WO2019155506A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2019155506A1
WO2019155506A1 PCT/JP2018/003915 JP2018003915W WO2019155506A1 WO 2019155506 A1 WO2019155506 A1 WO 2019155506A1 JP 2018003915 W JP2018003915 W JP 2018003915W WO 2019155506 A1 WO2019155506 A1 WO 2019155506A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
relay
heat
refrigerant
pipe
Prior art date
Application number
PCT/JP2018/003915
Other languages
English (en)
French (fr)
Inventor
直史 竹中
博紀 鷲山
祐治 本村
仁隆 門脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018007022.0T priority Critical patent/DE112018007022T5/de
Priority to PCT/JP2018/003915 priority patent/WO2019155506A1/ja
Priority to JP2019571128A priority patent/JP6932210B2/ja
Priority to US16/962,018 priority patent/US11326804B2/en
Publication of WO2019155506A1 publication Critical patent/WO2019155506A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator

Definitions

  • the present invention relates to an air conditioning system in which a relay unit is provided between a heat source unit and an indoor unit.
  • an air conditioning system in which a plurality of indoor units are connected to a heat source unit is known.
  • air conditioning systems there is a system that circulates a refrigerant from a heat source unit to each indoor unit and conveys cold or hot heat (see, for example, Patent Document 1).
  • the specific heat of the heat medium such as water is larger than the specific heat of the refrigerant. That is, the temperature of a heat medium such as water is less likely to change than the refrigerant.
  • a larger power is required for transporting a heat medium such as water than for transporting a refrigerant.
  • JP 2009-144940 A Japanese Unexamined Patent Publication No. 2016-90178
  • Patent Document 2 since the air conditioning system such as Patent Document 2 extends the heat medium pipe from the inter-medium heat exchanger provided in the outdoor unit to the vicinity of each indoor unit, and branches from there to each indoor unit, The pipe length becomes longer. Therefore, since the moving distance of the heat medium having relatively large specific heat and power required for conveyance becomes long, there is a problem that the operation efficiency of the entire system is lowered and the energy consumption is increased.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system that improves the operation efficiency of the entire system and realizes energy saving.
  • An air conditioning system includes a plurality of indoor units, a relay unit having a heat exchanger between mediums that exchange heat between a refrigerant and a heat medium, a compressor and a heat source side heat exchanger, and relays
  • a heat source unit that supplies cold heat or heat to each of the plurality of indoor units via the unit, and the heat source unit and the relay unit are connected by a heat source connection pipe through which the refrigerant flows, and the relay unit and the plurality of indoor units
  • the machine is connected by a load connection pipe through which a heat medium flows, and the load connection pipe has a main pipe that connects the relay machine and the indoor unit provided at the end opposite to the relay machine.
  • the piping is provided with a branch portion corresponding to each of the indoor units other than the indoor unit provided at the end opposite to the relay unit among the plurality of indoor units.
  • the length from the connecting part to the first branching part, which is the most branching part on the repeater side, is the heat source connection Shorter than the length of the tube.
  • the length from the repeater to the first branch portion in the main pipe is shorter than the length of the heat source connection pipe, the amount of heat medium in which the specific heat and the power required for conveyance are larger than the refrigerant is reduced. Therefore, the operation efficiency of the entire system can be improved and energy saving can be realized.
  • FIG. 2 is a ph diagram showing the state of refrigerant during cooling operation of the refrigerant circuit of FIG.
  • FIG. 2 is a ph diagram showing the state of refrigerant during heating operation of the refrigerant circuit of FIG.
  • It is the circuit diagram which illustrated the composition of the air-conditioning system concerning Embodiment 2 of the present invention.
  • It is the circuit diagram which illustrated the composition of the air-conditioning system concerning Embodiment 3 of the present invention.
  • FIG. 1 is a circuit diagram illustrating the configuration of an air conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 includes a heat source device 10, a relay device 20, and a plurality of indoor units 30a to 30c.
  • FIG. 1 illustrates a case where the air conditioning system 100 has three indoor units 30a to 30c.
  • the heat source unit 10 supplies cold or warm heat to each of the indoor units 30a to 30c via the relay unit 20.
  • the heat source device 10 includes a compressor 11, a four-way valve 12, a heat source side heat exchanger 13, a heat source side expansion device 14, and an accumulator 15.
  • the heat source device 10 includes a heat source side blower 16 and a heat source side control device 17.
  • the relay machine 20 includes an inter-medium heat exchanger 21 that exchanges heat between the refrigerant and the heat medium, a relay expansion device 22, a pump 23, and a relay control device 24.
  • Each of the indoor units 30a to 30c includes a load side heat exchanger 31, a flow rate adjusting valve 32, a load side blower 33, and a load side control device 34.
  • the compressor 11, the four-way valve 12, the heat source side heat exchanger 13, the heat source side expansion device 14, the relay expansion device 22, the inter-medium heat exchanger 21, and the accumulator 15 are connected via the refrigerant pipe 41.
  • a refrigerant circuit 40 through which the refrigerant circulates for example, a single refrigerant such as R-22 and R-134a, a pseudo-azeotropic refrigerant mixture such as R-410A and R-404A, and a non-common refrigerant such as R-407C are used. Boiling refrigerant can be used.
  • a refrigerant circulating in the refrigerant circuit 40 a refrigerant having a relatively small global warming coefficient such as CF 3 CF ⁇ CH 2 including a double bond in the chemical formula, a mixture thereof, CO 2, propane Natural refrigerants such as may be used.
  • the pump 23, the inter-medium heat exchanger 21, the load-side heat exchanger 31 and the flow rate adjustment valve 32 of each of the indoor units 30a to 30c are connected via the heat medium pipe 61.
  • the heat medium circuit 60 circulates the heat medium.
  • water, brine, or the like can be used as the heat medium.
  • the heat source machine 10 and the relay machine 20 are connected by a heat source connection pipe 50 that constitutes a part of the refrigerant pipe 41.
  • the heat source connection pipe 50 includes a liquid side connection pipe 51 and a gas side connection pipe 52.
  • the liquid side connection pipe 51 constitutes a part of the liquid pipe 55 of the refrigerant pipe 41, and is a pipe that connects the connection portion 10x of the heat source device 10 and the connection portion 25x of the relay machine 20.
  • the liquid pipe 55 is a pipe connecting the heat source side expansion device 14 and the relay expansion device 22.
  • the liquid pipe 55 circulates the liquid refrigerant or the two-phase refrigerant. In the first embodiment, the two-phase refrigerant is mainly circulated.
  • the liquid side connection pipe 51 guides the refrigerant flowing out from the heat source device 10 to the relay device 20 during the cooling operation, and guides the refrigerant flowing out from the relay device 20 to the heat source device 10 during the heating operation.
  • the gas side connection pipe 52 constitutes a part of the gas pipe 56 of the refrigerant pipe 41 and connects the connection part 10y of the heat source apparatus 10 and the connection part 25y of the relay machine 20.
  • the gas pipe 56 is a pipe that connects between the inter-medium heat exchanger 21 and the four-way valve 12. That is, the gas pipe 56 is configured by a pipe connecting the four-way valve 12 and the connection part 10y, a gas side connection pipe 52, and a pipe connecting the connection part 25y and the inter-medium heat exchanger 21.
  • the gas side connection pipe 52 guides the refrigerant flowing out from the relay device 20 to the heat source device 10 during the cooling operation, and guides the refrigerant flowing out from the heat source device 10 to the relay device 20 during the heating operation.
  • the relay machine 20 and the indoor units 30a to 30c are connected by a load connection pipe 70 that constitutes a part of the heat medium pipe 61.
  • the load connection pipe 70 includes a main pipe 80 that connects the relay machine 20 and an indoor unit provided at the end opposite to the relay machine 20.
  • the main pipe 80 is provided with a branch portion corresponding to each of the indoor units other than the indoor unit provided at the end opposite to the relay unit among the plurality of indoor units.
  • the indoor unit provided in the edge part on the opposite side to the relay machine 20 is the indoor unit 30c. That is, the main pipe 80 connects the connection portions 26x and 26y of the relay machine 20 and the connection portions 30x and 30y of the indoor unit 30c.
  • the main pipe 80 is provided with a first branch portion 61a corresponding to the indoor unit 30a and a second branch portion 62a corresponding to the indoor unit 30b.
  • the length of the first main pipe 80 a from the connection part 26 a with the relay machine 20 to the first branch part 61 a that is the branch part closest to the relay machine 20 is longer than the length of the heat source connection pipe 50. It is getting shorter.
  • the heat medium has greater specific heat and power required for conveyance than the refrigerant. Therefore, if the overall length of the heat medium pipe 61 is shortened, the amount of the heat medium can be reduced, so that the operation efficiency of the entire system can be increased and energy saving can be achieved. Further, if the amount of the heat medium is reduced, the amount of heat given to the heat medium can be reduced when the air conditioning system 100 is started, so that the start time of the air conditioning system 100 can be shortened.
  • the length of the heat medium pipe 61 beyond the first branch portion 61a cannot be adjusted before on-site construction.
  • the total length of the heat medium pipe 61 is shortened by making the length of the first main pipe 80a adjustable before the on-site construction shorter than the length of the heat source connection pipe 50. .
  • the main pipe 80 includes an outward main pipe 81 that guides the heat medium flowing out from the relay unit 20 to the indoor units 30a to 30c, and a heat medium flowing out from the indoor units 30a to 30c on the relay unit 20 side.
  • a return-side main pipe 82 leading to The outward main pipe 81 is a pipe that connects the connection portion 26x and the connection portion 30x.
  • the outward main pipe 81 is provided with an outward first branch portion 61x and an outward second branch portion 62x.
  • the return side main pipe 82 is a pipe connecting the connection part 26y and the connection part 30y.
  • the return side main pipe 82 is provided with a return side first branch portion 61y and a return side second branch portion 62y.
  • the first branch portion 61 a includes an outward first branch portion 61 x provided in the outward main pipe 81 and a return side first branch portion 61 y provided in the return side main pipe 82.
  • the second branch portion 62 a includes an outward second branch portion 62 x provided in the outward main pipe 81 and a return side second branch portion 62 y provided in the return side main pipe 82.
  • the first main pipe 80a is a part of the forward main pipe 81, and is a forward first main pipe 81a that connects the connecting portion 26x and the forward first branch part 61x, and a part of the return side main pipe 82, A return-side first main pipe 82a that connects the connecting portion 26y and the return-side first branching portion 61y.
  • the total length of the outward first main pipe 81a and the return side first main pipe 82a is shorter than the total length of the liquid side connection pipe 51 and the gas side connection pipe 52.
  • both the outgoing first main pipe 81a and the return first main pipe 82a may be shorter than the liquid side connecting pipe 51 and the gas side connecting pipe 52.
  • the load connection pipe 70 includes a branch pipe 91 that connects the main pipe 80 and the indoor unit 30a, and a branch pipe 92 that connects the main pipe 80 and the indoor unit 30b.
  • the branch pipe 91 is connected to the main pipe 80 at the first branch portion 61a.
  • the branch pipe 92 is connected to the main pipe 80 at the second branch portion 62a.
  • the branch pipe 91 is a return side that connects the forward branch pipe 91x that connects the forward first branch part 61x and the connection part 30x of the indoor unit 30a, and the connection part 30y of the indoor unit 30a and the return side first branch part 61y.
  • the branch pipe 92 is a return side that connects the forward branch pipe 92x that connects the forward second branch part 62x and the connection part 30x of the indoor unit 30b, and the connection part 30y of the indoor unit 30b and the return side second branch part 62y. Branch pipe 92y.
  • the compressor 11 has a compressor motor (not shown) driven by an inverter, for example, and sucks and compresses the refrigerant.
  • the four-way valve 12 is connected to the compressor 11 and is controlled by the heat source side control device 17 to switch the refrigerant flow path.
  • the four-way valve 12 serves as a solid line flow path in FIG. 1 during the cooling operation for supplying cold heat to the indoor units 30a to 30c.
