JP7301896B2 - 成膜装置、成膜装置の制御方法、および電子デバイスの製造方法 - Google Patents

成膜装置、成膜装置の制御方法、および電子デバイスの製造方法 Download PDF

Info

Publication number
JP7301896B2
JP7301896B2 JP2021033791A JP2021033791A JP7301896B2 JP 7301896 B2 JP7301896 B2 JP 7301896B2 JP 2021033791 A JP2021033791 A JP 2021033791A JP 2021033791 A JP2021033791 A JP 2021033791A JP 7301896 B2 JP7301896 B2 JP 7301896B2
Authority
JP
Japan
Prior art keywords
film
substrate
film thickness
control
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021033791A
Other languages
English (en)
Other versions
JP2022134581A (ja
Inventor
俊宏 緒方
新 渡部
英宏 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2021033791A priority Critical patent/JP7301896B2/ja
Priority to CN202210154432.2A priority patent/CN115011929B/zh
Priority to KR1020220026000A priority patent/KR20220124640A/ko
Publication of JP2022134581A publication Critical patent/JP2022134581A/ja
Application granted granted Critical
Publication of JP7301896B2 publication Critical patent/JP7301896B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/543Controlling the film thickness or evaporation rate using measurement on the vapor source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Ceramic Capacitors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

本発明は、成膜装置、成膜装置の制御方法、および電子デバイスの製造方法に関する。
有機ELディスプレイや液晶ディスプレイなどのパネルディスプレイを備える表示装置が広く用いられている。中でも有機ELディスプレイを備える有機EL表示装置は、応答速度、視野角、薄型化などの特性が優れており、モニタ、テレビ、スマートフォン、自動車用ディスプレイ等に好適である。
有機ELディスプレイを構成する有機EL素子は、2つの向かい合う電極(カソード電極、アノード電極)の間に、発光を起こす有機物層である発光層を有する機能層が形成された基本構造を持つ。有機EL素子の機能層や電極層は、それぞれの層を構成する材料を、マスクを介して基板に成膜することにより形成される。したがって、有機EL素子が所望の性能を発揮するためには、それぞれの層の膜厚を精度良く制御する必要がある。
特許文献1には、成膜室と検査室を有するクラスタ型ユニットを用いた有機EL製造装置において、成膜室で成膜された基板を検査室に搬送して、光学的な膜厚測定装置によって膜厚を測定する構成が開示されている。
特許文献2には、有機EL製造装置において、成膜が行われる真空チャンバ内に水晶振動子を有する膜厚モニタを配置し、蒸着中の成膜レートを測定し、測定結果に応じて蒸発源の温度を制御することで蒸着材料の蒸発レートを制御する構成が開示されている。
特開2005-322612号公報 特開2019-065391号公報
しかしながら、有機EL表示装置等のディスプレイの性能に対する要求が高まるにつれて、基板への成膜プロセスにおいてさらに精度良く膜厚を測定し、成膜を制御する方法が求められている。
本発明は上記課題に鑑みてなされたものであり、基板への成膜プロセスにおける膜厚の測定および制御の精度を向上させることを目的としている。
本発明は、以下の構成を採用する。すなわち、
基板に蒸着材料を蒸着して成膜を行う成膜装置であって、
前記基板に対して相対移動しながら前記蒸着材料を放出する蒸発源と、
前記蒸発源からの前記蒸着材料の放出量を制御する第1の制御手段と、
前記基板と前記蒸発源の相対速度を制御する第2の制御手段と、
成膜中に、前記蒸発源からの前記蒸着材料の放出量を測定するモニタ手段と、
成膜後に、前記基板に蒸着された膜の膜厚を測定する膜厚測定手段と、
前記モニタ手段により測定された前記放出量および前記膜厚測定手段により測定された前記膜厚に基づいて、前記第1の制御手段および前記第2の制御手段を制御する制御部と、
を備え
前記第1の制御手段が目標値に向けた前記放出量の制御を開始した後、前記放出量の目標値に対する差に応じて、前記第2の制御手段が前記相対速度を制御する
ことを特徴とする成膜装置である。
本発明によれば、基板への成膜プロセスにおける膜厚の測定および制御の精度を向上させることができる。
電子デバイスの製造装置の模式図 成膜装置の構成を示す断面図 蒸発源ユニットの構成を示す図 パス室と膜厚測定部の構成を示す断面図 膜厚測定部の構成を示すブロック図 基板の被成膜面側の構成を示す平面図 膜厚制御システムの構成を示すブロック図 成膜中の制御について説明するためのチャート図 成膜中の制御について説明するためのグラフ 実施例2の電子デバイスの製造装置の平面図 電子デバイスの製造方法を説明する図
以下、図面を参照しつつ本発明の好適な実施形態を説明する。ただし、以下の記載は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に記載がない限りは、本発明の範囲をこれに限定しようとする趣旨ではない。
本発明は、基板に成膜を行う成膜装置または成膜方法として捉えられる。本発明はまた、かかる成膜装置または成膜方法を用いた電子デバイスの製造装置または電子デバイスの製造方法としても捉えられる。本発明はまた、上記の各装置の制御方法としても捉えられる。
本発明は、基板の表面にマスクを介して所望のパターンの薄膜材料層を形成する場合に好ましく適用できる。基板の材料としては、ガラス、樹脂、金属、シリコンなど任意のものを利用できる。成膜材料としては、有機材料、無機材料(金属、金属酸化物)など任意のものを利用できる。本発明の技術は、典型的には、電子デバイスや光学部材の製造装置に適用される。特に、有機ELディスプレイやそれを用いた有機EL表示装置、薄膜太陽電池、有機CMOSイメージセンサなどの有機電子デバイスに好適である。ただし本発明の適用対象はこれに限られない。
[実施例1]
実施例1では、本発明の基本的な実施形態として装置の全体構成および膜厚測定および制御の基本原理について説明する。
<電子デバイス製造装置>
図1は、電子デバイス製造装置の一部の構成を模式的に示す平面図である。図1の電子デバイス製造装置は、例えば、スマートフォン用の有機EL表示装置に用いる有機ELパネルの製造に用いられる。
電子デバイス製造装置は、複数のクラスタ型ユニット(以下単に「ユニット」とも称す
)CU1~CU3が連結室を介して連結されており、製造ラインを構成する。各クラスタ型ユニットは、基板搬送ロボットの周囲に複数の成膜室が配置された構成である。なお、ユニットの数は3つに限られない。また、各クラスタに属するチャンバの数は、以下に記載のものに限られない。また、クラスト毎にチャンバの種類や数が異なっていてもよい。以後、全てのユニットに共通する説明及びユニットを特定しない説明では、「CUx」のように数字の代わりに「x」で表記した参照符号を用い、個別のユニットについての説明では、「CU1」のように数字を表記した参照符号を用いる(ユニット以外の構成に付した参照符号についても同様である)。
