JP7285182B2 - 保管容器及び保管容器の設計方法 - Google Patents

保管容器及び保管容器の設計方法 Download PDF

Info

Publication number
JP7285182B2
JP7285182B2 JP2019170598A JP2019170598A JP7285182B2 JP 7285182 B2 JP7285182 B2 JP 7285182B2 JP 2019170598 A JP2019170598 A JP 2019170598A JP 2019170598 A JP2019170598 A JP 2019170598A JP 7285182 B2 JP7285182 B2 JP 7285182B2
Authority
JP
Japan
Prior art keywords
flow path
hole
tan
cos
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019170598A
Other languages
English (en)
Other versions
JP2021001860A (ja
Inventor
一人 前田
ひとみ 栗須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JP2021001860A publication Critical patent/JP2021001860A/ja
Application granted granted Critical
Publication of JP7285182B2 publication Critical patent/JP7285182B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Packages (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)

Description

本発明は、保管容器及び保管容器の設計方法に関する。
原子力発電所等では、原子炉圧力容器内の炉内構造物等を水中で切断解体し、処分容器へ充填した後、埋設処分施設等へ搬出する。特許文献1には、放射性廃棄物の処分方法が開示されている。具体的には、特許文献1の処分方法は、プール内において、放射性廃棄物を保管容器に収容し、当該保管容器を輸送用容器に収容した状態で、保管容器及び輸送用容器の内部の水を外部へ排出している。
特許第4954520号公報
従来の処分方法は、保管容器の内部に高線量の廃棄物を保管しているが、当該保管容器には水抜き穴(貫通穴)が形成されている。従来の保管容器は、水抜き穴から遮蔽欠損の影響を受ける可能性がある。このため、従来の処分方法では、保管容器を輸送容器に収容した後に水抜きを行っているが、遮蔽性能を低下させることなく、処分の作業を簡単化することが望まれている。
本発明は、このような問題に鑑みてなされたものであり、遮蔽性能を低下させることなく、処分の作業を簡単化することができる保管容器及び保管容器の設計方法を提供することを目的とする。
本発明の保管容器は、高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有する保管容器であって、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有することを特徴とする。
本発明の保管容器によれば、保管容器は、底部の内面と側壁部の内面との連接部から収容本体の外部へ貫通する貫通孔を収容本体に形成し、当該貫通孔に少なくとも1つの屈折部が形成される。これにより、保管容器は、収容本体に高線量物質を収容しても、貫通孔の屈折部によって遮蔽欠損を抑制した状態で、貫通孔から収容本体の内部の液体、気体等を排出することができる。その結果、保管容器は、収容本体に貫通孔を設けても、他の容器等に収容する必要がなくなるので、遮蔽性能を低下させることなく、処分の作業を簡単化することができる。
また、本発明の保管容器では、前記側壁部は、複数の側面と、隣り合う側面同士を所定の角度で連接する角部と、を有し、前記貫通孔は、前記底部の内面と前記角部の内面との前記連接部に形成されてもよい。
この構成によれば、保管容器は、側壁部の角部と底部の内面との連接部に貫通孔が形成される。これにより、保管容器は、矩形状の収容本体の場合、側壁よりも厚みのある角部に貫通孔を形成することができる。すなわち、保管容器は、収容本体の内面から外面までの距離が最大となる箇所に貫通孔を形成することができる。その結果、保管容器は、貫通孔を屈折させる範囲を確保できるので、遮蔽欠損をさらに抑制することができる。
また、本発明の保管容器では、前記収容本体は、前記収容本体の内部に気体を吸気する吸気孔をさらに有し、前記吸気孔は、前記収容本体の中心点を基準として、前記貫通孔と対向する前記収容本体の部分に形成されてもよい。
この構成によれば、保管容器は、貫通孔と吸気孔とを中心点を基準として対向するように収容本体に形成することができる。その結果、保管容器は、吸気孔から吸気して貫通孔から排出する気体を収容本体の内部で循環させることができるので、収容本体の内部を効率良く乾燥させることができる。
また、本発明の保管容器では、前記貫通孔は、前記収容本体が液体を収容している場合、当該液体を前記収容本体の外部に排出し、前記収容本体が前記吸気孔から前記気体が吸気されている場合、当該気体を前記収容本体の外部に排出してもよい。
この構成によれば、保管容器は、収容本体が液体を収容している場合、貫通孔から液体を収容本体の外部に排出することができる。保管容器は、収容本体が吸気孔から気体が吸気されている場合、貫通孔から気体を収容本体の外部に排出することができる。その結果、保管容器は、貫通孔から収容本体の内部の気体及び液体を排出することが可能となるので、遮蔽性能を低下させることなく、処分の作業を簡単化することができる。
また、本発明の保管容器では、前記貫通孔は、tanαとT/Tとの関係がtanα≦T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 0007285182000001

で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)-(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T2-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含む。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
η:T+d・sinθの値
β:b+(T-a)・tanαの値
ε:β+d・(cosθ-1/cosα)の値
A’:(β+d・cosθ-T・tanθ)/(β-η・tanθ)の値
B’:d/(cosα・(β-η・tanθ))の値
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ1:第1流路の欠損により影響を受ける部位のγ線束
φ2:第2流路の欠損により影響を受ける部位のγ線束
この構成によれば、保管容器は、貫通孔に関する距離t、直線P及び直線Pが基準板厚T以上であることを示す評価式を満たすように、貫通孔の幾何学条件を決定することができる。その結果、保管容器は、高線量物質を収容した収容本体の線量を考慮した幾何学条件に基づく貫通孔を形成することで、当該貫通孔による遮蔽性能の低下を抑制することができる。
また、本発明の保管容器では、前記貫通孔は、tanαとT/Tとの関係がtanα>T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 0007285182000002