  • the four-way valve 12 serves as a broken line channel in FIG. 1 during a heating operation for supplying warm heat to the indoor units 30a to 30c.
  • the heat source side heat exchanger 13 is composed of, for example, a fin-and-tube heat exchanger, and exchanges heat between the refrigerant flowing in the refrigerant circuit 40 and the outside air.
  • the heat source side heat exchanger 13 functions as a condenser during cooling operation, that is, when the heat source device 10 serves as a cold heat supply source.
  • the heat source side heat exchanger 13 functions as an evaporator during a heating operation, that is, when the heat source device 10 is a source of supplying warm heat.
  • the heat source side expansion device 14 includes, for example, an electronic expansion valve, and decompresses and expands the refrigerant.
  • the heat source side expansion device 14 is provided downstream of the heat source side heat exchanger 13 during the cooling operation.
  • the heat source side expansion device 14 is controlled by the heat source side control device 17 during the cooling operation, and depressurizes the high-pressure refrigerant flowing from the heat source side heat exchanger 13 to generate a two-phase refrigerant.
  • the accumulator 15 is provided upstream of the compressor 11, stores excessive refrigerant, and suppresses inflow of liquid refrigerant into the compressor 11.
  • the heat source side blower 16 blows outside air to the heat source side heat exchanger 13.
  • the inter-medium heat exchanger 21 includes, for example, a plate heat exchanger, and is connected between the refrigerant circuit 40 and the heat medium circuit 60.
  • the inter-medium heat exchanger 21 exchanges heat between the refrigerant circulating in the refrigerant circuit 40 and the heat medium circulating in the heat medium circuit 60.
  • the inter-medium heat exchanger 21 functions as an evaporator during the cooling operation, and functions as a condenser during the heating operation.
  • the relay throttle device 22 includes, for example, an electronic expansion valve, and decompresses and expands the refrigerant.
  • the relay expansion device 22 is provided downstream of the inter-medium heat exchanger 21 during heating operation.
  • the relay expansion device 22 is controlled by the relay control device 24 during the heating operation, and generates a two-phase refrigerant by depressurizing the high-pressure refrigerant flowing from the inter-medium heat exchanger 21.
  • the pump 23 has a motor (not shown) driven by an inverter, for example, and drives the motor as a power source to circulate the heat medium in the heat medium circuit 60. That is, the pump 23 is controlled by the relay control device 24 and applies pressure for circulating the heat medium in the heat medium circuit 60.
  • the load side heat exchanger 31 is composed of, for example, a fin-and-tube heat exchanger, and exchanges heat between the heat medium flowing through the heat medium circuit 60 and the indoor air.
  • the flow rate adjustment valve 32 is composed of, for example, an electronic expansion valve, and is controlled by the load side control device 34 to adjust the amount of the heat medium flowing into the load side heat exchanger 31.
  • the flow regulating valve 32 may be provided on the downstream side of the load side heat exchanger 31.
  • the load side blower 33 blows indoor air to the load side heat exchanger 31.
  • the load side control device 34 controls the opening degree of the flow rate adjustment valve 32.
  • Each load-side control device 34 of each of the indoor units 30a to 30c can perform data communication between the heat source-side control device 17 of the heat source device 10 and the relay control device 24 of the relay device 20.
  • the heat source device 10 is provided with a suction pressure sensor 11a and a discharge pressure sensor 11b.
  • the suction pressure sensor 11 a is provided on the suction side of the compressor 11 and measures a suction pressure Ps that is the pressure of the refrigerant sucked into the compressor 11.
  • the discharge pressure sensor 11 b is provided on the discharge side of the compressor 11 and measures a discharge pressure Pd that is the pressure of the refrigerant discharged from the compressor 11.
  • the suction pressure sensor 11 a and the discharge pressure sensor 11 b each output measured data to the heat source side control device 17.
  • the relay machine 20 is provided with a first temperature sensor 21a and a second temperature sensor 21b.
  • the first temperature sensor 21 a measures a first temperature that is the temperature of the refrigerant flowing between the inter-medium heat exchanger 21 and the compressor 11.
  • the first temperature sensor 21 a is provided between the inter-medium heat exchanger 21 and the four-way valve 12 in the relay machine 20.
  • the second temperature sensor 21 b is provided between the heat exchanger 21 between the medium and the expansion device 22 for relay, and is a second temperature that is the temperature of the refrigerant flowing between the heat exchanger 21 between the medium and the expansion device 22 for relay. Measure the temperature.
  • the first temperature sensor 21a is provided downstream of the inter-medium heat exchanger 21 during the cooling operation.
  • the second temperature sensor 21b is provided downstream of the inter-medium heat exchanger 21 during the heating operation.
  • the first temperature sensor 21 a and the second temperature sensor 21 b each output the measured data to the relay control device 24.
  • the heat source side control device 17 controls the operations of the compressor 11, the four-way valve 12, and the heat source side expansion device 14.
  • the heat source side control device 17 has a heat source side storage unit 17a that stores data used for various calculations.
  • the heat source side control device 17 can perform data communication between the relay control device 24 of the relay machine 20 and the load side control devices 34 of the indoor units 30a to 30c.
  • the heat source side control device 17 obtains the degree of superheat at the evaporator outlet using the suction pressure Ps measured by the suction pressure sensor 11a and the first temperature measured by the first temperature sensor 21a. .
  • the superheat degree at the outlet of the evaporator is the superheat degree at the outlet of the inter-medium heat exchanger 21 that functions as an evaporator during the cooling operation, and is hereinafter referred to as superheat degree. More specifically, the heat source side control device 17 obtains the evaporation temperature by converting the suction pressure Ps into a saturation temperature during the cooling operation.
  • the heat source side control device 17 acquires the first temperature via the relay control device 24.
  • the heat source side control device 17 obtains the degree of superheat by subtracting the evaporation temperature from the first temperature.
  • the heat source side control device 17 controls the opening degree of the heat source side expansion device 14 based on the obtained degree of superheat.
  • the heat source side control device 17 controls the opening degree of the heat source side expansion device 14 to be increased when the superheat degree is larger than the reference superheat degree.
  • the heat source side expansion device 14 is controlled.
  • the opening is controlled so as to be small.
  • the reference superheat degree is determined by a test with an actual machine or the like, and when the superheat degree is the reference superheat degree, the refrigerant flowing out from the heat source side expansion device 14 to the liquid pipe 55 is in a two-phase state.
  • the reference superheat degree is set to 1 ° C. to 2 ° C., for example, but may be appropriately changed according to the characteristics of the refrigerant circuit 40, the installation environment of the air conditioning system 100, and the like.
  • the heat source side storage unit 17a may store a heat source side opening degree derivation function for opening degree of the heat source side expansion device 14 using the degree of superheat as a variable.
  • the heat source side control device 17 can obtain the opening degree of the heat source side expansion device 14 corresponding to the superheat degree by substituting the superheat degree into the heat source side opening degree derivation function.
  • the heat source side storage unit 17a may store a heat source side opening degree table in which the degree of superheat and the opening degree of the heat source side expansion device 14 are associated with each other.
  • the heat source side control device 17 can obtain the opening degree of the heat source side expansion device 14 corresponding to the superheat degree by illuminating the degree of superheat with the heat source side opening degree table. And it is good for the heat source side control apparatus 17 to adjust the opening degree of the heat source side expansion apparatus 14 so that it may become the calculated
  • the heat source side control device 17 obtains a difference value between the superheat degree and the reference superheat degree, and based on the obtained difference value, the heat source side expansion device 14 The degree of opening may be controlled.
  • the heat source side opening degree derivation function is a function having a difference value between the superheat degree and the reference superheat degree as a variable.
  • the difference value and the opening degree of the heat source side expansion device 14 are associated with each other.
  • the heat source side opening degree derivation function and the heat source side opening degree table may be used for deriving not only the opening degree of the heat source side expansion device 14 but also the adjustment amount of the opening degree of the heat source side expansion device 14. .
  • the relay control device 24 controls the operations of the relay throttle device 22 and the pump 23.
  • the relay control device 24 includes a relay storage unit 24a that stores data used for various calculations.
  • the relay control device 24 can perform data communication between the heat source side control device 17 of the heat source unit 10 and the load side control devices 34 of the indoor units 30a to 30c.
  • the relay control device 24 uses the discharge pressure Pd measured by the discharge pressure sensor 11b and the second temperature measured by the second temperature sensor 21b to set the degree of supercooling at the condenser outlet.
  • the degree of supercooling at the outlet of the condenser is the degree of supercooling at the outlet of the inter-medium heat exchanger 21 that functions as a condenser during heating operation, and is hereinafter referred to as the degree of supercooling.
  • the relay control device 24 acquires the discharge pressure Pd via the heat source side control device 17 during the heating operation, and calculates the condensation temperature by converting the acquired discharge pressure Pd into a saturation temperature.
  • the relay control device 24 acquires the second temperature from the second temperature sensor 21b.
  • the relay control device 24 calculates the degree of supercooling by subtracting the second temperature from the condensation temperature.
  • the relay control device 24 controls the opening degree of the relay throttle device 22 based on the obtained degree of supercooling.
  • the relay control device 24 controls the opening degree of the relay throttle device 22 to be increased when the supercooling degree is greater than the reference supercooling degree.
  • the relay control device 24 performs relaying. Control is performed so that the opening degree of the diaphragm device 22 is reduced.
  • the reference supercooling degree is determined by a test with an actual machine or the like, and when the supercooling degree is the reference supercooling degree, the refrigerant flowing out from the relay throttle device 22 to the liquid pipe 55 is in a two-phase state.
  • the reference supercooling degree is set to, for example, 5 ° C. to 6 ° C., but may be appropriately changed according to the characteristics of the refrigerant circuit 40, the installation environment of the air conditioning system 100, and the like.
  • the relay storage unit 24a may store a relay opening degree derivation function for opening degree of the relay throttle device 22 having the degree of supercooling as a variable.
  • the relay control device 24 can obtain the opening degree of the relay throttle device 22 corresponding to the degree of supercooling by substituting the degree of supercooling into the relay opening degree derivation function.
  • the relay storage unit 24a may store a relay opening degree table in which the degree of supercooling and the opening degree of the relay throttle device 22 are associated with each other.
  • the relay control device 24 can obtain the opening degree of the relay throttle device 22 corresponding to the degree of supercooling by comparing the degree of supercooling with the relay opening degree table. Then, the relay control device 24 may adjust the opening degree of the relay throttle device 22 so that the obtained opening degree is obtained.
  • the relay control device 24 obtains a difference value between the supercooling degree and the reference supercooling degree, and based on the obtained difference value, The opening degree of the expansion device 22 may be controlled.
  • the relay opening degree derivation function is a function having the difference value between the supercooling degree and the reference supercooling degree as a variable.
  • the difference value and the opening of the relay throttle device 22 are associated with each other.
  • the relay opening degree derivation function and the relay opening degree table may be for deriving an adjustment amount of the opening degree of the relay throttle device 22.
