JP7313078B2 - 造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラム - Google Patents

造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラム Download PDF

Info

Publication number
JP7313078B2
JP7313078B2 JP2021503663A JP2021503663A JP7313078B2 JP 7313078 B2 JP7313078 B2 JP 7313078B2 JP 2021503663 A JP2021503663 A JP 2021503663A JP 2021503663 A JP2021503663 A JP 2021503663A JP 7313078 B2 JP7313078 B2 JP 7313078B2
Authority
JP
Japan
Prior art keywords
droplet
modeling
processing unit
droplets
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021503663A
Other languages
English (en)
Other versions
JPWO2020179904A5 (ja
JPWO2020179904A1 (ja
Inventor
昭二 丸尾
穂高 平田
太一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Publication of JPWO2020179904A1 publication Critical patent/JPWO2020179904A1/ja
Publication of JPWO2020179904A5 publication Critical patent/JPWO2020179904A5/ja
Application granted granted Critical
Publication of JP7313078B2 publication Critical patent/JP7313078B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • B01L2400/0448Marangoni flow; Thermocapillary effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラムに関する。
本願は、2019年3月7日に日本に出願された特願2019-042010号、及び2019年8月30日に日本に出願された特願2019-158495号について優先権を主張し、その内容をここに援用する。
3次元の目的物を造形可能な方法の1つに光造形(Stereolithography)がある。光造形では、液体の材料に紫外線レーザ光等の光を当てて材料を部分的に固体に変化させることで目的物を造形する。
光造形に関連して、非特許文献1には、光還元(Photoreduction)にて銀の微細構造を造形する方法が示されている。非特許文献1に記載の方法では、銀イオンを含む水溶液にレーザ光を照射して銀を目的の形状に凝縮させたのち、水溶液を除去する。
また、非特許文献2には、複数の材料を組み合わせた光造形を行う実験例が示されている。非特許文献2に記載の実験例では、アクリル樹脂とメタクリル樹脂とをそれぞれ光重合(Photopolymerization)にて造形した後、磁性材料を無電解めっきしている。その結果、アクリル樹脂およびメタクリル樹脂のうち、アクリル樹脂のみが選択的にめっきされている。また、非特許文献3では、マイクロ流路を使って、アクリル樹脂などを造形部に導入し、バルブによって材料を切り替えて、複数の樹脂材料で造形を行う方法が用いられている。
このように、複数種類の材料を用いて光造形を行うことで、多様な特性を有する目的物を造形することができる。
Yao-Yu Cao,Nobuyuki Takeyasu,Takuo Tanaka,Xuan-Ming Duan,and Satoshi Kawata "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction",Small,2009年,第5巻,第10号,p.1144-1148 Tommaso Zandrini,Shuhei Taniguchi and Shoji Maruo,"Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications",Micromachines,2017年,第8巻,第35号,p.1-8 Frederik Mayer,Stefan Richter,Johann Westhauser,Eva Blasco,Christopher Barner-Kowollik and Martin Wegener,"Multimaterial 3D laser microprinting using an integrated microfluidic system",Science Advances 08 Feb 2019: Vol.5,no,2,eaau9160
光造形または光還元のように液体の材料を固体に変化させて目的物を造形する場合、レーザ光の照射可能範囲など造形が行われる領域に液体の材料を設置する必要がある。このような方法は、設置を行うユーザにとって負担となる。特に、複数の材料を用いて造形を行う場合、材料を取り換える毎に、造形途中の目的物を洗浄し、洗浄された目的物と次の材料とを、造形が行われる領域に設置する必要がある。このため、作業を行うユーザの負担が大きい。さらに、目的物が小さい場合など精密加工を行う場合、洗浄された目的物を設置する際に設置位置および向きの精度が要求され、作業を行うユーザの負担がさらに大きい。また、マイクロ流路を用いて材料を入れ換える方式は、基板の取り外しがないという利点があるが、造形部に接続しているマイクロチューブや切換えバルブ内の材料が非常に多く、入れ替える際に混合してしまうため、材料の浪費が非常に多くなるとい課題がある。
本発明は、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減することができる造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、プログラム、造形プログラムおよび液滴移動プログラムを提供する。
本発明の第1の態様によれば、造形装置は、液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる移動処理部と、所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、を備える。
前記移動処理部は、電磁波を用いて前記液滴を加熱するようにしてもよい。
前記移動処理部は、前記電磁波の一部をマスクで遮断することで、前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱するようにしてもよい。
前記移動処理部は、前記液滴を移動させた後、移動後の液滴を冷却してから、前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるようにする加熱を終了するようにしてもよい。
前記移動処理部は濡れ性を変えるパターン加工が施された面上にて前記液滴を移動させるようにしてもよい。
本発明の第2の態様によれば、液滴移動装置は、液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる移動処理部を備える。
本発明の第3の態様によれば、造形方法は、液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる工程と、所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う工程と、を含む。
本発明の第4の態様によれば、液滴移動方法は、液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる工程を含む。
本発明の第5の態様によれば、プログラムは、コンピュータに、液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる工程と、所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う工程と、を実行させるためのプログラムである。
本発明の第6の態様によれば、プログラムは、コンピュータに、液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる工程を実行させるためのプログラムである。
本発明の第7態様によれば、造形装置は、レーザを照射して所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴を移動させる移動処理部と、所定の造形領域内で液滴を部分的に固体に変化させることで造形を行う造形部と、を備える。
前記移動処理部は、レーザの照射箇所を移動させることにより温度勾配を生じさせてもよい。
前記移動処理部は、レーザの照射箇所をガルバノミラーで移動させることにより温度勾配を生じさせてもよい。
本発明の第8態様によれば、液滴移動装置は、レーザを照射し、当該レーザの照射箇所をガルバノミラーで移動させることにより、所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴を移動させる移動処理部を備える。
本発明の第9態様によれば、造形方法は、レーザを照射して所定形状の温度勾配を生じさせ、温度勾配に基づいて液滴を移動させるステップと、所定の造形領域内で液滴を部分的に固体に変化させることで造形を行うステップと、を有する。
本発明の第10態様によれば、液滴移動方法は、レーザを照射し、当該レーザの照射箇所をガルバノミラーで移動させることにより、所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴を移動させるステップを有する。
本発明の第11態様によれば、造形プログラムは、コンピュータを、レーザを照射して所定形状の温度勾配を生じさせ、前記温度勾配に基づいて液滴を移動させる移動処理部、所定の造形領域内で液滴を部分的に固体に変化させることで造形を行う造形部として機能させる。
本発明の第12態様によれば、液滴移動プログラムは、コンピュータを、レーザを照射し、当該レーザの照射箇所をガルバノミラーで移動させることにより、所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴を移動させる移動処理部として機能させる。
本発明の実施形態によれば、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減することができる。
実施形態に係る造形システムの機能構成を示す概略ブロック図である。 実施形態に係る造形部がレーザ光の焦点を結ばせる位置の例を示す図である。 実施形態に係る造形部のレーザ光発射部分と液滴との位置関係の例を示す図である。 実施形態に係る移動処理部が照射する加熱用ビームの形状の例を示す図である。 実施形態に係る加熱用ビームの照射によって生じる温度勾配の例を示す第1の図である。 実施形態に係る加熱用ビームの照射によって生じる温度勾配の例を示す第2の図である。 温度勾配が生じていない場合の液滴における力の関係の例を示す図である。 温度勾配が生じている場合の液滴における力の関係の例を示す図である。 実施形態で液滴に生じる力の向きの例を示す図である。 実施形態に係るマスクの形状の第1例を示す図である。 実施形態に係るマスクの形状の第2例を示す図である。 実施形態に係るマスクの形状および配置と生じる温度勾配との関係の例を示す図である。 実施形態に係る液滴の配置例を示す図である。 実施形態に係る基板にパターンを設けるための構成の例を示す図である。 実施形態に係る基板のパターンの第1例を示す図である。 実施形態に係る基板のパターンの第2例を示す図である。 実施形態に係る移動処理部が電磁波の照射を終了したときの基板における温度分布の例を示す図である。 実施形態に係る移動処理部が備える冷却装置の例を示す図である。 実施形態に係る観察部の構成例を示す図である。 実施形態に係る材料の配置の第1例を示す図である。 実施形態に係る材料の配置の第2例を示す図である。 実施形態に係る材料の配置の第3例を示す図である。 実施形態に係る材料の配置の第4例を示す図である。 実施形態に係る材料の配置の第5例を示す図である。 実施形態に係る材料の配置の第6例を示す図である。 実施形態に係る材料の配置の第7例を示す図である。 実施形態に係る材料の配置の第8例を示す図である。 実施形態に係る材料の配置の第9例を示す図である。 実施形態に係る材料の配置の第10例を示す図である。 実施形態に係る制御装置が造形装置を制御して目的物を生成させる処理手順の例を示すフローチャートである。 実施形態に係る造形装置を用いて得られる造形物の例を示す図である。 実施形態に係る造形物の構成を説明するための図である。 実施形態に係る造形用ビームの角度と焦点の位置との関係の例を示す図である。 一実施形態に係る造形システムを示す図である。 一実施形態に係る造形部がレーザ光の焦点を結ばせる位置の例を示す図である。 一実施形態に係る造形部のレーザ光発射部分と液滴との位置関係の例を示す図である。 一実施形態に係る移動処理部がレーザを基板に照射する様子を示す図である。 一実施形態に係る移動処理部がレーザを基板に照射する場合の照射箇所と液滴とを示す図である。 一実施形態に係るレーザC-2の照射によって生じる温度勾配の例を示す図ある。 一実施形態に係る移動処理部が液滴にレーザを照射しておらず、液滴が常温の状態での、液滴における力の関係の例を示すである。 一実施形態に係る移動処理部がレーザC-2を照射し、温度勾配が生じた場合の、液滴における力の関係の例を示す図である。 一実施形態に係る液滴に生じる力の向きの例を示す図である。 一実施形態に係る液滴の配置例を示す図である。 一実施形態に係る基板にパターンを設けるための構成の例を示す図である。 一実施形態に係る基板のパターンの例を示す図である。 一実施形態に係る基板のパターンの例を示す図である。 一実施形態に係る観測部の構成例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る材料の配置の例を示す図である。 一実施形態に係る造形システムの動作を示すフローチャートである。 一実施形態に係る移動処理部がレーザを基板に照射する場合の照射箇所と液滴とを示す図である。 一実施形態に係る造形用ビームの角度と焦点の位置との関係の例を示す図である。
《第1の実施形態》