で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含む。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
β:b+(T-a)・tanαの値
ε:β+d・(cosθ-1/cosα)の値
A″:(β-d/cosα-η・tanθ)/(ε-T・tanθ)
B″:d/(cosα・(T・tanα-ε))
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ:第1流路の欠損により影響を受ける部位のγ線束
φ:第2流路の欠損により影響を受ける部位のγ線束
この構成によれば、保管容器は、貫通孔に関する距離t、直線P及び直線Pが基準板厚T以上であることを示す評価式を満たすように、貫通孔の幾何学条件を決定することができる。その結果、保管容器は、高線量物質を収容した収容本体の線量を考慮した幾何学条件に基づく貫通孔を形成することで、当該貫通孔による遮蔽性能の低下を抑制することができる。
また、本発明の保管容器では、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、前記屈折部は、前記第1流路と前記第2流路とが連接する前記貫通孔の部分であってもよい。
この構成によれば、保管容器は、鉛直方向と交わる方向へ連接部から延びる第1流路と、第1流路から屈折しかつ収容本体の外部へ延びる第2流路とを屈折部で連接した貫通孔を収容本体に形成することができる。その結果、保管容器は、第1流路と第2流路との屈折によって遮蔽性能の低下を抑制することができるとともに、連接部から第1流路への液体の排出の効率を向上させることができる。
本発明の保管容器の設計方法は、高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有する保管容器の設計方法であって、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、tanαとT/Tとの関係がtanα≦T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 0007285182000003

で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)-(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T2-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
η:T+d・sinθの値
β:b+(T-a)・tanαの値
ε:β+d・(cosθ-1/cosα)の値
A’:(β+d・cosθ-T・tanθ)/(β-η・tanθ)の値
B’:d/(cosα・(β-η・tanθ))の値
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ1:第1流路の欠損により影響を受ける部位のγ線束
φ2:第2流路の欠損により影響を受ける部位のγ線束
本発明の保管容器の設計方法は、高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有する保管容器の設計方法であって、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、tanαとT/Tとの関係がtanα>T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 0007285182000004