  • the heat source side control device 17, the relay control device 24, and the load side control devices 34 of the indoor units 30a to 30c are each an arithmetic device such as a microcomputer and the functions described above in cooperation with such an arithmetic device. And software that realizes the above. Note that the heat source side control device 17, the relay control device 24, and the load side control devices 34 of the indoor units 30a to 30c are circuit devices that realize some or all of the above functions. Such hardware may be included.
  • FIG. 2 is a ph diagram showing the state of the refrigerant during the cooling operation of the refrigerant circuit of FIG.
  • FIG. 3 is a ph diagram showing the state of the refrigerant during the heating operation of the refrigerant circuit of FIG.
  • the horizontal axis represents specific enthalpy and the vertical axis represents pressure.
  • the symbols representing the heat source side throttle device 14, the liquid pipe 55, and the relay throttle device 22 are used as symbols representing the heat source side throttle device 14, the liquid pipe 55, and the relay, respectively. It shows in the part corresponding to the state change of the refrigerant
  • movement of the refrigerant circuit 40 in the air conditioning system 100 is demonstrated.
  • the heat source side control device 17 determines the opening degree of the heat source side expansion device 14 during the cooling operation from the heat source side expansion device 14 based on the degree of superheat of the refrigerant flowing out from the heat source side heat exchanger 13. Control is performed so that the refrigerant flowing out is in a two-phase state.
  • the relay control device 24 opens the relay throttle device 22 during the cooling operation. The relay control device 24 may fully open the opening of the relay throttle device 22 during the cooling operation.
  • the heat source side heat exchanger 13 functions as a condenser. That is, in the heat source side heat exchanger 13, heat exchange between the refrigerant passing through the inside and the outside air blown by the heat source side blower 16 is performed, and the condensation heat of the refrigerant is released to the outside air. As a result, the refrigerant flowing into the heat source side heat exchanger 13 is condensed and becomes a high-pressure liquid refrigerant (point B in FIG. 2).
  • the high-pressure liquid refrigerant that has flowed out of the heat-source-side heat exchanger 13 flows into the heat-source-side expansion device 14 and is depressurized.
  • the medium-pressure two-phase is lower than the high-pressure side pressure of the refrigerant circuit 40 and higher than the low-pressure side pressure. It becomes a refrigerant (point C in FIG. 2).
  • the medium-pressure two-phase refrigerant that has flowed out of the heat source side expansion device 14 passes through the liquid pipe 55 and then passes through the relay expansion device 22.
  • the refrigerant that has passed through the liquid pipe 55 and the relay throttle device 22 is reduced in pressure by the pressure loss in the liquid pipe 55 and the relay throttle device 22, and becomes a low-pressure two-phase refrigerant (points D and E in FIG. 2).
  • the low-pressure two-phase refrigerant that has passed through the relay throttle device 22 flows into the inter-medium heat exchanger 21.
  • the inter-medium heat exchanger 21 heat exchange is performed between the refrigerant passing through the inside and the heat medium.
  • the inter-medium heat exchanger 21 functions as an evaporator. That is, the refrigerant flowing into the inter-medium heat exchanger 21 evaporates to become a low-pressure gas refrigerant (point F in FIG. 2).
  • the heat medium flowing into the inter-medium heat exchanger 21 is cooled by the endothermic action of the refrigerant.
  • the low-pressure gas refrigerant evaporated in the inter-medium heat exchanger 21 passes through the gas pipe 56 and the four-way valve 12, is reduced in pressure due to pressure loss, and is sucked into the compressor 11 (point G in FIG. 2).
  • the low-pressure gas refrigerant sucked into the compressor 11 is compressed into a high-temperature and high-pressure gas refrigerant (point A in FIG. 2). During the cooling operation, the above series of cycles is repeated.
  • the heat source side control device 17 switches the four-way valve 12 to the broken line flow path of FIG. Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the inter-medium heat exchanger 21 via the heat source connection pipe 50.
  • the heat source side control device 17 opens the heat source side expansion device 14 during the heating operation.
  • the heat source side control device 17 may fully open the opening degree of the heat source side expansion device 14 during the heating operation.
  • the relay control device 24 determines the degree of opening of the relay throttle device 22 during the heating operation based on the degree of supercooling of the refrigerant flowing out of the inter-medium heat exchanger 21 and the refrigerant flowing out of the relay throttle device 22. Control to be in a two-phase state.
  • the high-temperature and high-pressure gas refrigerant (point A in FIG. 3) discharged from the compressor 11 passes through the four-way valve 12 and the gas pipe 56, is reduced in pressure by the pressure loss, and flows into the inter-medium heat exchanger 21 ( Point B in FIG.
  • the inter-medium heat exchanger 21 functions as a condenser. That is, in the inter-medium heat exchanger 21, heat exchange is performed between the refrigerant passing through the inside and the heat medium, and the heat of condensation of the refrigerant is radiated to the heat medium. As a result, the refrigerant flowing into the inter-medium heat exchanger 21 is condensed and becomes a high-pressure liquid refrigerant (point C in FIG. 3). The heat medium that has flowed into the inter-medium heat exchanger 21 is heated by the heat radiation action of the refrigerant.
  • the high-pressure liquid refrigerant condensed in the inter-medium heat exchanger 21 flows into the relay expansion device 22 and is reduced in pressure to become a medium-pressure two-phase refrigerant (point D in FIG. 3).
  • the medium-pressure two-phase refrigerant flowing out from the relay expansion device 22 passes through the liquid pipe 55 and passes through the heat source side expansion device 14 in the fully opened state.
  • the refrigerant that has passed through the liquid pipe 55 and the heat source side expansion device 14 is reduced in pressure by the pressure loss in the liquid pipe 55 and the heat source side expansion device 14 to become a low-pressure two-phase refrigerant (points E and F in FIG. 3).
  • the heat source side heat exchanger 13 functions as an evaporator. That is, in the heat source side heat exchanger 13, heat exchange between the refrigerant passing through the inside and the outside air blown by the heat source side blower 16 is performed. As a result, the refrigerant flowing into the heat source side heat exchanger 13 evaporates and becomes a low-pressure gas refrigerant (point G in FIG. 3).
  • the low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 13 is sucked into the compressor 11 through the four-way valve 12 and compressed to become a high-temperature and high-pressure gas refrigerant (point A in FIG. 3). During the heating operation, the above series of cycles is repeated.
  • the relay unit 20 is arranged as close to the indoor unit as possible so that the total length of the heat medium pipe 61 is shortened, thereby reducing the amount of the heat medium. Therefore, the total length of the refrigerant pipe 41 is longer than when the relay machine 20 is disposed on the heat source apparatus 10 side.
  • the air conditioning system 100 brings the refrigerant in the liquid pipe 55 into a two-phase state during both the cooling operation and the heating operation. That is, according to the air conditioning system 100, since the density of the refrigerant in the refrigerant pipe 41 can be reduced, the amount of refrigerant filled in the refrigerant pipe 41 can be reduced.
  • the length of the first main pipe 80a from the relay machine 20 to the first branching portion 61a in the main pipe 80 is shorter than the length of the heat source connection pipe 50. Therefore, since the amount of heat medium whose specific heat and power required for conveyance are larger than that of the refrigerant can be reduced, the operation efficiency of the entire system can be improved and energy saving can be realized.
  • the total length of the outward first main pipe 81a and the return side first main pipe 82a is shorter than the total length of the liquid side connection pipe 51 and the gas side connection pipe 52. . Therefore, the amount of the heat medium can be suppressed by the amount of the heat medium pipe 61 in the heat medium circuit 60 being shortened, and the amount of heat given to the heat medium can be reduced, so that the startup time can be shortened. And the conveyance power of the heat medium by the pump 23 can be reduced, and the operation efficiency of the whole system can be improved.
  • the diameter of the heat medium pipe for circulating the heat medium such as water is larger than the diameter of the refrigerant pipe for circulating the refrigerant. Therefore, the cost per unit length of the heat medium pipe is higher than that of the refrigerant pipe, and the construction cost is higher on the heat medium circuit 60 side than on the refrigerant circuit 40 side. And since the piping length from the branch part in the main pipe of heat carrier piping to each indoor unit is decided by field construction, it cannot be set up beforehand. In this regard, in the air conditioning system 100, the length from the relay machine 20 to the first branch portion 61a in the main pipe 80 is shorter than the length of the heat source connection pipe 50, so that the material cost and the like can be suppressed. it can.
  • the relay machine 20 having the inter-medium heat exchanger 21 is interposed between the heat source unit 10 and the indoor units 30a to 30c. Therefore, for example, as in Patent Document 1, the amount of refrigerant can be reduced and the startup time can be shortened compared to a configuration in which the refrigerant is circulated in a wide range from the heat source unit to each indoor unit.
  • the heat source side expansion device 14 puts the refrigerant flowing out to the relay machine 20 into a two-phase state. More specifically, the heat source side control device 17 is configured so that the degree of opening of the heat source side expansion device 14 increases when the degree of superheat at the outlet of the inter-medium heat exchanger 21 functioning as an evaporator becomes greater than the reference superheat degree. Control. On the other hand, the heat source side control device 17 controls the opening degree of the heat source side expansion device 14 to be small when the degree of superheat at the outlet of the inter-medium heat exchanger 21 functioning as an evaporator becomes smaller than the reference superheat degree.
  • the density of the refrigerant can be reduced, so that the amount of charged refrigerant can be reduced. That is, since the volume of the gas refrigerant is larger than the volume of the liquid refrigerant, the amount of the refrigerant can be reduced by the amount of the gas refrigerant in the gas-liquid two-phase refrigerant as compared with the case where the liquid refrigerant is passed through the liquid pipe 55.
  • the relay expansion device 22 makes the refrigerant flowing out to the heat source device 10 into a two-phase state during the heating operation in which the inter-medium heat exchanger 21 functions as a condenser. More specifically, the relay control device 24 increases the opening degree of the relay expansion device 22 when the degree of supercooling at the outlet of the inter-medium heat exchanger 21 functioning as a condenser is greater than the reference supercooling degree. To control. Further, the relay control device 24 performs control so that the opening degree of the relay expansion device 22 becomes smaller when the degree of supercooling at the outlet of the heat exchanger 21 between mediums functioning as a condenser becomes smaller than the reference supercooling degree. To do. In this way, since the refrigerant flowing out from the relay throttle device 22 to the liquid pipe 55 is in a two-phase state, the density of the refrigerant can be reduced, so that the amount of refrigerant charged can be reduced.
  • the refrigerant in the liquid pipe 55 is two-phased during both the cooling operation and the heating operation, so that the amount of refrigerant is reduced as compared with the case where the refrigerant liquid is passed through the liquid pipe 55. Can be reduced. Therefore, according to the air conditioning system 100, the amount of heat given to the heat medium can be reduced, the amount of movement of the heat medium can be reduced, the amount of heat given to the refrigerant can be reduced, and the amount of movement of the refrigerant can be reduced. Therefore, the operation efficiency of the whole system can be improved and energy saving can be achieved.
  • FIG. FIG. 4 is a circuit diagram illustrating the configuration of an air conditioning system according to Embodiment 2 of the present invention.
  • the air conditioning system 200 according to the second embodiment is different from the first embodiment described above in the arrangement of some sensors. Constituent members equivalent to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the air conditioning system 200 has a first temperature sensor 15a provided upstream of the accumulator 15 in the heat source unit 210, instead of the first temperature sensor 21a.
  • the first temperature sensor 15 a outputs the measured first temperature to the heat source side control device 217.
  • the heat source side control device 217 obtains the evaporation temperature by converting the suction pressure Ps measured by the suction pressure sensor 11a into a saturation temperature during the cooling operation. Further, the heat source side control device 217 directly acquires the first temperature from the first temperature sensor 15a. And the heat source side control apparatus 217 calculates