以下、本発明の第1の実施形態を説明するが、以下の第1の実施形態は請求の範囲にかかる発明を限定するものではない。また、第1の実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、第1の実施形態に係る造形システムの機能構成を示す概略ブロック図である。図1に示すように、造形システム1は、造形装置100と、制御装置200とを備える。造形装置100は、造形部110と、移動処理部120と、観察部150とを備える。制御装置200は、表示部210と、操作入力部220と、記憶部280と、処理部290とを備える。
造形システム1は、液体の材料を部分的に固体に変化させて目的物を生成する。
造形装置100は、目的物の生成を実行する装置である。特に、造形装置100は、1つ以上の材料それぞれの液滴を部分的に固体に変化させることで目的物を造形する。ここでいう液滴は、表面張力でまとまっている液体のかたまりである。ここでいう造形は、形のあるものを作ることである。
造形部110は、造形領域内で材料の液滴を部分的に固体に変化させることで造形を行う。具体的には、液滴にレーザ光を照射し液滴内にレーザ光の焦点を結ばせることで、焦点の位置で液体の材料を固体に変化させる。ここでいう造形領域は、造形部110が材料を固形に変化可能な領域である。具体的には、造形領域は、造形部110がレーザ光の焦点を結ばせることができる領域である。
以下では、材料が光硬化性樹脂であり、造形部110が、光造形にて光硬化性樹脂を液体から固体に硬化させる場合を例に説明する。
但し、造形部110が造形を行う方法は、材料の液滴を部分的に固体に変化させることができる方法であればよく、特定の方法に限定されない。例えば、造形部110が造形を行う方法は、光重合(Photopolymerization)、光架橋(Photocrosslink)、光還元(Photoreduction)のいずれか、またはこれらの組み合わせであってもよい。
また、造形部110が造形に用いるレーザ光は、材料を硬化可能なレーザ光であればよく、特定の波長のレーザ光に限定されない。例えば、造形部110が、紫外線レーザ光を用いるようにしてもよいし、青色レーザ光を用いるようにしてもよい。あるいは、造形部110が、近赤外フェムト秒パルスレーザ(Femtosecond-pulse Laser)光を用いて2光子吸収による2光子造形法にて造形を行うようにしてもよい。
図2は、造形部110がレーザ光の焦点を結ばせる位置の例を示す図である。図2では、造形部110、移動処理部120それぞれのレーザ光発射部分が示されている。また、造形装置100は、移動処理部120および造形部110に加えて、支持台130および滴下口140を備えている。支持台130には、目的物造形用の基板として用いられているガラス板の基板810が載置される。支持台130はこの基板810を支持している。
また、基板810の上には液滴820が載っている。造形部110が照射するレーザ光を造形用ビームB11とも称する。
図2は、造形部110、移動処理部120それぞれのレーザ光発射部分、支持台130、基板810および液滴820を横(水平方向)から見た例を示している。
図2に示す液滴820は、材料の液滴である。液滴820は基板810に載っている。
造形部110は、造形用ビームB11を透過させる液滴820に対し、液滴820内に焦点を結ぶように造形用ビームB11を基板810の下から照射している。造形部110が照射した造形用ビームB11は、点P11で焦点を結んでいる。このため、液滴820のうち点P11の部分が液体から固体に変化する。
造形部110のレーザ光発射部分は図2の前後および左右に移動可能である。また、造形部110は、造形用ビームB11の焦点の位置を図2の上下に移動させることができる。したがって、造形部110は、造形用ビームB11の焦点の位置を図2の上下左右および前後へと、三次元的に移動させることができる。
造形部110が、液滴820内で造形用ビームB11の焦点位置を目的物の形状に沿って移動させることで、材料を目的物の形状に加工することができる。
また、図2に示すように、造形部110が基板810の下側から造形用ビームB11を照射させることで、造形用ビームB11は、焦点を結んだ後に液滴820の上面に到達する。したがって、造形用ビームB11が焦点を結ぶ位置は、表面張力による液滴820の形状に応じた屈折の影響を受けない。この点で、造形システム1は、造形用ビームB11の焦点の位置合わせを高精度に行うことができる。
但し、造形部110が液滴820の上側から造形用ビームB11を照射するようにしもよい。これにより、液滴820が不透明な盤の上面に滴下されている場合など、液滴820が不透明な物の上に位置する場合でも、液滴820に造形用ビームB11を照射させて材料を部分的に固体に変化させることができる。
滴下口140は、洗浄液を滴下する。この洗浄液は、液体の材料を加工した後、固体になった材料に付着している液体の材料を除去するための液である。滴下口140は、造形領域に向けて洗浄液を滴下することで、造形領域に位置する固体の材料を洗浄する。すなわち、滴下口140は、造形領域に位置する固体になった材料に付着している液体の材料を除去する。
但し、造形システム1が固体の材料を洗浄する方法は、滴下口140から洗浄液を滴下させる方法に限定されない。造形システム1が、あらかじめ液滴820の形態で用意されている洗浄液を移動させることで固体の材料を洗浄液に浸し、これによって固形の材料を洗浄するようにしてもよい。
図3は、造形部110のレーザ光発射部分と液滴820との位置関係の例を示す図である。図3は、造形部110のレーザ光発射部分を上側から見た例を示している。この例では、支持台130に支持された基板810が造形部110のレーザ光発射部分の上に位置し、基板810の上に材料が異なる2つの液滴820が載っている。2つの液滴820は、第1材料の液滴821-11および第2材料の液滴821-12である。材料の液滴と洗浄液の液滴と区別するため、材料の液滴に符号821を付している。
材料の液滴821のうち第1材料の液滴821-11は、造形部110のレーザ光発射部分の上に位置している。造形部110が造形用ビームB11を照射して第1材料の液滴821-11内に焦点を結ばせることで、液滴821-11のうち焦点の部分が液体から固体に変化する。
造形システム1は、第1材料の液滴821-11を用いた第1材料の加工の後、第2材料の液滴821-12を用いて第2材料の加工を行うことで、第1材料および第2材料の両方を含む目的物を生成することができる。かかる加工のために、移動処理部120が液滴820を移動させる。
移動処理部120は、液滴820を移動させる。例えば、移動処理部120は、電磁波を用いて液滴820に温度勾配を生じさせることで液滴820を移動させる。
移動処理部120を備える造形装置100は、液滴移動装置の例に該当する。
移動処理部120は、加熱用の電磁波(例えば赤外線レーザ光)を、水平方向における液滴820の周囲を囲むように照射する。これにより、移動処理部120は、液滴820の水平方向の温度について、周辺側の方が中心側よりも温度が高くなるように温度勾配を生じさせる。ここでいう周辺側、中心側は、液滴820の内部のうち、液滴820と外部との境界に、より近い側、より遠い側である。
この温度勾配により、液滴820の加熱時に、液滴820が水平方向に広がることを防止できる。
以下では、水平方向における液滴820の位置関係を説明する場合に、水平方向である旨の記載を省略する場合がある。例えば、水平方向における液滴820の周囲を、単に液滴820の周囲とも称する。水平方向における液滴820の周辺側を、単に液滴820の周辺側とも称する。水平方向における液滴820の中心側を、単に液滴820の中心側とも称する。水平方向における液滴820の広がりを、単に液滴820の広がりとも称する。
また、移動処理部120が照射する電磁波を加熱用ビームとも称する。
図4は、移動処理部120が照射する加熱用ビームの形状の例を示す図である。図4の例で、基板810の上に液滴820が位置しており、移動処理部120は、この液滴820に向けて加熱用ビームB12を照射している。
ただし、移動処理部120は、加熱用ビームB12を液滴820に直接照射するのではなく、液滴820の周囲に照射している。加熱用ビームB12の内部に空洞(加熱用ビームB12が照射されない部分)が形成されており、この空洞の部分に液滴820が位置している。加熱用ビームB12の空洞は、移動処理部120が照射する加熱用ビームB12の一部をマスク121が遮断することによって形成されている。
図4の例のように、移動処理部120が液滴820の周囲に加熱用ビームB12を照射する場合も、移動処理部120が液滴820に加熱用ビームB12を照射すると表記する。
図5は、加熱用ビームB12の照射によって生じる温度勾配の例を示す第1の図である。図5の上側は、移動処理部120が照射する加熱用ビームB12を、その中心(光軸)に沿って垂直方向に切った断面図を示している。線L12は、加熱用ビームB12の中心を示している。図5の上側を図5(A)と称する。
図5(A)の例では、加熱用ビームB12の中心にマスク121が設けられることで、加熱用ビームB12の内部(中心付近)に空洞が形成されている。液滴820は、この空洞に位置している。
図5の下側には、上側に示される加熱用ビームB12の照射で断面の位置に生じる温度勾配の例を示している。図5の下側を図5(B)と称する。
図5(B)のグラフの横軸は位置(断面における水平方向の位置)を示す。縦軸は、温度を示す。線L11は、断面における基板810および液滴820の温度分布を示している。すなわち、線L11は、横軸に示される位置と、基板810および液滴820の温度との関係を示している。
また、図5(B)では、液滴820を図示することで液滴820の位置が示されている。図5(A)に示されるように、移動処理部120が液滴820の周囲に加熱用ビームB12を照射することで、線L11に示されるように、液滴820の周辺側のほうが中心側よりも温度が高い温度勾配が生じている。
図6は、加熱用ビームB12の照射によって生じる温度勾配の例を示す第2の図である。図6は、図5の例における加熱用ビームB12の照射したときの、基板810の温度の例をヒートマップで示している。明るい(白い)ほど温度が高いことを示し、暗い(黒い)ほど温度が低いことを示す。
線L21は、ヒートマップにおける図5の断面の位置を示している。点P21は、加熱用ビームB12の中心の位置を示している。
図6の例で、移動処理部120は、図4の例のように加熱用ビームB12を、液滴820の周囲を円形(ドーナツ形状)に囲むように照射している。これにより、図6のヒートマップは、図5の線L11が示す温度分布を平面に展開した温度分布を示している。具体的には、図6のヒートマップでは、点P21(加熱用ビームB12の中心)を中心とする同心円状の温度分布が生じている。点P21から遠ざかるにつれて、一旦温度が高くなり、ピークを越えてさらに点P21から遠ざかると温度が低くなっていく。
移動処理部120は、加熱用ビームB12で液滴820の周囲を囲んだまま加熱用ビームB12を移動させる。これにより、移動処理部120は、液滴820が広がることを防止しながら液滴820を移動させる。この点について図7~図9を参照して説明する。
図7は、移動処理部120が液滴820に加熱用ビームB12を照射しておらず、液滴820が常温の状態での、液滴820における力の関係の例を示す。図7の例で、γは、液滴820における表面張力を示す。γは、固体の表面張力(基板810における表面張力)を示す。γLSは、固液界面張力を示す。θは液滴820の基板810に対する接触角を示す。
図7の場合、ヤングの式は、式(1)のように示される。
Figure 0007313078000001
図7では液滴820内の力が釣り合っており、液滴820は移動しない。
また、移動処理部120が図4~図6の例のように、液滴820の周囲を囲むように加熱用ビームB12を照射して温度勾配を生じさせ、かつ、加熱用ビームB12を動かさない場合も、液滴820内の力が釣り合い、液滴820は移動しない。
この場合、加熱用ビームB12の照射によって液滴820の周辺側の温度が中心側の温度よりも上昇する。このため、液滴820の中心側の表面張力が周辺側の表面張力よりも大きくなり、液滴820には、液滴形状を維持する方向に力が働く。
これに対し、加熱用ビームB12の照射によって、液滴820の全体の温度が上昇することによって、液滴820における表面張力(図7のγ)が小さくなり、液滴820の基板810に対する接触角(角θ)が小さくなり、液滴820が広がる方向に力が働く。
この液滴820の温度上昇により液滴820が広がろうとする力と、先に述べた液滴820の中心側の表面張力の増加による液滴820の形状を維持しようとする力との釣り合いがとれたところで、液滴820は、それ以上広がらずに留まる。
図8は、移動処理部120が加熱用ビームB12を動かし、液滴820の端部に温度差が生じた場合の、液滴820における力の関係の例を示す。図8は、移動処理部120が加熱用ビームB12を図8に向かって右側に移動させた場合の例を示しており、液滴820の左右の端部のうち、図8に向かって左側の端部のほうが、向かって右側の端部よりも温度が高くなっている。
比較的温度が低い側(図8に向かって右側)における力を、図7で用いた変数名に「’」を付した変数名で示す。具体的には、γ’は、液滴820における表面張力を示す。
γ’は、固体の表面張力(基板810における表面張力)を示す。γ’LSは、固液界面張力を示す。θ’は液滴820の基板810に対する接触角を示す。
一方、比較的温度が高い側(図8に向かって左側)における力については、変数名に「’’」を付して示す。具体的には、γ’’は、液滴820における表面張力を示す。γ’’は、固体の表面張力(基板810における表面張力)を示す。γ’’LSは、固液界面張力を示す。θ’’は液滴820の基板810に対する接触角を示す。
図8の例では、高温側の温度Tと低温側の温度T(T>T)との温度差が生じている。この温度差によって、高温側、低温側それぞれで接触角および表面張力が、移動処理部120が加熱用ビームB12を移動させない場合から変化している。
低温側では、接触角θ’が、加熱用ビームB12を移動させない場合よりも大きくなり、液体と気体との間の表面張力γ’の水平方向成分は減少する。低温側の界面に働く力F’は、固体の表面張力γ’の向きを正として、式(2)のように示される。
Figure 0007313078000002
「F’>0」であり、力F’の向きは、固体の表面張力γ’の向きと同じく、図8に向かって右向き(液滴820の高温側の端部から低温側の端部への向き)となっている。
一方、高温側では、接触角θ’’が、加熱用ビームB12を移動させない場合よりも小さくなり、液体と気体との間の表面張力γ’’の水平方向成分は増加する。高温側の界面に働く力F’’は、固体の表面張力γ’’LSの向きを正として、式(3)のように示される。
Figure 0007313078000003
「F’’>0」であり、力F’’の向きは、固体の表面張力γ’’の向きと反対に、図8に向かって右向きとなっている。(力F’’の向きは、固体の表面張力γ’LSの向きと同じく、図8に向かって右向きとなっている。)
