JP7320934B2 - 医用画像処理装置および医用画像処理方法 - Google Patents

医用画像処理装置および医用画像処理方法 Download PDF

Info

Publication number
JP7320934B2
JP7320934B2 JP2018209882A JP2018209882A JP7320934B2 JP 7320934 B2 JP7320934 B2 JP 7320934B2 JP 2018209882 A JP2018209882 A JP 2018209882A JP 2018209882 A JP2018209882 A JP 2018209882A JP 7320934 B2 JP7320934 B2 JP 7320934B2
Authority
JP
Japan
Prior art keywords
medical data
motion
patterns
data
motion components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018209882A
Other languages
English (en)
Other versions
JP2020074913A (ja
Inventor
正彦 山崎
克彦 石田
成臣 秋野
拓也 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2018209882A priority Critical patent/JP7320934B2/ja
Publication of JP2020074913A publication Critical patent/JP2020074913A/ja
Application granted granted Critical
Publication of JP7320934B2 publication Critical patent/JP7320934B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Description

本発明の実施形態は、医用画像処理装置、学習装置、および医用画像処理方法に関する。
従来、X線CT装置等の画像診断装置により取得された画像の学習方法として、動作センサを用いて被検体の胸部の動きを測定し、その動きが測定された部分と近接する心臓のX線画像に対して、測定した動きの成分で補正する方法が開示されている。
上述の方法では、複数パターンの動きに対応することができない。
米国特許出願公開第2004/0249314号明細書
本発明が解決しようとする課題は、複数パターンの動きに対応することである。
実施形態の医用画像処理装置は、取得部と、処理部とを備える。取得部は、被検体の動き成分を有する第1の医用データを取得する。処理部は、第1の医用データに基づいて、第1の医用データの前記被検体の動き成分の影響が補正された第2の医用データを出力する学習済みモデルに対して、前記取得部により取得された第1の医用データを入力することで、前記取得された第1の医用データの動き成分の影響が補正された第2の医用データを生成する。
実施形態に係るX線CT装置1の構成図。 メモリ41に格納されるデータの一例を示す図。 学習装置100の構成の一例を示す図。 モデル生成機能156による処理の内容を模式的に示す図。 モデル生成機能156の学習データ140-1と教師データ140-2との関係を例示した図。 学習済みモデル41-6による処理の内容について説明するための図。 画像処理機能54の構成図。 学習済みモデル41-6の分類の一例を示す図。 X線CT装置1により実行される処理の流れの一例を示すフローチャート。 学習装置100による学習処理の流れの一例を示すフローチャート。 画像処理制御機能54-1が操作者による学習済みモデル41-6の選択を受け付ける場合の処理を説明するための図。 X線CT装置1により実行される処理の流れの他の一例を示すフローチャート。
以下、実施形態の医用画像処理装置、学習装置、および医用画像処理方法を、図面を参照して説明する。医用画像処理装置は、例えば、X線CT(Computed Tomography:コンピュータ断層診断)装置等の医用画像に対する処理を行って被検体を診断する装置である。
(第1の実施形態)
図1は、実施形態に係るX線CT装置1の構成図である。X線CT装置1は、例えば、学習装置100とネットワークNWを介して接続する。ネットワークNWは、例えば、LANやWAN、インターネット、セルラー網、専用回線等を含む。
X線CT装置1は、例えば、架台装置10と、寝台装置30と、コンソール装置40とを有する。図1では、説明の都合上、架台装置10をZ軸方向から見た図とX軸方向から見た図の双方を掲載しているが、実際には、架台装置10は一つである。実施形態では、非チルト状態での回転フレーム17の回転軸または寝台装置30の天板33の長手方向をZ軸方向、Z軸方向に直交し、床面に対して水平である軸をX軸方向、Z軸方向に直交し、床面に対して垂直である方向をY軸方向とそれぞれ定義する。
架台装置10は、例えば、X線管11と、ウェッジ12と、コリメータ13と、X線高電圧装置14と、X線検出器15と、データ収集システム(以下、DAS:Data Acquisition System)16と、回転フレーム17と、制御装置18とを有する。
X線管11は、X線高電圧装置14からの高電圧の印加により、陰極(フィラメント)から陽極(ターゲット)に向けて熱電子を照射することでX線を発生させる。X線管11は、真空管を含む。例えば、X線管11は、回転する陽極に熱電子を照射することでX線を発生させる回転陽極型のX線管である。
ウェッジ12は、X線管11から被検体Pに照射されるX線量を調節するためのフィルタである。ウェッジ12は、X線管11から被検体Pに照射されるX線量の分布が予め定められた分布になるように、自身を透過するX線を減衰させる。ウェッジ12は、ウェッジフィルタ(wedge filter)、ボウタイフィルタ(bow-tie filter)とも呼ばれる。ウェッジ12は、例えば、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したものである。
コリメータ13は、ウェッジ12を透過したX線の照射範囲を絞り込むための機構である。コリメータ13は、例えば、複数の鉛板の組み合わせによってスリットを形成することで、X線の照射範囲を絞り込む。コリメータ13は、X線絞りと呼ばれる場合もある。