  • Other configurations of the heat source side control device 217 are the same as those of the heat source side control device 17 of the first embodiment.
  • the heat source side control device 17 acquires the first temperature from the first temperature sensor 15a arranged in the relay machine 20.
  • a portion of the refrigerant pipe 41 between the inter-medium heat exchanger 21 and the accumulator 15 is exposed to outside air or the like, so that the temperature of the refrigerant changes while passing through this portion. Therefore, when the degree of superheat is obtained using the first temperature measured by the first temperature sensor 21a, an error may occur in the degree of superheat.
  • the heat source side control device 217 obtains the degree of superheat using the first temperature measured by the first temperature sensor 15a provided upstream of the accumulator 15. Therefore, according to the air conditioning system 200 of the second embodiment, the degree of superheat can be obtained with higher accuracy, and therefore, the heat absorption or heat dissipation loss in the pipe between the inter-medium heat exchanger 21 and the accumulator 15 is taken into consideration. Energy saving operation can be realized.
  • the air conditioning system 200 of the second embodiment can reduce the amount of heat medium in which specific heat and power required for transportation are larger than those of the refrigerant, as in the air conditioning system 100 of the first embodiment. Operation efficiency can be improved and energy saving can be realized. Other effects are the same as in the first embodiment.
  • FIG. FIG. 5 is a circuit diagram illustrating the configuration of an air conditioning system according to Embodiment 3 of the present invention.
  • the air conditioning system 300 of the third embodiment is different from the above-described embodiments in the configuration of sensors that measure various data.
  • description is abbreviate
  • the air conditioning system 300 includes a first pressure sensor 55a and a second pressure sensor 55b.
  • the first pressure sensor 55 a is provided in the liquid pipe 55 in the heat source device 310 and measures the first pressure Pm 1 that is the pressure of the refrigerant flowing through the liquid pipe 55.
  • the first pressure sensor 55 a outputs the measured first pressure Pm 1 to the heat source side control device 317.
  • the second pressure sensor 55 b is provided in the liquid pipe 55 in the relay unit 320 and measures the second pressure Pm 2 that is the pressure of the refrigerant flowing through the liquid pipe 55.
  • the second pressure sensor 55b outputs the measured second temperature to the relay control device 324.
  • the heat source side control device 317 controls the opening degree of the heat source side expansion device 14 based on the first pressure Pm 1 measured by the first pressure sensor 55a during the cooling operation.
  • the heat source side controller 317 controls so that the opening of the heat-source side throttle device 14 is increased, the first pressure Pm 1 than the first reference pressure When it becomes higher, the opening degree of the heat source side expansion device 14 is controlled to become smaller.
  • the first reference pressure is Sadamari due test on the actual machine, the first pressure Pm 1 is at the first reference pressure, the refrigerant flowing out from the heat source side throttle device 14 to the liquid pipe 55 is two-phase state.
  • the first reference pressure may be appropriately changed according to the characteristics of the refrigerant circuit 40, the installation environment of the air conditioning system 300, and the like.
  • a heat source side opening degree derivation function for opening degree of the heat source side expansion device 14 having the first pressure Pm 1 as a variable may be stored in the heat source side storage unit 17a.
  • the heat source side control device 317 can determine the opening degree of the heat source side expansion device 14 corresponding to the first pressure Pm 1 by substituting the first pressure Pm 1 into the heat source side opening degree derivation function.
  • the heat source-side storage section 17a, the heat source-side degree table mapping the degree of opening of the first pressure Pm 1 and the heat source side throttle device 14 may be stored.
  • the heat source side control device 317 can obtain the opening degree of the heat source side expansion device 14 corresponding to the first pressure Pm 1 by illuminating the first pressure Pm 1 against the heat source side opening degree table. And the heat source side control apparatus 317 is good to adjust the opening degree of the heat source side expansion
  • the heat-source-side control unit 317 if the first reference pressure is stored in the heat-source-side storage section 17a, the heat-source-side control unit 317, first pressure Pm 1 and obtains a difference value between the first reference pressure, based on the difference values obtained
  • the opening degree of the heat source side expansion device 14 may be controlled.
  • the heat source side opening degree derivation function is a function having a difference value between the first pressure Pm 1 and the first reference pressure as a variable.
  • the difference value and the opening degree of the heat source side expansion device 14 are associated with each other.
  • the heat source side opening degree derivation function and the heat source side opening degree table may be used for deriving not only the opening degree of the heat source side expansion device 14 but also the adjustment amount of the opening degree of the heat source side expansion device 14.
  • Other configurations of the heat source side control device 317 are the same as those of the heat source side control device 17 of the first embodiment.
  • the relay control device 324 controls the opening degree of the relay throttle device 22 based on the second pressure Pm 2 measured by the second pressure sensor 55b during the heating operation.
  • the relay control device 324 performs control so that the opening degree of the relay throttle device 22 becomes larger, and the second pressure Pm 2 becomes lower than the second reference pressure.
  • the opening degree of the relay throttle device 22 is controlled to become smaller.
  • the second reference pressure is Sadamari due tested in actual, the second pressure Pm 2 is at the second reference pressure, the refrigerant flowing out into the liquid pipe 55 from the relay throttle device 22 is two-phase state.
  • the second reference pressure may be appropriately changed according to the characteristics of the refrigerant circuit 40, the installation environment of the air conditioning system 300, and the like.
  • the relay opening derivation function for opening derivation of the relay throttle device 22 for the second pressure Pm 2 and variables may be stored.
  • the relay control device 324 can determine the opening of the relay throttle device 22 corresponding to the second pressure Pm 2 by substituting the second pressure Pm 2 into the relay opening degree derivation function.
  • the relay opening table and opening associating the second pressure Pm 2 and the relay throttle device 22 may be stored.
  • the relay control device 324 can obtain the opening degree of the relay throttle device 22 corresponding to the second pressure Pm 2 by illuminating the second pressure Pm 2 against the relay opening degree table. Then, the relay control device 324 may adjust the opening degree of the relay throttle device 22 so that the obtained opening degree is obtained.
  • the relay control unit 324 when the second reference pressure is stored in the relay storage section 24a, the relay control unit 324, a second pressure Pm 2 obtains a difference value between the second reference pressure, based on the difference values obtained
  • the opening degree of the relay throttle device 22 may be controlled.
  • the relay opening degree derivation function is a function having the difference value between the second pressure Pm 2 and the second reference pressure as a variable.
  • the difference value and the opening of the relay throttle device 22 are associated with each other.
  • the relay opening degree derivation function and the relay opening degree table may be used for deriving an adjustment amount of the opening degree of the relay throttle device 22.
  • Other configurations of the relay control device 324 are the same as those of the heat source side control device 17 of the first embodiment.
  • the air conditioning system 300 according to the third embodiment can reduce the amount of the heat medium in which the specific heat and the power required for transportation are larger than the refrigerant, as in the first and second embodiments.
  • the operating efficiency of the entire system can be increased and energy saving can be realized.
  • the air conditioning system 300 can also reduce the amount of refrigerant as compared with the case where the refrigerant liquid is passed through the liquid pipe 55. Other effects are the same as in the first and second embodiments.
  • the opening degree of the heat source side expansion device 14 may be controlled by the heat source side control device 317 based on a differential pressure value obtained by subtracting the first pressure Pm 1 from the discharge pressure Pd.
  • the opening degree of the relay throttle device 22 may be controlled by the relay control device 324 based on the degree of superheat at the evaporator outlet.
  • the opening degree of the heat source side throttle device 14 may be controlled based on the differential pressure values obtained by subtracting the suction pressure Ps from the second pressure Pm 2.
  • the opening degree of the relay throttle device 22 may be controlled by the relay control device 324 based on the degree of supercooling at the outlet of the condenser. In this way, the refrigerant density in the liquid pipe 55 can be made constant regardless of the operating state of the air conditioning system. Therefore, it is possible to suppress performance degradation due to increase or decrease in the amount of refrigerant in the liquid pipe 55.
  • the relay control device of the relay machine may control the entire system in an integrated manner. More specifically, in the case of the first embodiment, the relay control device 24 obtains the degree of superheat using the suction pressure Ps and the first temperature during the cooling operation, and based on the obtained degree of superheat, the heat source side throttle device The opening degree of 14 may be controlled.
  • the relay control device 24 obtains the opening degree of the heat source side expansion device 14 corresponding to the obtained degree of superheat, and transmits a control signal indicating the obtained opening degree to the heat source side control device 17, thereby controlling the heat source side control.
  • the opening degree of the heat source side expansion device 14 may be controlled via the device 17.
  • the second and third embodiments may be configured in the same manner as described above. In such a configuration, in the case of the second embodiment, the relay control device 24 needs to acquire the first temperature measured by the first temperature sensor 15a from the heat source device 210 side via the heat source side control device 217. There is. On the other hand, in the case of Embodiment 1, the relay control device 24 can directly acquire the first temperature measured by the first temperature sensor 21a. Therefore, it is possible to simplify the control when the above configuration is applied to the first embodiment than when the above configuration is applied to the second embodiment.
  • the heat source units 10, 210, and 310 that can supply both cold and hot by switching the refrigerant flow path using the four-way valve 12 are exemplified, but the present invention is not limited to this.
  • the heat source devices 10, 210, and 310 may be configured without providing the four-way valve 12, and may supply one of cold and warm heat. That is, the air conditioning systems 100, 200, and 300 may perform either a cooling operation or a heating operation. In addition, the air conditioning systems 100, 200, and 300 may be capable of performing simultaneous cooling and heating operations that individually switch the operation states of the indoor units.
  • the air conditioning systems 100, 200, and 300 have three indoor units, but the present invention is not limited to this.
  • the air conditioning systems 100, 200, and 300 may have two indoor units or may have four or more indoor units.
  • the branch portions corresponding to each of the indoor units other than the indoor unit provided at the end opposite to the relay unit are the first units. It becomes only a branch part.
  • 10, 210, 310 heat source machine 10x, 10y, 25x, 25y, 26a, 26x, 26y, 30a-30c, 30x, 30y connection part, 11 compressor, 11a suction pressure sensor, 11b discharge pressure sensor, 12 four-way valve, 13 heat source side heat exchanger, 14 heat source side expansion device, 15 accumulator, 15a first temperature sensor, 16 heat source side blower, 17, 217, 317 heat source side control device, 17a heat source side storage unit, 20, 320 relay, 21 Medium heat exchanger, 21a 1st temperature sensor, 21b 2nd temperature sensor, 22 relay throttle device, 23 pump, 24, 324 relay control device, 24a relay storage unit, 30a-30c indoor unit, 31 load side Heat exchanger, 32 flow rate adjustment valve, 33 load side blower, 34 load side control device, 40 Medium circuit, 41 refrigerant pipe, 50 heat source connection pipe, 51 liquid side connection pipe, 52 gas side connection pipe, 55 liquid pipe, 55a first pressure sensor, 55b second pressure sensor, 60 heat medium circuit, 61 heat medium pipe, 40