図1は、電子デバイス製造装置全体の中の成膜装置の部分の一部を示している。成膜装置の上流には、例えば、基板のストッカ、加熱装置、洗浄等の前処理装置などが設けられてもよく、成膜装置の下流には、例えば、封止装置、加工装置、処理済み基板のストッカなどが設けられてもよく、それら全体を合わせて電子デバイス製造装置が構成されている。基板は、上流側から下流側に、矢印Fの方向に沿って流れる。
クラスタ型ユニットCUxは、中央の搬送室TRxと、搬送室TRxの周囲に配置された複数の成膜室EVx1~EVx4及びマスク室MSx1~MSx2を有する。隣接する2つのユニットCUxとCUx+1の間は連結室CNxで接続されている。クラスタ型ユニットCUx内の各室TRx、EVx1~EVx4、MSx1~MSx2、及び、連結室CNxは空間的につながっており、その内部は真空又は窒素ガスなどの不活性ガス雰囲気に維持されている。本実施形態においては、ユニットCUx及び連結室CNxを構成する各室は不図示の真空ポンプに接続されており、それぞれ独立に真空排気が可能となっている。それぞれの室は「真空チャンバ」又は単に「チャンバ」とも呼ばれる。なお、本明細書において「真空」とは、大気圧より低い圧力の気体で満たされた状態をいう。
搬送室TRxには、基板S及びマスクMを搬送する搬送手段としての搬送ロボットRRxが設けられている。搬送ロボットRRxは、例えば、多関節アームに、基板S及びマスクMを保持するロボットハンドが取り付けられた構造を有する多関節ロボットである。クラスタ型ユニットCUx内において、基板Sはその被成膜面が重力方向下方を向いた水平状態を保ったまま、搬送ロボットRRxや後述する搬送ロボットRCx等の搬送手段によって搬送される。搬送ロボットRRxや搬送ロボットRCxの有するロボットハンドは、基板Sの被処理面の周縁領域を保持する。搬送ロボットRRxは、上流側のパス室PSx-1、成膜室EVx1~EVx4、下流側のバッファ室BCxの間の基板Sの搬送を行う。
また、搬送ロボットRRxは、マスク室MSx1と成膜室EVx1、EVx2の間のマスクMの搬送、及び、マスク室MSx2と成膜室EVx3、EVx4の間のマスクMの搬送を行う。搬送ロボットRRxや搬送ロボットRCxの有するロボットハンドは、所定のプログラムに従って所定の動きを行うように構成されている。各ロボットハンドの動きは、複数の基板に対し、順次に、あるいは同時並行的に成膜を行う際に、複数の基板が効率的に搬送されるように設定される。
マスク室MSx1~MSx2は、成膜に用いられるマスクMと使用済みのマスクMがそれぞれ収容されるマスクストッカが設けられた室である。マスク室MSx1には、成膜室EVx1、EVx3で用いられるマスクMがストックされ、マスク室MSx2には、成膜室EVx2、EVx4で用いられるマスクMがストックされている。蒸着成膜の場合、マスクMとしては、多数の開口が形成されたメタルマスクが好ましく利用される。
成膜室EVx1~EVx4は、基板Sの表面(被成膜面)に膜を形成するための室である。ここで、成膜室EVx1とEVx3は同じ機能をもつ室(同じ成膜処理を実施可能な
室)であり、同様に成膜室EVx2とEVx4も同じ機能をもつ室である。この構成により、成膜室EVx1→EVx2という第1ルートでの成膜処理と、成膜室EVx3→EVx4という第2ルートでの成膜処理を並列に実施できる。
連結室CNxは、ユニットCUxとユニットCUx+1とを接続し、ユニットCUxで成膜された基板Sを後段のユニットCUx+1に受け渡す機能を有している。本実施形態の連結室CNxは、上流側から順に、バッファ室BCx、旋回室TCx、及びパス室PSxから構成される。このような連結室CNxの構成は、成膜装置の生産性を高めることや、ユーザビリティを高める観点で好ましい構成である。ただし、連結室CNxの構成はこれに限られず、バッファ室BCx又はパス室PSxのみで構成されていてもよい。
バッファ室BCxは、ユニットCUx内の搬送ロボットRRxと、連結室CNx内の搬送ロボットRCxとの間で、基板Sの受け渡しを行うための室である。バッファ室BCxは、ユニットCUxと後段のユニットCUx+1の間に処理速度の差がある場合、又は、下流側のトラブルの影響で基板Sを通常どおり流すことができない場合などに、複数の基板Sを一時的に収容することで、基板Sの搬入速度や搬入タイミングを調整する機能をもつ。このような機能をもつバッファ室BCxを連結室CNx内に設けることで、高い生産性を実現するとともに、さまざまな層構成の積層成膜に対応可能な高い柔軟性を実現することができる。例えば、バッファ室BCx内には、複数枚の基板Sを基板Sの被処理面が重力方向下方を向く水平状態を保ったまま収納可能な多段構造の基板収納棚(カセットとも呼ばれる)と、基板Sを搬入又は搬出する段を搬送位置に合わせるために基板収納棚を昇降させる昇降機構とが設けられる。
旋回室TCxは、基板Sの向きを180度回転させるための室である。旋回室TCx内には、バッファ室BCxからパス室PSxへと基板Sを受け渡す搬送ロボットRCxが設けられている。基板Sの上流側の端部を「後端」、下流側の端部を「前端」と呼ぶ場合に、搬送ロボットRCxは、バッファ室BCxで受け取った基板Sを支持した状態で180度旋回しパス室PSxに引き渡すことで、バッファ室BCx内とパス室PSx内とで基板Sの前端と後端が入れ替わるようにする。これにより、成膜室に基板Sを搬入する際の向きが、上流側のユニットCUxと下流側のユニットCUx+1とで同じ向きになるため、基板Sに対する成膜のスキャン方向やマスクMの向きを各ユニットCUxにおいて一致させることができる。このような構成とすることで、各ユニットCUxにおいてマスク室MSx1~MSx2にマスクMを設置する向きを揃えることができ、マスクMの管理が簡易化される。
パス室PSxは、連結室CNx内の搬送ロボットRCxと、下流側のユニットCUx+1内の搬送ロボットRRx+1との間で、基板Sの受け渡しを行うための室である。本実施例では、パス室PSx内に膜厚測定部が配置されており、基板Sに成膜された膜の膜厚の測定が行われる。なお、パス室PSxにアライメント機構を設けることで、成膜室内でのアライメント時間を短縮してもよい。例えば、同じクラスタ型ユニットに第1の成膜室と第2の成膜室が含まれるとすると、その下流のバッファ室やパス室には、第1の成膜室と第2の成膜室において成膜された後の基板が共通に搬入される。
成膜室EVx1~EVx4、マスク室MSx1~MSx2、搬送室TRx、バッファ室BCx、旋回室TCx、パス室PSxの間には、開閉可能な扉(例えば、ドアバルブ又はゲートバルブ)が設けられていてもよいし、常に開放された構造であってもよい。
<真空蒸着装置>
図2は、成膜室EVx1~EVx4に設けられる真空蒸着装置200の構成を模式的に示している。真空蒸着装置200は、マスクMを保持するマスクホルダ201、基板Sを
保持する基板ホルダ202、蒸発源ユニット203、移動機構204、成膜レートモニタ205、成膜制御部206を有する。マスクホルダ201、基板ホルダ202、蒸発源ユニット203、移動機構204、及び成膜レートモニタ205は、真空チャンバ207内に設けられる。真空蒸着装置200は、マスクホルダ201および基板ホルダ202の少なくとも一方を移動させ、マスクホルダ201に保持されたマスクMと基板ホルダ202に保持された基板Sの位置合わせ(アライメント)を行う不図示の位置調整機構(アライメント機構)をさらに有する。本実施例の位置調整機構は、基板Sの被成膜面と略平行な面内で基板ホルダ202をXY移動およびθ回転させることで、基板SのマスクMに対する相対位置を調整する。
基板Sは、水平状態に保持されているマスクMの上面に、被成膜面を下にして載置される。マスクMの下方には、蒸発源ユニット203が設けられている。蒸発源ユニット203は、概略、成膜材料を収容する容器(坩堝)、容器内の成膜材料を加熱するヒータなどを備える。また、必要に応じて、蒸発源ユニット203に、加熱効率を高めるためのリフレクタや伝熱部材、シャッタなどを設けてもよい。移動機構204は、蒸発源ユニット203を基板Sの被処理面と平行に移動(スキャン)させる手段である。本実施形態では1軸の移動機構204を用いるが、2軸以上の移動機構を用いてもよい。