図9は、液滴に生じる力の向きの例を示す。上記のように、力F’の向き、力F’’の向きの何れも図9に向かって右向き(液滴820の高温側の端部から低温側の端部への向き)となっている。力F’と力F’’とを合成した力FTotalは、式(4)のように示される。
Figure 0007313078000004
力F’の向き、力F’’の向き共に、図9に向かって右向きとなっているので、力FTotalの向きも、図9に向かって右向きとなる。液滴820は、力FTotalを駆動力として図9に向かって右向き(移動処理部120が加熱用ビームB12を動かす向き)に移動する。具体的には、液滴820は、加熱用ビームB12の動きに応じて、加熱用ビームB12の内部の空洞に位置し続けるように移動する。
加熱用ビームB12の内部に空洞を生じさせるためのマスク121の形状について、液滴820の温度勾配を大きくするためには、平面形状よりも円錐形状のほうがよく、円錐形状のマスク121を液滴820の比較的近くに設置することが好ましいとの実験結果が得られた。
図10は、マスク121の形状の第1例を示す図である。図10は、平面形状のマスク121の例を示している。この平面形状のマスク121を、移動処理部120と液滴820との間に水平に配置する。
図11は、マスク121の形状の第2例を示す図である。図11は、円錐形状のマスク121の例を示している。この円錐形状のマスク121を、移動処理部120と液滴820との間に、円錐の頂点を上側、底面を下側にして配置する。
図12は、マスク121の形状および配置と生じる温度勾配との関係の例を示す図である。図12は、(移動処理部120とマスク121との距離,マスク121と液滴820との距離)=(15,3)、(20,3)、(25,3)、(20,1)、(20,5)の5通りの配置の各々、かつ、マスク121の形状が平面形状の場合、円錐形状の場合の各々について、生じる温度勾配の実験結果(測定結果)を示している。ここでいう移動処理部120とマスク121との距離は、移動処理部120の加熱用ビームB12の照射口とマスク121との距離である。
温度勾配として、図5の線L11に示されるように加熱用ビームB12の中心の温度が比較的低い温度分布で、温度が極大となるところと、加熱用ビームB12の中心で温度が極小となるところとの間の温度勾配を示している。マスク121の形状が平面形状の場合の温度勾配を丸で示し、マスク121の形状が円錐形状の場合の温度勾配を三角で示している。
マスク121の形状が円錐形状の場合、マスク121の位置として円錐の底面の位置を用いている。
図12を参照すると、マスク121の形状を円錐形状とし、移動処理部120とマスク121との距離を20ミリメートル(mm)、マスク121と液滴820との距離を1ミリメートルと、液滴820の近くにマスク121を配置した場合に、温度勾配が8度(℃)/ミリメートルと最も大きくなっている。
ただし、移動処理部120が液滴820を囲むように加熱用ビームB12を照射する方法は、マスク121を設ける方法に限定されない。例えば、移動処理部120における加熱用ビームB12の照射口が円形に形成され、中央が空洞の加熱用ビームB12を照射するようにしてもよい。
また、移動処理部120が液滴820の加熱に用いる電磁波は、上記のように赤外線レーザ光であってもよいが、液体の材料を固体に変化させるもの以外であればよく、特定の周波数の電磁波、および、特定の方式の電磁波に限定されない。また、移動処理部120が液滴820の加熱に用いる電磁波は、レーザに限定されない。
さらには、移動処理部120が、液滴820を加熱する方法は、電磁波を照射する方法に限定されない。移動処理部120が、液滴820を加熱する方法として、液滴820の周辺側のほうが中心側よりも温度が高くなる温度勾配を生じさせ、かつ、加熱する位置を移動させることができるいろいろな方法を用いることができる。例えば基板810に移動可能な円形ヒーターが設けられてもよい。
図13は、液滴820の配置例を示す。図13は、基板810を斜め上から見た場合の例を示す。この例では、基板810上には第3材料の液滴821-21と、第4材料の液滴821-22と、第5材料の液滴821-23と、洗浄液の液滴とが位置している。材料の液滴と洗浄液の液滴と区別するため、洗浄液の液滴には、符号822を付している。
造形システム1は、第3材料の液滴821-21、第4材料の液滴821-22および第5材料の液滴821-23の各々を造形領域に位置させて部分的に固体に変化させることで、第3材料、第4材料および第5材料を含む目的物を生成することができる。
また、造形システム1は、第3材料の液滴821-21、第4材料の液滴821-22および第5材料の液滴821-23の各々を部分的に固形に変化させる毎に、洗浄液の液滴822を造形領域に移動させて固形の材料を洗浄する。上述したように、固体の材料を洗浄する方法として、洗浄液の液滴822を移動させる方法に代えて、洗浄液を滴下口140から滴下する方法を用いるようにしてもよい。
図13の例で、造形部110は、基板810の下から造形用ビームB11を照射する。
一方、移動処理部120は、基板810の上から加熱用ビームB12を照射する。
図13では、説明のために造形用ビームB11および加熱用ビームB12の両方を示している。但し、造形部110が造形用ビームB11を照射している間は、移動処理部120が、液滴820に対して加熱用ビームB12の照射を行わないようにしてもよい。造形部110が造形領域に位置する材料に対する加工を終了したのち、移動処理部120は、この造形領域に位置する材料に対して加熱用ビームB12を照射して、液体のままの材料を造形領域外へ移動させる。
基板810に、液滴820を配置し移動させるためのパターンを設けるようにしてもよい。
図14は、基板810にパターンを設けるための構成の例を示す図である。図14の例では、基板810としてガラス基板を用いている。基板810のうち濡れ性を高めたい部分以外の部分をマスク912で覆い、エキシマランプ光源911からエキシマ光(VUV光)を照射する。エキシマ光が大気中の酸素をオゾン等の活性酸素に変化させ、また、ガラス表面の結合を切断する。活性酸素とガラス基板表面の化学反応によって、「-OH」または「-COOH」など樹脂との親和性が高い官能基が付与されることで濡れ性が高くなる。
但し、基板810にパターンを設ける方法は、エキシマ光を照射する方法に限定されない。例えば、比較的濡れ性の低い素材の基板810を使用し、パターンの部分に比較的親水性の高いコーティングを設けるようにしてもよい。あるいは、比較的濡れ性の高い素材の基板810を使用し、パターン以外の部分に撥水性のコーティングを設けるようにしてもよい。
さらに例えば、基板810の表面のうち、液滴820が通る部分以外の部分にフッ素コートによるパターンを施すことで、液滴820が動く経路をパターニングするようにしてもよい。液滴820はフッ素コートされた部分を避けて移動するので、フッ素コートのパターンにより、液滴820を特定の経路(フッ素コートされていない経路)に沿って移動させることができる。このように、移動処理部120が、撥水性の素材が部分的に配置されている面上にて液滴820を移動させるようにしてもよい。
図15は、基板810のパターンの第1例を示す図である。図15の例で、基板810には、造形領域である領域A11と、造形に使用中の液滴820以外の液滴820の退避領域である領域A12と、領域A11と領域A12とを接続する領域A13とを含むパターンが設けられている。これら領域A11~A13について他の部分よりも濡れ性を高くしておくことで、移動処理部120が比較的容易に液滴820を移動させることができ、かつ、液滴820が広がることを防止または軽減できる。
パターンの大きさは液滴の材質によるが、例えば、領域A11および領域A12を、直径4ミリメートルから5ミリメートル程度の円形に構成するようにしてもよい。領域A13の幅は、細すぎると液滴820を移動させにくくなり、太すぎると液滴820を領域A11または領域A12へ移動させたときにその液滴820が領域A13へ逆流する可能性がある。領域A13の幅は、例えば2ミリメートル程度としてもよい。領域A13の長さは、例えば10ミリメートル程度としてもよい。
図16は、基板810のパターンの第2例を示す図である。図15の例では3つの領域A12が設けられているのに対し、図16の例では、9個の領域A12が設けられている。このように、基板810のパターンにおける領域A12の個数は特定の個数に限定されず任意の個数でよい。領域A12を多めに設けておくことで、造形に使用する液滴820の種類の数が多い場合に対応できる。
図17は、移動処理部120が電磁波の照射を終了したときの基板810における温度分布の例を示す図である。図17のグラフの横軸は基板810上の位置を示す。縦軸は温度を示す。図17は、図5の場合と同様、移動処理部120が加熱用ビームB12を照射していたときの加熱用ビームB12の中心に沿って垂直方向に切った断面における温度分布を示している。加熱用ビームB12の中心に相当する位置を基準(0ミリメートル)とし、基準からの距離をミリメートルで示している。
図17に示されるように、液滴820の移動完了後に移動処理部120がそのまま加熱用ビームB12の照射を終了すると、液滴820の周辺側のほうが中心側よりも高い温度勾配がなくなってしまう。液滴820の温度が高い段階では、液滴820の基板810に対する濡れ性が比較的高い。この段階で、液滴820の周辺側のほうが中心側よりも高い温度勾配がなくなると、液滴820が広がってしまう。
そこで、移動処理部120は、液滴820の温度を低下させた後、加熱用ビームB12の照射を終了する。
図18は、移動処理部120が備える冷却装置の例を示す図である。図18の例で、冷却装置122は、ファン123と、ダクト124とを備え、ダクト124には送風口125が設けられている。
ファン123が送風する空気は、ダクト124を経由して送風口125から斜め下向きに送風される。
移動処理部120は、送風口125から送風される空気が液滴820に当たるように冷却装置122を配置し、冷却装置122に送風させることで液滴820を冷却する。移動処理部120は、冷却装置122による冷却開始から100秒経過後に加熱用ビームB12の照射を終了するなど、液滴820の温度がある程度(例えば、40℃以下)下がった後に、加熱用ビームB12の照射を終了する。
これにより、液滴820の周辺側のほうが中心側よりも高い温度勾配が生じたまま、液滴820の温度が低下する。これによって、液滴820が基板810のパターンを逆流するなど、液滴820が広がることを防止または軽減できる。
観察部150は、目的物の画像を撮影する。
図19は、観察部150の構成例を示す。図19の例で、観察部150は、観察光光源151と、ビームスプリッタ152と、観察用レンズ153と、CCDカメラ154と、表示装置155とを備える。
観察光光源151は、目的物を撮影するための照明光B13を照射する。ここでの目的物は、造形途中のものであってもよい。照明光B13は、目的物に照射される。照明光B13の一部が反射または吸収された後、残りの光が造形部110のレーザ光発射部分を経由してビームスプリッタ152へ入射される。
図19の例で、観察光光源151は、図2における滴下口140と同様に、造形領域の上方に位置している。観察光光源151が、照明光B13を照射する間、滴下口140の配置位置と観察光光源151の配置位置とを入れ替えるようにしてもよい。あるいは、滴下口140が、造形領域の斜め上方から造形領域へ向けて洗浄液または液体の材料を滴下するなど、滴下口140の位置と観察光光源151の位置とが重ならない配置としてもよい。
ビームスプリッタ152は、ハーフミラーを備え、照明光B13を反射させる。ビームスプリッタ152は、照明光B13の入射だけでなく造形用ビームB11の入射も受ける。ビームスプリッタ152は、造形用ビームB11を通過させ、造形部110のレーザ光発射部分へ向けて進ませる。照明光B13の反射により、ビームスプリッタ152は、造形用ビームB11と同じ経路を造形用ビームB11と逆向きに通過してきた照明光B13を、造形用ビームB11の経路の向きと異なる向きに転向させる。
観察用レンズ153は、照明光B13がCCDカメラ154の撮影素子の位置で像を結ぶように照明光B13を屈折させる。
CCDカメラ154は、照明光B13を受光して光電変換することで、目的物の画像データを生成する。
表示装置155は、例えば液晶パネルまたはLEDパネル等の表示画面を有し、目的物の画像を表示する。具体的には、表示装置155は、CCDカメラが生成した目的物の画像データの入力を受け、この画像データが示す画像を表示する。
ただし、観察部150の構成および配置は図19に示すものに限定されない。例えば、観察部150が、目的物を上方向から撮影するようにしてもよいし、斜め上方向または斜め下方向から撮影するようにしてもよい。
制御装置200は、造形装置100を制御して目的物を生成させる。例えば、制御装置200は、造形部110が造形用ビームB11を照射するタイミング、および、造形用ビームB11の焦点の位置を制御する。また、制御装置200は、移動処理部120が加熱用ビームB12を照射するタイミングおよび照射位置を制御する。また、制御装置200は、滴下口140が洗浄液を滴下するタイミングを制御する。
また、制御装置200は、造形システム1のユーザインタフェースとして機能する。
制御装置200は、例えばパソコン(Personal Computer)またはワークステーション(Workstation)等のコンピュータを用いて構成される。
表示部210は、例えば液晶パネルまたはLEDパネル等の表示画面を有し、各種画像を表示する。特に、表示部210は、造形システム1に関する情報をユーザに提示する。
表示部210は、表示装置155を用いて構成されていてもよいし、表示装置155とは別に構成されていてもよい。
操作入力部220は、例えばキーボードおよびマウス等の入力デバイスを備え、ユーザ操作を受ける。特に、操作入力部220は、造形システム1に関する設定を行うユーザ操作を受ける。
記憶部280は、各種データを記憶する。記憶部280は、制御装置200が備える記憶デバイスを用いて構成される。
処理部290は、制御装置200の各部を制御して各種処理を実行する。処理部290は、制御装置200が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部280からプログラムを読み出して実行することで構成される。
制御装置200が、予め設定されたプログラム等に基づいて自動的に造形装置100を制御するようにしてもよい。あるいは、ユーザがオンラインで制御装置200に指示を入力し、制御装置200がユーザの指示に従って造形装置100を制御するようにしてもよい。
次に、図20から図29を参照して、造形領域に位置する液滴820の入れ替えについて説明する。