X線高電圧装置14は、例えば、高電圧発生装置と、X線制御装置とを有する。高電圧発生装置は、変圧器(トランス)および整流器などを含む電気回路を有し、X線管11に印加する高電圧を発生させる。X線制御装置は、X線管11に発生させるべきX線量に応じて高電圧発生装置の出力電圧を制御する。高電圧発生装置は、上述した変圧器によって昇圧を行うものであってもよいし、インバータによって昇圧を行うものであってもよい。
X線高電圧装置14は、回転フレーム17に設けられてもよいし、架台装置10の固定フレーム(不図示)の側に設けられてもよい。
X線検出器15は、X線管11が発生させ、被検体Pを通過して入射したX線の強度を検出する。X線検出器15は、検出したX線の強度に応じた電気信号(光信号などでもよい)をDAS18に出力する。X線検出器15は、例えば、複数のX線検出素子列を有する。複数のX線検出素子列のそれぞれは、X線管11の焦点を中心とした円弧に沿ってチャネル方向に複数のX線検出素子が配列されたものである。複数のX線検出素子列は、スライス方向(列方向、row方向)に配列される。
X線検出器15は、例えば、グリッドと、シンチレータアレイと、光センサアレイとを有する間接型の検出器である。シンチレータアレイは、複数のシンチレータを有する。それぞれのシンチレータは、シンチレータ結晶を有する。シンチレータ結晶は、入射するX線の強度に応じた光量の光を発する。グリッドは、シンチレータアレイのX線が入射する面に配置され、散乱X線を吸収する機能を有するX線遮蔽板を有する。なお、グリッドは、コリメータ(一次元コリメータまたは二次元コリメータ)と呼ばれる場合もある。光センサアレイは、例えば、光電子増倍管(フォトマルチプライヤー:PMT)等の光センサを有する。光センサアレイは、シンチレータにより発せられる光の光量に応じた電気信号を出力する。X線検出器15は、入射したX線を電気信号に変換する半導体素子を有する直接変換型の検出器であってもかまわない。
DAS16は、例えば、増幅器と、積分器と、A/D変換器とを有する。増幅器は、X線検出器15の各X線検出素子により出力される電気信号に対して増幅処理を行う。積分器は、増幅処理が行われた電気信号をビュー期間(後述)に亘って積分する。A/D変換器は、積分結果を示す電気信号をデジタル信号に変換する。DAS16は、デジタル信号に基づく検出データをコンソール装置40に出力する。検出データは、生成元のX線検出素子のチャンネル番号、列番号、及び収集されたビューを示すビュー番号により識別されたX線強度のデジタル値である。ビュー番号は、回転フレーム17の回転に応じて変化する番号であり、例えば、回転フレーム17の回転に応じてインクリメントされる番号である。従って、ビュー番号は、X線管11の回転角度を示す情報である。ビュー期間とは、あるビュー番号に対応する回転角度から、次のビュー番号に対応する回転角度に到達するまでの間に収まる期間である。DAS16は、ビューの切り替わりを、制御装置18から入力されるタイミング信号によって検知してもよいし、内部のタイマーによって検知してもよいし、図示しないセンサから取得される信号によって検知してもよい。フルスキャンを行う場合においてX線管11によりX線が連続曝射されている場合、DAS16は、全周囲分(360度分)の検出データ群を収集する。ハーフスキャンを行う場合においてX線管11によりX線が連続曝射されている場合、DAS16は、半周囲分(180度分)の検出データを収集する。
回転フレーム17は、X線管11、ウェッジ12、およびコリメータ13と、X線検出器15とを対向支持する円環状の部材である。回転フレーム17は、固定フレームによって、内部に導入された被検体Pを中心として回転自在に支持される。回転フレーム17は、更にDAS16を支持する。DAS16が出力する検出データは、回転フレーム17に設けられた発光ダイオード(LED)を有する送信機から、光通信によって、架台装置10の非回転部分(例えば固定フレーム)に設けられたフォトダイオードを有する受信機に送信され、受信機によってコンソール装置40に転送される。なお、回転フレーム17から非回転部分への検出データの送信方法として、前述の光通信を用いた方法に限らず、非接触型の任意の送信方法を採用してよい。回転フレーム17は、X線管11などを支持して回転させることができるものであれば、円環状の部材に限らず、アームのような部材であってもよい。
X線CT装置1は、例えば、X線管11とX線検出器15の双方が回転フレーム17によって支持されて被検体Pの周囲を回転するRotate/Rotate-TypeのX線CT装置(第3世代CT)であるが、これに限らず、円環状に配列された複数のX線検出素子が固定フレームに固定され、X線管11が被検体Pの周囲を回転するStationary/Rotate-TypeのX線CT装置(第4世代CT)であってもよい。
制御装置18は、例えば、CPU(Central Processing Unit)などのプロセッサを有する処理回路と、モータやアクチュエータなどを含む駆動機構とを有する。制御装置18は、コンソール装置40または架台装置10に取り付けられた入力インターフェース43からの入力信号を受け付けて、架台装置10および寝台装置30の動作を制御する。
制御装置18は、例えば、回転フレーム17を回転させたり、架台装置10をチルトさせたり、寝台装置30の天板33を移動させたりする。架台装置10をチルトさせる場合、制御装置18は、入力インターフェース43に入力された傾斜角度(チルト角度)に基づいて、Z軸方向に平行な軸を中心に回転フレーム17を回転させる。制御装置18は、図示しないセンサの出力等によって回転フレーム17の回転角度を把握している。また、制御装置18は、回転フレーム17の回転角度を随時、処理回路50に提供する。制御装置18は、架台装置10に設けられてもよいし、コンソール装置40に設けられてもよい。
寝台装置30は、スキャン対象の被検体Pを載置して移動させ、架台装置10の回転フレーム17の内部に導入する装置である。寝台装置30は、例えば、基台31と、寝台駆動装置32と、天板33と、支持フレーム34とを有する。基台31は、支持フレーム34を鉛直方向(Y軸方向)に移動可能に支持する筐体を含む。寝台駆動装置32は、モータやアクチュエータを含む。寝台駆動装置32は、被検体Pが載置された天板33を、支持フレーム34に沿って、天板33の長手方向(Z軸方向)に移動させる。天板33は、被検体Pが載置される板状の部材である。