なお、本実施形態では基板SをマスクMの上面に載置するものとしたが、基板SとマスクMとが十分に密着する構成であれば、基板SをマスクMの上面に載置しなくてもよい。例えば基板SをマスクMの下面に密着させ、上方から蒸着材料を飛翔させる構成や、密着させた基板SとマスクMを縦向きに配置する構成でもよい。また、不図示の磁石ユニットを基板Sの被処理面とは反対側の面に接近させて、マスクMのマスク箔を磁力によって吸引し、基板SへのマスクMの密着性を高めてもよい。また、基板Sを冷却する冷却ユニットを設けてもよく、磁石ユニットがその冷却ユニットを兼ねていてもよい。また、蒸発源ユニット203は、複数の蒸発源ユニット又は容器を並べて配置し、それらを一体として移動する構成とすることもできる。このような構成によれば、蒸発源ユニット又は容器ごとに異なる材料を収容して蒸発させるようにすることができ、混合膜や積層膜を形成することができる。
成膜レートモニタ205(モニタ手段)は基板Sに成膜される薄膜の成膜速度をモニタするモニタ手段である。本実施例の成膜レートモニタ205は、水晶発振式成膜レートモニタであり、蒸発源ユニット203と共に移動する水晶振動子を有しており、成膜材料が水晶振動子の表面に堆積すること(質量が付与されこと)による共振周波数(固有振動数)の変化量に基づいて、単位時間あたりの成膜材料の付着量である成膜レート(蒸着レート)[オングストローム/s]を推定する。
成膜制御部206は、基板Sに成膜される薄膜の膜厚が目標値になるよう制御する制御手段である。成膜制御部206は、所定の初期設定情報を、成膜レートモニタ205で得られた成膜レート[オングストローム/s]や、膜厚測定手段で測定された膜厚値に応じて補正することにより、膜厚を制御する。制御内容としては、後述するように、移動機構204による蒸発源ユニット203のスキャン速度の調整、当該スキャン速度調整の結果としての成膜時間[s]の調整、蒸発源ユニット203のヒータ温度やシャッタ開度を調整することによる蒸着材料の蒸発量(放出量)の制御などがある。成膜制御部206は、膜厚に影響を与えるこれらの制御を組み合わせることで、品質及び精度とタクトタイムについての配慮がなされた良好な成膜を実現する。成膜制御部206は、蒸発源からの蒸着材料の放出量を制御する第1の制御手段、および、基板と蒸発源の相対速度を制御する第2の制御手段として機能する。
図3は、本実施例の蒸発源ユニット203の詳細な構成例を示している。図3(a)は
、蒸発源ユニット203が成膜制御部206の制御に従って基板Sに対して相対移動しながら蒸着を行う様子を示す。蒸発源ユニット203は、それぞれ複数のノズルを有する複数の蒸発源208a~208cを含んでいる。各蒸発源208a~208cに同じ蒸着材料を格納して成膜レートを向上させてもよいし、各蒸発源208a~208cそれぞれに異なる蒸着材料を格納して膜の材質を制御してもよい。なお、蒸発源の数やノズルの数は図に限定されない。また、成膜レートや膜厚の測定結果に応じてスキャン回数を初期設定値から増減させてもよい。また蒸発源ユニット203の移動方法は往復スキャンに限定されず、蒸発源ユニット203の形状や基板Sのサイズによってはラスタスキャン方式でもよい。
また移動機構204は、ガイドレール204aと、モータ等の駆動手段を備える駆動部204bと、を含んでいる。駆動部204bは、成膜制御部206の制御に従った所定のスキャン速度で、蒸発源208a~208cを一体としてガイドレール204a上で往復移動させる。成膜制御部206が蒸発源のスキャン速度を上げると単位時間あたりの膜厚が薄くなり、スキャン速度を下げると単位時間あたりの膜厚を厚くなる。なお、成膜レートは基板Sと蒸発源ユニット203の相対速度に応じて変化するため、基板Sを平面内で蒸発源ユニット203に対して移動させる構成としてもよい。
また本実施例の真空蒸着装置200は、各蒸発源208a~208c夫々に対応する成膜レートモニタ205a~205cを備える。この構成により、蒸発源208a~208cごとの成膜レートを測定できるため、蒸発源ごとに互いに異なる温度制御を行うことも可能になる。また、複数の成膜レートモニタ205a~205cが取得した成膜レート値を統合して(例えば平均値を算出して)、蒸発源ユニット203全体を一様に温度制御してもよい。ただし、成膜レートモニタの個数はこれに限られず、蒸発源ユニット203全体で1個でもよい。
図3(b)は、蒸発源ユニットが有する1つの蒸発源208aの断面図を示す。本実施例の蒸発源208aは、ルツボ244をヒータ246が加熱することで蒸着材料242を放出させて基板Sに付着させる構成である。ルツボ244は、蒸着材料242が格納されるルツボ本体244aと、蒸着材料242が放出される方向を規定するノズル244bを含む。ヒータ246として例えば、成膜制御部206の電流制御に応じて発熱するシーズヒータが用いられる。シーズヒータに流れる電流を増加させると発熱量が増大し、蒸着材料242の放出量が増える。その結果、単位時間あたりに成膜される膜厚は厚くなり、所望の膜厚に達するまでの成膜速度は速くなる。ルツボ244の周囲には、熱効率を上げるためのリフレクタ248が配置されている。
<パス室の機構>
図4は、パス室PSxの構成を模式的に示す断面図である。図4は、図1のA-A断面に対応する。パス室PSxの真空チャンバ300内部には、搬送ロボットRCxにより搬送されてきた基板Sを保持する基板トレー301と、基板Sの膜厚を測定する膜厚測定部310が配置されている。なお、基板トレー301は、複数枚の基板を収容可能としてもよい。また、パス室PSxには、基板Sのアライメントを行うための不図示のアライメント機構を設けてもよい。これにより、搬送室TRxや旋回室TCxを経て搬送されてきた基板Sの、搬送に用いたロボットの位置精度などに起因する位置ずれを抑制できる。その結果、後段のユニット中の成膜室内部における、基板SとマスクMのアライメント時間を短縮できる。
なお、必ずしも全てのパス室PSxに膜厚測定部310を配置する必要はなく、複数のクラスタ型ユニットの膜厚を1つのパス室で測定してもよい。パス室PSxに基板が滞留しないのであれば、製造ラインの最下流に1つでも膜厚測定部310を配置すればよい。
また、パス室PSxに膜厚測定部310を配置するのではなく、膜厚測定のための検査室を設けてもよい。また、パス室PSxに膜厚測定部310を配置するかどうかを、上流側のクラスタ型ユニットCUxでの処理の内容に応じて決めてもよい。例えば、ユニットCUxで発光層が成膜される場合に膜厚測定部310を配置する、ユニットCUxで電極間層が成膜される場合に膜厚測定部310を配置する、ユニットCUxで画素ごとのファインマスクを使う場合に膜厚測定部310を配置する、等である。
<膜厚測定部>
図4には1つの膜厚測定部310を示したが、複数の膜厚測定部を配置しても良い。複数の場所を一度に評価することで、基板面内における膜厚のばらつきの情報を得ることや、複数の成膜室で成膜された複数種の膜をまとめて評価することが可能となる。
膜厚測定部310は、膜厚を光学的に測定するセンサであり、本実施例では反射分光式の光学センサを有する膜厚計を用いる。膜厚測定部310は、概略、膜厚評価ユニット311、センサヘッド312、センサヘッド312と膜厚評価ユニット311を接続する光ファイバ313から構成される。センサヘッド312は、真空チャンバ300内の基板トレー301の下方に配置されており、真空チャンバ300の底面に取り付けられた真空フランジ314を介して光ファイバ313に接続されている。センサヘッド312は光ファイバ313を経由して導かれた光の照射エリアを所定のエリアに設定する機能を有しており、光ファイバおよびピンホールやレンズなどの光学部品を用いることができる。
図5は膜厚測定部310のブロック図である。膜厚評価ユニット311は、光源320、分光器321、測定制御部322を有する。光源320は測定光を出力するデバイスであり、例えば重水素ランプやキセノンランプやハロゲンランプ等が用いられる。光の波長としては、200nmから1μmの範囲を用いることができる。分光器321はセンサヘッド312から入力された反射光を分光しスペクトル(波長毎の強度)の測定を行うデバイスであり、例えば、分光素子(グレーティング、プリズムなど)と光電変換を行うディテクタなどで構成される。測定制御部322は光源320の制御及び反射スペクトルに基づく膜厚の演算などを行うデバイスである。