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

複数台の室内機と、冷媒と熱媒体との間で熱交換させる媒体間熱交換器を有する中継機と、中継機を介して複数台の室内機のそれぞれに冷熱又は温熱を供給する熱源機と、を備えた空調システム。熱源機と中継機とは、冷媒が流れる熱源接続配管により接続され、中継機と複数台の室内機とは、熱媒体が流れる負荷接続配管により接続されている。負荷接続配管は、中継機と、中継機とは反対側の端部に設けられた室内機とを接続する主配管を有する。主配管には、複数台の室内機のうち、中継機とは反対側の端部に設けられた室内機以外の室内機の各々に対応する分岐部が設けられている。主配管のうち、中継機との接続部から、最も中継機側の分岐部である第1分岐部までの長さは、熱源接続配管の長さよりも短い。

Description

空調システム
 本発明は、熱源機と室内機との間に中継機が設けられた空調システムに関する。
 従来から、熱源機に複数台の室内機が接続された空調システムが知られている。こうした空調システムには、熱源機から各室内機まで冷媒を循環させて冷熱又は温熱を搬送するものがある(例えば、特許文献1参照)。
 また、近年は、各種の規制により冷媒量の削減が義務化され、冷媒の削減目標が年々厳しくなる傾向にある。そのため、冷媒回路上の熱源機で生成した熱を熱媒体回路上の各室内機に供給する空調システムも開発されている(例えば、特許文献2参照)。特許文献2の空調システムは、冷媒回路を流れる冷媒と、熱媒体回路を流れる熱媒体との間で熱交換させる媒体間熱交換器が、室外機に設けられている。
 ここで、水などの熱媒体の比熱は、冷媒の比熱よりも大きい。つまり、水などの熱媒体は、冷媒よりも温度変化しにくい。また、同じ径の配管を通過させる場合、水などの熱媒体の搬送には、冷媒の搬送よりも大きな動力が必要となる。
特開2009-144940号公報 特開2016-90178号公報
 しかしながら、特許文献2のような空調システムは、室外機に設けられた媒体間熱交換器から各室内機の近くまで熱媒体配管を延ばし、そこから各室内機に向けて分岐させているため、配管長が長くなる。よって、比熱及び搬送に要する動力が相対的に大きい熱媒体の移動距離が長くなるため、システム全体の運転効率が低下し、エネルギー消費量が増加するという課題がある。
 本発明は、上記のような課題を解決するためになされたものであり、システム全体の運転効率を高め、省エネルギー化を実現する空調システムを提供することを目的とする。
 本発明に係る空調システムは、複数台の室内機と、冷媒と熱媒体との間で熱交換させる媒体間熱交換器を有する中継機と、圧縮機及び熱源側熱交換器を有し、中継機を介して複数台の室内機のそれぞれに冷熱又は温熱を供給する熱源機と、を備え、熱源機と中継機とは、冷媒が流れる熱源接続配管により接続され、中継機と複数台の室内機とは、熱媒体が流れる負荷接続配管により接続され、負荷接続配管は、中継機と、中継機とは反対側の端部に設けられた室内機とを接続する主配管を有し、主配管には、複数台の室内機のうち、中継機とは反対側の端部に設けられた室内機以外の室内機の各々に対応する分岐部が設けられており、主配管のうち、中継機との接続部から、最も中継機側の分岐部である第1分岐部までの長さは、熱源接続配管の長さよりも短い。
 本発明によれば、主配管における中継機から第1分岐部までの長さが熱源接続配管の長さよりも短いことから、比熱及び搬送に要する動力が冷媒よりも大きい熱媒体の量を減らすことができるため、システム全体の運転効率を高め、省エネルギー化を実現することができる。
本発明の実施の形態1に係る空調システムの構成を例示した回路図である。 図1の冷媒回路の冷房運転時における冷媒の状態を示すp-h線図である。 図1の冷媒回路の暖房運転時における冷媒の状態を示すp-h線図である。 本発明の実施の形態2に係る空調システムの構成を例示した回路図である。 本発明の実施の形態3に係る空調システムの構成を例示した回路図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る空調システムの構成を例示した回路図である。図1に示すように、空調システム100は、熱源機10と、中継機20と、複数台の室内機30a~30cと、を有している。図1では、空調システム100が3台の室内機30a~30cを有する場合を例示している。
 熱源機10は、中継機20を介して各室内機30a~30cのそれぞれに冷熱又は温熱を供給する。熱源機10は、圧縮機11と、四方弁12と、熱源側熱交換器13と、熱源側絞り装置14と、アキュムレータ15と、を有している。また、熱源機10は、熱源側送風機16と、熱源側制御装置17と、を有している。中継機20は、冷媒と熱媒体との間で熱交換させる媒体間熱交換器21と、中継用絞り装置22と、ポンプ23と、中継用制御装置24と、を有している。各室内機30a~30cは、それぞれ、負荷側熱交換器31と、流量調整弁32と、負荷側送風機33と、負荷側制御装置34と、を有している。
 すなわち、空調システム100は、圧縮機11、四方弁12、熱源側熱交換器13、熱源側絞り装置14、中継用絞り装置22、媒体間熱交換器21、及びアキュムレータ15が冷媒配管41を介して接続され、冷媒が循環する冷媒回路40を有している。ここで、冷媒回路40を循環させる冷媒としては、例えば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。もっとも、冷媒回路40を循環させる冷媒として、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒、その混合物、CO2、プロパンなどの自然冷媒などを用いてもよい。
 また、空調システム100は、ポンプ23と、媒体間熱交換器21と、各室内機30a~30cのそれぞれの負荷側熱交換器31及び流量調整弁32とが熱媒体配管61を介して接続され、熱媒体が循環する熱媒体回路60を有している。ここで、熱媒体としては、水又はブラインなどを用いることができる。
 熱源機10と中継機20とは、冷媒配管41の一部を構成する熱源接続配管50によって接続されている。熱源接続配管50は、液側接続配管51とガス側接続配管52とにより構成されている。液側接続配管51は、冷媒配管41の液管55の一部を構成し、熱源機10の接続部10xと、中継機20の接続部25xとをつなぐ配管である。ここで、液管55は、熱源側絞り装置14と中継用絞り装置22との間を接続する配管である。液管55は、液冷媒又は二相冷媒を流通させるものであり、本実施の形態1では、主に二相冷媒を流通させる。液側接続配管51は、冷房運転時において、熱源機10から流出する冷媒を中継機20へ導き、暖房運転時において、中継機20から流出する冷媒を熱源機10へ導く。
 ガス側接続配管52は、冷媒配管41のガス管56の一部を構成し、熱源機10の接続部10yと、中継機20の接続部25yとをつなぐ配管である。本実施の形態1において、ガス管56は、媒体間熱交換器21と四方弁12との間を接続する配管である。つまり、ガス管56は、四方弁12と接続部10yとをつなぐ配管と、ガス側接続配管52と、接続部25yと媒体間熱交換器21とをつなぐ配管と、により構成されている。ガス側接続配管52は、冷房運転時において、中継機20から流出する冷媒を熱源機10へ導き、暖房運転時において、熱源機10から流出する冷媒を中継機20へ導く。
 中継機20と各室内機30a~30cとは、熱媒体配管61の一部を構成する負荷接続配管70によって接続されている。負荷接続配管70は、中継機20と、中継機20とは反対側の端部に設けられた室内機とを接続する主配管80を有している。主配管80には、複数台の室内機のうち、中継機とは反対側の端部に設けられた室内機以外の室内機の各々に対応する分岐部が設けられている。
 本実施の形態1において、中継機20とは反対側の端部に設けられた室内機は、室内機30cである。すなわち、主配管80は、中継機20の接続部26x及び26yと、室内機30cのそれぞれの接続部30x及び30yとを接続する。そして、主配管80には、室内機30aに対応する第1分岐部61aと、室内機30bに対応する第2分岐部62aと、が設けられている。主配管80のうち、中継機20との接続部26aから、最も中継機20側の分岐部である第1分岐部61aまでの第1主管80aの長さは、熱源接続配管50の長さよりも短くなっている。
 ここで、熱媒体は、比熱及び搬送に要する動力が冷媒よりも大きい。よって、熱媒体配管61の全体の長さを短くすれば、熱媒体の量を減らすことができるため、システム全体の運転効率を高め、省エネルギー化を図ることができる。また、熱媒体の量が減れば、空調システム100の起動時に、熱媒体に与える熱量を減らすことができるため、空調システム100の起動時間を短縮することができる。ただし、各室内機の設置場所は、建物及び部屋のつくり等により自ずと決まるため、第1分岐部61aから先の熱媒体配管61の長さは、現地施工前に調整することができない。この点、本実施の形態1では、現地施工前に調整可能な第1主管80aの長さを、熱源接続配管50の長さよりも短くすることにより、熱媒体配管61の全長を短くしている。
 より具体的に、主配管80は、中継機20から流出する熱媒体を各室内機30a~30c側に導く往側主管81と、各室内機30a~30cから流出する熱媒体を中継機20側に導く還側主管82と、を有している。往側主管81は、接続部26xと接続部30xとをつなぐ配管である。往側主管81には、往側第1分岐部61xと往側第2分岐部62xとが設けられている。還側主管82は、接続部26yと接続部30yとをつなぐ配管である。還側主管82には、還側第1分岐部61yと還側第2分岐部62yとが設けられている。
 すなわち、第1分岐部61aは、往側主管81に設けられた往側第1分岐部61xと、還側主管82に設けられた還側第1分岐部61yと、を有している。第2分岐部62aは、往側主管81に設けられた往側第2分岐部62xと、還側主管82に設けられた還側第2分岐部62yと、を有している。また、第1主管80aは、往側主管81の一部であり、接続部26xと往側第1分岐部61xとをつなぐ往側第1主管81aと、還側主管82の一部であり、接続部26yと還側第1分岐部61yとをつなぐ還側第1主管82aと、を有している。そして、往側第1主管81aと還側第1主管82aとの合計の長さは、液側接続配管51とガス側接続配管52との合計の長さよりも短くなっている。例えば、往側第1主管81aと還側第1主管82aとの双方が、液側接続配管51及びガス側接続配管52よりも短くなるようにしてもよい。
 負荷接続配管70は、主配管80と室内機30aとをつなぐ分岐配管91と、主配管80と室内機30bとをつなぐ分岐配管92と、を有している。分岐配管91は、第1分岐部61aにおいて主配管80に接続されている。分岐配管92は、第2分岐部62aにおいて主配管80に接続されている。
 分岐配管91は、往側第1分岐部61xと室内機30aの接続部30xとをつなぐ往側分岐配管91xと、室内機30aの接続部30yと還側第1分岐部61yとをつなぐ還側分岐配管91yと、を含む。分岐配管92は、往側第2分岐部62xと室内機30bの接続部30xとをつなぐ往側分岐配管92xと、室内機30bの接続部30yと還側第2分岐部62yとをつなぐ還側分岐配管92yと、を含む。
 圧縮機11は、例えばインバータによって駆動される圧縮機モータ(図示せず)を有し、冷媒を吸入して圧縮する。四方弁12は、圧縮機11に接続されており、熱源側制御装置17により制御されて冷媒の流路を切り替える。四方弁12は、各室内機30a~30cに冷熱を供給する冷房運転時において、図1の実線の流路となる。一方、四方弁12は、各室内機30a~30cに温熱を供給する暖房運転時において、図1の破線の流路となる。
 熱源側熱交換器13は、例えばフィンアンドチューブ型熱交換器からなり、冷媒回路40を流れる冷媒と外気との間で熱交換させる。熱源側熱交換器13は、冷房運転時、すなわち熱源機10が冷熱の供給源となるときに凝縮器として機能する。一方、熱源側熱交換器13は、暖房運転時、すなわち熱源機10が温熱の供給源となるときに蒸発器として機能する。熱源側絞り装置14は、例えば電子膨張弁からなり、冷媒を減圧し膨張させる。熱源側絞り装置14は、冷房運転時における熱源側熱交換器13の下流に設けられている。熱源側絞り装置14は、冷房運転時において、熱源側制御装置17により制御され、熱源側熱交換器13から流入する高圧冷媒を減圧して二相冷媒を生成する。アキュムレータ15は、圧縮機11の上流に設けられ、過剰な冷媒を貯留して、圧縮機11への液冷媒の流入を抑制する。熱源側送風機16は、熱源側熱交換器13に外気を送風する。
 媒体間熱交換器21は、例えばプレート式熱交換器からなり、冷媒回路40と熱媒体回路60との間に接続されている。媒体間熱交換器21は、冷媒回路40を循環する冷媒と、熱媒体回路60を循環する熱媒体との間で熱交換させる。媒体間熱交換器21は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する。中継用絞り装置22は、例えば電子膨張弁からなり、冷媒を減圧し膨張させる。中継用絞り装置22は、暖房運転時における媒体間熱交換器21の下流に設けられている。中継用絞り装置22は、暖房運転時において、中継用制御装置24によって制御され、媒体間熱交換器21から流入する高圧冷媒を減圧して二相冷媒を生成する。
 ポンプ23は、例えばインバータによって駆動されるモータ(図示せず)を有しており、モータを動力源として駆動し、熱媒体回路60内の熱媒体を循環させる。すなわち、ポンプ23は、中継用制御装置24によって制御され、熱媒体回路60内で熱媒体を循環させるための圧力を加える。
 負荷側熱交換器31は、例えばフィンアンドチューブ型熱交換器からなり、熱媒体回路60を流れる熱媒体と室内の空気との間で熱交換させる。流量調整弁32は、例えば電子膨張弁からなり、負荷側制御装置34によって制御されて、負荷側熱交換器31に流入させる熱媒体の量を調整する。流量調整弁32は、負荷側熱交換器31の下流側に設けるとよい。
 負荷側送風機33は、負荷側熱交換器31に室内の空気を送風する。負荷側制御装置34は、流量調整弁32の開度を制御する。各室内機30a~30cのそれぞれの負荷側制御装置34は、熱源機10の熱源側制御装置17と、中継機20の中継用制御装置24との間でデータ通信を行うことができる。
 熱源機10には、吸入圧力センサ11aと吐出圧力センサ11bとが設けられている。吸入圧力センサ11aは、圧縮機11の吸入側に設けられ、圧縮機11に吸入される冷媒の圧力である吸入圧力Psを計測する。吐出圧力センサ11bは、圧縮機11の吐出側に設けられ、圧縮機11から吐出される冷媒の圧力である吐出圧力Pdを計測する。吸入圧力センサ11a及び吐出圧力センサ11bは、それぞれ、計測したデータを熱源側制御装置17に出力する。