寝台駆動装置32は、天板33だけでなく、支持フレーム34を天板33の長手方向に移動させてもよい。また、上記とは逆に、架台装置10がZ軸方向に移動可能であり、架台装置10の移動によって回転フレーム17が被検体Pの周囲に来るように制御されてもよい。また、架台装置10と天板33の双方が移動可能な構成であってもよい。
コンソール装置40は、例えば、メモリ41と、ディスプレイ42と、入力インターフェース43と、メモリ41と、ネットワーク接続回路44と、処理回路50とを有する。実施形態では、コンソール装置40は架台装置10とは別体として説明するが、架台装置10にコンソール装置40の各構成要素の一部または全部が含まれてもよい。
メモリ41は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク、HDDなどの非一次的記憶媒体等により実現される。また、メモリ41は、RAMやレジスタなどの記憶媒体を含んでもよい。メモリ41は、例えば、検出データや投影データ、再構成画像、CT画像等を記憶する。これらのデータは、メモリ41ではなく(或いはメモリ41に加えて)、X線CT装置1が通信可能な外部メモリに記憶されてもよい。外部メモリは、例えば、外部メモリを管理するクラウドサーバが読み書きの要求を受け付けることで、クラウドサーバによって制御されるものである。
ディスプレイ42は、各種の情報を表示する。例えば、ディスプレイ42は、処理回路によって生成された医用画像(CT画像)や、X線CT装置1の操作者(以下、操作者)による各種操作を受け付けるGUI(Graphical User Interface)画像等を表示する。ディスプレイ42は、例えば、液晶ディスプレイやCRT(Cathode Ray Tube)、有機EL(Electroluminescence)ディスプレイ等である。ディスプレイ42は、架台装置10に設けられてもよい。ディスプレイ42は、デスクトップ型でもよいし、コンソール装置40の本体部と無線通信可能な表示装置(例えばタブレット端末)であってもよい。
入力インターフェース43は、操作者による各種の入力操作を受け付け、受け付けた入力操作の内容を示す電気信号を処理回路50に出力する。例えば、入力インターフェース43は、検出データまたは投影データ(後述)を収集する際の収集条件、CT画像を再構成する際の再構成条件、CT画像から後処理画像を生成する際の画像処理条件などの入力操作を受け付ける。例えば、入力インターフェース43は、マウスやキーボード、タッチパネル、ドラッグボール、スイッチ、ボタン、ジョイスティック、フットペダル、カメラ、赤外線センサ、マイク等により実現される。入力インターフェース43は、架台装置10に設けられてもよい。また、入力インターフェース43は、コンソール装置40の本体部と無線通信可能な表示装置(例えばタブレット端末)により実現されてもよい。
ネットワーク接続回路44は、例えば、プリント回路基板を有するネットワークカード、或いは無線通信モジュールなどを含む。ネットワーク接続回路44は、接続する対象のネットワークの形態に応じた情報通信用プロトコルを実装する。ネットワークは、例えば、LAN(Local Area Network)やWAN(Wide Area Network)、インターネット、セルラー網、専用回線等を含む。
処理回路50は、X線CT装置1の全体の動作を制御する。処理回路50は、例えば、
システム制御機能51、前処理機能52、再構成処理機能53、画像処理機能54、スキャン制御機能55、表示制御機能56などを実行する。処理回路50は、例えば、ハードウェアプロセッサがメモリ41に記憶されたプログラムを実行することにより、これらの機能を実現するものである。
ハードウェアプロセッサとは、例えば、CPU、GPU(Graphics Processing Unit)、特定用途向け集積回路(Application Specific Integrated Circuit; ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device; SPLD)または複合プログラマブル論理デバイス(Complex Programmable Logic Device; CPLD)や、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array; FPGA))などの回路(circuitry)を意味する。メモリ41にプログラムを記憶させる代わりに、ハードウェアプロセッサの回路内にプログラムを直接組み込むように構成しても構わない。この場合、ハードウェアプロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。ハードウェアプロセッサは、単一の回路として構成されるものに限らず、複数の独立した回路を組み合わせて1つのハードウェアプロセッサとして構成され、各機能を実現するようにしてもよい。また、複数の構成要素を1つのハードウェアプロセッサに統合して各機能を実現するようにしてもよい。
コンソール装置40または処理回路50が有する各構成要素は、分散化されて複数のハードウェアにより実現されてもよい。処理回路50は、コンソール装置40が有する構成ではなく、コンソール装置40と通信可能な処理装置によって実現されてもよい。処理装置は、例えば、一つのX線CT装置と接続されたワークステーション、あるいは複数のX線CT装置に接続され、以下に説明する処理回路50と同等の処理を一括して実行する装置(例えばクラウドサーバ)である。
システム制御機能51は、入力インターフェース43が受け付けた入力操作に基づいて、処理回路50の各種機能を制御する。
前処理機能52は、DAS16により出力された検出データに対して対数変換処理やオフセット補正処理、チャネル間の感度補正処理、ビームハードニング補正等の前処理を行って、投影データを生成し、生成した投影データをメモリ41に記憶させる。
再構成処理機能53は、前処理機能52によって生成された投影データに対して、フィルタ補正逆投影法や逐次近似再構成法等による再構成処理を行って、CT画像を生成し、生成したCT画像をメモリ41に記憶させる。再構成処理機能53は、「取得部」の一例である。なお「取得部」は、上記の例のように「自ら生成して取得する」のに限らず、「他の機能部から取得する」ものであってもよい。
画像処理機能54は、入力インターフェース43が受け付けた入力操作に基づいて、CT画像を公知の方法により、三次元画像や任意断面の断面像データに変換する。三次元画像への変換は、前処理機能52によって行われてもよい。画像処理機能54は、「処理部」の一例である。