光源320から出力された測定光は、光ファイバ313を経由してセンサヘッド312に導かれ、センサヘッド312から基板Sに投射される。基板Sで反射した光はセンサヘッド312から光ファイバ313を経由して分光器321に入力される。このとき、基板S上の薄膜の表面で反射した光と、薄膜とその下地層との界面で反射した光とが互いに干渉する。このようにして薄膜による干渉や吸収の影響を受けることで、反射スペクトルは、光路長差、すなわち膜厚の影響を受ける。測定制御部322によってこの反射スペクトルを解析することによって、薄膜の膜厚を測定することができる。
上記の反射分光式の膜厚評価は、数nmら数100nmの厚さの有機膜の評価に対しても、短時間で高精度での評価が可能であることから、有機EL素子の有機層の評価として好ましい手法である。ここで、有機層の材料としては、αNPD:α-ナフチルフェニルビフェニルジアミンなどの正孔輸送材料、Ir(ppy)3:イリジウム-フェニルピリミジン錯体などの発光材料、Alq3:トリス(8-キノリノラト)アルミニウムやLiq:8-ヒドロキシキノリノラト-リチウム)などの電子輸送材料などが挙げられる。さらには、上述の有機材料の混合膜にも適用してよい。分光干渉計はモータを必要としないため、高い真空度が求められる蒸着装置内でも利用しやすく、基板の近くで測定できるという利点がある。しかし、膜厚測定部310はこれに限定されず、エリプソメータなどでもよい。
図6は、膜厚測定部310による測定を容易にするための基板Sの被成膜面側の構成例
を示している。この例の基板Sの中央部には、複数の表示パネル340が形成されるエリアが設けられており、成膜完了後に基板Sを切り分けることで複数のパネルが製作される。基板Sの搬送方向(矢印F)前方の、表示パネル340エリアと重ならないエリアには、膜厚測定エリア330が設けられている。各成膜室における成膜処理時に、表示パネル340の部分への成膜と並行して、膜厚測定エリア330内の予め決められた位置への成膜も行うことで、膜厚測定エリア330内に膜厚測定用の薄膜(以後、測定用パッチ331と呼ぶ。測定用片あるいは評価用有機膜と呼ぶこともある)が形成される。これは、各成膜室で用いられるマスクMに、予め測定用パッチ331のための開孔を形成しておくことにより実現できる。
膜厚測定エリア330は、複数の測定用パッチ331を形成可能な面積に設定されており、膜厚の測定対象となる層単位で測定用パッチ331の形成位置を変えるとよい。すなわち、1つの成膜室で形成された膜(単一膜でもよいし、複数の膜が積層された積層膜でもよい)の膜厚を測定したい場合は、測定用パッチ331の部分にも1つの成膜室で形成される膜(単一膜又は積層膜)のみを成膜し、複数の成膜室を経て形成された積層膜の膜厚を測定したい場合は、測定用パッチ331の部分にも測定したい積層膜と同じ積層膜を成膜するとよい。このように測定対象となる層ごとに測定用パッチ331を異ならせることにより、膜厚の正確な測定が実現できる。このような測定用パッチ331を形成するには、成膜室ごとにマスクMの開口部の位置を異ならせればよい。
<膜厚測定手法>
本実施例では、各成膜室の真空蒸着装置200が備える成膜レートモニタ205により成膜レートが取得されるとともに、パス室PSxに配置された膜厚測定部310が膜厚を測定する。
成膜レートモニタ205は、真空蒸着装置200内部に配置されており、基板Sと同時に成膜材料の付着を受けるため、リアルタイムに基板状の膜厚を推定できる。したがって短時間情報を目標レートに反映することで、リアルタイムな膜厚制御を実行できる。その一方で、成膜レートモニタ205は基板S上に形成される膜の厚さを直接測定するのではなく、基板Sとは別の位置に配置した水晶振動子によって成膜レートを間接的に測定する。そのため、水晶振動子への材料の堆積量や水晶振動子の温度などの様々な誤差要因により、成膜レートモニタ205の水晶振動子に堆積する膜の膜厚と基板Sに堆積する膜の膜厚が異なったり、成膜レートモニタ205の測定値自体に誤差が生じたりする場合がある。定期的に水晶振動子の交換や校正を行うことで精度低下を抑制することはできるものの、成膜レートモニタ205による膜厚の測定誤差が原因で膜厚のばらつきを生じる可能性が残る。
膜厚測定部310は、成膜室EVx1→EVx2又は成膜室EVx3→成膜室EVx4での成膜が完了した基板Sが搬送ロボットRC1により搬送された先のパス室PSxに配置されている。膜厚測定部310は、測定用パッチ331の形成方法に応じて、成膜室EVx1(EVx3)で成膜された膜厚、成膜室EVx2(EVx4)で成膜された膜厚、又は、成膜室EVx1及びEVx2(EVx3及びEVx4))で成膜された膜厚の合計、を測定する。すなわち膜厚測定部310は薄膜の厚さを直接測定できることから測定精度は比較的高く、その反面リアルタイム性に欠けており、測定結果を膜厚制御に反映するまでにタイムラグが発生する。
図7は、膜厚制御システムの構成を模式的に示すブロック図である。膜厚制御部350が、成膜レートモニタ205及び膜厚測定部310の測定結果に基づいて各成膜室の成膜制御部206に制御指令を送信する。成膜レートモニタ205が測定した成膜レート情報は、その成膜レートモニタ205が配置された真空チャンバ207内での膜厚のリアルタ
イム制御に利用できる。膜厚制御部350は、成膜制御部206を制御する制御部として機能する。
また膜厚測定部310が測定した膜厚情報はフィードバック制御に利用できる。フィードバック制御は、膜厚制御部350が、基板の搬送方向(矢印F)において膜厚測定部310よりも上流側の成膜室の成膜条件を制御することによって、後続の基板Ssの膜厚を調整する制御である。膜厚制御部350はリアルタイム制御とフィードバック制御のいずれか一方のみを実施してもよいし、両方の制御を実施してもよい。また、成膜室ごと又はユニットごとに、制御方法を異ならせてもよい。
図8は、製造開始後の各タイミングにおける処理の一例を示すチャートである。本図を用いて、成膜レートモニタ205と膜厚測定部310による測定結果が、どのタイミングで成膜制御に適用されるかを説明する。
図中、上段は、成膜室EV11で第1膜を成膜される基板の番号(S1,S2,S3…)を示す。各基板の処理の間には、基板入れ替え等のインターバル時間(I)が置かれる。中段は、第1の基板S1が存在するチャンバと、そのチャンバで基板S1が受ける処理の内容を示す。便宜上、第1層の成膜時間、第2層の成膜時間、バッファ時間、及び、パス室での測定時間は、各々同じ長さであり、基板S1は、移動時間(M)の間にチャンバ間を移るものとする。また、インターバル時間(I)と移動時間(M)は同じ長さとする。
図中、下段は、成膜制御部206が成膜室EV11で第1層の膜厚制御に用いる情報を示す。番号「AX1,AX2,AX3…」は、基板SXの成膜中に成膜レートモニタ205により測定された成膜レートを表し、例えば番号「A11」は基板S1の成膜中に測定された1回目の成膜レートを意味する。成膜制御部206は、成膜室EV11内で測定した成膜レートをリアルタイムで膜厚制御に使用する。また、番号「TX」は、基板SX上に成膜された第1層の膜厚を、膜厚測定部310が測定した結果を表し、例えば番号「T1」は基板S1の膜厚を意味する。膜厚は、基板への成膜が完了してパス室PS1まで移動した後でなければ測定できないため、成膜から膜厚測定までの間にタイムラグが発生する。図示例の膜厚測定部310は、時刻t41以降にならないと基板SXの膜厚を測定できない。そのため、成膜制御部206が基板S1の膜厚T1を利用できるのは、5枚目の基板S5の成膜時以降である。
製造開始(時刻t=0)後、時刻t11において基板S1が成膜室EV11に搬入され、第1膜の成膜が開始される。同時に成膜レートモニタ205も測定を開始し、時刻t11~t13にて順次、成膜レートが測定される。成膜制御部206は得られた成膜レートを用いてリアルタイム制御を行う。なお便宜上、1枚の基板に対する成膜レートの測定回数は3回としたが、測定回数や測定周期は任意に設定できる。一方で成膜制御部206は、膜厚情報については、基板S1の4枚前の基板(基板S-3)に対する測定結果を利用する。以降、基板Sの入れ替えごとに同様の処理を繰り返す。
<膜厚制御手法>