 中継機20には、第1温度センサ21aと第2温度センサ21bとが設けられている。第1温度センサ21aは、媒体間熱交換器21と圧縮機11との間を流れる冷媒の温度である第1温度を計測する。本実施の形態1において、第1温度センサ21aは、中継機20内における媒体間熱交換器21と四方弁12との間に設けられている。第2温度センサ21bは、媒体間熱交換器21と中継用絞り装置22との間に設けられ、媒体間熱交換器21と中継用絞り装置22との間を流れる冷媒の温度である第2温度を計測する。
 第1温度センサ21aは、冷房運転時における媒体間熱交換器21の下流に設けられている。第2温度センサ21bは、暖房運転時における媒体間熱交換器21の下流に設けられている。第1温度センサ21a及び第2温度センサ21bは、それぞれ、計測したデータを中継用制御装置24に出力する。
 熱源側制御装置17は、圧縮機11、四方弁12、及び熱源側絞り装置14の動作を制御する。熱源側制御装置17は、各種の演算に用いるデータなどを記憶する熱源側記憶部17aを有している。熱源側制御装置17は、中継機20の中継用制御装置24と、各室内機30a~30cのそれぞれの負荷側制御装置34との間でデータ通信を行うことができる。
 冷房運転時において、熱源側制御装置17は、吸入圧力センサ11aにおいて計測された吸入圧力Psと、第1温度センサ21aにおいて計測された第1温度と、を用いて蒸発器出口の過熱度を求める。蒸発器出口の過熱度とは、冷房運転時に蒸発器として機能する媒体間熱交換器21の出口の過熱度であり、以降では過熱度という。より具体的に、熱源側制御装置17は、冷房運転時において、吸入圧力Psを飽和温度換算して蒸発温度を求める。熱源側制御装置17は、中継用制御装置24を介して第1温度を取得する。熱源側制御装置17は、第1温度から蒸発温度を減算することにより過熱度を求める。
 熱源側制御装置17は、求めた過熱度に基づいて、熱源側絞り装置14の開度を制御する。熱源側制御装置17は、過熱度が基準過熱度よりも大きくなると、熱源側絞り装置14の開度が大きくなるように制御し、過熱度が基準過熱度よりも小さくなると、熱源側絞り装置14の開度が小さくなるように制御する。基準過熱度は、実機での試験などにより定まり、過熱度が基準過熱度のときに、熱源側絞り装置14から液管55に流出される冷媒が二相状態となる。基準過熱度は、例えば1℃~2℃に設定されるが、冷媒回路40の特性及び空調システム100の設置環境などに応じて適宜変更するとよい。
 より具体的に、例えば、熱源側記憶部17aには、過熱度を変数とする熱源側絞り装置14の開度導出用の熱源側開度導出関数が記憶されていてもよい。この場合、熱源側制御装置17は、過熱度を熱源側開度導出関数に代入することで、過熱度に対応する熱源側絞り装置14の開度を求めることができる。また、熱源側記憶部17aには、過熱度と熱源側絞り装置14の開度とを対応づけた熱源側開度テーブルが記憶されていてもよい。この場合、熱源側制御装置17は、過熱度を熱源側開度テーブルに照らすことで、過熱度に対応する熱源側絞り装置14の開度を求めることができる。そして、熱源側制御装置17は、求めた開度となるように、熱源側絞り装置14の開度を調整するとよい。
 さらに、基準過熱度が熱源側記憶部17aに記憶されている場合、熱源側制御装置17は、過熱度と基準過熱度との差分値を求め、求めた差分値に基づいて熱源側絞り装置14の開度を制御してもよい。この場合、熱源側開度導出関数は、過熱度と基準過熱度との差分値を変数とする関数となる。同様に、熱源側開度テーブルは、差分値と熱源側絞り装置14の開度とが対応づけられたものとなる。ここで、熱源側開度導出関数及び熱源側開度テーブルは、熱源側絞り装置14の開度そのものではなく、熱源側絞り装置14の開度の調整量を導出するためのものであってよい。
 中継用制御装置24は、中継用絞り装置22及びポンプ23の動作を制御する。中継用制御装置24は、各種の演算に用いるデータなどを記憶する中継用記憶部24aを有している。中継用制御装置24は、熱源機10の熱源側制御装置17と、各室内機30a~30cのそれぞれの負荷側制御装置34との間でデータ通信を行うことができる。
 暖房運転時において、中継用制御装置24は、吐出圧力センサ11bにおいて計測された吐出圧力Pdと、第2温度センサ21bにおいて計測された第2温度と、を用いて凝縮器出口の過冷却度を求める。凝縮器出口の過冷却度とは、暖房運転時に凝縮器として機能する媒体間熱交換器21の出口の過冷却度であり、以降では過冷却度という。より具体的に、中継用制御装置24は、暖房運転時において、熱源側制御装置17を介して吐出圧力Pdを取得し、取得した吐出圧力Pdを飽和温度換算して凝縮温度を求める。中継用制御装置24は、第2温度センサ21bから第2温度を取得する。中継用制御装置24は、凝縮温度から第2温度を減算することにより過冷却度を求める。
 中継用制御装置24は、求めた過冷却度に基づいて、中継用絞り装置22の開度を制御する。中継用制御装置24は、過冷却度が基準過冷却度よりも大きくなると、中継用絞り装置22の開度が大きくなるように制御し、過冷却度が基準過冷却度よりも小さくなると、中継用絞り装置22の開度が小さくなるように制御する。基準過冷却度は、実機での試験などにより定まり、過冷却度が基準過冷却度のときに、中継用絞り装置22から液管55に流出される冷媒が二相状態となる。基準過冷却度は、例えば5℃~6℃に設定されるが、冷媒回路40の特性及び空調システム100の設置環境などに応じて適宜変更するとよい。
 より具体的に、例えば、中継用記憶部24aには、過冷却度を変数とする中継用絞り装置22の開度導出用の中継用開度導出関数が記憶されていてもよい。この場合、中継用制御装置24は、過冷却度を中継用開度導出関数に代入することで、過冷却度に対応する中継用絞り装置22の開度を求めることができる。また、中継用記憶部24aには、過冷却度と中継用絞り装置22の開度とを対応づけた中継用開度テーブルが記憶されていてもよい。この場合、中継用制御装置24は、過冷却度を中継用開度テーブルに照らすことで、過冷却度に対応する中継用絞り装置22の開度を求めることができる。そして、中継用制御装置24は、求めた開度となるように、中継用絞り装置22の開度を調整するとよい。
 さらに、基準過冷却度が中継用記憶部24aに記憶されている場合、中継用制御装置24は、過冷却度と基準過冷却度との差分値を求め、求めた差分値に基づいて中継用絞り装置22の開度を制御してもよい。この場合、中継用開度導出関数は、過冷却度と基準過冷却度との差分値を変数とする関数となる。同様に、中継用開度テーブルは、差分値と中継用絞り装置22の開度とが対応づけられたものとなる。ここで、中継用開度導出関数及び中継用開度テーブルは、中継用絞り装置22の開度の調整量を導出するためのものであってよい。
 熱源側制御装置17と、中継用制御装置24と、各室内機30a~30cのそれぞれの負荷側制御装置34とは、マイコンなどの演算装置と、こうした演算装置と協働して上記の各機能を実現させるソフトウェアとによって構成することができる。なお、熱源側制御装置17と、中継用制御装置24と、各室内機30a~30cのそれぞれの負荷側制御装置34とは、上記の各機能のうちの一部又は全部を実現する回路デバイスのようなハードウェアを含んでいてもよい。
 図2は、図1の冷媒回路の冷房運転時における冷媒の状態を示すp-h線図である。図3は、図1の冷媒回路の暖房運転時における冷媒の状態を示すp-h線図である。図2及び図3のp-h線図では、横軸に比エンタルピをとり、縦軸に圧力をとっている。そして、図2及び図3のp-h線図では、熱源側絞り装置14、液管55、及び中継用絞り装置22のそれぞれを表すシンボルを、熱源側絞り装置14、液管55、及び中継用絞り装置22のそれぞれでの冷媒の状態変化に対応する箇所に示している。図2及び図3を参照して、空調システム100における冷媒回路40の動作について説明する。
 まず、図2を参照して、冷媒回路40の冷房運転時の動作について説明する。本実施の形態1において、熱源側制御装置17は、冷房運転時の熱源側絞り装置14の開度を、熱源側熱交換器13から流出する冷媒の過熱度に基づき、熱源側絞り装置14から流出する冷媒が二相状態となるように制御する。中継用制御装置24は、冷房運転時において、中継用絞り装置22を開の状態とする。中継用制御装置24は、冷房運転時の中継用絞り装置22の開度を全開にしてもよい。
 圧縮機11から吐出された高温高圧のガス冷媒(図2の点A)は、四方弁12を経て、熱源側熱交換器13に流入する。冷房運転時において、熱源側熱交換器13は、凝縮器として機能する。すなわち、熱源側熱交換器13では、内部を通過する冷媒と、熱源側送風機16により送風される外気との熱交換が行われ、冷媒の凝縮熱が外気に放出される。これにより、熱源側熱交換器13に流入した冷媒は、凝縮して高圧の液冷媒となる(図2の点B)。
 熱源側熱交換器13から流出した高圧の液冷媒は、熱源側絞り装置14に流入して減圧され、冷媒回路40の高圧側圧力よりも低く、かつ低圧側圧力よりも高い中圧の二相冷媒となる(図2の点C)。熱源側絞り装置14から流出した中圧の二相冷媒は、液管55を通過した後、中継用絞り装置22を通過する。液管55及び中継用絞り装置22を通過した冷媒は、液管55及び中継用絞り装置22での圧力損失により減圧され、低圧の二相冷媒となる(図2の点D及び点E)。
 中継用絞り装置22を通過した低圧の二相冷媒は、媒体間熱交換器21に流入する。媒体間熱交換器21では、内部を通過する冷媒と熱媒体との間で熱交換が行われる。冷房運転時において、媒体間熱交換器21は、蒸発器として機能する。すなわち、媒体間熱交換器21に流入した冷媒は、蒸発して低圧のガス冷媒となる(図2の点F)。一方、媒体間熱交換器21に流入した熱媒体は、冷媒の吸熱作用によって冷却される。
 媒体間熱交換器21で蒸発した低圧のガス冷媒は、ガス管56及び四方弁12を通過し、圧力損失により減圧されて圧縮機11に吸入される(図2の点G)。圧縮機11に吸入された低圧のガス冷媒は、圧縮されて高温高圧のガス冷媒となる(図2の点A)。冷房運転時は、上記一連のサイクルが繰り返される。
 次に、図3を参照して、冷媒回路40の暖房運転時の動作について説明する。暖房運転時に、熱源側制御装置17は、四方弁12を図1の破線の流路に切り替える。よって、圧縮機11から吐出された高温高圧の冷媒は、熱源接続配管50を経由して媒体間熱交換器21に流入する。熱源側制御装置17は、暖房運転時において、熱源側絞り装置14を開の状態とする。熱源側制御装置17は、暖房運転時の熱源側絞り装置14の開度を全開にしてもよい。そして、中継用制御装置24は、暖房運転時の中継用絞り装置22の開度を、媒体間熱交換器21から流出する冷媒の過冷却度に基づき、中継用絞り装置22から流出する冷媒が二相状態となるように制御する。
 すなわち、圧縮機11から吐出された高温高圧のガス冷媒(図3の点A)は、四方弁12及びガス管56を通過し、圧力損失により減圧されて媒体間熱交換器21に流入する(図3の点B)。冷房運転時において、媒体間熱交換器21は、凝縮器として機能する。すなわち、媒体間熱交換器21では、内部を通過する冷媒と熱媒体との間で熱交換が行われ、冷媒の凝縮熱が熱媒体に放熱される。これにより、媒体間熱交換器21に流入した冷媒は、凝縮して高圧の液冷媒となる(図3の点C)。なお、媒体間熱交換器21に流入した熱媒体は、冷媒の放熱作用によって加熱される。
 媒体間熱交換器21で凝縮した高圧の液冷媒は、中継用絞り装置22に流入して減圧され、中圧の二相冷媒となる(図3の点D)。中継用絞り装置22から流出した中圧の二相冷媒は、液管55を通過し、全開状態の熱源側絞り装置14を通過する。液管55及び熱源側絞り装置14を通過した冷媒は、液管55及び熱源側絞り装置14での圧力損失により減圧され、低圧の二相冷媒となる(図3の点E及び点F)。
 熱源側絞り装置14を通過した低圧の二相冷媒は、熱源側熱交換器13に流入する。暖房運転時において、熱源側熱交換器13は、蒸発器として機能する。すなわち、熱源側熱交換器13では、内部を通過する冷媒と、熱源側送風機16により送風される外気との熱交換が行われる。これにより、熱源側熱交換器13に流入した冷媒は、蒸発して低圧のガス冷媒となる(図3の点G)。熱源側熱交換器13から流出した低圧のガス冷媒は、四方弁12を通って圧縮機11に吸入されて圧縮され、高温高圧のガス冷媒となる(図3の点A)。暖房運転時は、上記一連のサイクルが繰り返される。
 ここで、空調システム100は、熱媒体配管61の全長が短くなるよう、中継機20をできるだけ室内機側に配置し、熱媒体の量の削減を図っている。そのため、冷媒配管41の全長は、中継機20を熱源機10側に配置する場合よりも長くなる。この点、空調システム100は、上記のとおり、冷房運転時及び暖房運転時の何れにおいても、液管55内の冷媒を二相状態にする。つまり、空調システム100によれば、冷媒配管41内における冷媒の密度を低減させることができるため、冷媒配管41への冷媒の充填量の削減を図ることができる。
 以上のように、本実施の形態1の空調システム100は、主配管80における中継機20から第1分岐部61aまでの第1主管80aの長さが熱源接続配管50の長さよりも短い。よって、比熱及び搬送に要する動力が冷媒よりも大きい熱媒体の量を減らすことができるため、システム全体の運転効率を高め、省エネルギー化を実現することができる。
 すなわち、空調システム100は、往側第1主管81aと還側第1主管82aとの合計の長さが、液側接続配管51とガス側接続配管52との合計の長さよりも短くなっている。よって、熱媒体回路60における熱媒体配管61が短くなる分、熱媒体の量を抑えることができ、熱媒体に与える熱量を削減することができるため、起動時間を短縮することができる。そして、ポンプ23による熱媒体の搬送動力を低減することができ、システム全体の運転効率を高めることができる。
 また、水などの熱媒体を循環させる熱媒体配管の径は、冷媒を循環させる冷媒配管の径よりも大きい。そのため、単位長さ当たりのコストは、熱媒体配管の方が冷媒配管よりも高くなり、工事費用についても、熱媒体回路60側の方が冷媒回路40側よりも高くなる。そして、熱媒体配管の主管における分岐部から各室内機までの配管長は、現地施工によって決まるため、事前に設定することができない。この点、空調システム100は、主配管80のうち、中継機20から第1分岐部61aまでの長さが、熱源接続配管50の長さよりも短くなっているため、材料コストなどを抑えることができる。
 加えて、空調システム100は、媒体間熱交換器21を有する中継機20が、熱源機10と各室内機30a~30cとの間に介在している。そのため、例えば特許文献1のように、熱源機から各室内機までの広範囲に冷媒を循環させる構成よりも、冷媒量を削減することができ、起動時間を短縮することができる。