また、画像処理機能54は、入力インターフェース43が受け付けた入力操作に基づいて、CT画像から動き成分を軽減する補正処理を行う。動き成分とは、例えば、脈動、呼吸動、体動等の動きのことである。補正処理については後述する。このとき行われた補正処理の内容や補正処理の種別の情報は、例えば、後述するメモリ41の動き成分情報41-1として記憶される。また、行われた補正処理の内容や補正処理の種別から動き成分の定義が推定可能である場合には、その推定結果が動き成分情報41-1として記憶されてもよい。
スキャン制御機能55は、X線高電圧装置14、DAS16、制御装置18、および寝台駆動装置32に指示することで、架台装置10における検出データの収集処理を制御する。スキャン制御機能55は、スキャノ画像を収集する撮影、および診断に用いる画像を撮影する際の各部の動作をそれぞれ制御する。
表示制御機能56は、ディスプレイ42の表示態様を制御する。
上記構成により、X線CT装置1は、ヘリカルスキャン、コンベンショナルスキャン、ステップアンドシュートなどの態様で被検体Pのスキャンを行う。ヘリカルスキャンとは、天板33を移動させながら回転フレーム17を回転させて被検体Pをらせん状にスキャンする態様である。コンベンショナルスキャンとは、天板33を静止させた状態で回転フレーム17を回転させて被検体Pを円軌道でスキャンする態様である。コンベンショナルスキャンを実行する。ステップアンドシュートとは、天板33の位置を一定間隔で移動させてコンベンショナルスキャンを複数のスキャンエリアで行う態様である。
図2は、メモリ41に格納されるデータの一例を示す図である。図2に示すように、メモリ41には、例えば、処理回路50により生成される動き成分情報41-1、検出データ41-2、投影データ41-3、再構成画像41-4、補正画像41-5、学習済みモデル41-6などの情報が格納される。
[学習装置]
学習済みモデル41-6は、例えば、X線CT装置1とは別体の学習装置によって生成される。ここで学習装置について説明する。図3は、学習装置100の構成の一例を示す図である。学習装置100は、例えば、ネットワーク接続回路110と、入力インターフェース120と、ディスプレイ130と、記憶回路140と、処理回路150とを備える。
ネットワーク接続回路110は、例えば、プリント回路基板を有するネットワークカード、或いは無線通信モジュールなどを含む。ネットワーク接続回路110は、接続する対象のネットワークNWの形態に応じた情報通信用プロトコルを実装する。X線CT装置1のネットワーク接続回路44と学習装置100のネットワーク接続回路110が同じネットワークNWに接続することで、X線CT装置1と学習装置100とが通信可能となる。
入力インターフェース120は、例えば、キーボードやマウス、タッチパネル、トラックボールなどの装置を含む。入力インターフェース120は、ユーザの操作に対応した操作入力信号を処理回路150に出力する。
ディスプレイ130は、例えば、LCD(Liquid Crystal Display)や有機ELディスプレイなどである。
記憶回路140は、HDDやフラッシュメモリなどの非一次的記憶媒体を含む。また、記憶回路140は、RAMやレジスタなどの記憶媒体を含んでもよい。記憶回路140は、ハードウェアプロセッサが読み込み可能なデータを格納する。記憶回路140には、例えば、処理回路150により参照される学習データ140-1や教師データ140-2、処理回路150が生成する学習済みモデル140-3などの情報が格納される。また、記憶回路140には、処理回路150のハードウェアプロセッサが実行するプログラムが格納されてもよい。
処理回路150は、例えば、データ取得機能152と、学習データ選別機能154と、モデル生成機能156とを備える。処理回路150は、例えば、ハードウェアプロセッサが記憶回路140に記憶されたプログラムを実行することにより、これらの機能を実現するものである。
データ取得機能152は、例えば、動き成分を含む再構成画像41-4をX線CT装置1のメモリ41より取得し、学習データ140-1として記憶回路140に記憶させる。データ取得機能152は、動き成分を含む再構成画像41-4に対応付けられる動き成分情報41-1をメモリ41より取得し、学習データ140-1として記憶回路140に記憶させてもよい。また、データ取得機能152は、上記の学習データに係る補正後の再構成画像である補正画像41-5をX線CT装置1のメモリ41より取得し、教師データ140-2として記憶回路140に記憶させる。同じ被検体から得られた1セットの学習データ140-1と教師データ140-2は、互いに対応付けられている。データ取得機能152は、例えば、一以上のX線CT装置1からネットワークを介してこれらの情報を取得する。また、データ取得機能152は、可搬型の記憶媒体に格納されたデータを、図示しないドライブ装置を介して取得してもよい。データ取得機能152は、「第2取得部」の一例である。
学習データ選別機能154は、学習済みモデル140-3の生成のための学習データ140-1および教師データ140-2を選択して、モデル生成機能156に出力する。
図4は、モデル生成機能156による処理の内容を模式的に示す図である。モデル生成機能156は、予め接続情報等が定義されると共に接続係数等のパラメータが暫定的に設定された機械学習モデルに対して、学習データ選別機能154により出力された複数セットの学習データ140-1(動き成分を含む再構成画像41-4)を入力し、その結果が、学習データ140-1に対応する教師データ140-2(補正画像41-5)に近づくように、機械学習モデルにおけるパラメータを調整する。学習データ140-1には、動き成分情報41-1が含まれてもよい。モデル生成機能156は、例えば、バックプロパゲーション(逆誤差伝搬法)によって機械学習モデルのパラメータを調整する。機械学習モデルは、例えば、CNN(Convolution Neural Network)を利用したDNN(Deep Neural Network)である。モデル生成機能156は、予め定められたセット数の学習データ140-1と対応する教師データ140-2についてバックプロパゲーションを行うと、処理を終了する。その時点の機械学習モデルが学習済みモデル140-3となる。モデル生成機能156は、「モデル生成部」の一例である。
