indoor heat exchanger 31a and the indoor heat exchanger 31b. Heat the space.
  • Heating main operation mode In the heating-main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11 and the first connection pipe 16 and the first backflow prevention device 18b to the outdoor unit 1. Spill from. Then, the refrigerant flows into the relay unit 2 through the refrigerant pipe 6. The refrigerant that has flowed into the relay unit 2 passes through the relay-side refrigerant flow switching device 25b, flows into the heat medium heat exchanger 21b that acts as a condenser, and dissipates heat to the heat medium that circulates in the heat medium circulation circuit B to generate a high pressure. It becomes a liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the relay side expansion device 23b and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the heat medium heat exchanger 21a acting as an evaporator via the relay side expansion device 23a, absorbs heat from the heat medium circulating in the heat medium circuit B, and relay-side refrigerant flow switching device 25a. Flows out from the relay unit 2. Then, the refrigerant flows again into the outdoor unit 1 through the refrigerant pipe 6.
  • the refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12 acting as an evaporator through the second connection pipe 17 and the first backflow prevention device 18c, absorbs heat from the surrounding air, Gas refrigerant.
  • the gas refrigerant is sucked again into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 14.
  • the operations of the exchangers 31a to 31c are the same as those in the cooling main operation mode.
  • the heat medium heat exchanger 21 functions as an evaporator or a condenser, and performs either cooling or heating of the heat medium. Therefore, on the heat source side refrigerant circulation circuit A side, either the evaporation temperature or the condensation temperature in the heat medium heat exchanger 21 is controlled.
  • the heat medium heat exchanger 21a and the heat medium heat exchanger 21b function as an evaporator.
  • the heat medium heat exchanger 21a and the heat medium heat exchanger 21b function as a condenser. Therefore, the same control as that in the first embodiment can be performed.
  • the control processing device 210 of the relay unit control device 200 sets a reference temperature gradient from the target temperature gradients of the indoor unit 3 related to cooling, and performs control by performing the processing described in the first embodiment. To do.
  • the control processing device 210 sets a reference temperature gradient from the target temperature gradients of the indoor unit 3 related to heating, and performs control by performing the processing described in the first embodiment.
  • the control described in the first embodiment can be performed also in the air conditioner 0 of the second embodiment that can perform the cooling and heating simultaneous operation. Therefore, the temperature of the heat medium circulating in the heat medium circuit B can be changed by controlling the heat supply from the heat source side refrigerant circuit A side in accordance with the temperature of the indoor space serving as a heat load.
  • FIG. 7 is a diagram showing a configuration of an air-conditioning apparatus 0 according to Embodiment 3 of the present invention.
  • the air conditioner 0 of the third embodiment is configured by connecting the plurality of relay units 2 described in the first and second embodiments in parallel with the outdoor unit 1 through the refrigerant pipe 6, and the heat source side refrigerant circulation circuit A. Is configured.
  • each unit is also provided in the air conditioner 0 of the third embodiment, which includes a plurality of relay units 2 and is connected in parallel to the outdoor unit 1. Can communicate with each other. For this reason, the control etc. which were demonstrated in Embodiment 1 and Embodiment 2 can be performed.
  • FIG. FIG. 8 is a diagram showing a configuration of an air-conditioning apparatus 0 according to Embodiment 4 of the present invention.
  • the air conditioner 0 according to the fourth embodiment includes the devices in the relay unit 2 described in the first and second embodiments and is integrated into the outdoor unit 1.
  • the outdoor unit 1 and each indoor unit 3 are connected by the heat medium main pipe 5 and the heat medium branch pipe 51. Since the outdoor unit 1 accommodates all the devices of the heat source side refrigerant circulation circuit A, the amount of refrigerant can be reduced.
  • the outdoor unit 1 and each indoor unit 3 should just be connected by piping, piping work can be simplified. Further, the control described in the first embodiment and the second embodiment can be performed without providing the relay unit 2 independently.
  • FIG. FIG. 9 is a diagram showing a configuration of an air-conditioning apparatus 0 according to Embodiment 5 of the present invention. 9, devices having the same reference numerals as those in FIG. 2 perform the same operations as those described in the first embodiment.
  • the air conditioner 0 according to the fifth embodiment has a plurality of flow rate adjustment devices 41 (flow rate adjustment devices 41a to 41c) instead of installing the indoor flow rate adjustment device 32 in the indoor unit 3. Is installed.
  • the flow rate adjustment unit 4 has a flow rate adjustment control device 400.
  • the flow rate adjustment control device 400 can communicate with control devices of other units.
  • the air conditioner 0 of the fifth embodiment by installing the flow rate adjustment unit 4 and consolidating the plurality of flow rate adjustment devices 41, maintenance and the like can be easily performed. Also in the air conditioner 0 of the fifth embodiment, the air conditioner 0 capable of operating efficiently can be obtained by allowing the flow rate adjustment unit 4 to communicate signals including various data.
  • the relay unit control device 200 performs the change determination of the temperature of the heat medium based on the change in the temperature difference of the suction temperature, which is the temperature of the indoor space.
  • the present invention is not limited to this. Absent.
  • the temperature of the heat medium may be determined based on the relationship between the temperature difference between the target temperature gradient and the suction temperature. Further, the temperature of the heat medium may be determined based on the amount of heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

この発明に係る空気調和装置は、水またはブラインを含み、熱を搬送する媒体となる熱媒体を加圧するポンプと、空気調和対象の室内空気と熱媒体とを熱交換する室内熱交換器と、室内熱交換器に対応して設置され、室内熱交換器を通過する熱媒体の流量を調整する流量調整装置とを配管接続して熱媒体を循環させる熱媒体循環回路と、熱源側冷媒を圧縮する圧縮機と、熱源側冷媒と室外の空気との熱交換を行う熱源側熱交換器と、熱源側冷媒を減圧する絞り装置と、熱源側冷媒と熱媒体との熱交換を行う熱媒体熱交換器とを配管接続した熱源側冷媒循環回路とを備え、複数の室内熱交換器が、それぞれ複数の室内ユニットに設置され、複数の室内ユニットは、室内熱交換器の熱交換に係る熱量に関する物理量の検出を行う検出装置を有し、検出装置の検出に係るデータを含む信号の通信を行うものである。

Description

空気調和装置
 この発明は、空気調和装置に係るものである。特に、冷媒と異なる水などの熱媒体を循環させて空気調和を行う空気調和装置に関するものである。
 室外ユニット(室外機)と中継ユニットとの間を配管接続して熱源側冷媒を循環させる冷媒循環回路と、循環する熱源側冷媒と、中継ユニットと室内ユニット(室内機)との間を配管接続して熱媒体(屋内側冷媒)を循環させる熱媒体循環回路とを有する空気調和装置がある(たとえば、特許文献1参照)。熱源側冷媒循環回路は室外ユニットと中継ユニットとが配管接続され、熱媒体循環回路は、中継ユニットと複数の室内ユニットとが配管接続されている。そして、中継ユニットが有する熱媒体熱交換器における熱源側冷媒と熱媒体との熱交換により、熱媒体が、室内側に温熱または冷熱を供給して空気調和を行う。
特開2017-101855号公報
 しかしながら、特許文献1の空気調和装置では、室内ユニットの室内設定温度に応じて室内ユニットに供給される熱媒体の温度を制御している。室内ユニットが空気調和を行う対象の室内空間に関するデータは、熱媒体の温度制御には用いられていない。このため、特許文献1の空気調和装置では、室内空間の状況が変化しても、室内ユニットには、同じ温度の熱媒体が供給されることとなり、室内空間の状況に適応した制御を行うことはできなかった。
 そこで、この発明は、上記のような課題を解決するため、室内側のデータを用いて、省エネルギをはかることができる空気調和装置を得ることを目的とする。
 この発明に係る空気調和装置は、水またはブラインを含み、熱を搬送する媒体となる熱媒体を加圧するポンプと、空気調和対象の室内空気と熱媒体とを熱交換する室内熱交換器と、室内熱交換器に対応して設置され、室内熱交換器を通過する熱媒体の流量を調整する流量調整装置とを配管接続して熱媒体を循環させる熱媒体循環回路と、熱源側冷媒を圧縮する圧縮機と、熱源側冷媒と室外の空気との熱交換を行う熱源側熱交換器と、熱源側冷媒を減圧する絞り装置と、熱源側冷媒と熱媒体との熱交換を行う熱媒体熱交換器とを配管接続した熱源側冷媒循環回路とを備え、複数の室内熱交換器が、それぞれ複数の室内ユニットに設置され、複数の室内ユニットは、室内熱交換器の熱交換に係る熱量に関する物理量の検出を行う検出装置を有し、検出装置の検出に係るデータを含む信号の通信を行うものである。
 この発明においては、室内ユニットにおいて、室内熱交換器の熱交換に係る熱量に関する検出を行う検出装置を有するようにしたことで、室内ユニットにおいて検出によって得られたデータを、熱源側冷媒循環回路の運転に利用することができる。このため、省エネルギをはかることができる。
この発明の実施の形態1に係る空気調和装置0の設置例の概略を示す図である。 この発明の実施の形態1に係る空気調和装置0の構成の一例を示す図である。 この発明の実施の形態1に係る中継ユニット制御装置200の構成を示す図である。 この発明の実施の形態1に係る中継ユニット制御装置200が行う制御の流れを示す図である。 この発明の実施の形態1に係る空気調和装置0の運転を行った結果の一例を示す図である。 この発明の実施の形態2に係る空気調和装置0の構成の一例を示す図である。 この発明の実施の形態3に係る空気調和装置0の構成を示す図である。 この発明の実施の形態4に係る空気調和装置0の構成を示す図である。 この発明の実施の形態5に係る空気調和装置0の構成を示す図である。
 以下、発明の実施の形態に係る空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
実施の形態1.