膜厚制御部350および成膜制御部206は、蒸発源ユニット203のスキャン速度と、蒸発源ユニット203からの蒸着材料の蒸発レートを制御することにより、基板Sに形成される薄膜の膜厚を制御する。成膜制御部206は、移動機構204の駆動部204bを制御することで蒸発源ユニット203のスキャン速度を変更する。スキャン速度制御は応答性が速く、細かな調整が可能である。しかし、スキャン速度のみで膜厚を制御すると、スキャン速度を遅くした場合のタクトタイムが長くなる課題がある。
また、膜厚制御部350および成膜制御部206は、ヒータ246に流れる電流を制御してヒータ246の温度を変更することで、蒸着材料の蒸発レート制御を行う。ただし、ヒータ246の温度制御は応答性が遅く、電流を制御してから実際に温度が変化するまでのタイムラグがある。また、温度変化を早めるために電流の制御量を大きくすると、オーバーシュートやアンダーシュートが発生しやすくなる。
以上のように、成膜レートモニタ205及び膜厚測定部310を用いた膜厚測定には夫々特徴があり、成膜レートモニタ205はリアルタイム性がある一方で精度の限界がある。また膜厚測定部310は精度が比較的高い一方で、成膜完了後に膜厚測定を行うためリアルタイム性がない。また膜厚制御についても、蒸発源ユニット203のヒータ温度制御とスキャン速度制御には夫々特徴があり、スキャン速度制御は応答性が速い一方でタクトタイムが低下する可能性があり、ヒータ温度制御は蒸着材料の放出量自体を変化させられる反面で応答性が遅い。
そこで本実施例では、膜厚測定においては成膜レートモニタ205による測定と膜厚測定部310による測定を組み合わせるとともに、膜厚制御においてもスキャン速度制御とヒータ温度制御を組み合わせることにより、効率のよい膜厚制御を可能とする。順次、測定方法と制御方法の組み合わせに応じた膜厚制御について述べる。表1は、以下の説明で用いるパラメータの凡例である。ここで「ターゲット」とは制御の目標となる値であり、例えばTtarget=100であれば膜厚100[オングストローム]が目標値となる。成膜制御部
は、ターゲットから許容誤差の範囲内に収まるように制御を行う。
Figure 0007301896000001
(1)膜厚に基づくスキャン速度制御
膜厚測定部310が測定した膜厚情報をスキャン速度に反映するフィードバック制御について説明する。式(1)は、成膜室におけるスキャン速度の目標値(Vscan_target)を、現在のスキャン速度(Vscan_now)と補正係数Kに基づいて算出する数式である。こ
こで、式(2)に示すように、補正係数Kは測定された膜厚(Tmeasure)とターゲットの膜厚(Ttarget)の比である。
Figure 0007301896000002
例えばTtarget=100[オングストローム]、Tmeasure=150[オングストローム]である
場合、膜厚が目標値を超えているためスキャン速度を速くする必要がある。そこで、スキャン速度が1/K1倍、すなわち1.5倍となるように駆動部204bを制御すればよい。
なお、膜厚情報が反映されるのは、測定対象の基板よりも複数枚、後続の基板である。そのため成膜室内部の状況に変化があった場合は、式(1)で得られたスキャン速度では
膜厚のターゲット値を達成できない可能性がある。その場合、式(1)で得られたスキャン速度をさらに補正してもよい。例えば連続する複数の基板の膜厚が一様に変化する(膜厚が徐々に増加または減少する)場合は、その傾向を考慮した外挿処理を行って測定膜厚(Tmeasure)を修正した後、式(1)に適用すればよい。
(2)実レートに基づくスキャン速度制御
成膜レートモニタ205が測定した実レートをスキャン速度に反映するリアルタイム制御について説明する。式(3)は、成膜室におけるスキャン速度の目標値(Vscan_target)を、現在のスキャン速度(Vscan_now)と補正係数Kに基づいて算出する数式である
。ここで、式(4)に示すように、補正係数Kは測定された蒸着レート(Ameasure)とターゲットの蒸着レート(Atarget)の比である。
Figure 0007301896000003
例えばAtarget=1[オングストローム/s]、Ameasure=0.8[オングストローム/s]であ
る場合、膜厚が目標値に満たないため、スキャン速度を遅くする必要がある。そこで、スキャン速度が1/K2倍、すなわち0.8倍となるように駆動部204bを制御し、単位面積あ
たりの蒸着材料の放出量を増やせばよい。
蒸着レートは、上記の通り成膜中に任意の回数測定できるため、式(3)を用いたスキャン速度の修正はリアルタイムに実行可能である。例えば、1枚の基板の成膜中に蒸発源ユニット203がチャンバ内を複数回往復する場合、その往復ごと、又は片道ごとにスキャン速度を変更してもよい。
(3)膜厚及び実レートに基づくスキャン速度制御
膜厚及び実レートの双方をスキャン速度に反映する制御について説明する。式(5)は、成膜室におけるスキャン速度の目標値(Vscan_target)を、現在のスキャン速度(Vscan_now)と補正係数Kに基づいて算出する数式である。また式(6)は、補正係数K
を、測定された膜厚(Tmeasure)とターゲットの膜厚(Ttarget)の比(すなわち補正係
数K)と、測定された蒸着レート(Ameasure)とターゲットの蒸着レート(Atarget)
の比(すなわち補正係数K)と、を用いた加重平均によって算出する式である。式(6)中、α及びβは加重平均の重みを表しており、ユーザ等により設定される値である。このような重み付け処理により、スキャン速度制御における、蒸着材料の放出量の寄与の度合いと、成膜された膜厚の寄与の度合いとの比率を変更することができる。かかる寄与の比率の制御は、蒸着レート制御においても実行可能である。
Figure 0007301896000004
上述のように、1枚の基板の成膜中において、膜厚に関わる補正係数Kは一定であるが、実レートに関わる補正係数Kはリアルタイムに制御される。したがって、式(5)を用いた制御においても、実レート測定結果を反映してリアルタイム制御を実施可能であ
る。
式(5)では、膜厚と実レートを同等に考慮してスキャン速度を算出していたが、式(1)に従って算出された膜厚に基づくスキャン速度をベースとして、実レート測定結果(Ameasure)に基づく補正を行うようにしてもよい。その場合は例えば、過去複数回の実レート測定結果の平均値と、直前の実レート測定結果との比や差を用いて補正することができる。これにより、蒸発源ユニット203の加熱などの影響で実レートが一定の方向に変化している場合でも、所望の成膜条件を維持することができる。
(4)膜厚に基づく蒸着レート制御
膜厚測定部310が測定した膜厚情報を蒸着レートに反映するフィードバック制御について説明する。式(7)は、成膜室における蒸着レートの目標値(Atarget)を、実レー
ト(Anow)と補正係数Kに基づいて算出する数式である。補正係数Kは、上記式(2)により算出される。
Figure 0007301896000005
例えばTtarget=100[オングストローム]、Tmeasure=150[オングストローム]である
場合、膜厚が目標値を超えているため蒸着レートを下げる必要がある。そこで、リアルタイム制御において実レート(Anow)がK1≒0.67倍となるようにヒータ温度を下げる等の制御を行えばよい。
本実施例の成膜制御部206は、蒸発源ユニット203のヒータ246に流れる電流を制御することにより、ヒータ246の温度を変化させる。その結果、蒸着材料242の放出量が増加し(又は減少し)、蒸着レートが上昇する(又は下降する)。所望の蒸発レートを実現するために、どの程度の電流制御を行えばよいかは、蒸発源ユニット203の特性や成膜室内部の状況によって異なる。そこで成膜制御部206は、電流制御量と蒸着レート変化の関係を表すテーブルや数式をメモリに保存しておき、それを参照して制御を行ってもよい。
なお、蒸着レートの変更は、ルツボの内部空間もしくは開口部、またはルツボの外部に、開閉可能なシャッタを設けておき、その開度を変更することによっても実現可能である。そこで本実施例においても、ヒータ246の温度制御の代わりに、あるいはヒータ246の温度制御とともに、シャッタ開度を変更することで蒸着レートを変更してもよい。