図20は、材料の配置の第1例を示す。図20は、造形システム1が目的物を生成する処理の開始時における材料の配置の例を示している。図20の例では、基板810の上に第7材料の液滴821-41と、第7材料とは異なる第8材料の液滴821-42とが載っている。また、領域A21は造形領域を示している。
図20の状態から、造形部110が、造形領域(領域A21)内に位置する第7材料の液滴821-41に造形用ビームB11を照射して第7材料の液滴821-41の一部を液体から固体に変化させる。
図21は、材料の配置の第2例を示す。図21の例で、基板810、第7材料の液滴821-41、第8材料の液滴821-42および領域A21の位置は、図20の場合と同様である。一方、図21の例では、第7材料の液滴821-41内に固形物840がある点で、図20の場合と異なる。
図21における固形物840は、第7材料の固形物840-41であり、生成途中の目的物の例に該当する。具体的には、図20の状態から、造形部110が、第7材料の液滴821-41に造形用ビームB11を照射して第7材料の液滴821-41の一部を液体から固体に変化させたものが、図21の第7材料の固形物840-41である。
図22は、材料の配置の第3例を示す。図22の例で基板810、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図21の場合と同様である。一方、図22の例では、第7材料の液滴821-41が領域A21の内から外へ移動している点で、図21の場合と異なる。
図21は、造形部110による第7材料の液滴821-41に対する加工が終了した状態の例を示している。移動処理部120が、使用終了後の第7材料の液滴821-41を領域A21の内から外へ移動させることで、図22に示す状態になる。移動処理部120は、液滴を移動させるが、固形の材料については移動させない。図22の例でも、第7材料の液滴821-41が領域A21の内から外へ移動している一方、第7材料の固形物840-41は、領域A21内に留まっている。
図23は、材料の配置の第4例を示す。図23の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図22の場合と同様である。一方、図23では、領域A21内に洗浄液の液滴822がある点で、図22の場合と異なる。
図22の状態から、滴下口140が洗浄液を造形領域(領域A21)内に滴下することで、図23の状態になる。図22の状態では、第7材料の液滴821-41は領域A21の外へ移動しているが、第7材料の固形物840-41の表面には液体の第7材料が残存している。そこで、滴下口140が、洗浄液を領域A21内に滴下して第7材料の固形物840-41を洗浄液に浸す。これにより、造形システム1は、第7材料の固形物840-41の表面を洗浄する。具体的には、造形システム1は、第7材料の固形物840-41の表面に付着している液体の第7材料を除去する。
図24は、材料の配置の第5例を示す。図24の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図23の場合と同様である。一方、図24では、洗浄液の液滴822が基板810上から除去されている点で、図23の場合と異なる。
図23の状態から、移動処理部120が、洗浄液の液滴822を領域A21内から基板810の上面の外へと移動させることで、洗浄液の液滴822が基板810上から除去され、図24の状態になる。
図25は、材料の配置の第6例を示す。図25の例で基板810、第7材料の液滴821-41、第7材料の固形物840-41および領域A21の位置は、図24の場合と同様である。一方、図25では、第8材料の液滴821-42が領域A21の外から内へ移動している点で、図24の場合と異なる。
図24の状態から、移動処理部120が第8材料の液滴821-42を領域A21内へ移動させることで、図25の状態になる。
図26は、材料の配置の第7例を示す。図26の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図25の場合と同様である。一方、図26では、第8材料の液滴821-42内に第7材料の固形物840-41に加えて第8材料の固形物840-42がある点で、図25の場合と異なる。図26の例では、第7材料の固形物840-41と第8材料の固形物840-42とが固形物840を構成している。
図25の状態から、造形部110が第8材料の液滴821-42に造形用ビームB11を照射して第8材料の液滴821-42の一部を液体から固体に変化させたものが、図26の第8材料の固形物840-42である。
図27は、材料の配置の第8例を示す。図27の例で基板810、第7材料の液滴821-41、第7材料の固形物840-41、第8材料の固形物840-42および領域A21の位置は、図26の場合と同様である。一方、図27では、第8材料の液滴821-42が領域A21の内から外へ移動している点で、図26の場合と異なる。
図26は、造形部110による第8材料の液滴821-42に対する加工が終了した状態の例を示している。移動処理部120が、使用終了後の第8材料の液滴821-42を領域A21の内から外へ移動させることで、図27に示す状態になる。上記のように、移動処理部120は、液滴を移動させるが、固形の材料については移動させない。図27の例でも、第8材料の液滴821-42が領域A21の内から外へ移動している一方、第8材料の固形物840-42は、領域A21内に留まっている。
図28は、材料の配置の第9例を示す。図28の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41、第8材料の固形物840-42および領域A21の位置は、図27の場合と同様である。一方、図28では、領域A21内に洗浄液の液滴822がある点で、図27の場合と異なる。
図27の状態から、滴下口140が洗浄液を造形領域(領域A21)内に滴下することで、図28の状態になる。図27の状態では、第8材料の液滴821-42は領域A21の外へ移動しているが、固形物840の表面には液体の第8材料が残存している。そこで、滴下口140が、洗浄液を領域A21内に滴下して固形物840を洗浄液に浸す。これにより、造形システム1は、固形物840の表面を洗浄する。具体的には、造形システム1は、第7材料の固形物840-41の表面および第8材料の固形物840-42の表面に付着している液体の第8材料を除去する。
図29は、材料の配置の第10例を示す。図29の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41、第8材料の固形物840-42および領域A21の位置は、図28の場合と同様である。一方、図29では、洗浄液の液滴822が基板810上から除去されている点で、図28の場合と異なる。
図28の状態から、移動処理部120が、洗浄液の液滴822を領域A21内から基板810の上面の外へと移動させることで、洗浄液の液滴822が基板810上から除去され、図29の状態になる。
図29の固形物840は、完成した目的物の例に該当する。このように、図20~図29の例では、造形システム1は、第7材料および第8材料といった複数の材料を用いたマルチマテリアルの目的物を生成している。
次に図30を参照して造形システム1の動作について説明する。
図30は、制御装置200が造形装置100を制御して目的物を生成させる処理手順の例を示すフローチャートである。
図30の処理で、制御装置200は、造形部110を制御して造形処理を行わせる(ステップS101)。造形部110は、制御装置200の制御に従って造形領域内の材料の液滴821に造形用ビームB11を照射して材料の液滴821内で造形用ビームB11の焦点を結ばせる。焦点の位置で材料が液体から固体に変化する。
次に、制御装置200は、移動処理部120を制御して材料の液滴821を造形領域外(退避領域)へ退避させる(ステップS102)。移動処理部120は、制御装置200の制御に従って造形領域内の材料の液滴821を造形領域外へ移動させる。
次に、制御装置200は、滴下口140を制御して洗浄液を滴下させる(ステップS103)。滴下口140は、制御装置200の制御に従って洗浄液を造形領域内へ滴下する。この滴下により、造形領域内にある固体の材料を洗浄する。
次に、制御装置200は、移動処理部120を制御して洗浄液の液滴822を除去させる(ステップS104)。移動処理部120は、制御装置200の制御に従って造形領域内の洗浄液の液滴822を基板810の外へ移動させる。この移動により、移動処理部120は洗浄液の液滴822を基板810の上から除去する。
次に制御装置200は、目的物が完成したか否かを判定する(ステップS105)。目的物が完成したと判定した場合(ステップS105:YES)、制御装置200は、図30の処理を終了する。
一方、目的物が完成していないと判定した場合(ステップS105:NO)、制御装置200は、移動処理部120を制御して、次に用いられる材料の液滴821を造形領域へ移動させる(ステップS106)。移動処理部120は、制御装置200の制御に従って次に用いられる材料の液滴821を造形領域外から造形領域内へ移動させる。
ステップS106の後、処理がステップS101へ戻る。
次に、図31および図32を参照して、造形装置100を用いた造形物の例について説明する。
図31は、造形装置100を用いて得られる造形物の例を示す図である。図31に示す造形物900は、SR499+SR368、SR348、および、SR499+SR348の3種類の樹脂を含んで構成されている。
図32は、造形物900の構成を説明するための図である。図32に示すように造形物900は、1辺の長さが135ミクロン(μm)の3層のピラミッド形状をなしており、SR499+SR368(符号901)と、SR348(符号902)と、SR499+SR348(符号903)との3種類の樹脂を含んで構成されている。
このように、造形装置100を用いて微細な物を造形することができる。また、造形物900を構成する樹脂のうち、SR499+SR368はアクリレート系であり、SR348はメタクリレート系であり、SR499+SR348はアクリレート系+メタクリレート系である。これらのうち、アクリレート系樹脂であるSR499+SR368にのみ銅めっきを行うことができる。したがって、造形物900に対して選択的に銅めっきを行うことができる。
以上のように、移動処理部120は、液滴820の水平方向の周辺側の方が中心側よりも温度が高くなるように液滴820を加熱し、加熱箇所を移動させることで液滴820を移動させる。造形部110は、所定の造形領域内で液滴820を部分的に固体に変化させることで造形を行う。
このように、移動処理部120が液滴820の水平方向周辺側のほうが中心側よりも温度が高くなる温度勾配を生じさせるように加熱し、加熱箇所を移動させることで、液滴820は、加熱箇所の移動に従って広がらずに移動する。移動処理部120によれば、加熱箇所を移動させた分だけ液滴820を移動させることができ、かつ、液滴820が広がらない点で、液滴820の移動を高精度に制御することができる。
また、移動処理部120は、電磁波を用いて液滴820を加熱する。
移動処理部120によれば、液滴820の周囲に電磁波を照射するという比較的簡単な方法で、液滴820を加熱することができる。
また、移動処理部120は、電磁波の一部を円錐形状のマスク121で遮断することで、液滴820の水平方向の周辺側の方が中心側よりも温度が高くなるように液滴820を加熱する。
移動処理部120によれば、液滴820に向けて電磁波を照射し、電磁波の一部をマスクで遮断するという比較的簡単な方法で、液滴820を加熱することができる。また、上述したように、移動処理部120が円錐形状のマスク121を用いることで、例えば平面形状のマスク121を用いる場合と比較して、液滴820により大きな温度勾配を生じさせることができる。
また、移動処理部120は、液滴820を移動させた後、移動後の液滴820を冷却してから、液滴820の水平方向の周辺側の方が中心側よりも温度が高くなるようにする加熱を終了する。
移動処理部120によれば、液滴820の温度が高いうちに、液滴820の水平方向周辺側のほうが中心側よりも温度が高い温度勾配が消滅することを防止できる。これにより、移動処理部120によれば、液滴820が広がることを防止または軽減できる。
また、移動処理部120は濡れ性を変えるパターン加工が施された面上にて液滴820を移動させる。
移動処理部120が、液滴820に、面上(例えば基板810上)で濡れ性が比較的高い部分を移動させることで、移動処理部120は、比較的容易に液滴820を移動させることができる。また、面上で、液滴820が位置する部分の周囲の濡れ性が比較的低いこことで、液滴820の広がりを防止または軽減できる。
なお、造形用ビームB11が焦点を結ぶ位置を変化させる方法は、造形部110のレーザ光発射部分の位置を変化させる方法に限定されない。造形部110のレーザ光発射部分に代えて支持台130を移動させるようにしてもよい。
あるいは、造形部110のレーザ光発射部分が造形用ビームB11を発射する角度を変化させるようにしてもよい。
図33は、造形用ビームB11の角度と焦点の位置との関係の例を示す。
図33の例で、造形部110のレーザ光発射部分は対物レンズとして機能し、液滴820と反対側(図33の下側)から入射した造形用ビームを屈折させて液滴820の側(図33の上側)へ照射する。
造形部110のレーザ光発射部分への造形用ビームB11の入射角をθIで示す。造形部110のレーザ光発射部分からの造形用ビームB11の出射角をθOで示す。出射角θOは入射角θIに応じて変化する。出射角θOの変化に伴って造形用ビームB11が焦点を結ぶ点P11の位置も変化する。したがって、造形部110は、造形用ビームB11のレーザ光発射部分への入射角θIを変化させることで、レーザ光発射部分の位置、基板810の位置の何れも変化させる必要なしに、造形用ビームB11が焦点を結ぶ位置を変化させることができる。
入射角θIを変化させる方法として、例えば、造形用ビームB11の光源と造形部110のレーザ光発射部分との間にミラーを設け、ミラーの向きを変化させる方法を用いることができる。
《第2の実施形態》
以下、図面を参照しながら第2の実施形態について詳しく説明する。
図34は、第2の実施形態に係る造形システム21を示す図である。
図34に示すように、第2の実施形態に係る造形システム21は、造形装置2100と、制御装置2200とを備える。造形装置2100は、造形部2110と、移動処理部2120と、観察部2150とを備える。
制御装置2200は、表示部2210と、操作入力部2220と、記憶部2280と、処理部2290とを備える。
造形システム21は、液体の材料を部分的に固体に変化させて目的物を生成する。
造形装置2100は、目的物の生成を実行する装置である。特に、造形装置2100は、1つ以上の材料それぞれの液滴を部分的に固体に変化させることで目的物を造形する。ここでいう液滴は、表面張力でまとまっている液体のかたまりである。ここでいう造形は、形のあるものを作ることである。