 図1は、この発明の実施の形態1に係る空気調和装置0の設置例の概略を示す図である。図1に基づいて、実施の形態1に係る空気調和装置0の設置例について説明する。空気調和装置0は、熱源側冷媒を循環させる熱源側冷媒循環回路Aおよび熱の授受、搬送などを行う、水などの熱媒体を循環させる熱媒体循環回路Bを備える。そして、冷房、暖房などにより空気調和を行う。熱源側冷媒循環回路Aは、熱媒体循環回路B内の熱媒体を加熱または冷却する熱源側装置として機能する。
 図1では、実施の形態1に係る空気調和装置0は、熱源機となる1台の室外ユニット1、室内機となる複数台の室内ユニット3(室内ユニット3a~室内ユニット3c)および中継ユニット2を有している。中継ユニット2は、熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体との間の伝熱を中継するユニットである。室外ユニット1と中継ユニット2とは、熱源側冷媒の流路となる冷媒配管6で接続されている。ここで、1台の室外ユニット1に対して、複数台の中継ユニット2を並列に接続することもできる。
 また、各室内ユニット3は、熱媒体の流路となる熱媒体主配管5で中継ユニット2と接続されている。ここで、各室内ユニット3は、熱媒体枝配管51を介して、熱媒体主配管5と接続されている。
 熱源側冷媒循環回路Aを循環する熱源側冷媒としては、たとえば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。また、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒やその混合物、CO、プロパンなどの自然冷媒などを用いることができる。
 また、熱媒体循環回路Bを循環する熱媒体としては、たとえば、ブライン(不凍液)、水、ブラインと水との混合液、防食効果が高い添加剤と水との混合液などを用いることができる。このように、実施の形態1の空気調和装置0では、安全性の高いものを熱媒体に使用することができる。
 図2は、この発明の実施の形態1に係る空気調和装置0の構成の一例を示す図である。図2に基づいて、空気調和装置0が有する機器などの構成について説明する。前述したように、室外ユニット1と中継ユニット2とが、冷媒配管6で接続されている。また、中継ユニット2と各室内ユニット3とが熱媒体主配管5で接続されている。ここで、図2においては、3台の室内ユニット3が、熱媒体主配管5を介して中継ユニット2と接続されている。ただし、室内ユニット3の接続台数は、3台に限定されない。
<室外ユニット1>
 室外ユニット1は、熱源側冷媒循環回路Aにおいて熱源側冷媒を循環させて熱を搬送し、中継ユニット2の熱媒体熱交換器21において、熱媒体との熱交換を行わせるユニットである。実施の形態1においては、熱源側冷媒により冷熱を搬送させる。室外ユニット1は、筐体内に、圧縮機10、熱源側熱交換器12、絞り装置13およびアキュムレータ14を有している。圧縮機10、冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ14は、冷媒配管6で配管接続され、搭載されている。圧縮機10は、熱源側冷媒を、吸入し、圧縮して、高温および高圧状態にして吐出する。ここで、圧縮機10は、たとえば、容量制御可能なインバータ圧縮機などで構成するとよい。冷媒流路切替装置11は、冷房運転モードまたは暖房運転モードによって、熱源側冷媒の流路を切り替える装置である。冷房運転または暖房運転しか行わない場合には、冷媒流路切替装置11を設置する必要はない。
 熱源側熱交換器12は、たとえば、熱源側送風機15から供給される室外の空気と熱源側冷媒との間で熱交換を行う。暖房運転モードにおいては、蒸発器として機能し、熱源側冷媒に吸熱させる。また、冷房運転モードにおいては、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。また、絞り装置13は、減圧弁、膨張弁として機能し、熱源側冷媒を減圧して膨張させる装置である。ここで、絞り装置13は、たとえば、開度を任意の大きさに制御することができ、熱源側冷媒の流量などを任意に調整することができる電子式膨張弁などのような装置がよい。アキュムレータ14は、圧縮機10の吸入側に設けられている。アキュムレータ14は、たとえば、暖房運転モードと冷房運転モードとで用いられる冷媒量の違い、運転が変化するときの過渡期などに生じる余剰冷媒を蓄える。ここで、アキュムレータ14は、熱源側冷媒循環回路Aに設置されない場合もある。
<室内ユニット3>
 室内ユニット3は、調和した空気を室内空間に送るユニットである。実施の形態1における各室内ユニット3は、筐体内に、室内熱交換器31(室内熱交換器31a~室内熱交換器31c)、室内流量調整装置32(室内流量調整装置32a~室内流量調整装置32c)および室内側送風機33(室内側送風機33a~室内側送風機33c)を有している。室内熱交換器31および室内流量調整装置32は、熱媒体循環回路Bを構成する機器となる。
 室内流量調整装置32は、たとえば、弁の開度(開口面積)を制御することができる二方弁などで構成されている。室内流量調整装置32は、開度を調整することで、室内熱交換器31を流入出する熱媒体の流量を制御する。そして、室内流量調整装置32は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度に基づいて、室内熱交換器31を通過させる熱媒体の量を調整し、室内熱交換器31が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。ここで、室内流量調整装置32は、停止、サーモOFFなどのときのように、室内熱交換器31が熱負荷との熱交換をする必要がないときは、弁を全閉にして、室内熱交換器31に熱媒体が流入出しないように供給を止めることができる。図2において、室内流量調整装置32は、室内熱交換器31の熱媒体流出側の配管に設置されているが、これに限定するものではない。たとえば、室内流量調整装置32が、室内熱交換器31の熱媒体流入側に設置されてもよい。
 また、室内熱交換器31は、たとえば、伝熱管およびフィンを有する。そして、室内熱交換器31の伝熱管内を熱媒体が通過する。室内熱交換器31は、室内側送風機33から供給される室内空間の空気と熱媒体との間で熱交換を行う。空気よりも冷たい熱媒体が伝熱管内を通過すれば、空気は冷却され、室内空間は冷房される。室内側送風機33は、室内空間の空気を室内熱交換器31に通過させ、室内空間に戻す空気の流れを生成する。
<中継ユニット2>
 次に、中継ユニット2の構成について説明する。中継ユニット2は、熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体との伝熱に係る機器を有するユニットである。中継ユニット2は、熱媒体熱交換器21およびポンプ22を有している。
  熱媒体熱交換器21は、熱源側冷媒と熱媒体との熱交換を行って、熱源側冷媒側から熱媒体側に熱を伝える。熱媒体熱交換器21は、熱媒体を加熱する場合には、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。また、熱媒体を冷却する場合には、蒸発器として機能し、熱源側冷媒に吸熱させる。ポンプ22は、熱媒体を吸引し、加圧して熱媒体循環回路Bを循環させる装置である。ここで、ポンプ22は、容量制御を行うことができ、各室内ユニット3における熱負荷の大きさによって、熱媒体循環回路Bを循環する熱媒体の流量(単位時間に流れる熱媒体量)を調整することができる。
 ここで、空気調和装置0の熱源側冷媒循環回路A側の構成機器における動作などについて、熱源側冷媒循環回路Aを循環する熱源側冷媒の流れに基づいて説明する。まず、熱媒体を冷却する場合について説明する。圧縮機10は、熱源側冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出された熱源側冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12へ流入する。熱源側熱交換器12は、熱源側送風機15により供給される空気と熱源側冷媒との間で熱交換を行い、熱源側冷媒を凝縮液化させる。凝縮液化された熱源側冷媒は、絞り装置13を通過する。絞り装置13は、通過する凝縮液化した熱源側冷媒を減圧する。減圧された熱源側冷媒は、室外ユニット1から流出し、冷媒配管6を通過して、中継ユニット2の熱媒体熱交換器21に流入する。熱媒体熱交換器21は、通過する熱源側冷媒と熱媒体との間で熱交換を行い、熱源側冷媒を蒸発ガス化させる。このとき、熱媒体は冷却される。熱媒体熱交換器21から流出した熱源側冷媒は、中継ユニット2からから流出し、冷媒配管6を通過して、室外ユニット1に流入する。そして、冷媒流路切替装置11を再度通過した蒸発ガス化した熱源側冷媒を圧縮機10が吸入する。