学習データ140-1は、被検体に係る再構成画像41-4(または、再構成画像41-4に係るサイノグラムデータ)であることが望ましいが、被検体の体形や症状を再現した人体ファントムに係る再構成画像41-4であってもよい。また、学習データ140-1は、動き成分情報41-1と投影データ41-3であってもよい。学習データ140-1が動き成分情報41-1と投影データ41-3である場合、教師データはその投影データ41-3に対応する補正後の投影データ41-3であってもよいし、補正画像41-5であってもよい。再構成画像41-4が「第1の医用データ」の一例である場合、補正画像41-5は「第2の医用データ」である。また、投影データ41-3が「第1の医用データ」の一例である場合、補正後の投影データ41-3または補正後の検出データ41-2は「第2の医用データ」である。
図5は、モデル生成機能156の学習データ140-1と教師データ140-2との関係を例示した図である。学習データ140-1が再構成画像41-4である場合、教師データ140-2は上述のように補正画像41-5であってもよいし、投影データ41-3であってもよい。
また、学習データ140-1が投影データ41-3である場合、教師データ140-2は補正画像41-5であってもよいし、投影データ41-3であってもよい。
なお、学習済みモデル140-3は、動き成分の有無の判定情報を出力するものであってもよい。
また、学習データ140-1は、投影データ41-3または再構成画像41-4を基にして、仮想的に動き成分を含むように生成された再構成画像41-4であってもよい。この場合、学習済みモデル140-3は、フォワード・プロジェクション(Forward-Projection;順投影)で再現された再構成画像と、逆投影法等の他の投影方法で生成された再構成画像とが一致または近似するような、動き成分を含む再構成画像41-4を取得して(または疑似的に生成して)、その再構成画像41-4に基づいて生成されるものであってもよい。
学習済みモデル140-3は、ネットワーク接続回路110を介してX線CT装置1に送信され、学習済みモデル41-6として記憶される。
図6は、学習済みモデル41-6による処理の内容について説明するための図である。補正処理機能54-3は、再構成画像41-4をパラメータとして学習済みモデル41-6に入力することで、再構成画像41-4に含まれる動き成分が補正された補正画像41-5を出力する。これによって、操作者による被検体Pの撮影後の再構成画像41-4に動き成分が含まれているか否かの判別時間や、その動き成分を取り除くための補正時間を短縮することができる。補正処理機能54-3は、動き成分情報41-1と再構成画像41-4とをパラメータとして学習済みモデル41-6に入力してもよい。
なお、学習済みモデル41-6は、再構成画像41-4の動き成分の定義(例えば、「脈動」「呼吸動」「体動」等の動き成分を示す種別や、「しゃっくり」、「不整脈」等の特定の状態を示す種別)を判別して出力するものであってもよい。補正処理機能54-3は、学習済みモデル41-6により出力される動き成分の定義に基づいて後続の補正処理の要否を判断したり、補正処理の種別を選択したりすることができ、被検体Pの撮影後の補正時間を短縮することができる。
[動き成分の補正]
以下、動き成分の補正方法について説明する。動き成分の補正とは、呼吸や脈動の1回転の最初と最後をつなぎ合わせるようにして補正する既存の補正方法に加えて、或いは代えて、以下のような補正を行うことにより1回転の中での体動、呼吸、脈動の影響を補正するものである。
図7は、画像処理機能54の構成図である。画像処理機能54は、例えば、画像処理制御機能54-1と、判定機能54-2を備える。画像処理制御機能54-1は、1以上の学習済みモデル41-6を選択し、選択した学習済みモデル41-6に再構成画像41-4を適用することで、補正画像41-5を出力する。判定機能54-2は、画像処理制御機能54-1により出力された補正画像41-5に動き成分の残存傾向を判定する。動き成分の残存傾向は、例えば、ノイズ含有率が所定の基準値以上である場合に動き成分が残っていると判定する。ノイズ除去のためのフィルタ(例えば、実施形態の学習済みモデル41-6とは異なる学習済みモデルを用いたもの)を適用した後のノイズ除去画像と、適用前の画像とを比較して相違点を数値化するとノイズ含有率が求められる。判定機能54-2は、「判定部」の一例である。
なお、画像処理制御機能54-1は、判定機能54-2により補正画像41-5に動き成分が残っていると判定された場合、その判定結果をディスプレイ42等に表示させるよう表示制御機能56に処理させてもよい。また画像処理制御機能54-1は、判定機能54-2により補正画像41-5に動き成分が残っていると判定された場合、判定機能54-2により動き成分が残っていると判定された補正画像41-5を、その残っている動き成分を除去するための学習済みモデル41-6を追加選択して入力し、残っている動き成分が解消された補正画像41-5を取得してもよいし、他の学習済みモデル41-6を選択して再構成画像41-4を改めて入力し、残っている動き成分が解消されるか、再実施を試みてもよい。
また、画像処理制御機能54-1は、複数パターンの学習済みモデル41-6の組み合わせに再構成画像41-4を入力して得られた、複数の補正画像41-5の動き成分の残存傾向を比較して、最も動き成分の残存傾向が見られない補正画像41-5を選択するものであってもよい。
図8は、学習済みモデル41-6の分類の一例を示す図である。学習済みモデル41-6は、例えば、図8に示すように、主として補正処理する動き成分の定義毎に学習装置100により生成されるものであり、脈動を補正するモデル、呼吸動を補正するモデル、体動を補正するモデルがそれぞれ生成される。
画像処理制御機能54-1は、処理対象の再構成画像41-4に応じて1以上の学習済みモデル41-6を選択し、さらに選択した学習済みモデル41-6での処理順を決定して、決定した処理順で学習済みモデル41-6に適用する。判定機能54-2は、画像処理制御機能54-1により生成された補正画像41-5に、どの動き成分の影響があったかを判別する。残存傾向がある場合、再度、学習済みモデル41-6を選択する。
例えば、画像処理制御機能54-1は、まず図8に示すNo.1-4の学習済みモデル41-6を選択して再構成画像41-4を入力し、体動成分のみ補正された補正画像41-5を取得する。この時点で、補正画像41-5には、脈動成分と呼吸動成分が残ったものとする。
その場合、画像処理制御機能54-1は、図8に示すNo.2-3の学習済みモデル41-6を選択して、脈動成分と呼吸動成分が残る補正画像41-5を入力し、体動成分と脈動成分が補正された補正画像41-5を取得する。この時点で、補正画像41-5には、脈動成分が残ったものとする。