造形部2110は、造形領域内で材料の液滴を部分的に固体に変化させることで造形を行う。具体的には、液滴にレーザ光を照射し液滴内にレーザ光の焦点を結ばせることで、焦点の位置で液体の材料を固体に変化させる。ここでいう造形領域は、造形部2110が材料を固体に変化可能な領域である。具体的には、造形領域は、造形部2110がレーザ光の焦点を結ばせることができる領域である。
レーザ光を単にレーザとも称する。
以下では、材料が光硬化性樹脂であり、造形部2110が、光造形にて光硬化性樹脂を液体から固体に硬化させる場合を例に説明する。
但し、造形部2110が造形を行う方法は、材料の液滴を部分的に固体に変化させることができる方法であればよく、特定の方法に限定されない。例えば、造形部2110が造形を行う方法は、光重合、光架橋、光還元のいずれか、またはこれらの組み合わせであってもよい。
また、造形部2110が、造形に用いるレーザ光は、材料を硬化可能なレーザ光であればよく、特定の波長のレーザ光に限定されない。例えば、造形部2110が紫外線レーザ光を用いるようにしてもよいし、青色レーザ光を用いるようにしてもよい。あるいは、造形部2110が、近赤外フェムト秒パルスレーザ光を用いて2光子吸収による2光子造形法にて造形を行うようにしてもよい。
図35は、造形部2110がレーザ光の焦点を結ばせる位置の例を示す図である。図35では、造形部2110、移動処理部2120それぞれのレーザ光発射部分が示されている。また、造形装置2100は、移動処理部2120および造形部2110に加えて、支持台2130および滴下口2140を備えている。支持台2130には、目的物造形用の基板として用いられているガラス板の基板2810が載置される。支持台2130はこの基板2810を支持している。
また、基板2810の上には液滴2820が載っている。造形部2110が照射するレーザ光を造形用ビームB11-2とも称する。
図35は、造形部2110、移動処理部2120それぞれのレーザ光発射部分、支持台2130、基板2810および液滴2820を横(水平方向)から見た例を示している。
図35に示す液滴2820は、材料の液滴である。液滴2820は基板2810に載っている。
造形部2110は、造形用ビームB11-2を透過させる液滴2820に対し、液滴2820内に焦点を結ぶように造形用ビームB11-2を基板2810の下から照射している。造形部2110が照射した造形用ビームB11-2は、点P11-2で焦点を結んでいる。このため、液滴2820のうち点P11-2の部分が液体から固体に変化する。
造形部2110のレーザ光発射部分は図35の前後および左右に移動可能である。また、造形部2110は、造形用ビームB11-2の焦点の位置を図35の上下に移動させることができる。したがって、造形部2110は、造形用ビームB11-2の焦点の位置を図35の上下左右および前後へと、三次元的に移動させることができる。
造形部2110が、液滴2820内で造形用ビームB11-2の焦点位置を目的物の形状に沿って移動させることで、材料を目的物の形状に加工することができる。
造形部2110を移動させることなく、ガルバノミラーを用いて造形用ビームB11-2の焦点位置を変更させても良い。また、造形部2110を移動させることなく、基板2810を移動させる、あるいはレーザ光を集光させるレンズを光軸方向に移動させることにより、基板2810上における造形用ビームB11-2の焦点位置を変更させても良い。
また、図35に示すように、造形部2110が基板2810の下側から造形用ビームB11-2を照射させることで、造形用ビームB11-2は、焦点を結んだ後に液滴2820の上面に到達する。したがって、造形用ビームB11-2が焦点を結ぶ位置は、表面張力による液滴2820の形状に応じた屈折の影響を受けない。この点で、造形システム21は、造形用ビームB11-2の焦点の位置合わせを高精度に行うことができる。
但し、造形部2110が液滴2820の上側から造形用ビームB11-2を照射するようにしもよい。これにより、液滴2820が不透明な基板2810の上面に滴下されている場合など、液滴2820が不透明な物の上に位置する場合でも、液滴2820に造形用ビームB11-2を照射させて材料を部分的に固体に変化させることができる。
滴下口2140は、洗浄液を滴下する。この洗浄液は、液体の材料を加工した後、固体になった材料に付着している液体の材料を除去するための液である。滴下口2140は、造形領域に向けて洗浄液を滴下することで、造形領域に位置する固体の材料を洗浄する。すなわち、滴下口2140は、造形領域に位置する固体になった材料に付着している液体の材料を除去する。
但し、造形システム21が固体の材料を洗浄する方法は、滴下口2140から洗浄液を滴下させる方法に限定されない。造形システム21が、あらかじめ液滴2820の形態で用意されている洗浄液を移動させることで固体の材料を洗浄液に浸し、これによって固形の材料を洗浄するようにしてもよい。
図36は、造形部2110のレーザ光発射部分と液滴2820との位置関係の例を示す図である。図36は、造形部2110のレーザ光発射部分を上側から見た例を示している。この例では、支持台2130に支持された基板2810が造形部2110のレーザ光発射部分の上に位置し、基板2810の上に材料が異なる2つの液滴2820が載っている。2つの液滴2820は、第1材料の液滴2821-11および第2材料の液滴2821-12である。材料の液滴と洗浄液の液滴と区別するため、材料の液滴に符号2821を付している。
材料の液滴2821のうち第1材料の液滴2821-11は、造形部2110のレーザ光発射部分の上に位置している。造形部2110が造形用ビームB11-2を照射して第1材料の液滴2821-11内に焦点を結ばせることで、液滴2821-11のうち焦点の部分が液体から固体に変化する。
造形システム21は、第1材料の液滴2821-11を用いた第1材料の加工の後、第2材料の液滴2821-12を用いて第2材料の加工を行うことで、第1材料および第2材料の両方を含む目的物を生成することができる。かかる加工のために、移動処理部2120が液滴2820を移動させる。
移動処理部2120は、液滴2820を移動させる。例えば、移動処理部2120は、レーザC-2(図37参照)を照射して所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴を移動させる。
移動処理部2120を備える造形装置2100は、液滴移動装置の例に該当する。
移動処理部2120は、上記レーザC-2の照射箇所をガルバノミラー(Galvano Mirror)21030(図37参照)で移動させることにより上記温度勾配を生じさせる。
特に、移動処理部2120は、レーザC-2の照射箇所を高速移動させて同じ箇所を繰り返し加熱することで、定常的な温度勾配(特に、温度の脈動が無視できる程度に小さい温度勾配)を生じさせる。
図37は、移動処理部2120がレーザC-2を基板2810に照射する様子を示す図である。移動処理部2120は、レーザ照射装置21010と、ガルバノミラー回転装置21020と、ガルバノミラー21030と、集光レンズ21040とを備える。図37では、ガルバノミラー回転装置21020として、ガルバノミラー回転装置21020Aおよび21020Bが示されている。また、ガルバノミラー21030として、ガルバノミラー21030Aおよび21030Bが示されている。
レーザ照射装置21010は、レーザC-2を照射する装置である。レーザ照射装置21010が照射するレーザC-2の例としては、照射された照射箇所を加熱する赤外線が挙げられる。
ガルバノミラー回転装置21020Aと、ガルバノミラー回転装置21020Bは、それぞれE-2方向と、F-2方向に回転することにより、ガルバノミラー21030Aと、ガルバノミラー21030Bとを回転させる。ガルバノミラー回転装置21020Aと、ガルバノミラー回転装置21020Bの回転角度は、液滴を移動させる領域として基板2810上に設定される所定の領域内の任意の箇所にレーザC-2を照射可能な角度であればよい。例えば、ガルバノミラー回転装置21020Aと、ガルバノミラー回転装置21020Bが、それぞれ360度回転可能に設けられていてもよいが、これに限定されない。
ガルバノミラー回転装置21020Aと、ガルバノミラー回転装置21020Bは、相互垂直を成すように設けられる。図37の例では、ガルバノミラー回転装置21020Aは、回転軸が垂直方向(基板2810に直交する方向)を向くように配置されている。ガルバノミラー回転装置21020Aは、回転軸が水平方向(基板2810に平行な方向)を向くように配置されている。ガルバノミラー回転装置21020Aと、ガルバノミラー回転装置21020Bとは、それらの回転軸が交わるように設けられていてもよいし、それらの回転軸がねじれの位置にあるように設けられていてもよい。
ガルバノミラー21030Aは、レーザ照射装置21010から照射されたレーザC-2を反射する。ガルバノミラー21030Aにより反射されたレーザC-2は、ガルバノミラー21030Bに照射される。ガルバノミラー21030Bは、ガルバノミラー21030Aにより照射されたレーザC-2を反射する。
ガルバノミラー21030Bにより反射されたレーザC-2は、集光レンズ21040に照射される。集光レンズ21040は、ガルバノミラー21030Bによって照射され集光レンズ21040に入射されたレーザC-2を集光する。
集光レンズ21040により集光されたレーザC-2は、基板2810に照射される。ここで、基板2810の上において、レーザC-2が照射される箇所を照射箇所D2とする。
ガルバノミラー21030Aとガルバノミラー21030Bは、相互に垂直をなすように設けられ、それぞれガルバノミラー回転装置21020Aと、ガルバノミラー回転装置21020Bにより回転される。ガルバノミラー21030Aは、ガルバノミラー回転装置21020Aの回転軸を回転軸として回転する。ガルバノミラー21030Bは、ガルバノミラー回転装置21020Bの回転軸を回転軸として回転する。
造形システム21のユーザは、ガルバノミラー21030Aと、ガルバノミラー21030Bを回転させることにより、照射箇所D2の位置を変更しながら、レーザC-2を照射することができる。
図38は、移動処理部2120がレーザC-2を基板2810に照射する場合の照射箇所D2と液滴2820とを示す図である。
移動処理部2120は、基板2810上の照射箇所D2-1、照射箇所D2-2および照射箇所D2-3を照射する。移動処理部2120は、レーザC-2の照射箇所D2を照射箇所D2-1、照射箇所D2-2および照射箇所D2-3に高速移動させる。すなわち、移動処理部2120のレーザC-2の照射箇所D2は、軌跡G-2の中で高速移動させられることとなる。
移動処理部2120が、レーザC-2を連続的に照射して軌跡G-2全体にレーザC-2を照射するようにしてもよい。あるいは、移動処理部2120が、レーザC-2を点滅させて、照射箇所D2-1、照射箇所D2-2および照射箇所D2-3のように軌跡G-2の一部にのみレーザC-2を照射するようにしてもよい。
図38に示す例では、移動処理部2120のレーザC-2の照射箇所D2が液滴2820と接していないが、当該照射箇所D2が液滴2820と接するようにしてもよい。移動処理部2120が、基板2810にレーザC-2を照射するようにしてもよいし、液滴2820にレーザC-2を照射するようにしてもよい。あるいは、移動処理部2120が、基板2810および液滴2820の両方にレーザC-2を照射するようにしてもよい。
図39は、レーザC-2の照射によって生じる温度勾配の例を示す図である。図39は、図38の基板2810の表面(上面)の、線H2の位置における温度勾配を示している。図39のグラフの横軸は、線H2における位置を示す。縦軸は、温度を示す。線L2-1は、グラフの横軸によって示される位置毎の温度を示す。また、図39では、液滴2820を図示することで液滴2820の位置を示している。
図39の例で、温度勾配(線L2-1)は、照射箇所D2-2の位置に該当する位置で最高温度を示し、当該照射箇所D2-2から遠くなると、温度が低くなる形状の温度の勾配となっている。このように、図38の例でレーザC-2の照射によって生じる温度勾配は、照射箇所D2の軌跡G-2に該当する位置で最高温度となり、当該軌跡G-2から遠くなると、温度が低くなる形状の温度の勾配となっている。
移動処理部2120は、液滴2820の周囲にレーザC-2を照射しながら、レーザC-2の照射箇所D2を移動させることにより、液滴2820を移動させる。この点について、図40~図42を参照して説明する。
図40は、移動処理部2120が液滴2820にレーザC-2を照射しておらず、液滴2820が常温の状態での、液滴2820における力の関係の例を示す。図40の例で、γは、液滴2820における表面張力を示す。γは、固体の表面張力(基板2810における表面張力)を示す。γLSは、固液界面張力を示す。θは液滴2820の基板2810に対する接触角を示す。
図40の場合、ヤングの式は、式(5)のように示される。
Figure 0007313078000005
図40では液滴2820内の力が釣り合っており、液滴2820は移動しない。
図41は、移動処理部2120がレーザC-2を照射し、図39のように温度勾配L2-1が生じた場合の、液滴2820における力の関係の例を示す。液滴2820の左右のうち、図41に向かって左側のほうが、向かって右側よりも温度が高くなっている。
比較的温度が低い側(図41に向かって右側)における力を、図40で用いた変数名に「’」を付した変数名で示す。具体的には、γ’は、液滴2820における表面張力を示す。
γ’は、固体の表面張力(基板2810における表面張力)を示す。γ’LSは、固液界面張力を示す。θ’は液滴2820の基板2810に対する接触角を示す。
一方、比較的温度が高い側(図41に向かって左側)における力については、変数名に「’’」を付して示す。具体的には、γ’’は、液滴2820における表面張力を示す。γ’’は、固体の表面張力(基板2810における表面張力)を示す。γ’’LSは、固液界面張力を示す。θ’’は液滴2820の基板2810に対する接触角を示す。
図41の例では、高温側の温度Tと低温側の温度T(T>T)との温度差が生じている。この温度差によって、高温側、低温側それぞれで接触角および表面張力が、移動処理部2120がレーザC-2を照射していない場合である図40の場合から変化している。
低温側では、接触角θ’が図40の場合よりも大きくなり、液体と気体との間の表面張力γ’の水平方向成分は減少する。低温側の界面に働く力F’は、固体の表面張力γ’の向きを正として、式(6)のように示される。
Figure 0007313078000006
「F’>0」であり、力F’の向きは、固体の表面張力γ’の向きと同じく、図41に向かって右向き(液滴2820の高温側から低温側への向き)となっている。
一方、高温側では、接触角θ’’が、レーザC-2を照射しない場合よりも小さくなり、液体と気体との間の表面張力γ’’の水平方向成分は増加する。高温側の界面に働く力F’’は、固体の表面張力γ’’LSの向きを正として、式(7)のように示される。