 次に、熱媒体を加熱する場合について説明する。圧縮機10は、熱源側冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出された熱源側冷媒は、冷媒流路切替装置11を介して、室外ユニット1から流出し、冷媒配管6を通過して、中継ユニット2の熱媒体熱交換器21に流入する。熱媒体熱交換器21は、通過する熱源側冷媒と熱媒体との間で熱交換を行い、熱源側冷媒を凝縮液化させる。このとき、熱媒体は加熱される。凝縮液化された熱源側冷媒は、熱媒体熱交換器21から流出した熱源側冷媒は、中継ユニット2からから流出し、冷媒配管6を通過して、室外ユニット1の絞り装置13を通過する。絞り装置13は、通過する凝縮液化した熱源側冷媒を減圧する。減圧された熱源側冷媒は、熱源側熱交換器12へ流入する。熱源側熱交換器12は、熱源側送風機15により供給される空気と熱源側冷媒との間で熱交換を行い、熱源側冷媒を蒸発ガス化させる。そして、冷媒流路切替装置11を再度通過した蒸発ガス化した熱源側冷媒を圧縮機10が吸入する。
 また、空気調和装置0には、物理量を検出する検出装置となる各種センサが設置されている。熱源側冷媒循環回路Aにおいて、室外ユニット1側に、吐出温度センサ501、吐出圧力センサ502および室外温度センサ503が設置されている。吐出温度センサ501は、圧縮機10が吐出する冷媒の温度を検出し、吐出温度検出信号を出力する。後述する室外ユニット制御装置100が、吐出温度センサ501が出力した吐出温度検出信号を得る。ここで、吐出温度センサ501は、サーミスタなどを有している。また、以下に説明する、他の温度センサにおいてもサーミスタなどを有しているものとする。吐出圧力センサ502は、圧縮機10が吐出する冷媒の圧力を検出し、吐出圧力検出信号を出力する。後述する室外ユニット制御装置100が、吐出圧力センサ502が出力した吐出圧力検出信号を得る。室外温度センサ503は、室外ユニット1において、熱源側熱交換器12の空気流入部分に設置される。室外温度センサ503は、たとえば、室外ユニット1の周囲の温度となる室外温度を検出し、室外温度検出信号を出力する。後述する室外ユニット制御装置100が、室外温度センサ503が出力した室外温度検出信号を得る。
 また、熱源側冷媒循環回路Aにおいて、中継ユニット2側に、第1冷媒温度センサ504および第2冷媒温度センサ505が設置されている。第1冷媒温度センサ504は、熱源側冷媒循環回路Aにおける冷媒の流れにおいて、熱媒体を冷却する際における熱媒体熱交換器21の冷媒流入側の配管に設置される。そして、第1冷媒温度センサ504および第2冷媒温度センサ505は、熱媒体熱交換器21を流入出する冷媒の温度を検出し、冷媒側検出信号を出力する。後述する中継ユニット制御装置200が、第1冷媒温度センサ504および第2冷媒温度センサ505が出力した冷媒側検出信号を得る。
 一方、熱媒体循環回路Bにおいて、中継ユニット2側に、熱媒体流入口側温度センサ511、熱媒体流出口側温度センサ512が設置されている。熱媒体流入口側温度センサ511は、熱媒体循環回路Bにおける熱媒体の流れにおいて、熱媒体熱交換器21の熱媒体流入側の配管に設置される。そして、熱媒体流入口側温度センサ511は、熱媒体熱交換器21に流入する熱媒体の温度を検出し、熱媒体流入側検出信号を出力する。後述する中継ユニット制御装置200が、熱媒体流入口側温度センサ511が出力した熱媒体流入側検出信号を得る。そして、熱媒体流出口側温度センサ512は、熱媒体循環回路Bにおける熱媒体の流れにおいて、熱媒体熱交換器21の熱媒体流出側の配管に設置される。そして、熱媒体流出口側温度センサ512は、熱媒体熱交換器21から流出する熱媒体の温度を検出し、熱媒体流出側検出信号を出力する。後述する中継ユニット制御装置200が、熱媒体流出口側温度センサ512が出力した熱媒体流出側検出信号を得る。ここで、実施の形態1の空気調和装置0では設置していないが、熱媒体循環回路Bにおいて、中継ユニット2側に、圧力センサ、流量センサなどの検出装置を設置するようにしてもよい。
 熱媒体循環回路Bにおいて、各室内ユニット3側には、室内流入口側温度センサ513(室内流入口側温度センサ513a~室内流入口側温度センサ513c)が設置されている。また、室内流出口側温度センサ514(室内流出口側温度センサ514a~室内流出口側温度センサ514c)が設置されている。室内流入口側温度センサ513は、室内熱交換器31に流入する熱媒体の温度を検出し、流入側検出信号を出力する。後述する各室内ユニット3が有する室内ユニット制御装置300が、対応する室内流出口側温度センサ514が出力した流入側検出信号を得る。各室内流出口側温度センサ514は、室内熱交換器31から流出する熱媒体の温度を検出し、流出側検出信号を出力する。後述する室内ユニット制御装置300が、対応する室内流出口側温度センサ514が出力した流入側検出信号を得る。
 さらに、熱媒体循環回路Bにおいて、室内ユニット3側には、室内流入側圧力センサ521(室内流入側圧力センサ521a~室内流入側圧力センサ521c)が設置されている。また、室内流出側圧力センサ522(室内流出側圧力センサ522a~室内流出側圧力センサ522c)が設置されている。室内流入側圧力センサ521および室内流出側圧力センサ522は、各室内ユニット3の室内流量調整装置32における熱媒体流入出側にそれぞれ設置され、検出した圧力に応じた信号を送る。後述する各室内ユニット3が有する室内ユニット制御装置300が、対応する室内流入側圧力センサ521および室内流出側圧力センサ522が出力した圧力に応じた信号を得る。
 ここで、たとえば、中継ユニット2に、熱媒体循環回路Bを循環する熱媒体の全体の圧力を検出する圧力センサが設置されているなどの場合には、室内流入側圧力センサ521を省略することができる。また、流量を検出する流量検出装置を、圧力センサの代わりに設置するようにしてもよい。また、熱負荷である室内空間の空気との熱交換に係る熱量を検出することができる熱量検出装置を設置するようにしてもよい。
 各室内ユニット制御装置300は、室内熱交換器31における熱交換に係る熱量を演算などを行って取得する。そして、各室内ユニット制御装置300は、取得した熱量のデータを含む信号を、中継ユニット制御装置200に送る。
 また、各室内ユニット3側には、室内温度センサ515(室内温度センサ515a~室内温度センサ515c)が設置されている。室内温度センサ515は、室内側送風機33の駆動による空気の流れにより、室内熱交換器31に流入する空気の温度である吸込温度を検出し、吸込温度検出信号を出力する。ここで、吸込温度は、熱負荷である室内空間における室内空気の温度とすることができる。
 次に、この発明の実施の形態1に係る空気調和装置0における制御系装置の構成について説明する。図2に示すように、各ユニットは、それぞれのユニットが有する機器を制御する制御装置を有している。また、各制御装置は、各種センサから送られる信号に含まれる物理量のデータ、入力装置(図示せず)などから送られる指示、設定など信号に基づく処理を行う。ここで、各制御装置は、他の制御装置と有線通信接続または無線通信接続され、他の制御装置との間で、各種データを含む信号を通信することができる。室外ユニット1は、室外ユニット制御装置100を有している。また、中継ユニット2は、中継ユニット制御装置200を有している。各室内ユニット3は、室内ユニット制御装置300(室内ユニット制御装置300a~室内ユニット制御装置300c)を有している。
 通信については、実施の形態1においては、各室内ユニット制御装置300は、それぞれ対応する室内ユニット3内のセンサにおいて検出された圧力、温度などのデータを信号に含めて、中継ユニット2が有する中継ユニット制御装置200に送ることができる。各室内ユニット制御装置300は、他にも、リモートコントローラ(図示せず)から入力された室内設定温度に係るデータ、後述するように、対応する室内熱交換器31を通過する熱媒体の流量、室内熱交換器31における室内空間の空気との熱交換に係る熱量など、演算処理を行ったデータなどを、中継ユニット2が有する中継ユニット制御装置200に送ることができる。
 ここで、室内ユニット制御装置300による室内熱交換器31を通過する熱媒体の流量および室内熱交換器31における室内空間の空気との熱交換に係る熱量の算出について説明する。室内ユニット制御装置300は、室内流入側圧力センサ521および室内流出側圧力センサ522の検出に係る圧力によって、室内流量調整装置32の通過前後における熱媒体の差圧を算出することができる。また、少なくとも、差圧および室内流量調整装置32の弁の特徴を表すCv値から、室内熱交換器31を通過する熱媒体の流量を算出することができる。ここで、Cv値は、流量調整装置における弁の種類とポート径とによって決まる値であり、弁が有する容量係数である。Cv値は、ある差圧で弁を通過する流体の流量を数値で表したものである。さらに、室内流入口側温度センサ513および室内流出口側温度センサ514の検出に係る温度並びに室内熱交換器31を通過する熱媒体の流量から、室内熱交換器31における室内空間の空気との熱交換に係る熱量を算出することができる。