その場合、画像処理制御機能54-1は、図8に示すNo.3-1の学習済みモデル41-6を選択して、呼吸動成分が残る補正画像41-5を入力し、体動成分と脈動成分と呼吸動が補正された補正画像41-5を取得する。画像処理制御機能54-1は、このようにして学習済みモデル41-6を段階的に、且つ各動き成分を主に補正する学習済みモデル41-6を一つずつ選択して適用することで、補正画像41-5を取得する。
なお、画像処理制御機能54-1による学習済みモデル41-6の選択は、操作者による操作を受け付けるものであってもよいし、画像処理制御機能54-1によって自動的に動き成分が残っているか否かを判定するものであってもよい。画像処理制御機能54-1は、操作者による操作を受け付ける場合、例えば、図8に示すすべての学習済みモデル41-6に再構成画像41-4を適用して、その結果得られた補正画像41-5のすべてをディスプレイ42に表示させ、操作者による選択を受け付けるよう表示制御機能56に制御させる。画像処理制御機能54-1は、判定機能54-2によって自動的に判定する場合、例えば、図8に示すすべての学習済みモデル41-6に再構成画像41-4を適用して、その結果得られた補正画像41-5のうち動き成分の残存傾向が見られないもののみをディスプレイ42に表示するよう表示制御機能56に制御させる。
また、画像処理制御機能54-1は、操作者による「脈動成分だけを補正する」、「呼吸動成分だけを補正する」等の補正方法の指示を受け付けてもよい。
また、判定機能54-2は、図8に示した学習済みモデル41-6により出力された補正画像41-5に、動き成分に起因するアーチファクトが残存する場合には、他の動き成分の影響があること(例えば、生成済みの学習済みモデル41-6が不整脈に対応したものでない場合に、不整脈の動き成分が残存すること)を推定してもよい。
[処理フロー]
図9は、X線CT装置1により実行される処理の流れの一例を示すフローチャートである。
まず、画像処理制御機能54-1は、再構成画像41-4を取得する(ステップS100)。次に、画像処理制御機能54-1は、学習済みモデル41-6を選択し(ステップS102)、選択した学習済みモデル41-6に再構成画像41-4を入力して、動き成分の補正された補正画像41-5を得る(ステップS104)。判定機能54-2は、補正画像41-5に動き成分の残存傾向があるか否かを判定する(ステップS106)。判定機能54-2は、残存傾向があると判定した場合、ステップS102に処理を戻す。判定機能54-2は、残存傾向がないと判定した場合、操作者による最終的な補正画像41-5への補正(微調整)を受け付ける(ステップS108)。次に、学習装置100は、学習データを保存する(ステップS110)。以上、本フローチャートの処理の説明を終了する。
なお、図9のステップS106の判定は、操作者による判定を受け付けるものであってもよい。
図10は、学習装置100による学習処理の流れの一例を示すフローチャートである。図10に示す処理の流れは、図9のステップS110の処理詳細に該当する。図10のフローチャートは、例えば、図10のステップS110により学習データが所定セット数以上保存された場合や、X線CT装置1が1名の被検体の撮影を終了した後などのタイミングに行われる。
まず、データ取得機能152は、1セットの学習データを取得する(ステップS200)。次に、モデル生成機能156は、ステップS200で取得した1セットの学習データを機械学習モデルに入力し(ステップS202)、1セットの学習データに対応する教師データから誤差を逆伝搬させる(ステップS204)。
次に、モデル生成機能156は、所定セット数の学習データについてステップS202およびS204の処理を行ったか否かを判定する(ステップS206)。所定セット数の学習データについてステップS202およびS204の処理を行っていない場合、学習装置100は、ステップS200に処理を戻す。所定セット数の学習データについてステップS202およびS204の処理を行った場合、モデル生成機能156は、その時点のパラメータを用いて学習済みモデル140-3を確定し(ステップS208)、本フローチャートの処理を終了する。
学習装置100は、図10に示すような学習処理が被検体Pの撮影の度に行われることで、不規則な体動成分(例えば、しゃっくりや不整脈)の成分除去が可能な学習済みモデル41-6を生成することができ、操作者の画像補正に要する作業負荷を軽減することができる。
図11は、画像処理制御機能54-1が操作者による学習済みモデル41-6の選択を受け付ける場合の処理を説明するための図である。表示制御機能56は、画像処理制御機能54-1が操作者による学習済みモデル41-6の選択を受け付ける場合、例えば、図11の上図に示すように、再構成画像41-4と、選択可能な学習済みモデル41-6を示すボタン等をディスプレイ42に表示する。画像処理制御機能54-1は、操作者により1以上の学習済みモデル41-6の選択を示す、入力インターフェース43からの入力信号を受け付ける。画像処理制御機能54-1は、例えば、脈動を補正する学習済みモデル41-6と、呼吸動を補正する学習済みモデル41-6を再構成画像41-4に適用することを示す操作者の入力を受け付けた場合、図11の下図に示すように、選択された学習済みモデル41-6に再構成画像41-4を入力した結果である補正画像41-5を表示制御機能56に表示させる。このように、操作者は、図11の下図に示す補正画像41-5を確認しながら、学習済みモデル41-6を選択することができる。
図12は、X線CT装置1により実行される処理の流れの他の一例を示すフローチャートである。
まず、画像処理制御機能54-1は、再構成画像41-4を取得する(ステップS300)。次に、画像処理制御機能54-1は、操作者による1以上の学習済みモデル41-6の選択を受け付け(ステップS302)、操作者により選択された学習済みモデル41-6に再構成画像41-4を入力して、動き成分の補正された補正画像41-5を得る(ステップS304)。なお、ステップS302において選択される学習済みモデル41-6は、同じ動き成分を補正するグループのものが重複選択されないよう規則が予め決定されているものであってもよい。