で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
β:b+(T-a)・tanαの値
ε:β+d・(cosθ-1/cosα)の値
A″:(β-d/cosα-η・tanθ)/(ε-T・tanθ)
B″:d/(cosα・(T・tanα-ε))
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ:第1流路の欠損により影響を受ける部位のγ線束
φ:第2流路の欠損により影響を受ける部位のγ線束
本発明によれば、遮蔽性能を低下させることなく、処分の作業を簡単化することができる保管容器及び保管容器の設計方法を提供することができる。
図1は、本実施形態に係る保管容器の一例を示す分解斜視図である。 図2は、本実施形態に係る保管容器の収容本体の上面を示す図である。 図3は、本実施形態に係る収容本体の側面を示す図である。 図4は、図2におけるA-A線の部分Bを拡大した断面図である。 図5は、図2におけるA-A線の部分Bを拡大した断面部分のγ線束の一例を示す図である。 図6は、本実施形態に係る保管容器における貫通孔を決定する一例を説明するための図である。 図7は、本実施形態に係る保管容器における貫通孔の成立性測定結果の一例を示す図である。 図8は、本実施形態に係る保管容器における貫通孔の実施例1を示す図である。 図9は、本実施形態に係る保管容器における貫通孔の実施例2を示す図である。 図10は、本実施形態に係る保管容器における貫通孔を決定する他の例を説明するための図である。 図11は、本実施形態に係る保管容器を使用する一例を説明するための図である。 図12は、本実施形態に係る保管容器の乾燥処理を説明するための図である。
以下、本発明の実施形態について、添付図面を参照して詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態]
図1から図3の図面を参照しながら、本実施形態に係る保管容器1の構成の一例を説明する。図1は、本実施形態に係る保管容器の一例を示す分解斜視図である。図2は、本実施形態に係る保管容器1の収容本体10の上面を示す図である。図3は、本実施形態に係る収容本体10の側面を示す図である。
図1に示す一例では、保管容器1は、原子力発電所で発生した高線量物質等を収容する。高線量物質は、例えば、原子炉圧力容器の内部の炉内構造物を切断解体した物質等を含む。なお、図1に示す一例では、保管容器1は、外形を簡単化して図示している。実際には、保管容器1は、例えば、吊り具を係止するための構造等を有している。
高線量物質については、処分規制の見直しが進められており、廃棄体を受け入れる処分施設の受入基準が決まってない。このため、高線量物質を処分する処分容器の仕様が確定するまでは、解体した高線量物質を保管容器1で保管し、搬出時に基準化された処分容器へ収納したいとの要望がある。また、高線量物質は、水中で解体され、保管容器1に収容される。この場合、保管容器1は、水分が残存しており、放射線分解ガスによる水素爆発等が懸念される。このため、保管容器1は、安全確保の観点から、内部の乾燥処理を行う必要がある。
本実施形態では、遮蔽性能を低下させることなく、高線量物質の処分の作業を簡単化することができる保管容器1を実現する場合の一例について説明する。
保管容器1は、例えば、鉄、ステンレス鋼等の金属によって中空方形状に形成されている。保管容器1は、収容本体10と、蓋部20と、を有する。収容本体10は、高線量物質を内部に収容する。収容本体10の厚さは、例えば、遮蔽性、製作性等を考慮すると、100mmよりも大きいことが望ましい。蓋部20は、収容本体10の収容口10aを塞ぐように収容本体10に装着される。収容本体10と蓋部20とは、着脱可能に構成されている。保管容器1は、蓋部20が収容本体10の収容口10aを塞ぐように装着されることで、密封された中空方形状の容器となる。
図2及び図3に示すように、収容本体10は、底部11と、側壁部12と、貫通孔13と、吸気孔14と、を有している。底部11と側壁部12とは、上述した金属によって一体に形成されている。貫通孔13及び吸気孔14は、収容本体10を貫通する穴として形成されている。
底部11は、装着された蓋部20と対向し、高線量物質が設置される収容本体10の部分である。側壁部12は、底部11に連接しかつ底部11の鉛直方向に沿って延びるように形成されている。図3に示す一例では、鉛直方向は、Y軸方向である。側壁部12は、底部11の縁部に設けられた複数の側面121a、側面121b、側面121c及び側面121dを有する。側面121aと側面121cは対向している。側面121bと側面121dは対向している。側壁部12は、側面121a、側面121b、側面121c、側面121dの順で連接されて一連の側壁を形成している。
図3に示す一例では、側壁部12は、4つの角部122a、角部122b、角部122c及び角部122dを有する。角部122aは、側面121dと側面121aとを所定の角度で連接し、側壁部12における1つの内角の部分である。所定の角度は、例えば、直角、鋭角、鈍角等を含む。角部122bは、側面121aと側面121bとを所定の角度で連接し、側壁部12における1つの内角の部分である。角部122cは、側面121bと側面121cとを所定の角度で連接し、側壁部12における1つの内角の部分である。角部122dは、側面121aと側面121dとを連接し、側壁部12における1つの内角の部分である。
収容本体10は、底部11と側壁部12とによって高線量物質を収容する収容部10sを形成している。収容部10sは、収容本体10に蓋部20が装着されることで、遮蔽された状態になる。
貫通孔13は、底部11の内面11aと側壁部12の内面12eとの連接部15から収容本体10の外部へ貫通している。例えば、底部11の内面11aと側壁部12の内面12eとが直角に連結している場合、連接部15は、底部11の内面11aと側壁部12の内面12eとの間の内角の部分となる。例えば、底部11の内面11aと側壁部12の内面12eとが傾斜面を介して連結している場合、連接部15は、底部11の内面11aと側壁部12の内面12eとの間の傾斜面の部分となる。
貫通孔13は、収容本体10の内部から外部までの距離が最大となる箇所に形成されている。例えば、保管容器1が矩形状である場合、収容本体10は、4つの角部122a、角部122b、角部122c及び角部122dの部分が、側面部分よりも板厚が厚くなる。本実施形態では、貫通孔13は、側壁部12の角部122aにおける連接部15に形成されている。換言すると、連接部15は、底部11の内面11aと側壁部12の内面12eとの間の角の部分になっている。
貫通孔13は、少なくとも1つの屈折部13pを有する。屈折部13pは、例えば、貫通孔13を屈折させた部分、貫通孔13を円弧状に曲げた部分等を含む。貫通孔13は、第1流路13aと、第2流路13bと、を有する。第1流路13aと第2流路13bとは、連続した1つの流路を形成しており、幅方向における断面形状が同一となっている。第1流路13aは、Y軸方向(鉛直方向)と交わる方向へ連接部15から下方へ延びる流路となっている。第2流路13bは、第1流路13aから屈折しかつ収容本体10の外部へ延びる流路となっている。第2流路13bは、収容本体10の側面121dに貫通することで、保管容器1が置かれた状態でも、液体、気体等の排出を可能としている。屈折部13pは、第1流路13aと第2流路13bとを屈折した状態で連接した貫通孔13の部分となっている。また、本実施形態では、底部11の内面11aは、貫通孔13に向かって下るように傾斜させている。これにより、保管容器1は、収容部10sの液体を貫通孔13から排出する効率を向上させることができる。