 各室内ユニット制御装置300における熱量の演算について説明する。まず、各制御装置は、対応する流量調整装置における弁の開度から、前述したCv値を得る。Cv値と流量調整装置を通過する前後における熱媒体の差圧とから、熱交換器および流量調整装置を流れる熱媒体の流量を算出する。ここで、Cv値が大きいと、熱媒体の流量が多くなる。また、熱媒体の差圧が大きくても、熱媒体の流量が多くなる。さらに、対応する熱交換器に流れる熱媒体の流量と熱交換器に流入する熱媒体の温度と流出する熱媒体の温度との温度差から、熱交換によって熱負荷に供給する熱量を算出する。熱交換器を通過する熱媒体の流量が多いと供給する熱量が多くなる。また、熱交換前後の熱媒体の温度差が大きいと供給する熱量が多くなる。そして、各ユニットの制御装置は、算出した熱負荷に供給している熱量と必要とする能力(熱負荷に供給する必要がある熱量)とを比較し、必要とする能力が大きい場合には、対応する流量調整装置の開度を大きくする。また、算出された熱量の合計が、すべての室内ユニット3における必要能力の合計を満たさないときは、中継ユニット2が有するポンプ22の出力を上げる、室外ユニット1が有する圧縮機10の駆動周波数を上げるなどする。
 図3は、この発明の実施の形態1に係る中継ユニット制御装置200の構成を示す図である。前述したように、実施の形態1における制御に関する処理は、中継ユニット制御装置200が行う。中継ユニット制御装置200は、制御処理装置210、記憶装置220、計時装置230および通信装置240を有している。
 記憶装置220は、制御処理装置210が処理を行う際に用いるデータを記憶する。記憶装置220は、データを一時的に記憶できるランダムアクセスメモリ(RAM)などの揮発性記憶装置(図示せず)およびデータを長期的に記憶できるフラッシュメモリなどの不揮発性の補助記憶装置(図示せず)を有している。また、記憶装置220は、プログラムを記憶し、制御処理装置210が、プログラムに基づいて処理を実行して、制御処理装置210の各部が行う処理を実現する。
 また、計時装置230は、タイマなどを有し、制御処理装置210が、演算などに用いる時間の計時を行う。通信装置240は、制御処理装置210が、他のユニットの制御装置との間で、データを含む信号の通信を行う際、信号の変換などを行う、インターフェースとなる装置である。以下、制御処理装置210と他のユニットの制御装置との通信は、通信装置240を介して行われるものとする。
 制御処理装置210は、温度勾配設定処理部211、演算処理部212、判定処理部213および熱源側制御処理部214を有している。温度勾配設定処理部211は、各室内ユニット3の室内ユニット制御装置300から送られる、室内ユニット3の運転開始時における吸込温度および室内設定温度のデータから、各室内ユニット3における目標温度勾配を生成する。そして、生成した目標温度勾配から1つを、基準となる目標温度勾配(以下、基準温度勾配という)として設定する。基準温度勾配は、熱源側冷媒循環回路Aの制御にあたり、熱媒体熱交換器21において熱交換する熱媒体の温度などを決定する基準となる温度勾配である。ここで、前述したように、吸込温度は、室内温度センサ515の検出に係る温度であり、室内空間における空気の温度とすることができる。演算処理部212は、あらかじめ設定された設定時間間隔で、各室内ユニット3における吸込温度の温度差を算出する。また、判定処理部213は、算出した温度差から得られる、各室内ユニット3における熱負荷となる室内空間の空気の状態から、熱媒体の温度変更を行うかどうかを判定処理する。そして、熱源側制御処理部214は、判定処理部213が行った処理に基づく指示を、熱源側冷媒循環回路A側の機器に対して行い、熱源側冷媒循環回路Aを制御する。具体的には、圧縮機10の駆動周波数を変化させる指示などの信号を、室外ユニット1の室外ユニット制御装置100に送って制御させるなどの処理を行う。そして、熱媒体熱交換器21における熱源側冷媒の蒸発温度または凝縮温度を変化させ、熱媒体熱交換器21から流出する熱媒体の温度を変化させる。ここで、制御処理装置210については、たとえば、CPU(Central Processing Unit)などの制御演算処理装置を有するマイクロコンピュータなどで構成されているものとする。
 そして、実施の形態1においては、中継ユニット制御装置200が、室内ユニット制御装置300から送られるデータに基づく処理を行い、室外ユニット制御装置100に、指示などを送るなどして、熱源側冷媒循環回路Aの制御を行うものとする。ここでは、中継ユニット制御装置200が中心となって、実施の形態1の処理を行うものとして説明するが、これに限定するものではない。室外ユニット制御装置100または室内ユニット制御装置300のうち、いずれか1台または複数台の制御装置が、制御などを行ってもよい。また、ユニット外にある制御装置が、制御などを行ってもよい。また、たとえば、演算処理部212が行う処理を各室内ユニット制御装置300が行い、熱源側制御処理部214が行う処理を、室外ユニット制御装置100が行うようにしてもよい。
 次に、空気調和装置0の動作について説明する。室外ユニット1は、冷媒配管6を通して中継ユニット2との間で熱源側冷媒を循環させる。このとき、熱源側冷媒は、後述する中継ユニット2内の熱媒体熱交換器21を通過する際、熱媒体との間で熱交換を行う。熱媒体は、熱交換によって加熱または冷却される。実施の形態1においては、熱源側冷媒が加熱され、熱媒体が冷却されるものとする。
 中継ユニット2において冷却された熱媒体は、後述するポンプ22により、熱媒体主配管5を通して、各室内ユニット3との間で熱媒体を循環させる。このとき、熱媒体は、後述する室内ユニット3内の室内熱交換器31において、送風機により送られた空気との間で熱交換を行う。熱媒体との間で熱交換された空気は、室内空間の空気調和に供される。
 図4は、この発明の実施の形態1に係る中継ユニット制御装置200が行う制御の流れを示す図である。図4に基づいて、実施の形態1における空気調和装置0における制御について説明する。ここでは、中継ユニット制御装置200の制御処理装置210が、制御に係る処理を行う。
 制御処理装置210の温度勾配設定処理部211は、各室内ユニット3の室内ユニット制御装置300から送られる吸込温度および室内設定温度のデータから、各室内ユニット3における目標温度勾配をデータとして生成する(ステップS1)。目標温度勾配に係る算出方法、算出式などについては、特に限定するものではない。たとえば、運転開始時間における吸込温度T0が、あらかじめ定められた時間taにおいて、室内設定温度Tpに達するようにすると、目標温度勾配は、(Tp-T0)/taとなる。ここで、各室内ユニット3における目標温度勾配は、同じ方法、式などを用いて算出することで、処理を複雑にしないようにする。このとき、各室内ユニット3における吸込温度および室内設定温度が同じであるとは限らないため、各室内ユニット3における目標温度勾配は、異なる可能性がある。また、時間taは、室内空間における空気の温度を設定温度に到達させる理想の時間である。たとえば、時間ta内に、空気の温度が設定温度に到達すれば、室内空間にいる人が不快であると感じないような時間である。
 温度勾配設定処理部211は、各室内ユニット3に係る温度勾配のうち、傾きが最大の温度勾配を、基準温度勾配として設定する(ステップS2)。したがって、最大の熱負荷に合わせた基準温度勾配が設定されることで、すべての室内ユニット3に係る熱負荷に対して熱量がまかなわれるようにする。
 温度勾配設定処理部211は、設定した目標温度勾配に基づいて、熱媒体熱交換器21の熱交換に係る熱媒体の温度を決定する(ステップS3)。たとえば、冷房運転の場合は、温度勾配設定処理部211は、温度勾配が大きいほど、熱媒体の温度が低くなるようにする。したがって、熱媒体熱交換器21における熱源側冷媒の目標蒸発温度を低く設定する。また、暖房運転の場合は、温度勾配設定処理部211は、温度勾配が大きいほど、熱媒体の温度が高くなるようにする。したがって、熱媒体熱交換器21における熱源側冷媒の目標凝縮温度を高く設定する。
 熱源側制御処理部214は、温度勾配設定処理部211が決定した熱媒体の温度となるように、熱源側冷媒循環回路A側の機器に対して指示を行い、熱源側冷媒循環回路Aを制御して運転を行う(ステップS4)。
 そして、制御処理装置210の演算処理部212は、設定時間が経過したかどうかを判定する(ステップS5)。ここで、実施の形態1においては、設定時間を1分として温度差を算出するが、設定時間については、1分に限定するものではない。
 また、演算処理部212は、設定時間間隔で、各室内ユニット3における吸込温度の温度差を算出する(ステップS6)。このとき、時間tにおける温度Tを一次関数で表すと(1)式のようになる。
 T=((Tp-T0)/ta)t+T0    …(1)
 そして、判定処理部213は、演算処理部212が算出した温度差による室内空気の温度変化に基づいて、熱媒体熱交換器21の熱交換に係る熱媒体の温度を変化させるかどうかを判定する(ステップS7)。
 判定処理部213は、たとえば、温度差が温度差閾範囲の範囲外であると判定すると、熱媒体熱交換器21の熱交換に係る熱媒体の温度を決定する(ステップS8)。ここで、実施の形態1においては、温度差閾範囲の上限および下限を、±1℃であるとする。ただし、これに限定するものではない。たとえば、温度差閾範囲の上限および下限を、±0.5℃~1℃の範囲で定めるとよい。