Figure 0007313078000007
「F’’>0」であり、力F’’の向きは、固体の表面張力γ’’の向きと反対に、図41に向かって右向きとなっている。(力F’’の向きは、固体の表面張力γ’LSの向きと同じく、図41に向かって右向きとなっている。)
図42は、液滴2820に生じる力の向きの例を示す。上記のように、力F’の向き、力F’’の向きの何れも図42に向かって右向き(液滴2820の高温側から低温側への向き)となっている。力F’と力F’’とを合成した力FTotalは、式(8)のように示される。
Figure 0007313078000008
力F’の向き、力F’’の向き共に、図42に向かって右向きとなっているので、力FTotalの向きも、図42に向かって右向きとなる。液滴2820は、力FTotalを駆動力として図42に向かって右向きに移動する。
上記の説明のように、液滴2820は、温度勾配により移動する。液滴2820の移動に合わせて、移動処理部2120のレーザC-2の照射箇所D2も移動させることにより、液滴2820を移動させ続けることができる。
図43は、液滴2820の配置例を示す。図43は、基板2810を斜め上から見た場合の例を示す。この例では、基板2810上には第3材料の液滴2821-21と、第4材料の液滴2821-22と、第5材料の液滴2821-23と、洗浄液の液滴とが位置している。材料の液滴と洗浄液の液滴と区別するため、洗浄液の液滴には、符号2822を付している。
造形システム21は、第3材料の液滴2821-21、第4材料の液滴2821-22および第5材料の液滴2821-23の各々を造形領域に位置させて部分的に固体に変化させることで、第3材料、第4材料および第5材料を含む目的物を生成することができる。
また、造形システム21は、第3材料の液滴2821-21、第4材料の液滴2821-22および第5材料の液滴2821-23の各々を部分的に固形に変化させる毎に、洗浄液の液滴2822を造形領域に移動させて固形の材料を洗浄する。上述したように、固体の材料を洗浄する方法として、洗浄液の液滴2822を移動させる方法に代えて、洗浄液を滴下口2140から滴下する方法を用いるようにしてもよい。
図43の例で、造形部2110は、基板2810の下から造形用ビームB11-2を照射する。
一方、移動処理部2120は、基板2810の上からレーザC-2を照射する。
図43では、説明のために造形用ビームB11-2およびレーザC-2の両方を示している。但し、造形部2110が造形用ビームB11-2を照射している間は、移動処理部2120が、液滴2820に対してレーザC-2の照射を行わないようにしてもよい。
造形部2110が造形領域に位置する材料に対する加工を終了したのち、移動処理部2120は、この造形領域に位置する材料に対してレーザC-2を照射して、液体のままの材料を造形領域外へ移動させる。
基板2810に、液滴2820を配置し移動させるためのパターンを設けるようにしてもよい。
図44は、基板2810にパターンを設けるための構成の例を示す図である。図44の例では、基板2810としてガラス基板を用いている。基板2810のうち濡れ性を高めたい部分以外の部分をマスク2912で覆い、エキシマランプ光源2911からエキシマ光(VUV光)を照射する。エキシマ光が大気中の酸素をオゾン等の活性酸素に変化させ、また、ガラス表面の結合を切断する。活性酸素とガラス基板表面の化学反応によって、「-OH」または「-COOH」など樹脂との親和性が高い官能基が付与されることで濡れ性が高くなる。
但し、基板2810にパターンを設ける方法は、エキシマ光を照射する方法に限定されない。例えば、比較的濡れ性の低い素材の基板2810を使用し、パターンの部分に比較的親水性の高いコーティングを設けるようにしてもよい。あるいは、比較的濡れ性の高い素材の基板2810を使用し、パターン以外の部分に撥水性のコーティングを設けるようにしてもよい。
さらに例えば、基板2810の表面のうち、液滴2820が通る部分以外の部分にフッ素コートによるパターンを施すことで、液滴2820が動く経路をパターニングするようにしてもよい。液滴2820はフッ素コートされた部分を避けて移動するので、フッ素コートのパターンにより、液滴2820を特定の経路(フッ素コートされていない経路)に沿って移動させることができる。このように、移動処理部2120が、撥水性の素材が部分的に配置されている面上にて液滴2820を移動させるようにしてもよい。
図45は、基板2810のパターンの第1例を示す図である。図45の例で、基板2810には、造形領域である領域A11-2と、造形に使用中の液滴2820以外の液滴2820の退避領域である領域A12-2と、領域A11-2と領域A12-2とを接続する領域A13-2とを含むパターンが設けられている。これら領域A11-2~A13-2について他の部分よりも濡れ性を高くしておくことで、移動処理部2120が比較的容易に液滴2820を移動させることができ、かつ、液滴2820が広がることを防止または軽減できる。
パターンの大きさは液滴2820の材質によるが、例えば、領域A11-2および領域A12-2を、直径4ミリメートルから5ミリメートル程度の円形に構成するようにしてもよい。領域A13-2の幅は、細すぎると液滴2820を移動させにくくなり、太すぎると液滴2820を領域A11-2または領域A12-2へ移動させたときにその液滴2820が領域A13-2へ逆流する可能性がある。領域A13-2の幅は、例えば2ミリメートル程度としてもよい。領域A13-2の長さは、例えば10ミリメートル程度としてもよい。
図46は、基板2810のパターンの第2例を示す図である。図45の例では3つの領域A12-2が設けられているのに対し、図46の例では、9個の領域A12-2が設けられている。このように、基板2810のパターンにおける領域A12-2の個数は特定の個数に限定されず任意の個数でよい。領域A12-2を多めに設けておくことで、造形に使用する液滴2820の種類が多い場合に対応できる。
観察部2150は、目的物の画像を撮影する。
図47は、観察部2150の構成例を示す。図47の例で、観察部2150は、観察光光源2151と、ビームスプリッタ2152と、観察用レンズ2153と、CCDカメラ2154と、表示装置2155とを備える。
観察光光源2151は、目的物を撮影するための照明光B13-2を照射する。ここでの目的物は、造形途中のものであってもよい。照明光B13-2は、目的物に照射される。照明光B13-2の一部が反射または吸収された後、残りの光が造形部2110のレーザ光発射部分を経由してビームスプリッタ2152へ入射される。
図47の例で、観察光光源2151は、図35における滴下口2140と同様に、造形領域の上方に位置している。観察光光源2151が、照明光B13-2を照射する間、滴下口2140の配置位置と観察光光源2151の配置位置とを入れ替えるようにしてもよい。あるいは、滴下口2140が、造形領域の斜め上方から造形領域へ向けて洗浄液または液体の材料を滴下するなど、滴下口2140の位置と観察光光源2151の位置とが重ならない配置としてもよい。
ビームスプリッタ2152は、ハーフミラーを備え、照明光B13-2を反射させる。ビームスプリッタ2152は、照明光B13-2の入射だけでなく造形用ビームB11-2の入射も受ける。ビームスプリッタ2152は、造形用ビームB11-2を通過させ、造形部2110のレーザ光発射部分へ向けて進ませる。照明光B13の反射により、ビームスプリッタ2152は、造形用ビームB11-2と同じ経路を造形用ビームB11-2と逆向きに通過してきた照明光B13-2を、造形用ビームB11-2の経路の向きと異なる向きに転向させる。
観察用レンズ2153は、照明光B13-2がCCDカメラ2154の撮影素子の位置で像を結ぶように照明光B13-2を屈折させる。
CCDカメラ2154は、照明光B13-2を受光して光電変換することで、目的物の画像データを生成する。
表示装置2155は、例えば液晶パネルまたはLEDパネル等の表示画面を有し、目的物の画像を表示する。具体的には、表示装置2155は、CCDカメラが生成した目的物の画像データの入力を受け、この画像データが示す画像を表示する。
ただし、観察部2150の構成および配置は図47に示すものに限定されない。例えば、観察部2150が、目的物を上方向から撮影するようにしてもよいし、斜め上方向または斜め下方向から撮影するようにしてもよい。
制御装置2200は、造形装置2100を制御して目的物を生成させる。例えば、制御装置2200は、造形部2110が造形用ビームB11-2を照射するタイミング、および、造形用ビームB11-2の焦点の位置を制御する。また、制御装置2200は、移動処理部2120がレーザC-2を照射するタイミングおよび照射箇所Dの位置を制御する。また、制御装置2200は、照射箇所D2の軌跡G-2を記憶し、当該軌跡G-2に基づいて、レーザC-2を高速移動させる。
また、制御装置2200は、滴下口2140が洗浄液を滴下するタイミングを制御する。また、制御装置2200は、造形システム21のユーザインタフェースとして機能する。制御装置2200は、例えばパソコンまたはワークステーション等のコンピュータを用いて構成される。
表示部2210は、例えば液晶パネルまたはLEDパネル等の表示画面を有し、各種画像を表示する。特に、表示部2210は、造形システム21に関する情報をユーザに提示する。
表示部2210は、表示装置2155を用いて構成されていてもよいし、表示装置2155とは別に構成されていてもよい。
操作入力部2220は、例えばキーボードおよびマウス等の入力デバイスを備え、ユーザ操作を受ける。特に、操作入力部2220は、造形システム21に関する設定を行うユーザ操作を受ける。
記憶部2280は、各種データを記憶する。記憶部2280は、制御装置2200が備える記憶デバイスを用いて構成される。
処理部2290は、制御装置2200の各部を制御して各種処理を実行する。処理部2290は、制御装置2200が備えるCPUが、記憶部2280からプログラムを読み出して実行することで構成される。
制御装置2200が、予め設定されたプログラム等に基づいて自動的に造形装置2100を制御するようにしてもよい。あるいは、ユーザがオンラインで制御装置2200に指示を入力し、制御装置2200がユーザの指示に従って造形装置2100を制御するようにしてもよい。
次に、図48から図57を参照して、造形領域に位置する液滴2820の入れ替えについて説明する。
図48は、材料の配置の第1例を示す。図48は、造形システム21が目的物を生成する処理の開始時における材料の配置の例を示している。図48の例では、基板2810の上に第6材料の液滴2821-41と、第6材料とは異なる第7材料の液滴2821-42とが載っている。また、領域A21-2は造形領域を示している。
図48の状態から、造形部2110が、造形領域(領域A21-2)内に位置する第6材料の液滴2821-41に造形用ビームB11-2を照射して第6材料の液滴2821-41の一部を液体から固体に変化させる。
図49は、材料の配置の第2例を示す。図49の例で、基板2810、第6材料の液滴2821-41、第7材料の液滴2821-42および領域A21-2の位置は、図49の場合と同様である。一方、図49の例では、第6材料の液滴2821-41内に固形物2840がある点で、図48の場合と異なる。
図49における固形物2840は、第6材料の固形物2840-41であり、生成途中の目的物の例に該当する。具体的には、図48の状態から、造形部2110が、第6材料の液滴2821-41に造形用ビームB11-2を照射して第6材料の液滴2821-41の一部を液体から固体に変化させたものが、図49の第6材料の固形物2840-41である。
図50は、材料の配置の第3例を示す。図50の例で基板2810、第7材料の液滴2821-42、第6材料の固形物2840-41および領域A21-2の位置は、図49の場合と同様である。一方、図50の例では、第6材料の液滴2821-41が領域A21-2の内から外へ移動している点で、図49の場合と異なる。
図49は、造形部2110による第6材料の液滴2821-41に対する加工が終了した状態の例を示している。移動処理部2120が、使用終了後の第6材料の液滴2821-41を領域A21-2の内から外へ移動させることで、図50に示す状態になる。移動処理部2120は、液滴を移動させるが、固形の材料については移動させない。図50の例でも、第6材料の液滴2821-41が領域A21-2の内から外へ移動している一方、第6材料の固形物2840-41は、領域A21-2内に留まっている。
図51は、材料の配置の第4例を示す。図51の例で基板2810、第6材料の液滴2821-41、第7材料の液滴2821-42、第6材料の固形物2840-41および領域A21-2の位置は、図50の場合と同様である。一方、図51では、領域A21-2内に洗浄液の液滴2822がある点で、図50の場合と異なる。
図50の状態から、滴下口2140が洗浄液を造形領域(領域A21-2)内に滴下することで、図51の状態になる。図50の状態では、第6材料の液滴2821-41は領域A21-2の外へ移動しているが、第6材料の固形物2840-41の表面には液体の第6材料が残存している。そこで、滴下口2140が、洗浄液を領域A21-2内に滴下して第6材料の固形物2840-41を洗浄液に浸す。これにより、造形システム21は、第6材料の固形物2840-41の表面を洗浄する。具体的には、造形システム21は、第6材料の固形物2840-41の表面に付着している液体の第6材料を除去する。
図52は、材料の配置の第5例を示す。図52の例で基板2810、第6材料の液滴2821-41、第7材料の液滴2821-42、第6材料の固形物2840-41および領域A21の位置は、図51の場合と同様である。一方、図52では、洗浄液の液滴2822が基板2810上から除去されている点で、図51の場合と異なる。
図51の状態から、移動処理部2120が、洗浄液の液滴2822を領域A21-2内から基板2810の上面の外へと移動させることで、洗浄液の液滴2822が基板2810上から除去され、図52の状態になる。
図53は、材料の配置の第6例を示す。図53の例で基板2810、第6材料の液滴2821-41、第6材料の固形物2840-41および領域A21-2の位置は、図52の場合と同様である。一方、図53では、第7材料の液滴2821-42が領域A21-2の外から内へ移動している点で、図52の場合と異なる。
図52の状態から、移動処理部2120が第7材料の液滴2821-42を領域A21-2内へ移動させることで、図53の状態になる。
図54は、材料の配置の第6例を示す。図54の例で基板2810、第6材料の液滴2821-41、第7材料の液滴2821-42、第6材料の固形物2840-41および領域A21-2の位置は、図53の場合と同様である。一方、図54では、第7材料の液滴2821-42内に第6材料の固形物2840-41に加えて第7材料の固形物2840-42がある点で、図53の場合と異なる。図54の例では、第6材料の固形物2840-41と第7材料の固形物2840-42とが固形物2840を構成している。