吸気孔14は、収容本体10の内部に気体を吸気する穴である。吸気孔14は、貫通孔13と対向し、収容口10aの近傍の側壁部12の上部部分に形成されている。吸気孔14は、側壁部12の内面12eから外部に向かって下る傾斜穴として形成されている。吸気孔14は、貫通孔13と同様に屈折させてもよい。
本実施形態では、収容本体10は、貫通孔13と吸気孔14とが対向するように形成されている。例えば、収容本体10は、図2及び図3に示すように、中心点Cを基準として点対称となるように、貫通孔13と吸気孔14とを配置している。換言すると、収容本体10は、図3に示すように、側壁部12の角部122aと角部122cとを結ぶ対向線(A-A線)上に配置されている。貫通孔13と吸気孔14とは、A-A線に沿うように形成されている。これにより、収容本体10は、吸気孔14から収容部10sに吸気した気体を効率良く循環させ、当該気体を貫通孔13から排出させることを可能としている。
次に、図4の図面を参照しながら、本実施形態に係る保管容器1の貫通孔13の設計方法の一例を説明する。図4は、図2におけるA-A線の部分Bを拡大した断面図である。すなわち、図4に示す断面図は、側壁部12の1つの角部122aを斜めに切断した場合の収容本体10の断面を示している。収容本体10は、底部11及び側壁部12の厚みが厚さTとなっている。このため、収容本体10を斜めに切断した角部122aの厚みTは、収容本体10の厚さTに2の平方根を乗じた値より欠損部T5(図1参照)を引いた値となっている。
例えば、収容本体10は、縦横の長さが同じ、かつ底部11及び側壁部12の厚さが同じであることを前提とする。この場合、収容本体10の貫通孔13は、後述する評価式EAを満足するように、幾何学条件が決定される。幾何学条件は、例えば、第1流路13aのX軸方向の第1長さa、Y軸方向の第2長さb、XY平面における第2流路13bの傾きα、貫通孔13の径d等の条件を含む。収容本体10の貫通孔13は、幾何学条件を満たすように収容本体10における設置箇所、構造等が決定される。
以下、図4に示す貫通孔13の評価式EAを用いた保管容器1の設計方法の一例について説明する。保管容器1の設計方法は、例えば、コンピュータがプログラムを実行することでコンピュータによって実現される。
貫通孔13は、第1流路13aと連接部15とを連接する箇所が点Pである。貫通孔13は、第2流路13bと収容本体10の外面10bとを連接する箇所が点Qである。貫通孔13は、第1流路13aと、底部11の内面11aから側面121dに延びる仮想線11bとのなす角が角度θである。貫通孔13は、第2流路13bと、点Qを通りかつ仮想線11bと並行な仮想線11cとのなす角の傾きαである。なお、保管容器1の角部122aの外側の角SPは、XY座標系の原点となっている。貫通孔13は、底部11の内面11aの端部と、側壁部12の内面12aの端部を結んだ距離が、貫通孔の径dとなる。この場合、点Pの座標は、(T+d・sinθ,T)とする。点Qの座標は、(0,T-b-(T-a)・tanα)とする。また、本実施形態では、数式中の「・」は、乗算の記号を示す。図4に示す貫通孔13は、tanα≦T/Tを満たす。つまり、第1流路13aの傾斜が第2流路13bの傾斜よりも急となる形状である。
点Pと点Qとを通る直線F(X)は、例えば、式(1)で表すことができる。
F(X)=(b+(T-a)・tanα)/(T+d・sinθ)・X+T-b-(T-a)・tanα ・・・式(1)
貫通孔13は、直線F(X)と第2流路13bとの交点が点Rである。貫通孔13は、直線F(X)と第1流路13aとの交点が点Sである。貫通孔13は、点Rと点Sとを結ぶ直線が距離tである。貫通孔13の第2流路13bの上面を通る直線f(X)は、例えば、式(2)で表すことができる。
(X)=tanα・X+(T-b-(T-a)・tanα+d/cosα) ・・・式(2)
貫通孔13の第1流路13aの上面を通る直線f(X)は、例えば、式(3)で表すことができる。
(X)=tanθ・X+T-tanθ・T+d・cosθ ・・・式(3)
XY平面における点SのXs座標は、F(Xs)=f(Xs)の関係に基づいて、以下のように求めることができる。
Xs=(b+d・cosθ+(T-a)・tanα-T・tanθ)・(T+d・sinθ)/(b+(T-a)tanα-(T+d・sinθ)・tanθ)
ここで、簡単化のため、β=b+(T-a)・tanαとすると、Xs座標は以下のように変形される。
Xs=(β+d・cosθ-T・tanθ)・(T+d・sinθ)/(β-(T+d・sinθ)・tanθ)
XY平面における点SのYs座標は、式(1)のF(X)にXsを代入して求めることができる。
Ys=β・(β+d・cosθ-T・tanθ)/(β-(T+d・sinθ)・tanθ)+T-β
さらに、簡単化のため、η=T+d・sinθとすると、XY平面における点SのXY座標は、以下のように示すことができる。
点S((β+d・cosθ-T・tanθ)・η/(β-η・tanθ),β・(β+d・cosθ-T・tanθ)/(β-η・tanθ)+T-β)
同様に、XY平面における点RのXY座標は、F(Xr)=f(Xr)の関係と式(1)のF(X)にXrを代入した結果により、以下のように示すことができる。
点R(d・η/cosα・(β-η・tanα),β・d/cosα・(β-η・tanα)+T-β)
点Rと点Sとの距離tは、点Rと点Sとの長さであるので、t=(Xs-Xr)+(Ys-Yr)から式(4)として表すことができる。なお、簡単化のため、A’=(β+d・cosθ-T・tanθ)/(β-η・tanθ)、B’=d/(cosα・(β-η・tanθ))としている。
Figure 0007285182000005
・・・式(4)
保管容器1は、遮蔽欠損の影響を最小化するためには、貫通孔13のγ線束が収容本体10の中央部分と同等となることが望ましい。なお、γ線束の範囲は、例えば、2.72×10 n/cm/sから1.26×10 n/cm/sである。
例えば、遮蔽厚さが最大350mmで収容本体10の表面が2mSv/hの場合、放射線の透過率は3.85×10-5となる。線量率換算係数と透過率から遮蔽透過前のγ線束は、2.72×10 n/cm/sとなる。この場合の表面線量率を2mSv/hとすると、透過率は8.34×10-2であるので、収容本体10の内面におけるγ線束は1.26×106 n/cm/sとなる。
図5は、図2におけるA-A線の部分Bを拡大した断面部分のγ線束の一例を示す図である。図5に示すように、γ線束φは、貫通孔13の第1流路13aの欠損により影響を受ける部位のγ線束である。すなわち、γ線束φは、第1流路13aに沿った方向に向かうγ線束である。γ線束φは、貫通孔13の第2流路13bの欠損により影響を受ける部位のγ線束である。すなわち、γ線束φは、第2流路13bに沿った方向に向かうγ線束である。γ線束φは、収容本体10の中心点C付近のγ線束である。
例えば、γ線束φについては、貫通孔13と吸気孔14とがない状態で収容本体10の遮蔽厚をT’とした場合、以下の式(5)が成り立つ。以下の説明では、expは指数関数、lnは自然対数をそれぞれ示している。μは、減衰係数を示している。
exp(-μ・T’)/exp(-μ・T)=φ/φ ・・・式(5)
式(5)を展開すると、T’-T=-1/μ・ln(φ/φ)となる。そして、遮蔽欠損がないときの収容本体10の厚さの裕度ΔTは、T’-Tで表すことができる。裕度ΔTは、遮蔽厚T’と底部11の厚さTとの差のうち、許容できる範囲を示している。これにより、γ線束φについては、厚さの裕度ΔTは、-1/μ・ln(φ/φ)となる。また、γ線束φについても同様に、厚さの裕度ΔTは、ΔT=-1/μ・ln(φ/φ)となる。
以上により、保管容器1の基準値となる基準板厚Tは、T=T-ΔTで求めることができる。基準板厚Tは、例えば、収容本体10の底部11及び側壁部12の基準の厚さを示している。基準板厚Tは、γ線束φ、φに基づいて求められている。このため、遮蔽欠損の影響を最小化するには、点Rと点Sとの距離tは、t≧Tとなるように、角度θ、第2流路13bの傾きα、貫通孔13の径dを決定すればよい。