 さらに、熱源側熱交換器13が凝縮器として機能する冷房運転のとき、熱源側絞り装置14は、中継機20に流出させる冷媒を二相状態にする。より具体的に、熱源側制御装置17は、蒸発器として機能する媒体間熱交換器21の出口の過熱度が基準過熱度よりも大きくなると、熱源側絞り装置14の開度が大きくなるように制御する。一方、熱源側制御装置17は、蒸発器として機能する媒体間熱交換器21の出口の過熱度が基準過熱度よりも小さくなると、熱源側絞り装置14の開度が小さくなるように制御する。このようにすれば、熱源側絞り装置14から液管55に流出する冷媒が二相状態となることから、冷媒の密度を低減させることができるため、充填冷媒量の削減を図ることができる。つまり、ガス冷媒の体積は、液冷媒の体積よりも大きいため、液管55に液冷媒を流す場合よりも、気液二相冷媒におけるガス冷媒の分だけ冷媒量を削減することができる。
 また、中継用絞り装置22は、媒体間熱交換器21が凝縮器として機能する暖房運転のとき、熱源機10に流出させる冷媒を二相状態にする。より具体的に、中継用制御装置24は、凝縮器として機能する媒体間熱交換器21の出口の過冷却度が基準過冷却度よりも大きくなると、中継用絞り装置22の開度が大きくなるように制御する。また、中継用制御装置24は、凝縮器として機能する媒体間熱交換器21の出口の過冷却度が基準過冷却度よりも小さくなると、中継用絞り装置22の開度が小さくなるように制御する。このようにすれば、中継用絞り装置22から液管55に流出する冷媒が二相状態となることから、冷媒の密度を低減させることができるため、充填冷媒量の削減を図ることができる。
 すなわち、空調システム100は、冷房運転時及び暖房運転時の何れにおいても、液管55内の冷媒が二相化されるため、液管55に冷媒液を通過させる場合に比べて、冷媒量を削減することができる。したがって、空調システム100によれば、熱媒体に与える熱量を減らし、熱媒体の移動量を減らすと共に、冷媒に与える熱量を減らし、冷媒の移動量を減らすことができる。よって、システム全体の運転効率を向上させ、省エネルギー化を図ることができる。
実施の形態2.
 図4は、本発明の実施の形態2に係る空調システムの構成を例示した回路図である。本実施の形態2の空調システム200は、一部のセンサの配置が前述した実施の形態1とは異なっている。実施の形態1と同等の構成部材については同一の符号を用いて説明は省略する。
 図4に示すように、空調システム200は、第1温度センサ21aの代わりに、熱源機210内おけるアキュムレータ15の上流に設けられた第1温度センサ15aを有している。第1温度センサ15aは、計測した第1温度を熱源側制御装置217に出力する。
 すなわち、熱源側制御装置217は、冷房運転時において、吸入圧力センサ11aにおいて計測された吸入圧力Psを飽和温度換算して蒸発温度を求める。また、熱源側制御装置217は、第1温度センサ15aから第1温度を直接取得する。そして、熱源側制御装置217は、第1温度から蒸発温度を減算することにより、蒸発器出口の過熱度を求める。熱源側制御装置217の他の構成は、実施の形態1の熱源側制御装置17と同様である。
 ここで、実施の形態1の空調システム100は、熱源側制御装置17が、中継機20に配置された第1温度センサ15aから第1温度を取得する。しかしながら、冷媒配管41のうち、媒体間熱交換器21とアキュムレータ15との間の部分は、外気などにさらされるため、この部分を通過する間に冷媒の温度が変化する。よって、第1温度センサ21aにおいて計測された第1温度を用いて過熱度を求めると、過熱度に誤差が生じ得る。
 この点、本実施の形態2では、熱源側制御装置217が、アキュムレータ15の上流に設けられた第1温度センサ15aで計測した第1温度を用いて過熱度を求める。よって、実施の形態2の空調システム200によれば、過熱度をより高精度に求めることができるため、媒体間熱交換器21とアキュムレータ15との間の配管での吸熱又は放熱のロスを考慮した省エネルギー運転を実現することができる。
 また、本実施の形態2の空調システム200によっても、実施の形態1の空調システム100と同様、比熱及び搬送に要する動力が冷媒よりも大きい熱媒体の量を減らすことができるため、システム全体の運転効率を高め、省エネルギー化を実現することができる。その他の効果についても、実施の形態1と同様である。
実施の形態3.
 図5は、本発明の実施の形態3に係る空調システムの構成を例示した回路図である。本実施の形態3の空調システム300は、各種のデータを計測するセンサの構成が上述した各実施の形態とは異なっている。上述した実施の形態1及び2と同等の構成部材については同一の符号を用いて説明は省略する。
 図5に示すように、空調システム300は、第1圧力センサ55aと第2圧力センサ55bとを有している。第1圧力センサ55aは、熱源機310内における液管55に設けられ、液管55を流れる冷媒の圧力である第1圧力Pmを計測する。第1圧力センサ55aは、計測した第1圧力Pmを熱源側制御装置317に出力する。第2圧力センサ55bは、中継機320内における液管55に設けられ、液管55に流れる冷媒の圧力である第2圧力Pmを計測する。第2圧力センサ55bは、計測した第2温度を中継用制御装置324に出力する。
 熱源側制御装置317は、冷房運転時に、第1圧力センサ55aが計測した第1圧力Pmに基づいて熱源側絞り装置14の開度を制御する。熱源側制御装置317は、第1圧力Pmが第1基準圧力よりも低くなると、熱源側絞り装置14の開度が大きくなるように制御し、第1圧力Pmが第1基準圧力よりも高くなると、熱源側絞り装置14の開度が小さくなるように制御する。第1基準圧力は、実機での試験などにより定まり、第1圧力Pmが第1基準圧力のときに、熱源側絞り装置14から液管55に流出される冷媒が二相状態となる。第1基準圧力は、冷媒回路40の特性及び空調システム300の設置環境などに応じて適宜変更するとよい。
 より具体的に、例えば、熱源側記憶部17aには、第1圧力Pmを変数とする熱源側絞り装置14の開度導出用の熱源側開度導出関数が記憶されていてもよい。この場合、熱源側制御装置317は、第1圧力Pmを熱源側開度導出関数に代入することで、第1圧力Pmに対応する熱源側絞り装置14の開度を求めることができる。また、熱源側記憶部17aには、第1圧力Pmと熱源側絞り装置14の開度とを対応づけた熱源側開度テーブルが記憶されていてもよい。この場合、熱源側制御装置317は、第1圧力Pmを熱源側開度テーブルに照らすことで、第1圧力Pmに対応する熱源側絞り装置14の開度を求めることができる。そして、熱源側制御装置317は、求めた開度となるように、熱源側絞り装置14の開度を調整するとよい。
 さらに、第1基準圧力が熱源側記憶部17aに記憶されている場合、熱源側制御装置317は、第1圧力Pmと第1基準圧力との差分値を求め、求めた差分値に基づいて熱源側絞り装置14の開度を制御してもよい。この場合、熱源側開度導出関数は、第1圧力Pmと第1基準圧力との差分値を変数とする関数となる。同様に、熱源側開度テーブルは、差分値と熱源側絞り装置14の開度とが対応づけられたものとなる。熱源側開度導出関数及び熱源側開度テーブルは、熱源側絞り装置14の開度そのものではなく、熱源側絞り装置14の開度の調整量を導出するためのものであってよい。熱源側制御装置317の他の構成は、実施の形態1の熱源側制御装置17と同様である。
 中継用制御装置324は、暖房運転時に、第2圧力センサ55bが計測した第2圧力Pmに基づいて、中継用絞り装置22の開度を制御する。中継用制御装置324は、第2圧力Pmが第2基準圧力よりも低くなると、中継用絞り装置22の開度が大きくなるように制御し、第2圧力Pmが第2基準圧力よりも高くなると、中継用絞り装置22の開度が小さくなるように制御する。第2基準圧力は、実機での試験などにより定まり、第2圧力Pmが第2基準圧力のときに、中継用絞り装置22から液管55に流出される冷媒が二相状態となる。第2基準圧力は、冷媒回路40の特性及び空調システム300の設置環境などに応じて適宜変更するとよい。
 より具体的に、例えば、中継用記憶部24aには、第2圧力Pmを変数とする中継用絞り装置22の開度導出用の中継用開度導出関数が記憶されていてもよい。この場合、中継用制御装置324は、第2圧力Pmを中継用開度導出関数に代入することで、第2圧力Pmに対応する中継用絞り装置22の開度を求めることができる。また、中継用記憶部24aには、第2圧力Pmと中継用絞り装置22の開度とを対応づけた中継用開度テーブルが記憶されていてもよい。この場合、中継用制御装置324は、第2圧力Pmを中継用開度テーブルに照らすことで、第2圧力Pmに対応する中継用絞り装置22の開度を求めることができる。そして、中継用制御装置324は、求めた開度となるように、中継用絞り装置22の開度を調整するとよい。
 さらに、第2基準圧力が中継用記憶部24aに記憶されている場合、中継用制御装置324は、第2圧力Pmと第2基準圧力との差分値を求め、求めた差分値に基づいて中継用絞り装置22の開度を制御してもよい。この場合、中継用開度導出関数は、第2圧力Pmと第2基準圧力との差分値を変数とする関数となる。同様に、中継用開度テーブルは、差分値と中継用絞り装置22の開度とが対応づけられたものとなる。中継用開度導出関数及び中継用開度テーブルは、中継用絞り装置22の開度の調整量を導出するためのものであってよい。中継用制御装置324の他の構成は、実施の形態1の熱源側制御装置17と同様である。
 以上のように、本実施の形態3の空調システム300によっても、上記の実施の形態1及び2と同様、比熱及び搬送に要する動力が冷媒よりも大きい熱媒体の量を減らすことができるため、システム全体の運転効率を高め、省エネルギー化を実現することができる。
 また、空調システム300においても、冷房運転のときに熱源側絞り装置14が中継機20に流出させる冷媒を二相状態とし、暖房運転のときに中継用絞り装置22が熱源機10に流出させる冷媒を二相状態にする。したがって、空調システム300によっても、液管55に冷媒液を通過させる場合に比べて、冷媒量を削減することができる。他の効果については、実施の形態1及び2と同様である。
 ところで、本実施の形態3では、第1圧力Pmをもとに熱源側絞り装置14の開度を調整し、第2圧力Pmをもとに中継用絞り装置22の開度を調整する場合を例示したが、これに限定されない。例えば、冷房運転時において、熱源側絞り装置14の開度は、熱源側制御装置317が、吐出圧力Pdから第1圧力Pmを減算した差圧値に基づいて制御してもよい。このとき、中継用絞り装置22の開度は、中継用制御装置324が、蒸発器出口の過熱度に基づいて制御するとよい。また、暖房運転時において、熱源側絞り装置14の開度は、第2圧力Pmから吸入圧力Psを減算した差圧値に基づいて制御してもよい。このとき、中継用絞り装置22の開度は、中継用制御装置324が、凝縮器出口の過冷却度に基づいて制御するとよい。このようにすれば、空調システムの運転状態によらず、液管55内の冷媒密度を一定にすることができる。よって、液管55内の冷媒量の増減による性能低下を抑制することができる。
 上述した実施の形態は、空調システムにおける好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、実施の形態1~3の空調システムは、中継機の中継用制御装置がシステム全体を統括的に制御してもよい。より具体的に、実施の形態1の場合、中継用制御装置24が、冷房運転時に、吸入圧力Psと第1温度とを用いて過熱度を求め、求めた過熱度に基づいて熱源側絞り装置14の開度を制御してもよい。つまり、中継用制御装置24は、求めた過熱度に対応する熱源側絞り装置14の開度を求め、求めた開度を示す制御信号を熱源側制御装置17に送信することにより、熱源側制御装置17を介して熱源側絞り装置14の開度を制御してもよい。実施の形態2及び3の場合も、上記同様に構成するとよい。かかる構成を採ると、実施の形態2の場合、中継用制御装置24は、第1温度センサ15aにおいて計測された第1温度を、熱源機210側から熱源側制御装置217を介して取得する必要がある。一方、実施の形態1の場合、中継用制御装置24は、第1温度センサ21aにおいて計測された第1温度を直接取得することができる。したがって、実施の形態1に上記の構成を適用した方が、実施の形態2に上記の構成を適用した場合よりも、制御の簡素化を図ることができる。
 上記各実施の形態では、四方弁12で冷媒の流路を切り替えることにより冷熱と温熱との双方を供給できる熱源機10、210、及び310を例示したが、これに限定されない。熱源機10、210、及び310は、四方弁12を設けずに構成し、冷熱又は温熱のうちの一方を供給するようにしてもよい。つまり、空調システム100、200、及び300は、冷房運転又は暖房運転の何れか一方を行うものであってよい。また、空調システム100、200、及び300は、各室内機のそれぞれの運転状態を個別に切り替える冷暖同時運転を実行できるものであってよい。
 また、上記各実施の形態では、空調システム100、200、及び300が3台の室内機を有する場合を例示したが、これに限定されない。空調システム100、200、及び300は、2台の室内機を有するものであってよく、4台以上の室内機を有するものであってもよい。なお、空調システム100、200、及び300が2台の室内機を有する場合、中継機とは反対側の端部に設けられた室内機以外の室内機の各々に対応する分岐部は、第1分岐部のみとなる。
 10、210、310 熱源機、10x、10y、25x、25y、26a、26x、26y、30a~30c、30x、30y 接続部、11 圧縮機、11a 吸入圧力センサ、11b 吐出圧力センサ、12 四方弁、13 熱源側熱交換器、14 熱源側絞り装置、15 アキュムレータ、15a 第1温度センサ、16 熱源側送風機、17、217、317 熱源側制御装置、17a 熱源側記憶部、20、320 中継機、21 媒体間熱交換器、21a 第1温度センサ、21b 第2温度センサ、22 中継用絞り装置、23 ポンプ、24、324 中継用制御装置、24a 中継用記憶部、30a~30c 室内機、31 負荷側熱交換器、32 流量調整弁、33 負荷側送風機、34 負荷側制御装置、40 冷媒回路、41 冷媒配管、50 熱源接続配管、51 液側接続配管、52 ガス側接続配管、55 液管、55a 第1圧力センサ、55b 第2圧力センサ、60 熱媒体回路、61 熱媒体配管、61a 第1分岐部、61b 第2分岐部、61x 往側第1分岐部、61y 還側第1分岐部、62a 第2分岐部、62x 往側第2分岐部、62y 還側第2分岐部、70 負荷接続配管、80 主配管、81 往側主管、81a 往側第1主管、82 還側主管、82a 還側第1主管、91 分岐配管、91x 往側分岐配管、91y 還側分岐配管、92 分岐配管、92x 往側分岐配管、92y 還側分岐配管、100、200、300 空調システム。