なお、膜厚情報が反映されるのは、測定対象の基板よりも複数枚後の基板である。そのため成膜室内部の状況に変化があった場合は、式(7)で得られた蒸着レートでは膜厚のターゲット値を達成できない可能性がある。その場合、式(7)で得られた蒸着レートをさらに補正してもよい。
(5)実レートに基づく蒸着レート制御
成膜レートモニタ205が測定した実レートを用いて蒸着レートを制御することは、本実施例のような成膜装置において一般に行われる処理である。そこで成膜制御部206は、測定された蒸着レート(Ameasure)がターゲットの蒸着レート(Atarget)に近づくよ
うに、ヒータ温度を変化させて放出量を増加または減少させる。この処理はリアルタイムに実行可能であり、例えば成膜レートモニタ205の測定ごとに制御を行ってもよい。
(6)膜厚及び実レートに基づく蒸着レート制御
膜厚及び実レートの双方を蒸着レートに反映する制御について説明する。式(8)は、
膜厚に関する補正係数Kとして式(2)と同じく「Tratget/Tmeasure」を用いて、成膜室における表示レート(Ameasure)を制御して、ターゲットの蒸着レート(Atarget)を
実現するための数式である。
Figure 0007301896000006
例えばTtarget=100[オングストローム]、Tmeasure=80[オングストローム]、すなわち、K1=1.25である場合、膜厚が目標値に満たないため蒸着レートを上げる必要がある。
そこで、表示レート(Ameasure)が1.25倍となるようにヒータ温度等を制御すればよい。
上記(1)~(3)ではスキャン速度を制御し、(4)~(6)ではヒータ温度を変更することによって蒸着レートを制御した。前述したように、スキャン速度制御と蒸着レート精度には、制御への応答性や、タクトタイムへの影響などの点で各々特徴があるため、両者を適宜組み合わせて制御することが好ましい。
図9は、効率と精度を向上させる制御の一例を説明するための概念的なグラフである。図9(a)は、成膜中の制御をヒータ温度の変更のみによって行う従来の例である。この例では、時刻t0で基板Sの成膜処理を開始したのち、成膜制御部206が、時刻t1におけるAmeasure値に基づいて蒸着レートを上げる必要があると判断し、ヒータ温度を上昇させるために電流を増加させている。しかしながら、制御への応答性が遅いため、目標の蒸着レートに到達するまではタイムラグ(W1)が発生する。さらに、目標到達後にオーバーシュートが発生する可能性もある(W2)。また、オーバーシュートを打ち消すためにヒータに流れる電流を減少させると、アンダーシュートが発生する可能性がある(W3)。さらに、ハンチングを起こす可能性もある。一方、オーバーシュート量を小さくするために、ヒータ温度を徐々に変更するようにした場合、温度上昇までの時間が長くなりタクトタイムが悪化するおそれがある。
図9(b)は、ヒータ温度制御の応答性の遅さを補うために、ヒータ温度の変更による蒸着レート制御に、スキャン速度制御を組み合わせた例である。この例では、時刻t0で基板Sの成膜処理を開始した後、成膜制御部が、時刻t3におけるAmeasure値に基づいて蒸着レートを上げる必要があると判断し、ヒータ温度を上昇させるために電流を増加させる。ただし、上記のオーバーシュートを発生させないために、温度上昇カーブを緩やかにしている(実線グラフおよび左側の縦軸を参照)。さらに成膜制御部は、温度上昇に必要な時間の長期化を補うために、スキャン速度を低下させる(一点鎖線グラフおよび右側の縦軸を参照)。そして、蒸着レートが目標値に十分近づいたと判断したら(W4)、スキャン速度を元に戻す。したがって、オーバーシュートやハンチングを抑制できる。
[実施例2]
ここでは、クラスタ型ではない電子デバイス製造装置に対する膜厚制御を行う例について説明する。図10は本実施例の電子デバイス製造装置であって、アライメントされ密着された基板SとマスクMを搬送しながら成膜する、インライン型の装置を示している。
製造装置250は、マスク搬入室90と、アライメント室100(マスク取付室)と、複数の成膜室110a、110bと、反転室111a、111bと、搬送室112と、マスク分離室113と、基板分離室114と、キャリア搬送室115と、マスク搬送室116と、基板搬入室117(基板取付室)と、膜厚測定室118の各チャンバを有する。基板キャリア9に保持された基板Sは破線で示された経路に沿って、マスクMは点線で示された経路に沿って、各チャンバ内を搬送される。
すなわち、基板搬入室117で基板キャリア9に保持されて破線の経路に搬入された基板Sは、反転室111aで反転機構120aにより姿勢を反転され、マスク搬入室90でマスクMに搭載される。次いでアライメント室100において基板SとマスクMとのアライメント及び密着が行われた後、成膜室110a、110bを搬送されつつ、成膜室に設けられた蒸発源ユニット203から放出された蒸着材料による成膜を受ける。なお、基板キャリアには成膜レートモニタ205が取り付けられている。そのため放出された蒸着材料は、基板Sの被成膜面と同時に成膜レートモニタ205にも付着する。これにより成膜中の成膜レートが測定される。また、成膜室110aと110bの途中に設けられた膜厚測定室118には、光学的な膜厚測定を行う膜厚測定部310が配置されており、基板キャリア9を一時的に停止させて、成膜室110aにおける成膜後の薄膜の厚さを測定する。
続いて基板キャリアに保持された基板Sは、搬送室112に搬入される。搬送室112にも膜厚測定部310が配置されており、成膜室110bにおける成膜後の薄膜の厚さを測定する。次いで基板Sはマスク分離室113でマスクMを分離した後、反転室111bで反転機構120bにより姿勢を反転し、基板分離室114にて基板キャリア9から分離されて製造装置外部に搬出される。一方、基板キャリア9はキャリア搬送室115を経て基板搬入室117に搬送され、次の基板Sを保持する。
また、製造装置は不図示の膜厚制御部350及び成膜制御部206を備えている。本実施例の構成を持つ製造装置において、基板キャリア9に搭載された成膜レートモニタ205は成膜中の成膜レートを測定し、膜厚測定部310は成膜後の膜厚を光学的に測定する。そして、膜厚制御部350及び成膜制御部206は、成膜レート及び膜厚の測定結果を用いて、基板キャリア9の搬送速度を調整することにより成膜室内に配置された蒸発源ユニット203と基板Sの相対速度を制御するとともに、蒸発源ユニット203に投入される電流を制御することにより蒸着材料の蒸発量を制御する。したがって、上記実施例と同様の原理により、精度のよい膜厚制御が可能になる。
[実施例3]
(有機電子デバイスの製造方法)
本実施例では、成膜装置を用いた有機電子デバイスの製造方法の一例を説明する。以下、有機電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。まず、製造する有機EL表示装置について説明する。図11(a)は有機EL表示装置60の全体図、図11(b)は一つの画素の断面構造を表している。
図11(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本図の有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。
図11(b)は、図11(a)のA-B線における部分断面模式図である。画素62は、基板10上に、第1電極(陽極)64と、正孔輸送層65と、発光層66R,66G,66Bのいずれかと、電子輸送層67と、第2電極(陰極)68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R,66G,66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機
EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。
発光層66R,66G,66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、第1電極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と第2電極68は、複数の発光素子62R,62G,62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極64と第2電極68とが異物によってショートするのを防ぐために、第1電極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層Pが設けられている。