 そして、熱源側制御処理部214は、判定処理部213が決定した熱媒体の温度となるように、熱源側冷媒循環回路A側の機器に対して指示を行い、熱源側冷媒循環回路Aを制御して運転を行う(ステップS9)。ここで、判定処理部213は、実施の形態1においては、たとえば、熱媒体を2℃変更させる温度を決定する。ただし、2℃に限定するものではなく、決定する温度を変更するようにしてもよい。たとえば、室外ユニット1が有する圧縮機10の馬力により、変更する熱媒体の温度の間隔を決定するようにしてもよい。
 一方、温度差が温度差閾値以上であると判定すると、熱媒体の温度を変更しない(ステップS10)。
 演算処理部212および判定処理部213は、ステップS5~ステップS10の処理を、運転に係るすべての室内ユニット3における室内空間の空気が、室内設定温度に到達したと判定するまで継続する(ステップS11)。
 図5は、この発明の実施の形態1に係る空気調和装置0の運転を行った結果の一例を示す図である。図5では、空気調和装置0の室内ユニット3において、冷房運転を行った場合について示している。図5では、室内ユニット3aの目標温度勾配が、基準温度勾配として設定されている。図5に示すように、設定温度に近づくと、蒸発温度を上げて、熱媒体の温度を変化させながら、室内空間の温度が、目標温度勾配に沿うようにする。
 前述したように、最大負荷に対応した目標温度勾配が、基準温度勾配として設定されて、室内ユニット3側に供給する熱媒体の温度が決まる。このため、熱負荷が小さい室内ユニット3は、最大負荷に熱を供給する室内ユニット3よりも先に設定温度に到達する。図5では、室内ユニット3bおよび室内ユニット3cの熱負荷となる室内空間が、室内ユニット3aの空調対象となる室内空間よりも、設定温度にはやく到達する。したがって、熱負荷となる室内空間の空気が設定温度となった室内ユニット3では、室内ユニット制御装置300が、室内流量調整装置32を閉じる制御を行う。室内流量調整装置32を閉じることで、室内熱交換器31に熱媒体が通過しないようにし、熱の供給を停止するとともに、室内空間の空気が設定温度より低くならないようにする。
 従来のチラーなどは、室内における状況は、水などの熱媒体への熱供給の制御に反映されていなかった。このため、熱媒体の温度を一定にして熱供給を行っていた。実施の形態1の空気調和装置0によれば、室内ユニット3、室外ユニット1および中継ユニット2の間で、それぞれ温度、流量、熱量などの物理量の検出に係るデータを含む信号を通信することができる。そして、室内ユニット3における室内の状況を示すデータを他のユニットに送ることができる。このため、空気調和装置0において、熱媒体の温度変更など、室内ユニット3における空気調和の状況、室内空間の状況などに応じて、熱源側冷媒循環回路A側と連携した制御を行うことができ、空気調和装置0は、省エネルギをはかることができる。
 たとえば、各室内ユニット3に設置された室内温度センサ515の検出に係る室内空間の空気の温度および設定された設定温度から得られる各室内ユニット3の目標温度勾配から基準温度勾配を設定し、設定した目標温度勾配により、熱媒体熱交換器21の熱交換に係る熱媒体の温度を決定して、熱源側冷媒循環回路Aを運転させる。そして、室内ユニット3側において検出される室内温度の変化に基づいて、熱媒体の温度を変化させるかどうかを判定し、このように、熱媒体の温度を変化させて、熱負荷である室内空間の空気に対応することができ、消費電力を低減し、省エネルギをはかることができる。ここで、目標温度勾配は、緩やかに室内設定温度に近づくような勾配とする方が望ましい。緩やかな温度調整を行う方が制御しやすく、省エネルギとなる。また、室内空気の温度変化に合わせた熱源側冷媒循環回路Aを制御を行うことで、室内空間の温度と熱媒体の温度とを一定の幅を持たせたまま、制御することができる。
実施の形態2.
 図6は、この発明の実施の形態2に係る空気調和装置0の構成の一例を示す図である。次に、この発明の実施の形態2に係る空気調和装置0について説明する。ここで、実施の形態1と同一の機能および作用を有する機器などについては、同一の符号を付す。
 実施の形態2では、室外ユニット1と中継ユニット2とは2本の冷媒配管6を用いて接続されており、中継ユニット2と室内ユニット3a~3cのそれぞれとは2本の熱媒体枝配管51を用いて接続されている。このように、室外ユニット1と中継ユニット2との間、および中継ユニット2と室内ユニット3a~3cとの間がそれぞれ2本の配管を用いて接続されることにより、空気調和装置0の施工を容易に行うことができる。
<室外ユニット1>
 室外ユニット1は、実施の形態1と同様に、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、アキュムレータ14および熱源側送風機15を有している。実施の形態2の室外ユニット1には、さらに、第1接続配管16、第2接続配管17および第1逆流防止装置18a~18dが設けられている。ここでは、第1逆流防止装置18a~18dとして、逆止弁が用いられている。第1逆流防止装置18aは、全暖房運転モードおよび暖房主体運転モードの際に、第1接続配管16から熱源側熱交換器12に、高温および高圧のガス冷媒が逆流することを防止する装置である。第1逆流防止装置18bは、全冷房運転モードおよび冷房主体運転モードの際に、第1接続配管16からアキュムレータ14に、高圧の液または気液二相状態の冷媒が逆流することを防止する装置である。第1逆流防止装置18cは、全冷房運転モードおよび冷房主体運転モードの際に、第2接続配管17からアキュムレータ14に、高圧の液または気液二相状態の冷媒が逆流することを防止する装置である。第1逆流防止装置18dは、全暖房運転モードおよび暖房主体運転モードの際に、圧縮機10の吐出側の流路から第2接続配管17に、高温および高圧のガス冷媒が逆流することを防止する装置である。
 このように、第1接続配管16、第2接続配管17および第1逆流防止装置18a~16を設けることにより、室内ユニット3の要求する運転に関わらず、中継ユニット2に流入させる冷媒の流れを一定方向にすることができる。ここでは、第1逆流防止装置18a~16として逆止弁が用いられているが、冷媒の逆流を防止できるものであればよい。たとえば、第1逆流防止装置18a~18dとして、開閉装置、全閉機能を有する絞り装置などを用いることもできる。
<中継ユニット2>
 実施の形態2における中継ユニット2は、実施の形態1において説明した熱媒体熱交換器21およびポンプ22を、各2台有している。また、中継ユニット2は、2台の中継側絞り装置23、2台の開閉装置24および2台の中継側冷媒流路切替装置25を有している。また、中継ユニット2は、各室内ユニット3に対応して、3台の第1熱媒体流路切替装置26、3台の第2熱媒体流路切替装置27および3台の熱媒体流量調整装置28を有している。
 実施の形態2における2台の熱媒体熱交換器21(熱媒体熱交換器21a、熱媒体熱交換器21b)は、凝縮器(放熱器)または蒸発器として機能する。熱媒体熱交換器21aは、熱源側冷媒循環回路Aにおける中継側絞り装置23aと中継側冷媒流路切替装置25aとの間に設けられており、冷房暖房混在運転モード時において熱媒体を加熱する熱交換器となる。また、熱媒体熱交換器21bは、熱源側冷媒循環回路Aにおける中継側絞り装置23bと中継側冷媒流路切替装置25bとの間に設けられており、冷房暖房混在運転モード時において、熱媒体を冷却する熱交換器となる。
 2台の中継側絞り装置23(中継側絞り装置23a、中継側絞り装置23b)は、減圧弁および膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させる。中継側絞り装置23aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21aの上流側に設けられている。また、中継側絞り装置23bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21bの上流側に設けられている。2台の中継側絞り装置23は、たとえば、開度を制御することができる電子式膨張弁などで構成するとよい。
 2台の開閉装置24(開閉装置24a、開閉装置24b)は、二方弁などで構成されており、冷媒配管6を開閉する。開閉装置24aは、熱源側冷媒の流入口側における冷媒配管6に設けられている。また、開閉装置24bは、熱源側冷媒の入口側と出口側の冷媒配管6を接続した配管に設けられている。2台の中継側冷媒流路切替装置25(中継側冷媒流路切替装置25a、中継側冷媒流路切替装置25b)は、四方弁などで構成され、運転モードに応じて熱源側冷媒の流れを切り替える。中継側冷媒流路切替装置25aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21aの下流側に設けられている。また、中継側冷媒流路切替装置25bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21bの下流側に設けられている。