図53の状態から、造形部2110が第7材料の液滴2821-42に造形用ビームB11-2を照射して第7材料の液滴2821-42の一部を液体から固体に変化させたものが、図54の第7材料の固形物2840-42である。
図55は、材料の配置の第8例を示す。図55の例で基板2810、第6材料の液滴2821-41、第6材料の固形物2840-41、第7材料の固形物2840-42および領域A21-2の位置は、図54の場合と同様である。一方、図55では、第7材料の液滴2821-42が領域A21-2の内から外へ移動している点で、図54の場合と異なる。
図54は、造形部2110による第7材料の液滴2821-42に対する加工が終了した状態の例を示している。移動処理部2120が、使用終了後の第7材料の液滴2821-42を領域A21-2の内から外へ移動させることで、図55に示す状態になる。上記のように、移動処理部2120は、液滴を移動させるが、固形の材料については移動させない。図55の例でも、第7材料の液滴2821-42が領域A21-2の内から外へ移動している一方、第7材料の固形物2840-42は、領域A21-2内に留まっている。
図56は、材料の配置の第9例を示す。図56の例で基板2810、第6材料の液滴2821-41、第7材料の液滴2821-42、第6材料の固形物2840-41、第7材料の固形物2840-42および領域A21-2の位置は、図55の場合と同様である。一方、図56では、領域A21-2内に洗浄液の液滴2822がある点で、図55の場合と異なる。
図55の状態から、滴下口2140が洗浄液を造形領域(領域A21-2)内に滴下することで、図56の状態になる。図55の状態では、第7材料の液滴2821-42は領域A21-2の外へ移動しているが、固形物2840の表面には液体の第7材料が残存している。そこで、滴下口2140が、洗浄液を領域A21-2内に滴下して固形物2840を洗浄液に浸す。これにより、造形システム21は、固形物2840の表面を洗浄する。具体的には、造形システム21は、第6材料の固形物2840-41の表面および第7材料の固形物2840-42の表面に付着している液体の第7材料を除去する。
図57は、材料の配置の第10例を示す。図57の例で基板2810、第6材料の液滴2821-41、第7材料の液滴2821-42、第6材料の固形物2840-41、第7材料の固形物2840-42および領域A21-2の位置は、図56の場合と同様である。一方、図57では、洗浄液の液滴2822が基板2810上から除去されている点で、図56の場合と異なる。
図56の状態から、移動処理部2120が、洗浄液の液滴2822を領域A21-2内から基板2810の上面の外へと移動させることで、洗浄液の液滴2822が基板2810上から除去され、図57の状態になる。
図57の固形物2840は、完成した目的物の例に該当する。このように、図48~図57の例では、造形システム21は、第6材料および第7材料といった複数の材料を用いたマルチマテリアルの目的物を生成している。
次に図58を参照して造形システム21の動作について説明する。
図58は、制御装置2200が造形装置2100を制御して目的物を生成させる処理手順の例を示すフローチャートである。
図58の処理で、制御装置2200は、造形部2110を制御して造形処理を行わせる(ステップS2101)。造形部2110は、制御装置2200の制御に従って造形領域内の材料の液滴2821に造形用ビームB11-2を照射して材料の液滴2821内で造形用ビームB11-2の焦点を結ばせる。焦点の位置で材料が液体から固体に変化する。
次に、制御装置2200は、移動処理部2120を制御して材料の液滴2821を造形領域外(退避領域)へ退避させる(ステップS2102)。移動処理部2120は、制御装置2200の制御に従って造形領域内の材料の液滴2821を造形領域外へ移動させる。
次に、制御装置2200は、滴下口2140を制御して洗浄液を滴下させる(ステップS2103)。滴下口2140は、制御装置2200の制御に従って洗浄液を造形領域内へ滴下する。この滴下により、造形領域内にある固体の材料を洗浄する。
次に、制御装置2200は、移動処理部2120を制御して洗浄液の液滴2822を除去させる(ステップS2104)。移動処理部2120は、制御装置2200の制御に従って造形領域内の洗浄液の液滴2822を基板2810の外へ移動させる。この移動により、移動処理部2120は洗浄液の液滴2822を基板2810の上から除去する。
次に制御装置2200は、目的物が完成したか否かを判定する(ステップS2105)。目的物が完成したと判定した場合(ステップS2105:YES)、制御装置2200は、図58の処理を終了する。
一方、目的物が完成していないと判定した場合(ステップS2105:NO)、制御装置2200は、移動処理部2120を制御して、次に用いられる材料の液滴2821を造形領域へ移動させる(ステップS2106)。移動処理部2120は、制御装置2200の制御に従って次に用いられる材料の液滴2821を造形領域外から造形領域内へ移動させる。
ステップS2106の後、処理がステップS2101へ戻る。
以上のように、造形装置2100は、レーザC-2を照射して所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴2820を移動させる移動処理部2120と、所定の造形領域内で液滴2820を部分的に固体に変化させることで造形を行う造形部2110を備える。
これにより、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減し、液体の材料を設置する負担を軽減することができ、材料を入れ替える際に、マイクロチューブや切換えバルブが不要であるため、材料の浪費が極めて少なく、材料の再利用することができる。
また、移動処理部2120は、レーザC-2の照射箇所D2を移動させることにより温度勾配を生じさせてもよい。
これにより、多様な形状の温度勾配を生成できるため、多様な形状に係る液滴2820を移動させることができ、液体の材料を設置する負担を軽減することができる。
また、移動処理部2120は、レーザC-2の照射箇所D2をガルバノミラー21030で移動させることにより温度勾配を生じさせてもよい。
これにより、ガルバノミラー21030を用いてレーザC-2の照射箇所D2を高速移動でき、液体の材料を設置する負担を軽減することができる。
液滴移動装置は、レーザC-2を照射して所定形状の温度勾配を生じさせ、当該温度勾配に基づいて液滴2820を移動させる移動処理部2120を備える。
これにより、所定形状の温度勾配により液滴2820を移動させることで、液体を設置する負担を減らすことができる。
なお、上記の造形装置2100及び液滴移動装置における液滴2820の形状は楕円など多様な形状であってもよい。この場合、レーザC-2の照射箇所D2の軌跡G-2は、楕円などの当該多様な形状に合わせて、円弧などの形状に生成されてもよい。
また、基板2810は、レーザC-2の波長に合わせて、透過性が異なるものを用いてもよい。例えば、基板2810は、ホウケイ酸ガラス、ソーダ石炭ガラスなどの材料から構成されてもよい。
さらに、基板2810を構成する材料の吸収スペクトルに合わせて、レーザC-2の波長を変更させても良い。
また、造形装置2100及び液滴移動装置におけるレーザC-2の軌跡G-2によって、液滴2820の態様を変形できるようにしても良い。上記の変形の例としては、液滴2820の形状や模様の変形、液滴2820の分割による変形、異なる液滴2820の合体による変形などが挙げられる。
なお、移動処理部2120が、複数の液滴2820を同時に移動させるようにしてもよい。
例えば、図59に示すように、移動処理部2120が、時分割処理によって液滴2820Aと液滴2820Bの各々に対して、軌跡G1-2と軌跡G2-2のようにレーザC-2を照射することで、複数の液滴2820を同時に移動させるようにしてもよい。
これにより、移動処理部2120は、1本のレーザC-2で(したがって、レーザ照射装置21010を複数備える必要なしに)、複数の液滴2820を同時に移動させることができる。
なお、造形用ビームB11-2が焦点を結ぶ位置を変化させる方法は、造形部2110のレーザ光発射部分の位置を変化させる方法に限定されない。造形部2110のレーザ光発射部分に代えて支持台2130を移動させるようにしてもよい。
あるいは、造形部2110のレーザ光発射部分が造形用ビームB11-2を発射する角度を変化させるようにしてもよい。
図60は、造形用ビームB11-2の角度と焦点の位置との関係の例を示す。
図60の例で、造形部2110のレーザ光発射部分は対物レンズとして機能し、液滴2820と反対側(図60の下側)から入射した造形用ビームを屈折させて液滴2820の側(図60の上側)へ照射する。
造形部2110のレーザ光発射部分への造形用ビームB11-2の入射角をθで示す。造形部2110のレーザ光発射部分からの造形用ビームB11-2の出射角をθで示す。出射角θは入射角θに応じて変化する。出射角θの変化に伴って造形用ビームB11-2が焦点を結ぶ点P11-2の位置も変化する。したがって、造形部2110は、造形用ビームB11-2のレーザ光発射部分への入射角θを変化させることで、レーザ光発射部分の位置、基板2810の位置の何れも変化させる必要なしに、造形用ビームB11-2が焦点を結ぶ位置を変化させることができる。
入射角θを変化させる方法として、例えば、造形用ビームB11-2の光源と造形部2110のレーザ光発射部分との間にミラーを設け、ミラーの向きを変化させる方法を用いることができる。
なお、制御装置200及び制御装置2200が行う処理の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することで各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明の実施形態によれば、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減することができる。
1 造形システム
100 造形装置
110 造形部
120 移動処理部
121 マスク
122 冷却装置
123 ファン
124 ダクト
125 送風口
130 支持台
140 滴下口
200 制御装置
210 表示部
220 操作入力部
280 記憶部
290 処理部
810 基板
820 液滴
21 造形システム
2100 造形装置
2110 造形部
2120 移動処理部
2130 支持台
2140 滴下口
2150 観察部
2151 観察光光源
2152 ビームスプリッタ
2153 観察用レンズ
2154 CCDカメラ
2155 表示装置
2200 制御装置
2210 表示部
2220 操作入力部
2280 記憶部
2290 処理部
2810 基板
2820 液滴
2840 固形物
21010 レーザ照射装置
21020 ガルバノミラー回転装置
21030 ガルバノミラー
21040 集光レンズ

Claims (18)

  1. 液滴の周囲を円形に囲む環状の領域に電磁波を照射するまたはヒータにより熱を供給することで前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、前記電磁波を照射するまたは前記ヒータにより熱を供給する前記環状の領域を移動させることで前記液滴を移動させる移動処理部と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、
    を備える造形装置。
  2. 前記移動処理部は、前記電磁波を用いて前記液滴を加熱する、請求項1に記載の造形装置。
  3. 液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を、電磁波を用いて加熱し、加熱箇所を移動させることで前記液滴を移動させる移動処理部と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、を備え、
    前記移動処理部は、前記電磁波の一部をマスクで遮断することで、前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱する、
    造形装置。
  4. 液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる移動処理部と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、を備え、
    前記移動処理部は、前記液滴を移動させた後、移動後の液滴を冷却してから、前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるようにする加熱を終了する、
    造形装置。
  5. 液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、加熱箇所を移動させることで前記液滴を移動させる移動処理部と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、を備え、
    前記移動処理部は濡れ性を変えるパターン加工が施された面上にて前記液滴を移動させる、
    造形装置。
  6. 液滴の周囲を円形に囲む環状の領域に電磁波を照射するまたはヒータにより熱を供給することで前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、前記電磁波を照射するまたは前記ヒータにより熱を供給する前記環状の領域を移動させることで前記液滴を移動させる移動処理部を備える液滴移動装置。
  7. 液滴の周囲を円形に囲む環状の領域に電磁波を照射するまたはヒータにより熱を供給することで前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、前記電磁波を照射するまたは前記ヒータにより熱を供給する前記環状の領域を移動させることで前記液滴を移動させる工程と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う工程と、
    を含む目的物生産方法。
  8. 液滴の周囲を円形に囲む環状の領域に電磁波を照射するまたはヒータにより熱を供給することで前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、前記電磁波を照射するまたは前記ヒータにより熱を供給する前記環状の領域を移動させることで前記液滴を移動させる工程を含む液滴移動方法。
  9. コンピュータに、
    液滴の周囲を円形に囲む環状の領域に電磁波を照射するまたはヒータにより熱を供給することで前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、前記電磁波を照射するまたは前記ヒータにより熱を供給する前記環状の領域を移動させる工程と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う工程と、