図6は、本実施形態に係る保管容器1における貫通孔13を決定する一例を説明するための図である。図6において、直線Pは、貫通孔13の第2流路13bの延長方向に延在し、貫通孔13の屈折部13pから底部11の内面11aへ向かう直線である。直線Pは、貫通孔13の第1流路13aの延長方向に延在し、貫通孔13の屈折部13pから収容本体10の外面10bへ向かう直線である。
図6に示す一例では、tanθはb/aであるので、角度θは、tan-1・(b/a)となる。例えば、tanθ≦T/Tの場合、直線Pは、(T/cosθ)-(a/cosθ)で示される。例えば、tanθ>T/Tの場合、直線Pは、(T/sinθ)-(a/cosθ)で示される。また、直線Pは、b/sinαで示される。この場合、直線Pと基準板厚Tとの関係は、P≧Tとなり、直線Pと基準板厚Tとの関係は、P≧Tとなる。
以上により、収容本体10における貫通孔13の評価式EAは、例えば、t≧T、P≧T、P≧Tとなる。貫通孔13は、評価式EAの関係を満たすように、第1流路13aのX軸方向の第1長さa、Y軸方向の第2長さb、XY平面における第2流路13bの傾きα、貫通孔13の径d等を決定すればよい。すなわち、保管容器1は、評価式EAを満足するように、貫通孔13の幾何学条件を決定することで、γ線のストリーミングを防止することができる。なお、評価式EAの必要条件は、T-β>0を含む。評価式EAの必要条件は、上述した点RのX座標が正かつ点SのX座標よりも小さいことを含む。評価式EAの必要条件は、点RのY座標が板厚以下であることを含む。評価式EAの必要条件は、式(2)が示す直線f(X)の切片が正であることを含む。なお、収容本体10の底部及び側壁部の長さ及び厚さは、本実施形態のように同じであることが好ましいが異なる厚みでもよい。
図7は、本実施形態に係る保管容器1における貫通孔13の成立性測定結果の一例を示す図である。図7に示す結果は、第1流路13aのX軸方向の第1長さaと、Y軸方向の第2長さbとの組み合わせに対し、XY平面における第2流路13bの傾きαの角度を変化させた場合の成立性の結果を示している。成立性は、「○」が評価式EAを満たし、「×」が評価式EAを満たさないことを意味している。図7に示す結果は、複数の第1長さaと複数の第2長さbとを組み合わせごとに、第2流路13bの傾きαを変化させた場合の成立性の測定結果を示している。
図7に示す成立性測定結果では、第2流路13bの傾きαは、角度が45°以下で設定することを示している。第2長さbは、250mm以下が適用範囲であることを示している。また、第1長さaと第2長さbとの比(a/b)は、1.5以下で設定すればよいことを示している。これにより、貫通孔13は、第2流路13bの傾きαが30°以下、かつ、第2長さbが250mm以下となるように設計される。
本実施形態に係る保管容器1は、第1流路13aの鉛直方向の第1長さaと水平方向の第2長さbとの比が6.0以下で、第2長さbは250mm以下で、第2流路13bと底部11の水平方向とのなす角が45°以下となるように、貫通孔13が収容本体10に形成される。その結果、保管容器1は、高線量物質を収容した収容本体10の中央のガンマ線束を考慮した貫通孔13を形成することで、当該貫通孔13による遮蔽性能の低下を抑制することができる。
図8は、本実施形態に係る保管容器1における貫通孔13の実施例1を示す図である。図8に示す収容本体10の厚さTは、350mmとなっている。収容本体10の角部122aを斜めに切断した厚みTは、495mmとなっている。収容本体10は、第1流路13aのX軸方向の第1長さa1が15mm、Y軸方向の第2長さb1が45mmとなっている。貫通孔13の径dは、15mmとなっている。第2流路13bの傾きαは、10°となっている。
この場合、点Rと点Sとを結ぶ直線が距離tは、上述した式(4)により、307mmと求めることができる。貫通孔13の第1流路13aと仮想線11bとのなす角である角度θが45°以下の場合、直線Pは、上述した計算式を用いて1518mmと求めることができる。また、角度θが45°よりも大きい場合、直線Pは、上述した計算式を用いて322mmと求めることができる。直線Pは、上述した計算式を用いて259mmと求めることができる。そして、距離t、直線P、直線Pの全てがγ線束に基づいて定められた基準板厚T以上である場合、貫通孔13は、収容本体10の遮蔽欠損を考慮した幾何学条件を決定することができる。
図9は、本実施形態に係る保管容器1における貫通孔13の実施例2を示す図である。図9に示す収容本体10の厚さTは、350mmとなっている。収容本体10の角部122aを斜めに切断した厚みTは、495mmとなっている。収容本体10は、第1流路13aのX軸方向の第1長さa2が150mm、Y軸方向の第2長さb2が170mmとなっている。貫通孔13の径dは、20mmとなっている。第2流路13bの傾きαは、20°となっている。
この場合、点Rと点Sとを結ぶ直線が距離tは、上述した式(4)により、412mmと求めることができる。貫通孔13の第1流路13aと仮想線11bとのなす角である角度θが45°以下の場合、直線Pは、上述した計算式を用いて521mmと求めることができる。また、角度θが45°よりも大きい場合、直線Pは、上述した計算式を用いて240mmと求めることができる。直線Pは、上述した計算式を用いて497mmと求めることができる。そして、距離t、直線P、直線Pの全てがγ線束に基づいて定められた基準板厚T以上である場合、貫通孔13は、収容本体10の遮蔽欠損を考慮した幾何学条件を決定することができる。
上記実施形態では、貫通孔13の形状が、tanα≦T/Tの場合で説明したが、貫通孔13の形状はこれに限定されず、tanα>T/Tでもよい。図10に示す保管容器の容器本体110aは、貫通孔113がtanα>T/Tの場合の形状を満たす。
以下、図10に示す貫通孔113の評価式EAを用いた保管容器の設計方法の他の例について説明する。
貫通孔113は、第1流路113aと連接部15とを連接する箇所が点Pである。貫通孔13は、第2流路113bと収容本体110の外面110bとを連接する箇所が点Qである。貫通孔113は、第1流路113aと、底部11の内面11aから側面121dに延びる仮想線11bとのなす角が角度θである。貫通孔113は、第2流路113bと、点Qを通りかつ仮想線11bと並行な仮想線11cとのなす角の傾きαである。なお、保管容器1の角部122aの外側の角SPは、XY座標系の原点となっている。
貫通孔113は、上記と同様に評価式EAに基づいて評価を行うと、底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さa、側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さb、貫通孔の径をd、第2流路と第1方向とのなす角α、第1流路と底部の内面から側面に延びる仮想線とのなす角θ、収納容器の底の厚みT、収容本体を斜めに切断した角部の厚みT、収納容器の側面の厚みT、減衰係数μ、収容本体の中心点C付近のγ線束φ0、第1流路の欠損により影響を受ける部位のγ線束Φ1、第2流路の欠損により影響を受ける部位のγ線束Φ2から、Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値ΔT、b+(T-a)・tanαの値β、β+d・(cosθ-1/cosα)の値ε、(β-d/cosα-η・tanθ)/(ε-T・tanθ)の値A″、d/(cosα・(T・tanα-ε))の値B″を算出することができる。
さらに、上記関係に基づいて、貫通孔113は、下記式を満足する構造とする。
tanα>T/T
Figure 0007285182000006