次に、電子デバイスとしての有機EL表示装置の製造方法の例について具体的に説明する。まず、有機EL表示装置を駆動するための回路(不図示)および第1電極64が形成された基板10を準備する。
次に、第1電極64が形成された基板10の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。
次に、絶縁層69がパターニングされた基板10を第1の成膜装置に搬入し、基板支持ユニットにて基板を支持し、正孔輸送層65を、表示領域の第1電極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。ここで、本ステップでの成膜や、以下の各レイヤーの成膜において用いられる成膜装置は、上記各実施例のいずれかに記載された成膜装置である。
次に、正孔輸送層65までが形成された基板10を第2の成膜装置に搬入し、基板支持ユニットにて支持する。基板とマスクとのアライメントを行い、基板をマスクの上に載置し、基板10の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。本例によれば、マスクと基板とを良好に重ね合わせることができ、高精度な成膜を行うことができる。
発光層66Rの成膜と同様に、第3の成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。
電子輸送層67までが形成された基板をスパッタリング装置に移動し、第2電極68を成膜し、その後プラズマCVD装置に移動して保護層Pを成膜して、有機EL表示装置60が完成する。
絶縁層69がパターニングされた基板10を成膜装置に搬入してから保護層Pの成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。
本発明に係る膜厚測定方法や、膜厚を用いた成膜制御方法は、発光層を始めとした上記
の各層の形成において好適に利用できる。その結果、基板への成膜プロセスにおける膜厚の測定および制御の精度を向上させた、良好な成膜制御が可能となる。したがって、基板への有機材料の成膜を行う工程と、基板への電極部材の形成を行う工程を含む、電子デバイスの製造方法を良好に実施できる。
203:蒸発源ユニット、205:成膜レートモニタ、206:成膜制御部、208:蒸発源、310:膜厚測定部

Claims (18)

  1. 基板に蒸着材料を蒸着して成膜を行う成膜装置であって、
    前記基板に対して相対移動しながら前記蒸着材料を放出する蒸発源と、
    前記蒸発源からの前記蒸着材料の放出量を制御する第1の制御手段と、
    前記基板と前記蒸発源の相対速度を制御する第2の制御手段と、
    成膜中に、前記蒸発源からの前記蒸着材料の放出量を測定するモニタ手段と、
    成膜後に、前記基板に蒸着された膜の膜厚を測定する膜厚測定手段と、
    前記モニタ手段により測定された前記放出量および前記膜厚測定手段により測定された前記膜厚に基づいて、前記第1の制御手段および前記第2の制御手段を制御する制御部と、
    を備え
    前記第1の制御手段が目標値に向けた前記放出量の制御を開始した後、前記放出量の目標値に対する差に応じて、前記第2の制御手段が前記相対速度を制御する
    ことを特徴とする成膜装置。
  2. 前記制御部は、前記モニタ手段が成膜中の前記基板について測定した前記放出量を、当該成膜中の前記基板への成膜時の制御に適用するリアルタイム制御を行い、
    前記制御部は、前記膜厚測定手段が測定した前記膜厚を、測定対象の前記基板よりも後続の基板への成膜時の制御に適用するフィードバック制御を行う
    ことを特徴とする請求項1に記載の成膜装置。
  3. 前記制御部は、前記膜厚測定手段によって測定される前記膜厚が目標値に近づくように、前記第1の制御手段および前記第2の制御手段を制御する
    ことを特徴とする請求項1または2に記載の成膜装置。
  4. 前記膜厚測定手段によって測定された前記膜厚が目標値に満たない場合は、前記第1の制御手段は、前記蒸着材料の放出量を増加させる制御を行い、
    前記膜厚測定手段によって測定された前記膜厚が目標値を超える場合は、前記第1の制御手段は、前記蒸着材料の放出量を減少させる制御を行う
    ことを特徴とする請求項1から3のいずれか1項に記載の成膜装置。
  5. 前記膜厚測定手段によって測定された前記膜厚が目標値に満たない場合は、前記第2の制御手段は、前記相対速度を遅くする制御を行い、
    前記膜厚測定手段によって測定された前記膜厚が目標値を超える場合は、前記第2の制御手段は、前記相対速度を速くする制御を行う
    ことを特徴とする請求項1から4のいずれか1項に記載の成膜装置。
  6. 前記制御部は、前記モニタ手段によって測定される前記放出量が、目標値に近づくように、前記第1の制御手段および前記第2の制御手段を制御する
    ことを特徴とする請求項1から5のいずれか1項に記載の成膜装置。
  7. 前記モニタ手段によって測定された前記放出量が目標値に満たない場合は、前記第1の制御手段は、前記蒸着材料の放出量を増加させる制御を行い、
    前記モニタ手段によって測定された前記放出量が目標値を超える場合は、前記第1の制御手段が前記蒸着材料の放出量を減少させるように、前記制御部が前記第1の制御手段を制御する、
    ことを特徴とする請求項1から6のいずれか1項に記載の成膜装置。
  8. 前記モニタ手段によって測定された前記放出量が目標値に満たない場合は、前記第2の制御手段は、前記相対速度を遅くする制御を行い、
    前記モニタ手段によって測定された前記放出量が目標値を超える場合は、前記相対速度を速くする制御を行う
    ことを特徴とする請求項1から7のいずれか1項に記載の成膜装置。
  9. 前記制御部は、前記モニタ手段により測定された前記放出量および前記膜厚測定手段により測定された前記膜厚に基づいて、前記第1の制御手段を制御する
    ことを特徴とする請求項1から7のいずれか1項に記載の成膜装置。
  10. 前記制御部は、前記モニタ手段により測定された前記放出量および前記膜厚測定手段により測定された前記膜厚に基づいて、前記第2の制御手段を制御する
    ことを特徴とする請求項1から7のいずれか1項に記載の成膜装置。
  11. 前記制御部は、測定された前記放出量の寄与と測定された前記膜厚の寄与と比率を変更する
    ことを特徴とする請求項9または10に記載の成膜装置。
  12. 前記モニタ手段は、水晶振動子を有する成膜レートモニタを含む
    ことを特徴とする請求項1から11のいずれか1項に記載の成膜装置。
  13. 前記膜厚測定手段は、前記基板に成膜された膜の膜厚を光学的に測定するセンサを含むことを特徴とする請求項1から12のいずれか1項に記載の成膜装置。
  14. 前記モニタ手段が配置された成膜室と、
    前記膜厚測定手段が配置されたチャンバと、を備え、
    前記成膜室では成膜中の前記基板に対して前記モニタ手段による測定が行われ、
    前記チャンバには成膜後の前記基板が搬入され、搬入された当該基板に対して前記膜厚測定手段による測定が行われる
    ことを特徴とする請求項1から13のいずれか1項に記載の成膜装置。
  15. 前記成膜室が第2の成膜室とともにクラスタ型ユニットを構成し、
    前記チャンバには前記クラスタ型ユニットから成膜後の前記基板が共通に搬入される
    ことを特徴とする請求項14に記載の成膜装置。
  16. 前記基板を保持する基板キャリアをさらに有し、
    前記成膜室は、前記基板を前記基板キャリアごと搬送しながら成膜を行うインライン型の成膜室であり、
    前記チャンバには、前記成膜室で前記基板への成膜を終えた後の前記基板キャリアが搬入され、
    前記基板キャリアは、前記モニタ手段を備えており、前記成膜室における成膜中に前記蒸着材料の放出量を測定する
    ことを特徴とする請求項14に記載の成膜装置。
  17. 基板に対して相対移動しながら蒸着材料を放出して前記基板に成膜を行う蒸発源と、モニタ手段と、膜厚測定手段と、を備える成膜装置の制御方法であって、