    を実行させるためのプログラム。
  10. コンピュータに、
    液滴の周囲を円形に囲む環状の領域に電磁波を照射するまたはヒータにより熱を供給することで前記液滴の水平方向の周辺側の方が中心側よりも温度が高くなるように前記液滴を加熱し、前記電磁波を照射するまたは前記ヒータにより熱を供給する前記環状の領域を移動させる工程
    を実行させるためのプログラム。
  11. レーザの照射箇所を移動させて、液滴の外形に沿う円弧状の領域、または前記円弧状の領域の一部である複数の箇所に前記レーザを繰り返し照射して加熱することで前記液滴に所定形状の温度勾配を生じさせ、当該温度勾配に基づいて前記液滴を温度の低い側に移動させる移動処理部と、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、
    を備える造形装置。
  12. 前記移動処理部は、複数の前記液滴のそれぞれに対して時分割で前記レーザを繰り返し照射することで、それら複数の液滴を同時に移動させる、請求項11に記載の造形装置。
  13. 前記移動処理部は、前記レーザの照射箇所をガルバノミラーで移動させることにより前記温度勾配を生じさせる
    請求項11または請求項12に記載の造形装置。
  14. レーザの照射箇所を移動させて、液滴の外形に沿う円弧状の領域、または前記円弧状の領域の一部である複数の箇所に前記レーザを繰り返し照射して加熱することで前記液滴に所定形状の温度勾配を生じさせ、当該温度勾配に基づいて前記液滴を温度の低い側に移動させる移動処理部、
    を備える液滴移動装置。
  15. レーザの照射箇所を移動させて、液滴の外形に沿う円弧状の領域、または前記円弧状の領域の一部である複数の箇所に前記レーザを繰り返し照射して加熱することで前記液滴に所定形状の温度勾配を生じさせ、当該温度勾配に基づいて前記液滴を温度の低い側に移動させるステップと、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行うステップと、
    を有する造形方法。
  16. レーザの照射箇所を移動させて、液滴の外形に沿う円弧状の領域、または前記円弧状の領域の一部である複数の箇所に前記レーザを繰り返し照射して加熱することで前記液滴に所定形状の温度勾配を生じさせ、当該温度勾配に基づいて前記液滴を温度の低い側に移動させるステップと、
    を有する液滴移動方法。
  17. コンピュータを、
    レーザの照射箇所を移動させて、液滴の外形に沿う円弧状の領域、または前記円弧状の領域の一部である複数の箇所に前記レーザを繰り返し照射して加熱することで前記液滴に所定形状の温度勾配を生じさせ、当該温度勾配に基づいて前記液滴を温度の低い側に移動させる移動処理部、
    所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部、
    として機能させるための造形プログラム。
  18. コンピュータを、
    レーザの照射箇所を移動させて、液滴の外形に沿う円弧状の領域、または前記円弧状の領域の一部である複数の箇所に前記レーザを繰り返し照射して加熱することで前記液滴に所定形状の温度勾配を生じさせ、当該温度勾配に基づいて前記液滴を温度の低い側に移動させる移動処理部、
    として機能させるための液滴移動プログラム。
JP2021503663A 2019-03-07 2020-03-06 造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラム Active JP7313078B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2019042010 2019-03-07
JP2019042010 2019-03-07
JP2019158495 2019-08-30
JP2019158495 2019-08-30
PCT/JP2020/009634 WO2020179904A1 (ja) 2019-03-07 2020-03-06 造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラム

Publications (3)

Publication Number Publication Date
JPWO2020179904A1 JPWO2020179904A1 (ja) 2020-09-10
JPWO2020179904A5 JPWO2020179904A5 (ja) 2022-02-28
JP7313078B2 true JP7313078B2 (ja) 2023-07-24

Family

ID=72338120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021503663A Active JP7313078B2 (ja) 2019-03-07 2020-03-06 造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラム

Country Status (3)

Country Link
US (1) US20220193979A1 (ja)
JP (1) JP7313078B2 (ja)
WO (1) WO2020179904A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144217A (ja) 2003-11-11 2005-06-09 Seiko Epson Corp 薄膜形成方法、デバイスの製造方法、電気光学装置の製造方法、電子機器
JP2005254263A (ja) 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd 光加熱装置とその制御方法
JP2012032258A (ja) 2010-07-30 2012-02-16 Osaka City Univ 液滴移動装置および液滴移動方法
JP2015214771A (ja) 2014-05-09 2015-12-03 学校法人大同学園 強化繊維基材の切断方法、繊維強化樹脂の製造方法、繊維強化樹脂の切断方法、プリフォームおよび繊維強化樹脂
JP2016219773A (ja) 2015-05-15 2016-12-22 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体
JP2017018960A (ja) 2015-07-07 2017-01-26 日立オートモティブシステムズ株式会社 中空複合磁性部材の製造方法及び製造装置並びに燃料噴射弁
JP2017533851A (ja) 2014-11-06 2017-11-16 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG シリコーンエラストマー部品の製造方法
WO2019156170A1 (ja) 2018-02-07 2019-08-15 国立大学法人横浜国立大学 造形装置、液滴移動装置、目的物生産方法、液滴移動方法及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079821A (en) * 1997-10-17 2000-06-27 Eastman Kodak Company Continuous ink jet printer with asymmetric heating drop deflection
US7582858B2 (en) * 2004-01-23 2009-09-01 Sri International Apparatus and method of moving micro-droplets using laser-induced thermal gradients
US7670560B2 (en) * 2005-04-29 2010-03-02 Georgia Tech Research Corporation Droplet transport system and methods
US20110232524A1 (en) * 2009-05-25 2011-09-29 Korea Institute Of Ceramic Engineering And Technology Ceramic ink for manufacturing ceramic thick film by inkjet printing
WO2012085914A1 (en) * 2010-12-21 2012-06-28 Objet Ltd. Method and system for reuse of materials in additive manufacturing systems
US8944084B2 (en) * 2011-06-03 2015-02-03 Wayne State University Optofluidic tweezers
US10372110B2 (en) * 2016-06-17 2019-08-06 Hamilton Sundstrand Corporation Controlled thin wall thickness of heat exchangers through modeling of additive manufacturing process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144217A (ja) 2003-11-11 2005-06-09 Seiko Epson Corp 薄膜形成方法、デバイスの製造方法、電気光学装置の製造方法、電子機器
JP2005254263A (ja) 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd 光加熱装置とその制御方法
JP2012032258A (ja) 2010-07-30 2012-02-16 Osaka City Univ 液滴移動装置および液滴移動方法
JP2015214771A (ja) 2014-05-09 2015-12-03 学校法人大同学園 強化繊維基材の切断方法、繊維強化樹脂の製造方法、繊維強化樹脂の切断方法、プリフォームおよび繊維強化樹脂
JP2017533851A (ja) 2014-11-06 2017-11-16 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG シリコーンエラストマー部品の製造方法
JP2016219773A (ja) 2015-05-15 2016-12-22 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体
JP2017018960A (ja) 2015-07-07 2017-01-26 日立オートモティブシステムズ株式会社 中空複合磁性部材の製造方法及び製造装置並びに燃料噴射弁
WO2019156170A1 (ja) 2018-02-07 2019-08-15 国立大学法人横浜国立大学 造形装置、液滴移動装置、目的物生産方法、液滴移動方法及びプログラム

Also Published As

Publication number Publication date
US20220193979A1 (en) 2022-06-23
JPWO2020179904A1 (ja) 2020-09-10
WO2020179904A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6170175B2 (ja) レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置
JP2022046572A (ja) 性能向上した3次元印刷
Behroodi et al. A compact LED-based projection microstereolithography for producing 3D microstructures
Li et al. Micro-scale feature fabrication using immersed surface accumulation
JP6134861B2 (ja) 光加工ヘッド、光加工装置および光加工方法
JPWO2016139775A1 (ja) 加工ノズル、加工ヘッド、加工装置、その制御方法および制御プログラム
JP2023015180A (ja) 処理装置、処理方法、マーキング方法、及び、造形方法
JP2006068762A (ja) レーザー加工方法およびレーザー加工装置
JP2009113294A (ja) 光造形装置及び光造形方法
CN108351498B (zh) 用于制造三维物体的设备及其应用
US11214005B2 (en) Surface projection tool for multi-axis additive manufacturing
JP7313078B2 (ja) 造形装置、液滴移動装置、目的物生産方法、造形方法、液滴移動方法、造形プログラムおよび液滴移動プログラム
JP7039057B2 (ja) 造形装置、液滴移動装置、目的物生産方法、液滴移動方法及びプログラム
JP2006168260A (ja) 導光板成形用金型の製造方法、導光板成形用金型、および導光板
JP2004223790A (ja) 曲線形状をもつ微細造形物を光造形法により滑らかに作製する方法および装置
JP6947940B2 (ja) 3次元ワークピースを作製する装置および方法
WO2021100755A1 (ja) 造形装置、液柱移動装置、造形方法、液柱移動方法およびプログラム
JP4376649B2 (ja) 異波長レーザー光を用いた多光束微小構造物光造形方法及び装置
TWI325066B (ja)
EP4054781A1 (en) Blue laser metal additive manufacturing system
JP2020116599A (ja) レーザ加工装置およびレーザ加工方法
US11981079B2 (en) Multi-axis additive manufacturing system
WO2024024529A1 (ja) 造形装置、造形物生産方法およびプログラム
JP2004223792A (ja) 焦点位置確認機能を備えたマイクロ光造形装置
KR102041278B1 (ko) 회절광학소자, 회절광학소자 제조장치 및 방법

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20210907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7313078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150