次に、判定機能54-2は、最終的な補正画像41-5への補正(微調整)を受け付ける(ステップS306)。次に、学習装置100は、処理結果の動き成分情報41-1、再構成画像41-4および補正画像41-5を学習データ140-1として保存する(ステップS308)。以上、本フローチャートの処理の説明を終了する。
以上説明した実施形態のX線CT装置1によれば、動き成分を含む再構成画像41-4を生成する再構成処理機能53と、動き成分を含む再構成画像41-4に基づいて、動き成分の影響が補正された補正画像41-5を出力する学習済みモデル41-6に対して、再構成処理機能53により生成された再構成画像41-4を入力することで補正画像41-5を生成する画像処理機能54と、を備えることで、脈動、呼吸動、体動などの複数パターンの動き成分に対応した補正を可能にすることができる。
[変形例]
以下、変形例のX線CT装置1Aについて説明する。変形例のX線CT装置1Aは、被検体Pの体動の有無を寝台装置30の任意の箇所に設置した体動センサや、架台装置10の任意の場所に設置されたカメラ等より取得し、学習済みモデル41-6の選択の判定材料として用いるものである。変形例のX線CT装置1Aは、体動センサやカメラにより取得された体動の有無の情報に基づいて、動き成分を補正する好適な学習済みモデル41-6を選択することができる。
上記説明した実施形態は、以下のように表現することができる。
ハードウェアプロセッサと、
プログラムを記憶した記憶装置と、を備え、
動き成分を有する第1の医用データを取得し、
第1の医用データに基づいて、第1の医用データの動き成分の影響が補正された第2の医用データを出力する学習済みモデルに対して、取得された第1の医用データを入力することで、前記取得された第1の医用データの動き成分の影響が補正された第2の医用データを生成する、
ように構成されている、医用画像処理装置。
以上説明した少なくともひとつの実施形態によれば、動き成分を有する第1の医用データ(41-4)を取得する取得部(53)と、前記第1の医用データに基づいて、前記第1の医用データの動き成分の影響が補正された第2の医用データ(41-5)を出力する学習済みモデル(41-6)に対して、前記取得部により取得された第1の医用データを入力することで前記第2の医用データを生成する処理部(54)と、を備えることにより、動き成分の補正を容易に行うことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の軽減、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1、1A…X線CT装置
10…架台装置
11…X線管
12…ウェッジ
13…コリメータ
14…X線高電圧装置
15…X線検出器
16…データ収集システム
17…回転フレーム
18…制御装置
30…寝台装置
31…基台
32…寝台駆動装置
33…天板
34…支持フレーム
40…コンソール装置
42…ディスプレイ
43…入力インターフェース
44…ネットワーク接続回路
50…処理回路
51…システム制御機能
52…前処理機能
53…再構成処理機能
54…画像処理機能
54-1…画像処理制御機能
54-2…判定機能
54-3…補正処理機能
55…スキャン制御機能
56…表示制御機能
100…学習装置
110…ネットワーク接続回路
120…入力インターフェース
130…ディスプレイ
150…処理回路
152…データ取得機能
154…学習データ選別機能
156…モデル生成機能

Claims (4)

  1. 被検体の複数パターンの動き成分を有しうる第1の医用データを取得する取得部と、
    少なくとも医用データに基づいて、前記医用データの複数パターンの動き成分の各々の影響が補正された医用データを出力する学習済みモデルに対して、前記取得部により取得された第1の医用データを入力することで、前記取得された第1の医用データの複数パターンの動き成分の各々の影響が補正された第2の医用データを生成する処理部と、
    を備え、
    前記学習済みモデルは、前記複数パターンの動き成分の各々に対応した複数種類の学習済みモデルであり、
    前記複数パターンの動き成分は、前記被検体の体動、脈動、および呼吸動を含み、
    前記処理部により生成された前記第2の医用データに、前記複数パターンの動き成分の内のいずれの動き成分の影響が残っているかを判定する判定部をさらに備え、
    前記処理部は、前記複数種類の学習済みモデルの中から、前記判定部により判定された残っている前記動き成分の影響を補正するための学習済みモデルを選択して、前記第2の医用データを、選択した前記学習済みモデルに入力して、残っている前記動き成分の影響が補正された第3の医用データを生成する、
    医用画像処理装置。
  2. 前記処理部は、前記複数パターンの動き成分の各々を認識可能であり、認識された前記動き成分に対応した前記複数種類の学習済みモデルを組み合わせて使用する、
    請求項に記載の医用画像処理装置。
  3. 前記判定部は、前記第1の医用データに含まれるノイズと前記第2の医用データに含まれるノイズとの比較に基づくノイズ含有率が所定の基準値以上である場合、前記動き成分の影響が残っていると判定する、
    請求項1または2に記載の医用画像処理装置。
  4. コンピュータが、
    被検体の複数パターンの動き成分を有しうる第1の医用データを取得し、
    少なくとも医用データに基づいて、前記医用データの複数パターンの動き成分の各々の影響が補正された医用データを出力する学習済みモデルに対して、前記取得された第1の医用データを入力することで、前記取得された第1の医用データの複数パターンの動き成分の各々の影響が補正された第2の医用データを生成し、
    前記学習済みモデルは、前記複数パターンの動き成分の各々に対応した複数種類の学習済みモデルであり、
    前記複数パターンの動き成分は、前記被検体の体動、脈動、および呼吸動を含み、
    生成された前記第2の医用データに、前記複数パターンの動き成分の内のいずれの動き成分の影響が残っているかを判定し、
    前記複数種類の学習済みモデルの中から、判定された残っている前記動き成分の影響を補正するための学習済みモデルを選択して、前記第2の医用データを、選択した前記学習済みモデルに入力して、残っている前記動き成分の影響が補正された第3の医用データを生成する、
    医用画像処理方法。