 2台のポンプ22(ポンプ22a、ポンプ22b)は、熱媒体主配管5を導通する熱媒体を加圧して、熱媒体循環回路Bを循環させる。ポンプ22aは、熱媒体熱交換器21aと第2熱媒体流路切替装置27との間における熱媒体主配管5に設けられている。また、ポンプ22bは、熱媒体熱交換器21bと第2熱媒体流路切替装置27との間における熱媒体主配管5に設けられている。
 3台の第1熱媒体流路切替装置26(第1熱媒体流路切替装置26a~第1熱媒体流路切替装置26c)は、三方弁などで構成されており、熱媒体の流路を切り替える。第1熱媒体流路切替装置26は、室内ユニット3の設置台数に応じた個数(ここでは、3台)が設けられる。第1熱媒体流路切替装置26は、三方の流路のうち、1つが熱媒体熱交換器21aに接続される。また、他の1つが熱媒体熱交換器21bに接続される。そして、もう1つが熱媒体流量調整装置28に接続される。第1熱媒体流路切替装置26は、室内熱交換器31における熱媒体流路の出口側に設けられている。ここで、図6では、室内ユニット3に対応させて、紙面下側から第1熱媒体流路切替装置26a、第1熱媒体流路切替装置26bおよび第1熱媒体流路切替装置26cとして図示している。
 3台の第2熱媒体流路切替装置27(第2熱媒体流路切替装置27a~第2熱媒体流路切替装置27c)は、三方弁などで構成されており、熱媒体の流路を切り替える。第2熱媒体流路切替装置27は、室内ユニット3の設置台数に応じた個数(ここでは、3台)が設けられる。第2熱媒体流路切替装置27は、三方の流路の1つが熱媒体熱交換器21aに接続される。また、他の1つが熱媒体熱交換器21bに接続される。そして、もう1つが室内熱交換器31に接続される。第2熱媒体流路切替装置27は、室内熱交換器31における熱媒体流路の入口側に設けられている。ここで、図6では、室内ユニット3に対応させて、紙面下側から第2熱媒体流路切替装置27a、第2熱媒体流路切替装置27bおよび第2熱媒体流路切替装置27cとして図示している。
 3台の熱媒体流量調整装置28(熱媒体流量調整装置28a~熱媒体流量調整装置28c)は、実施の形態1において説明した室内流量調整装置32の代わりに、中継ユニット2側に設けられる装置である。熱媒体流量調整装置28は、開口面積を制御できる二方弁などで構成されており、熱媒体枝配管51に流れる流量を制御する。熱媒体流量調整装置28は、室内ユニット3の設置台数に応じた数(ここでは、3台)が設けられる。熱媒体流量調整装置28は、一端が室内熱交換器31に接続される。また、他方が第1熱媒体流路切替装置26に接続される。ここでは、熱媒体流量調整装置28は、室内熱交換器31における熱媒体流路の出口側に設けられている。ただし、熱媒体流量調整装置28が室内熱交換器31の熱媒体流路の入口側に設けられてもよい。ここで、図6では、室内ユニット3に対応させて、紙面下側から熱媒体流量調整装置28a、熱媒体流量調整装置28bおよび熱媒体流量調整装置28cとして図示している。
 また、設置されている各種センサについて説明する。熱源側冷媒循環回路Aにおいて、室外ユニット1側には、実施の形態1と同様に、吐出温度センサ501、吐出圧力センサ502および室外温度センサ503が設置されている。また、熱源側冷媒循環回路Aにおいて、中継ユニット2側に設置されている第1冷媒温度センサ504は、2台の熱媒体熱交換器21に対応して、第1冷媒温度センサ504aおよび第1冷媒温度センサ504bが設置されている。同様に、第2冷媒温度センサ505は、2台の熱媒体熱交換器21に対応して、第2冷媒温度センサ505aおよび第2冷媒温度センサ505bが設置されている。
 実施の形態2では、熱源側冷媒圧力センサ506(熱源側冷媒圧力センサ506a、熱源側冷媒圧力センサ506b)が設置されている。熱源側冷媒圧力センサ506aは、熱媒体熱交換器21aに流入出する熱源側冷媒の圧力を検出する。また、熱源側冷媒圧力センサ506bは、熱媒体熱交換器21bと中継側絞り装置23bとの間を流れる熱源側冷媒の圧力を検出する。
 一方、熱媒体循環回路Bにおいて、中継ユニット2側に、熱媒体流入口側温度センサ511(熱媒体流入口側温度センサ511a、熱媒体流入口側温度センサ511b)、熱媒体流出口側温度センサ512(熱媒体流出口側温度センサ512a、熱媒体流出口側温度センサ512b)が設置されている。
 ここで、実施の形態1においては、室内流入側圧力センサ521(室内流入側圧力センサ521a~室内流入側圧力センサ521c)および室内流出側圧力センサ522(室内流出側圧力センサ522a~室内流出側圧力センサ522c)は、室内ユニット3側に設置されていた。実施の形態2の空気調和装置0においては、実施の形態1の室内流量調整装置32に対応して、中継ユニット2に設置された熱媒体流量調整装置28における熱媒体流入出側にそれぞれ設置され、検出した圧力に応じた信号を送る。
 また、実施の形態1と同様に、各室内ユニット3側には、室内流入口側温度センサ513(室内流入口側温度センサ513a~室内流入口側温度センサ513c)、室内流出口側温度センサ514(室内流出口側温度センサ514a~室内流出口側温度センサ514c)および室内温度センサ515(室内温度センサ515a~室内温度センサ515c)が設置されている。
 実施の形態2における空気調和装置0の運転モードは、駆動しているすべての室内ユニット3が冷房運転を実行する全冷房運転モードおよび駆動しているすべての室内ユニット3が暖房運転を実行する全暖房運転モードがある。また、駆動している室内ユニット3における冷房負荷の方が大きい場合に実行する冷房主体運転モードおよび暖房負荷の方が大きい場合に実行する暖房主体運転モードがある。
<全冷房運転モード>
 全冷房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して、熱源側熱交換器12へ流入し、周囲の空気に放熱して凝縮液化し、高圧液冷媒となり、第1逆流防止装置18aを通って室外ユニット1から流出する。そして、冷媒配管6を通って中継ユニット2に流入する。中継ユニット2に流入した冷媒は、開閉装置24aを通り、中継側絞り装置23aおよび中継側絞り装置23bで膨張して低温低圧の二相冷媒となる。二相冷媒は、蒸発器として作用する熱媒体熱交換器21aおよび熱媒体熱交換器21bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱し、低温低圧のガス冷媒となる。ガス冷媒は、中継側冷媒流路切替装置25aおよび中継側冷媒流路切替装置25bを介して中継ユニット2から流出する。そして、冷媒配管6を通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第1逆流防止装置18dを通って、冷媒流路切替装置11およびアキュムレータ14を介して、圧縮機10へ再度吸入される。
 熱媒体循環回路Bにおいては、熱媒体は、熱媒体熱交換器21aおよび熱媒体熱交換器21bの双方で冷媒により冷却される。冷却された熱媒体は、ポンプ22aおよびポンプ22bによって熱媒体主配管5および熱媒体枝配管51内を流動する。第2熱媒体流路切替装置27a~27cを介して、室内熱交換器31a~31cに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて空調対象空間の冷房を行う。室内熱交換器31a~31cから流出した冷媒は、熱媒体流量調整装置28a~28cに流入する。そして、冷媒は、第1熱媒体流路切替装置26a~26cを通って、熱媒体熱交換器21aおよび熱媒体熱交換器21bへ流入して冷却され、再びポンプ22aおよびポンプ22bへ吸い込まれる。なお、熱負荷のない室内熱交換器31a~31cに対応する熱媒体流量調整装置28a~28cは全閉とする。また、熱負荷のある室内熱交換器31a~31cに対応する熱媒体流量調整装置28a~28cは開度を調整し、室内熱交換器31a~31cでの熱負荷を調節する。
<冷房主体運転モード>
 冷房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入し、周囲の空気に放熱して凝縮し、二相冷媒となり、第1逆流防止装置18aを通って、室外ユニット1から流出する。そして、冷媒配管6を通って中継ユニット2に流入する。中継ユニット2に流入した冷媒は、中継側冷媒流路切替装置25bを通って凝縮器として作用する熱媒体熱交換器21bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、中継側絞り装置23bで膨張して低温低圧の二相冷媒となる。二相冷媒は、中継側絞り装置23aを介して蒸発器として作用する熱媒体熱交換器21aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱して低圧のガス冷媒となり、中継側冷媒流路切替装置25aを介して中継ユニット2から流出する。そして、冷媒配管6を通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第1逆流防止装置18dを通って、冷媒流路切替装置11およびアキュムレータ14を介して、圧縮機10へ再度吸入される。