=a/cosα
=(T1/cosθ)-(a/cosθ)
=Min(T-ΔT,T-ΔT)
つまり、貫通孔113は、tanαとT/Tとの関係がtanα>T/Tを満足し、第1流路と連接部との連接箇所及び第2流路と収容本体の外面との連接箇所を通る直線が第2流路と交わる第1点から、当該直線が第1流路と交わる第2点までの距離であり、かつ上記式で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T-ΔT)で規定される高線量物質の線量に基づく収容本体の基準板厚TB以上であることを示す評価式を満たすように、貫通孔の幾何学条件を決定し、幾何学条件は、第1流路の底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さと、側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さと、第2流路と第1方向とのなす角の角度と、貫通孔の径と、を含む。貫通孔113は、tanα>T/Tを満たす形状とする場合、上記関係を満たすことで、当該貫通孔113による遮蔽性能の低下を抑制することができる。
次に、図11を参照しながら、実施形態に係る保管容器1を用いた高線量物質の収容方法の一例を説明する。図11は、本実施形態に係る保管容器1を使用する一例を説明するための図である。図12は、本実施形態に係る保管容器1の乾燥処理を説明するための図である。
図11及び図12に示すように、保管容器1の収容方法は、工程ST1、工程ST2、工程ST3、工程ST4、工程ST5、工程ST6及び工程ST7を有する。
工程ST1では、保管容器1は、収容本体10がプール200内の底面201に配置され、当該収容本体10の収容部10sに高線量物質100が収容される。
工程ST2では、保管容器1の蓋部20は、吊り具300にセットされ、吊り具300によって収容本体10上から吊り下ろされる。そして、工程ST3では、プール200内において、保管容器1は、吊り具300によって蓋部20が収容本体10にセットされるとともに、当該吊り具300の係止部301が収容本体10の吊り部10cにセットされる。
工程ST4では、保管容器1は、蓋部20が装着された収容本体10が吊り具300によってプール200の水上に吊り上げられ、収容本体10の内部の水を貫通孔13から排水する。詳細には、保管容器1は、収容本体10の内部の水が重力に応じて貫通孔13を通過し、外部に排出される。この場合、保管容器1は、貫通孔13に屈折部13pを有しているので、貫通孔13による遮蔽欠損の影響を抑制することができる。
工程ST5では、保管容器1は、プール200の水上に吊り上げられた状態で、収容本体10の外面10bが水洗いされる。これにより、保管容器1は、外面10bの放射能が除去される。
工程ST6では、保管容器1は、吊り具300によって容器置き場に搬送され、蓋部20が収容本体10にボルト締めされる。なお、容器置き場は、例えば、処分施設へ搬出するまで原子力発電所で仮保管する保管場所等を含む。これにより、保管容器1は、収容本体10の内部に収容された高線量物質100が蓋部20によって覆い隠された密封状態で、容器置き場に仮保管される。工程ST6が終了すると、図12に示す工程ST7に遷移する。
図12に示すように、工程ST7では、保管容器1は、乾燥装置400が接続され、乾燥装置400から収容本体10の収容部10sに供給される加熱空気によって乾燥処理が行われる。乾燥装置400は、例えば、供給する空気を加熱するヒータと、加熱空気を送出するブロアと、を有する。保管容器1は、乾燥装置400からの加熱空気が吸気孔14から吸気されると、当該加熱空気が収容部10sの内部を移動することで、収容部10sの内部の水分を蒸発させる。保管容器1は、収容部10sの内部の加熱空気を貫通孔13から乾燥装置400に排出する。保管容器1は、収容部10sが乾燥すると、水分が残存していない状態で、容器置き場に仮保管される。これにより、保管容器1は、放射線分解ガス等も発生しないので、安全性を維持することができる。その後、保管容器1は、例えば、搬送容器、処分容器等に収納され、処分施設に搬出される。
以上により、保管容器1は、底部11の内面11aと側壁部12の内面12eとの連接部15から収容本体10の外部へ貫通する貫通孔13を収容本体10に形成し、当該貫通孔13に1つの屈折部13pが形成される。これにより、保管容器1は、収容本体に高線量物質100を収容しても、貫通孔13の屈折部13pによって遮蔽欠損を抑制した状態で、貫通孔13から収容本体10の内部の液体、気体等を排出することができる。その結果、保管容器1は、貫通孔13を設けても、他の容器に収容する必要がなくなるので、遮蔽性能を低下させることなく、高線量物質100の処分の作業を簡単化することができる。
また、保管容器1は、側壁部12の角部122aと底部11の内面11aとの連接部15に貫通孔13が形成される。これにより、保管容器1は、矩形状の収容本体10において、側壁部12よりも厚みのある角部122aに貫通孔13を形成することができる。すなわち、保管容器1は、収容本体10の内面11aから外面10bまでの距離が最大となる箇所に貫通孔13を形成することができる。その結果、保管容器1は、貫通孔13を屈折させる範囲を確保できるので、遮蔽欠損をさらに抑制することができる。
また、保管容器1は、貫通孔13と吸気孔14とを中心点Cを基準として対向するように収容本体10に形成することができる。その結果、保管容器1は、吸気孔14から吸気して貫通孔13から排出する気体を収容本体10の内部で循環させることができるので、収容本体10の内部を効率良く乾燥させることができる。
また、保管容器1は、収容本体10が水を収容している場合、貫通孔13から水を収容本体10の外部に排出することができる。保管容器1は、収容本体10が吸気孔14から加熱空気が吸気されている場合、貫通孔13から加熱空気を収容本体10の外部に排出することができる。その結果、保管容器1は、貫通孔13から収容本体10の内部の加熱空気及び水を排出することが可能となるので、遮蔽性能を低下させることなく、処分の作業を簡単化することができる。
また、保管容器1は、鉛直方向と交わる方向へ連接部15から延びる第1流路13aと、第1流路13aから屈折しかつ収容本体10の外部へ延びる第2流路13bとを屈折部13pで連接した貫通孔13を収容本体10に形成することができる。その結果、保管容器1は、第1流路13aと第2流路13bとの屈折によって遮蔽性能の低下を抑制することができるともに、連接部15から第1流路13aへの液体の排出の効率を向上させることができる。
上記の実施形態では、保管容器1は、貫通孔13の第1流路13aを第2流路13bよりも急な傾斜としているが、これに限定されない。保管容器1は、例えば、第1流路13aを第2流路13bよりも緩やかな傾斜となるように貫通孔13を構成してもよい。
上記の実施形態では、保管容器1は、貫通孔13を1つの屈折部13pで曲げる場合について説明したが、これに限定されない。保管容器1は、例えば、3つ以上の流路を有する貫通孔を、2つ以上の屈折部で異なる方向に屈折されるように構成してもよい。この場合、保管容器1は、収容本体10の角部に形成することで、内面から外面までに十分な距離を確保することができる。
1 保管容器
10 収容本体
10a 収容口
10b 外面
10c 吊り部
10s 収容部
11 底部
11a 内面
11b、11c 仮想線
12 側壁部
12e 内面
13 貫通孔
13a 第1流路
13b 第2流路
13p 屈折部
14 吸気孔
15 連接部
20 蓋部
100 高線量物質
121a、121b、121c、121d 側面
122a、122b、122c、122d 角部
200 プール
201 プール底面
300 吊り具
301 係止部
400 乾燥装置