Claims (10)

  1.  複数台の室内機と、
     冷媒と熱媒体との間で熱交換させる媒体間熱交換器を有する中継機と、
     圧縮機及び熱源側熱交換器を有し、前記中継機を介して複数台の前記室内機のそれぞれに冷熱又は温熱を供給する熱源機と、を備え、
     前記熱源機と前記中継機とは、冷媒が流れる熱源接続配管により接続され、
     前記中継機と複数台の前記室内機とは、熱媒体が流れる負荷接続配管により接続され、
     前記負荷接続配管は、
     前記中継機と、前記中継機とは反対側の端部に設けられた前記室内機とを接続する主配管を有し、
     前記主配管には、
     複数台の前記室内機のうち、前記中継機とは反対側の端部に設けられた前記室内機以外の前記室内機の各々に対応する分岐部が設けられており、
     前記主配管のうち、前記中継機との接続部から、最も前記中継機側の前記分岐部である第1分岐部までの長さは、前記熱源接続配管の長さよりも短い、空調システム。
  2.  前記圧縮機と、前記熱源側熱交換器と、前記媒体間熱交換器とが冷媒配管を介して接続され、冷媒が循環する冷媒回路を有し、
     前記熱源接続配管は、
     前記冷媒配管の液管における前記熱源機の接続部と前記中継機の接続部とをつなぐ液側接続配管と、
     前記冷媒配管のガス管における前記熱源機との接続部と前記中継機との接続部とをつなぐガス側接続配管と、を有し、
     前記主配管は、
     前記中継機から流出する熱媒体を複数台の前記室内機側に導く往側主管と、
     複数台の前記室内機から流出する熱媒体を前記中継機側に導く還側主管と、を有し、
     前記第1分岐部は、
     前記往側主管に設けられた往側第1分岐部と、
     前記還側主管に設けられた還側第1分岐部と、により構成され、
     前記往側主管は、
     前記中継機との接続部と往側第1分岐部とをつなぐ往側第1主管を含み、
     前記還側主管は、
     前記中継機との接続部と還側第1分岐部とをつなぐ還側第1主管を含み、
     前記往側第1主管と前記還側第1主管との合計の長さは、前記液側接続配管と前記ガス側接続配管との合計の長さよりも短い、請求項1に記載の空調システム。
  3.  前記熱源機は、
     前記圧縮機と、前記熱源側熱交換器と、前記熱源側熱交換器が凝縮器として機能する冷房運転時における前記熱源側熱交換器の下流に設けられた熱源側絞り装置と、を有し、
     前記熱源側絞り装置は、
     前記冷房運転時に、前記中継機に流出させる冷媒を二相状態にするものである、請求項1又は2に記載の空調システム。
  4.  前記熱源機は、
     前記熱源側絞り装置の開度を制御する熱源側制御装置を有し、
     前記熱源側制御装置は、
     蒸発器として機能する前記媒体間熱交換器の出口の過熱度が基準過熱度よりも大きくなると、前記熱源側絞り装置の開度が大きくなるように制御し、
     前記過熱度が前記基準過熱度よりも小さくなると、前記熱源側絞り装置の開度が小さくなるように制御するものである、請求項3に記載の空調システム。
  5.  前記圧縮機に吸入される冷媒の圧力である吸入圧力を計測する吸入圧力センサと、
     前記媒体間熱交換器と前記圧縮機との間を流れる冷媒の温度である第1温度を計測する第1温度センサと、を有し、
     前記熱源側制御装置は、
     前記吸入圧力と前記第1温度とを用いて前記過熱度を求めるものである、請求項4に記載の空調システム。
  6.  前記熱源機は、
     前記圧縮機の上流にアキュムレータを有し、
     前記第1温度センサは、
     前記熱源機内における前記アキュムレータの上流に設けられている、請求項5に記載の空調システム。
  7.  前記中継機は、
     前記媒体間熱交換器が凝縮器として機能する暖房運転時における前記媒体間熱交換器の下流に設けられた中継用絞り装置を有し、
     前記中継用絞り装置は、
     前記暖房運転時に、前記熱源機に流出させる冷媒を二相状態にするものである請求項1~6の何れか一項に記載の空調システム。
  8.  前記中継機は、
     前記中継用絞り装置の開度を制御する中継用制御装置を有し、
     前記中継用制御装置は、
     凝縮器として機能する前記媒体間熱交換器の出口の過冷却度が基準過冷却度よりも大きくなると、前記中継用絞り装置の開度が大きくなるように制御し、
     前記過冷却度が前記基準過冷却度よりも小さくなると、前記中継用絞り装置の開度が小さくなるように制御するものである、請求項7に記載の空調システム。
  9.  前記圧縮機から吐出される冷媒の圧力である吐出圧力を計測する吐出圧力センサと、
     前記媒体間熱交換器と前記中継用絞り装置との間を流れる冷媒の温度である第2温度を計測する第2温度センサと、を有し、
     前記中継用制御装置は、
     前記吐出圧力と前記第2温度とを用いて前記過冷却度を求めるものである、請求項8に記載の空調システム。
  10.  複数台の前記室内機は、それぞれ、負荷側熱交換器及び流量調整弁を有し、
     ポンプと、前記媒体間熱交換器と、複数台の前記室内機のそれぞれの前記負荷側熱交換器及び前記流量調整弁とが熱媒体配管を介して接続され、前記ポンプによって熱媒体が循環する熱媒体回路を有する、請求項1~9の何れか一項に記載の空調システム。
PCT/JP2018/003915 2018-02-06 2018-02-06 空調システム WO2019155506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018007022.0T DE112018007022T5 (de) 2018-02-06 2018-02-06 Klimaanlage
PCT/JP2018/003915 WO2019155506A1 (ja) 2018-02-06 2018-02-06 空調システム
JP2019571128A JP6932210B2 (ja) 2018-02-06 2018-02-06 空調システム
US16/962,018 US11326804B2 (en) 2018-02-06 2018-02-06 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003915 WO2019155506A1 (ja) 2018-02-06 2018-02-06 空調システム

Publications (1)

Publication Number Publication Date
WO2019155506A1 true WO2019155506A1 (ja) 2019-08-15

Family

ID=67548639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003915 WO2019155506A1 (ja) 2018-02-06 2018-02-06 空調システム

Country Status (4)

Country Link
US (1) US11326804B2 (ja)
JP (1) JP6932210B2 (ja)
DE (1) DE112018007022T5 (ja)
WO (1) WO2019155506A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870633B (zh) * 2018-06-28 2019-10-25 珠海格力电器股份有限公司 空调系统的控制方法和装置
US11662127B2 (en) * 2020-09-04 2023-05-30 Intellihot, Inc. Electric heating and cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009748A1 (ja) * 2014-07-18 2016-01-21 三菱電機株式会社 空気調和装置
JP2016090178A (ja) * 2014-11-07 2016-05-23 日立アプライアンス株式会社 空気調和機及びそのリニューアル方法
WO2017119137A1 (ja) * 2016-01-08 2017-07-13 三菱電機株式会社 空気調和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484452A (en) * 1983-06-23 1984-11-27 The Trane Company Heat pump refrigerant charge control system
JP4050600B2 (ja) 2002-08-30 2008-02-20 荏原冷熱システム株式会社 連結式冷温水機の運転台数制御方法及び運転台数制御装置
JP2004211998A (ja) 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd 空調設備
JP5086788B2 (ja) 2007-12-11 2012-11-28 三菱重工業株式会社 ヒートポンプ式空気調和装置
JP5627417B2 (ja) * 2010-11-26 2014-11-19 三菱電機株式会社 二元冷凍装置
EP2843323B1 (en) * 2012-04-27 2020-01-01 Mitsubishi Electric Corporation Air conditioning device
GB2525791B (en) 2013-01-31 2020-06-24 Mitsubishi Electric Corp Refrigeration cycle apparatus and refrigeration cycle apparatus control method
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置
JP6044626B2 (ja) 2014-12-25 2016-12-14 ダイキン工業株式会社 温調システム
JP6151409B2 (ja) 2015-10-06 2017-06-21 木村工機株式会社 ヒートポンプ式熱源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009748A1 (ja) * 2014-07-18 2016-01-21 三菱電機株式会社 空気調和装置
JP2016090178A (ja) * 2014-11-07 2016-05-23 日立アプライアンス株式会社 空気調和機及びそのリニューアル方法
WO2017119137A1 (ja) * 2016-01-08 2017-07-13 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
DE112018007022T5 (de) 2020-11-12
US20200400340A1 (en) 2020-12-24
US11326804B2 (en) 2022-05-10
JP6932210B2 (ja) 2021-09-08
JPWO2019155506A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
US9746223B2 (en) Air-conditioning apparatus
US9494363B2 (en) Air-conditioning apparatus
JP6095764B2 (ja) 空気調和装置
US9651287B2 (en) Air-conditioning apparatus
US9857113B2 (en) Air-conditioning apparatus
WO2013102953A1 (ja) 空気調和装置
JPWO2012172597A1 (ja) 空気調和装置
US9746222B2 (en) Air-conditioning apparatus
WO2016208042A1 (ja) 空気調和装置
JP6490232B2 (ja) 空気調和装置
JP6576603B1 (ja) 空気調和装置
WO2014083679A1 (ja) 空気調和装置、その設計方法
WO2019155506A1 (ja) 空調システム
US9587861B2 (en) Air-conditioning apparatus
JP6062030B2 (ja) 空気調和装置
WO2023007700A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571128

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18905369

Country of ref document: EP

Kind code of ref document: A1