 熱媒体循環回路Bにおいては、熱媒体熱交換器21bで冷媒の温熱が熱媒体に伝えられる。そして、暖められた熱媒体はポンプ22bによって熱媒体主配管5および熱媒体枝配管51内を流動する。第1熱媒体流路切替装置26a~26cおよび第2熱媒体流路切替装置27a~27cを操作して暖房要求のある室内熱交換器31a~31cに流入した熱媒体は、室内空気に放熱する。室内空気は加熱されて空調対象空間の暖房を行う。一方、熱媒体熱交換器21aで冷媒の冷熱が熱媒体に伝えられる。そして、冷やされた熱媒体はポンプ22aによって熱媒体主配管5および熱媒体枝配管51内を流動する。第1熱媒体流路切替装置26a~26cおよび第2熱媒体流路切替装置27a~27cを操作して冷房要求のある室内熱交換器31a~31cに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて空調対象空間の冷房を行う。なお、熱負荷のない室内熱交換器31a~31cに対応する熱媒体流量調整装置28a~28cは全閉とする。また、熱負荷のある室内熱交換器31a~31cに対応する熱媒体流量調整装置28a~28cは開度を調整し、室内熱交換器31a~31cでの熱負荷を調節する。
<全暖房運転モード>
 全暖房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して第1接続配管16、第1逆流防止装置18bを通り、室外ユニット1から流出する。そして、冷媒配管6を通って中継ユニット2に流入する。中継ユニット2に流入した冷媒は、中継側冷媒流路切替装置25aおよび中継側冷媒流路切替装置25bを通って、熱媒体熱交換器21aおよび熱媒体熱交換器21bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体に放熱し、高圧の液冷媒となる。高圧の液冷媒は、中継側絞り装置23aおよび中継側絞り装置23bで膨張して低温低圧の二相冷媒となり、開閉装置24bを通って、中継ユニット2から流出する。そして、冷媒配管6を通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第2接続配管17および第1逆流防止装置18cを通り、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11およびアキュムレータ14を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路Bにおける熱媒体の動作は、全冷房運転モードの場合と同じである。全暖房運転モードでは、熱媒体熱交換器21aおよび熱媒体熱交換器21bにおいて、熱媒体が冷媒によって加熱され、室内熱交換器31aおよび室内熱交換器31bで室内空気に放熱して、空調対象空間の暖房を行う。
<暖房主体運転モード>
 暖房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して、第1接続配管16および第1逆流防止装置18bを通って、室外ユニット1から流出する。そして、冷媒配管6を通って中継ユニット2に流入する。中継ユニット2に流入した冷媒は、中継側冷媒流路切替装置25bを通って凝縮器として作用する熱媒体熱交換器21bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、中継側絞り装置23bで膨張して低温低圧の二相冷媒となる。二相冷媒は、中継側絞り装置23aを介して蒸発器として作用する熱媒体熱交換器21aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱し、中継側冷媒流路切替装置25aを介して中継ユニット2から流出する。そして、冷媒配管6を通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第2接続配管17および第1逆流防止装置18cを通って、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11およびアキュムレータ14を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路Bにおける熱媒体の動作、第1熱媒体流路切替装置26a~26c、第2熱媒体流路切替装置27a~27c、熱媒体流量調整装置28a~28c、および、室内熱交換器31a~31c、の動作は冷房主体運転モードと同一である。
 次に、実施の形態2の空気調和装置0の制御について説明する。実施の形態1の空気調和装置0では、熱媒体熱交換器21が蒸発器または凝縮器として機能し、熱媒体の冷却または加熱のいずれかを行っていた。したがって、熱源側冷媒循環回路A側においては、熱媒体熱交換器21における蒸発温度または凝縮温度のどちらか一方の制御を行っていた。
 ここで、実施の形態2の空気調和装置0において、全冷房運転モードの場合には、熱媒体熱交換器21aおよび熱媒体熱交換器21bは、蒸発器として機能する。また、全暖房運転モードの場合には、熱媒体熱交換器21aおよび熱媒体熱交換器21bは、凝縮器として機能する。したがって、実施の形態1における制御と同様の制御を行うことができる。
 一方、冷房主体運転モードおよび暖房主体運転モードの場合には、前述したように、熱源側冷媒循環回路Aにおいて、蒸発器となる熱媒体熱交換器21と凝縮器となる熱媒体熱交換器21とが同時に存在する。このとき、室内空間の冷房に係る目標温度勾配と暖房に係る目標温度勾配との両方に基づいた最適な制御を行うことは難しい。冷房主体運転モードの場合には、冷房に係る熱負荷が大きい。そこで、中継ユニット制御装置200の制御処理装置210は、冷房に係る室内ユニット3の目標温度勾配の中から、基準温度勾配を設定し、実施の形態1で説明した処理を行って制御するようにする。一方、暖房主体運転モードの場合には、暖房に係る熱負荷の方が大きい。そこで、制御処理装置210は、暖房に係る室内ユニット3の目標温度勾配の中から、基準温度勾配を設定し、実施の形態1で説明した処理を行って制御するようにする。
 以上のように、冷暖同時運転を行うことができる実施の形態2の空気調和装置0においても、実施の形態1で説明した制御を行うことができる。このため、熱負荷となる室内空間の温度に合わせて、熱源側冷媒循環回路A側からの熱供給を制御して、熱媒体循環回路Bを循環する熱媒体の温度を変化させることができる。
実施の形態3.
 図7は、この発明の実施の形態3に係る空気調和装置0の構成を示す図である。図7において、図1と同じ符号を付している機器などについては、実施の形態1と同様の動作を行う。実施の形態3の空気調和装置0は、実施の形態1および実施の形態2で説明した複数の中継ユニット2を、室外ユニット1と並列に、冷媒配管6で接続し、熱源側冷媒循環回路Aを構成したものである。
 以上のように、実施の形態3の空気調和装置0によれば、中継ユニット2を複数有し、室外ユニット1と並列に接続された、実施の形態3の空気調和装置0においても、各ユニットの間で通信を行うことができる。このため、実施の形態1および実施の形態2で説明した制御などを行うことができる。
実施の形態4.
 図8は、この発明の実施の形態4に係る空気調和装置0の構成を示す図である。図8において、図2と同じ符号を付している機器などについては、実施の形態1と同様の動作を行う。実施の形態4の空気調和装置0は、実施の形態1および実施の形態2で説明した中継ユニット2内の機器を、室外ユニット1に含めて一体化したものである。このため、実施の形態4の空気調和装置0は、室外ユニット1および各室内ユニット3を、熱媒体主配管5および熱媒体枝配管51で配管接続する。室外ユニット1が、熱源側冷媒循環回路Aの機器をすべて収容することで、冷媒の量を少なくすることができる。また、室外ユニット1と各室内ユニット3とを配管接続すればよいので、配管作業を簡単にすることができる。また、中継ユニット2を独立して設けなくても、実施の形態1および実施の形態2で説明した制御などを行うことができる。
実施の形態5.
 図9は、この発明の実施の形態5に係る空気調和装置0の構成を示す図である。図9において、図2と同じ符号を付している機器などについては、実施の形態1などにおいて説明したことと同様の動作を行う。図9に示すように、実施の形態5の空気調和装置0は、室内ユニット3に室内流量調整装置32を設置する代わりに、複数の流量調整装置41(流量調整装置41a~流量調整装置41c)を有する流量調整ユニット4を設置したものである。流量調整ユニット4は流量調整制御装置400を有している。流量調整制御装置400は、他のユニットの制御装置と通信を行うことができる。実施の形態5の空気調和装置0のように、流量調整ユニット4を設置して、複数の流量調整装置41を集約することで、メンテナンスなどを行いやすくすることができる。実施の形態5の空気調和装置0においても、流量調整ユニット4において、各種データを含む信号を通信できるようにしたことで、効率よく運転を行うことができる空気調和装置0を得ることができる。
実施の形態6.