Claims (9)

  1. 高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有する保管容器であって、
    前記収容本体は、
    底部と、
    前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、
    前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、
    を有し、
    前記貫通孔は、少なくとも1つの屈折部を有し、
    前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、
    前記屈折部は、前記第1流路と前記第2流路とが連接する前記貫通孔の部分であり、
    前記第1流路は、前記底部の内面に沿った第1方向及び前記側壁部の内面に沿った第2方向に対して傾斜し、
    前記第2流路は、前記底部の内面に沿った第1方向及び前記側壁部の内面に沿った第2方向に対して傾斜することを特徴とする保管容器。
  2. 前記側壁部は、複数の側面と、隣り合う側面同士を所定の角度で連接する角部と、を有し、
    前記貫通孔は、前記底部の内面と前記角部の内面との前記連接部に形成されていることを特徴とする請求項1に記載の保管容器。
  3. 前記収容本体は、前記収容本体の内部に気体を吸気する吸気孔をさらに有し、
    前記吸気孔は、前記収容本体の中心点を基準として、前記貫通孔と対向する前記収容本体の部分に形成されていることを特徴とする請求項1または2に記載の保管容器。
  4. 前記貫通孔は、前記収容本体が液体を収容している場合、当該液体を前記収容本体の外部に排出し、前記収容本体が前記吸気孔から前記気体が吸気されている場合、当該気体を前記収容本体の外部に排出することを特徴とする請求項3に記載の保管容器。
  5. 前記貫通孔は、tanαとT/Tとの関係がtanα≦T/T下記式を満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ、
    Figure 0007285182000007