JP2018209882A 2018-11-07 2018-11-07 医用画像処理装置および医用画像処理方法 Active JP7320934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018209882A JP7320934B2 (ja) 2018-11-07 2018-11-07 医用画像処理装置および医用画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209882A JP7320934B2 (ja) 2018-11-07 2018-11-07 医用画像処理装置および医用画像処理方法

Publications (2)

Publication Number Publication Date
JP2020074913A JP2020074913A (ja) 2020-05-21
JP7320934B2 true JP7320934B2 (ja) 2023-08-04

Family

ID=70724687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209882A Active JP7320934B2 (ja) 2018-11-07 2018-11-07 医用画像処理装置および医用画像処理方法

Country Status (1)

Country Link
JP (1) JP7320934B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299646A (ja) 2002-04-11 2003-10-21 Hitachi Medical Corp 画像解析装置
JP2008167949A (ja) 2007-01-12 2008-07-24 Fujifilm Corp 放射線画像処理方法および装置ならびにプログラム
US20080219536A1 (en) 2007-03-05 2008-09-11 Siemens Corporate Research, Inc. Registration of ct volumes with fluoroscopic images
JP2017131307A (ja) 2016-01-26 2017-08-03 株式会社日立製作所 医用画像処理装置及び医用画像処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422346A (ja) * 1990-05-17 1992-01-27 Toshiba Corp X線ct用体動補正システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299646A (ja) 2002-04-11 2003-10-21 Hitachi Medical Corp 画像解析装置
JP2008167949A (ja) 2007-01-12 2008-07-24 Fujifilm Corp 放射線画像処理方法および装置ならびにプログラム
US20080219536A1 (en) 2007-03-05 2008-09-11 Siemens Corporate Research, Inc. Registration of ct volumes with fluoroscopic images
JP2017131307A (ja) 2016-01-26 2017-08-03 株式会社日立製作所 医用画像処理装置及び医用画像処理方法

Also Published As

Publication number Publication date
JP2020074913A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
JP7488037B2 (ja) 医用画像診断装置、医用画像診断方法、およびプログラム
JP7242288B2 (ja) 医用画像診断装置及びモデル学習装置
JP7348376B2 (ja) 医用処理装置、x線ctシステム及び処理プログラム
JP4041040B2 (ja) 放射線断層撮影装置
US11241212B2 (en) Medical apparatus
US20060291614A1 (en) Radiographic apparatus
JP7242410B2 (ja) 医用画像処理装置、x線ct装置及び学習用データの生成方法
JP7320934B2 (ja) 医用画像処理装置および医用画像処理方法
JP7462433B2 (ja) 医用診断システム、医用診断装置、および医用情報処理装置
JP2023035485A (ja) X線ct装置
JP7362322B2 (ja) X線ctシステム及び医用処理装置
JP2022013679A (ja) 医用画像処理方法、医用画像処理装置及びx線ct装置
JP7418950B2 (ja) X線ct装置、撮影計画装置およびx線ct撮影方法
JP7309988B2 (ja) 医用画像処理装置および医用画像処理方法
JP7244280B2 (ja) 医用画像診断装置、および医用画像診断方法
JP7144292B2 (ja) 医用画像処理装置および医用画像処理方法
JP7433809B2 (ja) 学習済みモデルの生成方法、および医用処理装置
US20230145523A1 (en) Medical image processing apparatus, x-ray ct apparatus, medical image processing method and non-volatile storage medium storing program
JP7309381B2 (ja) 医用画像診断装置および医用寝台装置
JP7224208B2 (ja) 医用処理装置、および医用診断システム
JP7224880B2 (ja) X線撮影装置
US11080898B2 (en) Adaptive processing of medical images to reduce noise magnitude
US20240307014A1 (en) Medical image diagnostic apparatus, medical image diagnostic method, and storage medium
JP7062514B2 (ja) X線ct装置、およびx線管制御装置
JP2023114027A (ja) 医用情報処理装置、医用情報処理方法、校正情報の取得方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7320934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150