 前述した実施の形態では、中継ユニット制御装置200は、室内空間の温度となる吸込温度の温度差の変化に基づいて、熱媒体の温度の変更判定などを行ったが、これに限定するものではない。たとえば、目標温度勾配と吸込温度との温度差の関係に基づいて熱媒体の温度の判定などを行うようにしてもよい。また、熱量などに基づいて、熱媒体の温度の判定などを行うようにしてもよい。
 0 空気調和装置、1 室外ユニット、2 中継ユニット、3,3a,3b,3c 室内ユニット、4 流量調整ユニット、5 熱媒体主配管、6 冷媒配管、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 絞り装置、14 アキュムレータ、15 熱源側送風機、16 第1接続配管、17 第2接続配管、18a,18b,18c,18d 第1逆流防止装置、21,21a,21b 熱媒体熱交換器、22,22a,22b ポンプ、23,23a,23b 中継側絞り装置、24,24a,24b 開閉装置、25,25a,25b 中継側冷媒流路切替装置、26,26a,26b,26c 第1熱媒体流路切替装置、27,27a,27b,27c 第2熱媒体流路切替装置、28,28a,28b,28c 熱媒体流量調整装置、31,31a,31b,31c 室内熱交換器、32,32a,32b,32c 室内流量調整装置、33,33a,33b,33c 室内側送風機、41,41a,41b,41c 流量調整装置、51 熱媒体枝配管、100 室外ユニット制御装置、200 中継ユニット制御装置、210 制御処理装置、211 温度勾配設定処理部、212 演算処理部、213 判定処理部、214 熱源側制御処理部、220 記憶装置、230 計時装置、240 通信装置、300,300a,300b,300c 室内ユニット制御装置、400 流量調整制御装置、501 吐出温度センサ、502 吐出圧力センサ、503 室外温度センサ、504,504a,504b 第1冷媒温度センサ、505,505a,505b 第2冷媒温度センサ、506,506a,506b 熱源側冷媒圧力センサ、511,511a,511b 熱媒体流入口側温度センサ、512,512a,512b 熱媒体流出口側温度センサ、513,513a,513b,513c 室内流入口側温度センサ、514,514a,514b,514c 室内流出口側温度センサ、515,515a,515b,515c 室内温度センサ、521,521a,521b,521c 室内流入側圧力センサ、522,522a,522b,522c 室内流出側圧力センサ。

Claims (8)

  1.  水またはブラインを含み、熱を搬送する媒体となる熱媒体を加圧するポンプと、
     空気調和対象の室内空気と前記熱媒体とを熱交換する室内熱交換器と、
     前記室内熱交換器に対応して設置され、前記室内熱交換器を通過する前記熱媒体の流量を調整する流量調整装置と
    を配管接続して前記熱媒体を循環させる熱媒体循環回路と、
     熱源側冷媒を圧縮する圧縮機と、
     前記熱源側冷媒と室外の空気との熱交換を行う熱源側熱交換器と、
     前記熱源側冷媒を減圧する絞り装置と、
     前記熱源側冷媒と前記熱媒体との熱交換を行う熱媒体熱交換器と
    を配管接続した熱源側冷媒循環回路と
    を備え、
     複数の前記室内熱交換器が、それぞれ複数の室内ユニットに設置され、
     複数の前記室内ユニットは、前記室内熱交換器の熱交換に係る熱量に関する物理量の検出を行う検出装置を有し、前記検出装置の検出に係るデータを含む信号の通信を行う空気調和装置。
  2.  複数の前記室内ユニットは、前記室内空気の温度を検出する室内温度センサをさらに有し、
     それぞれの前記室内ユニットにおいて、前記室内空気に設定された設定温度と運転開始時の前記室内空気の温度とにより算出した目標温度勾配の中から、基準となる前記目標温度勾配を設定し、設定した前記目標温度勾配に基づいて、前記室内熱交換器から流出する通過させる前記熱媒体の温度を決定し、決定した前記熱媒体の温度に熱交換されるように、前記熱源側冷媒循環回路を制御する制御装置をさらに備える請求項1に記載の空気調和装置。
  3.  前記制御装置は、設定時間間隔における前記室内空気の温度変化に基づき、前記熱媒体熱交換器を通過する前記熱源側冷媒の温度を制御して、前記熱媒体熱交換器において前記熱源側冷媒との熱交換に係る前記熱媒体の温度を制御する請求項2に記載の空気調和装置。
  4.  前記圧縮機および前記熱源側熱交換器は、室外ユニットに設置され、
     前記熱媒体熱交換器および前記ポンプは、前記室外ユニットと前記室内ユニットとの間で、伝熱の中継を行う中継ユニットに設置される請求項1~請求項3のいずれか一項に記載の空気調和装置。
  5.  前記室外ユニットに対して、複数の前記中継ユニットが並列に配管接続される請求項4に記載の空気調和装置。
  6.  前記熱源側冷媒循環回路の構成機器および前記ポンプは、室外ユニットに設置される請求項1~請求項3のいずれか一項に記載の空気調和装置。
  7.  前記流量調整装置は、前記室内ユニットに設置される請求項1~請求項6のいずれか一項に記載の空気調和装置。
  8.  複数の前記流量調整装置が、流量調整ユニットに設置される請求項1~請求項6のいずれか一項に記載の空気調和装置。
PCT/JP2018/014597 2018-04-05 2018-04-05 空気調和装置 WO2019193712A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020512182A JP7069298B2 (ja) 2018-04-05 2018-04-05 空気調和装置
PCT/JP2018/014597 WO2019193712A1 (ja) 2018-04-05 2018-04-05 空気調和装置
EP18913344.0A EP3779308A4 (en) 2018-04-05 2018-04-05 AIR CONDITIONING DEVICE
US16/969,611 US20210025627A1 (en) 2018-04-05 2018-04-05 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014597 WO2019193712A1 (ja) 2018-04-05 2018-04-05 空気調和装置

Publications (1)

Publication Number Publication Date
WO2019193712A1 true WO2019193712A1 (ja) 2019-10-10

Family

ID=68100267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014597 WO2019193712A1 (ja) 2018-04-05 2018-04-05 空気調和装置

Country Status (4)

Country Link
US (1) US20210025627A1 (ja)
EP (1) EP3779308A4 (ja)
JP (1) JP7069298B2 (ja)
WO (1) WO2019193712A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205536A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149976B2 (en) * 2019-06-20 2021-10-19 Johnson Controls Tyco IP Holdings LLP Systems and methods for flow control in an HVAC system
US11092354B2 (en) 2019-06-20 2021-08-17 Johnson Controls Tyco IP Holdings LLP Systems and methods for flow control in an HVAC system
EP4249814A1 (en) * 2022-03-24 2023-09-27 Mitsubishi Electric Corporation System and method for heating and/or cooling at least one space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038577A1 (ja) * 2011-09-13 2013-03-21 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の制御方法
WO2014045358A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 空気調和装置
WO2015087421A1 (ja) * 2013-12-12 2015-06-18 三菱電機株式会社 空気調和装置
WO2016170575A1 (ja) * 2015-04-20 2016-10-27 三菱電機株式会社 冷凍サイクル装置
JP2017101855A (ja) 2015-11-30 2017-06-08 株式会社富士通ゼネラル 空気調和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363740A (en) * 1976-11-17 1978-06-07 Mitsubishi Electric Corp Temperature controller
CN102112818B (zh) * 2008-10-29 2013-09-04 三菱电机株式会社 空气调节装置
US8616017B2 (en) * 2009-05-08 2013-12-31 Mitsubishi Electric Corporation Air conditioning apparatus
JP5465242B2 (ja) * 2009-05-12 2014-04-09 三菱電機株式会社 空気調和装置
JP2012013354A (ja) * 2010-07-02 2012-01-19 Panasonic Corp ヒートポンプ式温水暖房装置
JP6072424B2 (ja) * 2012-04-13 2017-02-01 三菱電機株式会社 空気調和装置
JP5837231B2 (ja) * 2012-11-30 2015-12-24 三菱電機株式会社 空気調和装置
WO2014132433A1 (ja) * 2013-03-01 2014-09-04 三菱電機株式会社 空気調和装置
WO2015025366A1 (ja) * 2013-08-20 2015-02-26 三菱電機株式会社 空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038577A1 (ja) * 2011-09-13 2013-03-21 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の制御方法
WO2014045358A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 空気調和装置
WO2015087421A1 (ja) * 2013-12-12 2015-06-18 三菱電機株式会社 空気調和装置
WO2016170575A1 (ja) * 2015-04-20 2016-10-27 三菱電機株式会社 冷凍サイクル装置
JP2017101855A (ja) 2015-11-30 2017-06-08 株式会社富士通ゼネラル 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779308A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205536A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 冷凍サイクル装置
JPWO2021205536A1 (ja) * 2020-04-07 2021-10-14
JP7341326B2 (ja) 2020-04-07 2023-09-08 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP7069298B2 (ja) 2022-05-17
EP3779308A1 (en) 2021-02-17
US20210025627A1 (en) 2021-01-28
JPWO2019193712A1 (ja) 2021-01-14
EP3779308A4 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
US9212825B2 (en) Air conditioner
US9157649B2 (en) Air-conditioning apparatus
JP5847366B1 (ja) 空気調和装置
WO2019193712A1 (ja) 空気調和装置
JP6479181B2 (ja) 空気調和装置
WO2011089652A1 (ja) 空調給湯複合システム
JP6038382B2 (ja) 空気調和装置
US12104818B2 (en) Air-conditioning apparatus
US10928107B2 (en) Method for operating a vapour compression system with heat recovery
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
WO2014103013A1 (ja) ヒートポンプシステム
JP2012137241A (ja) 空気調和装置
WO2019155506A1 (ja) 空調システム
JP7019066B2 (ja) 空気調和装置
US20230194131A1 (en) Air-conditioning apparatus
JP2013117373A (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP2018146169A (ja) 空調機
WO2019163042A1 (ja) 空気調和装置およびエアハンドリングユニット
WO2022259396A1 (ja) 空気調和装置
GB2573224A (en) Air conditioner
WO2020065924A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913344

Country of ref document: EP

Effective date: 20201105