    成膜中に、前記モニタ手段により前記蒸発源からの前記蒸着材料の放出量を測定する工程と、
    成膜後に、前記膜厚測定手段により前記基板に蒸着された膜の膜厚を測定する工程と、
    前記モニタ手段により測定された前記放出量および前記膜厚測定手段により測定された前記膜厚に基づいて、前記蒸発源からの前記蒸着材料の放出量と、前記基板と前記蒸発源の相対速度と、を制御する工程と、
    を有し、
    前記制御する工程においては、目標値に向けた前記放出量の制御を開始した後、前記放出量の目標値に対する差に応じて、前記相対速度を制御する
    ことを特徴とする成膜装置の制御方法。
  18. 請求項17に記載の制御方法を用いて前記基板に有機材料の成膜を行う工程と、
    前記基板に電極部材を形成する工程と、
    を有することを特徴とする電子デバイスの製造方法。
JP2021033791A 2021-03-03 2021-03-03 成膜装置、成膜装置の制御方法、および電子デバイスの製造方法 Active JP7301896B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021033791A JP7301896B2 (ja) 2021-03-03 2021-03-03 成膜装置、成膜装置の制御方法、および電子デバイスの製造方法
CN202210154432.2A CN115011929B (zh) 2021-03-03 2022-02-21 成膜装置、成膜装置的控制方法以及电子器件的制造方法
KR1020220026000A KR20220124640A (ko) 2021-03-03 2022-02-28 성막 장치, 성막 장치의 제어 방법, 및 전자 디바이스의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021033791A JP7301896B2 (ja) 2021-03-03 2021-03-03 成膜装置、成膜装置の制御方法、および電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2022134581A JP2022134581A (ja) 2022-09-15
JP7301896B2 true JP7301896B2 (ja) 2023-07-03

Family

ID=83066473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021033791A Active JP7301896B2 (ja) 2021-03-03 2021-03-03 成膜装置、成膜装置の制御方法、および電子デバイスの製造方法

Country Status (3)

Country Link
JP (1) JP7301896B2 (ja)
KR (1) KR20220124640A (ja)
CN (1) CN115011929B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406489B (zh) * 2022-11-01 2023-01-24 山东申华光学科技有限公司 一种镀膜机镀膜的监测预警方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247113A (ja) 2003-02-13 2004-09-02 Sony Corp 有機電界発光素子の製造装置及び有機電界発光素子の製造方法
JP2005322612A (ja) 2004-04-08 2005-11-17 Tohoku Pioneer Corp 有機el素子の製造方法及び製造装置
JP2019065391A (ja) 2017-09-29 2019-04-25 キヤノントッキ株式会社 水晶振動子の寿命判定方法、膜厚測定装置、成膜方法、成膜装置、及び電子デバイス製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935691B2 (ja) * 2001-07-18 2007-06-27 アルプス電気株式会社 光学薄膜の成膜装置及び成膜方法並びに光学フィルタ
JP2005281858A (ja) * 2004-03-03 2005-10-13 Sanyo Electric Co Ltd 堆積厚測定方法、材料層の形成方法、堆積厚測定装置および材料層の形成装置
JP5888919B2 (ja) * 2010-11-04 2016-03-22 キヤノン株式会社 成膜装置及び成膜方法
JP2014070240A (ja) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp 蒸着装置、および、蒸着制御方法
JP7301578B2 (ja) * 2019-03-29 2023-07-03 キヤノントッキ株式会社 成膜装置及び成膜方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247113A (ja) 2003-02-13 2004-09-02 Sony Corp 有機電界発光素子の製造装置及び有機電界発光素子の製造方法
JP2005322612A (ja) 2004-04-08 2005-11-17 Tohoku Pioneer Corp 有機el素子の製造方法及び製造装置
JP2019065391A (ja) 2017-09-29 2019-04-25 キヤノントッキ株式会社 水晶振動子の寿命判定方法、膜厚測定装置、成膜方法、成膜装置、及び電子デバイス製造方法

Also Published As

Publication number Publication date
JP2022134581A (ja) 2022-09-15
CN115011929A (zh) 2022-09-06
KR20220124640A (ko) 2022-09-14
CN115011929B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US10431779B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
WO2011034011A1 (ja) 蒸着方法および蒸着装置
JP7017619B2 (ja) 成膜装置、電子デバイスの製造装置、成膜方法、及び電子デバイスの製造方法
JP7009340B2 (ja) 成膜装置、成膜方法、及び電子デバイスの製造方法
KR102184356B1 (ko) 성막장치, 성막방법, 및 전자 디바이스 제조방법
KR102049668B1 (ko) 성막 장치
JP7301896B2 (ja) 成膜装置、成膜装置の制御方法、および電子デバイスの製造方法
KR102617764B1 (ko) 성막 장치, 성막 방법, 및 전자 디바이스의 제조 방법
JP7329005B2 (ja) 成膜装置、成膜方法、及び電子デバイスの製造方法
JP7150776B2 (ja) 成膜装置及び電子デバイスの製造方法
JP7291098B2 (ja) 成膜装置、成膜方法、及び電子デバイスの製造方法
JP7431088B2 (ja) 成膜装置、成膜方法、及び電子デバイスの製造方法
JP7138673B2 (ja) 電子デバイスの製造方法、測定方法、及び、成膜装置
KR102659924B1 (ko) 막두께 측정 장치, 성막 장치, 막두께 측정 방법, 전자 디바이스의 제조 방법, 프로그램, 및 기억 매체
WO2024024266A1 (ja) 膜厚測定装置、成膜装置、膜厚測定方法及び電子デバイスの製造方法
JP7202971B2 (ja) 蒸発源装置、成膜装置、成膜方法および電子デバイスの製造方法
JP2022107969A (ja) 成膜装置、成膜方法及び電子デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R150 Certificate of patent or registration of utility model

Ref document number: 7301896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150