    で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)-(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T2-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
    前記幾何学条件は、前記第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする請求項1から請求項4のいずれか1項に記載の保管容器。
    a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
    b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
    d:貫通孔の径
    α:第2流路と第1方向とのなす角
    θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
    :収納容器の底の厚み
    :収容本体を斜めに切断した角部の厚み
    :収納容器の側面の厚み
    ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
    η:T+d・sinθの値
    β:b+(T-a)・tanαの値
    ε:β+d・(cosθ-1/cosα)の値
    A’:(β+d・cosθ-T・tanθ)/(β-η・tanθ)の値
    B’:d/(cosα・(β-η・tanθ))の値
    μ:減衰係数
    φ:収容本体の中心点C付近のγ線束
    φ1:第1流路の欠損により影響を受ける部位のγ線束
    φ2:第2流路の欠損により影響を受ける部位のγ線束
  6. 前記貫通孔は、tanαとT/Tとの関係がtanα>T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
    Figure 0007285182000008


    で規定される距離t、P=a/cosαで規定される直線P1、及び、P=(T/cosθ)-(a/cosθ)で規定される直線P2が、T=Min(T-ΔT,T-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚TB以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
    前記幾何学条件は、前記第1流路の前記第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする請求項1から請求項4のいずれか1項に記載の保管容器。
    a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
    b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
    d:貫通孔の径
    α:第2流路と第1方向とのなす角
    θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
    T0:収納容器の底の厚み
    :収容本体を斜めに切断した角部の厚み
    :収納容器の側面の厚み
    ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
    β:b+(T-a)・tanαの値
    ε:β+d・(cosθ-1/cosα)の値
    A″:(β-d/cosα-η・tanθ)/(ε-T・tanθ)
    B″:d/(cosα・(T・tanα-ε))
    μ:減衰係数
    φ:収容本体の中心点C付近のγ線束
    φ:第1流路の欠損により影響を受ける部位のγ線束
    φ:第2流路の欠損により影響を受ける部位のγ線束
  7. 前記貫通孔は、第1流路13aの鉛直方向の第1長さaと水平方向の第2長さbとの比が6.0以下で、第2長さbは250mm以下で、前記第2流路と水平方向とのなす角が45°以下であることを特徴とする請求項または請求項に記載の保管容器。
  8. 高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有し、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、前記屈折部は、前記第1流路と前記第2流路とが連接する前記貫通孔の部分であり、前記第1流路は、前記底部の内面に沿った第1方向及び前記側壁部の内面に沿った第2方向に対して傾斜し、前記第2流路は、前記底部の内面に沿った第1方向及び前記側壁部の内面に沿った第2方向に対して傾斜する保管容器の設計方法であって、
    前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、
    tanαとT/Tとの関係がtanα≦T/Tを満足し、
    前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
    Figure 0007285182000009


    で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)-(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T2-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であり、0°<α<90°であり、0°<θ<90°であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
    前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする保管容器の設計方法。
    a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
    b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
    d:貫通孔の径
    α:第2流路と第1方向とのなす角
    θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
    :収納容器の底の厚み
    :収容本体を斜めに切断した角部の厚み
    :収納容器の側面の厚み
    ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
    η:T+d・sinθの値
    β:b+(T-a)・tanαの値
    ε:β+d・(cosθ-1/cosα)の値
    A’:(β+d・cosθ-T・tanθ)/(β-η・tanθ)の値
    B’:d/(cosα・(β-η・tanθ))の値
    μ:減衰係数
    φ:収容本体の中心点C付近のγ線束
    φ1:第1流路の欠損により影響を受ける部位のγ線束
    φ2:第2流路の欠損により影響を受ける部位のγ線束
  9. 高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有し、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、前記屈折部は、前記第1流路と前記第2流路とが連接する前記貫通孔の部分であり、前記第1流路は、前記底部の内面に沿った第1方向及び前記側壁部の内面に沿った第2方向に対して傾斜し、前記第2流路は、前記底部の内面に沿った第1方向及び前記側壁部の内面に沿った第2方向に対して傾斜する保管容器の設計方法であって、
    前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、
    tanαとT/Tとの関係がtanα>T/Tを満足し、
    前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
    Figure 0007285182000010


    で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)-(a/cosθ)で規定される直線Pが、T=Min(T-ΔT,T-ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であり、0°<α<90°であり、0°<θ<90°であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
    前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする保管容器の設計方法。
    a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
    b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
    d:貫通孔の径
    α:第2流路と第1方向とのなす角
    θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
    :収納容器の底の厚み
    :収容本体を斜めに切断した角部の厚み
    :収納容器の側面の厚み
    ΔT=Min(-1/μ・ln(φ/φ),-1/μ・ln(φ/φ))の値
    β:b+(T-a)・tanαの値
    ε:β+d・(cosθ-1/cosα)の値
    A″:(β-d/cosα-η・tanθ)/(ε-T・tanθ)
    B″:d/(cosα・(T・tanα-ε))
    μ:減衰係数
    φ:収容本体の中心点C付近のγ線束
    φ:第1流路の欠損により影響を受ける部位のγ線束
    φ:第2流路の欠損により影響を受ける部位のγ線束
JP2019170598A 2019-06-18 2019-09-19 保管容器及び保管容器の設計方法 Active JP7285182B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019112689 2019-06-18
JP2019112689 2019-06-18

Publications (2)

Publication Number Publication Date
JP2021001860A JP2021001860A (ja) 2021-01-07
JP7285182B2 true JP7285182B2 (ja) 2023-06-01

Family

ID=73995065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170598A Active JP7285182B2 (ja) 2019-06-18 2019-09-19 保管容器及び保管容器の設計方法

Country Status (1)

Country Link
JP (1) JP7285182B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822894B (zh) * 2022-05-31 2023-03-24 四川先通原子医药科技有限公司 容置放射性药物药瓶的容器及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022881A (ja) 2000-07-13 2002-01-23 Mitsubishi Heavy Ind Ltd コンクリート製貯蔵容器
JP2002328194A (ja) 2001-05-01 2002-11-15 Ishikawajima Harima Heavy Ind Co Ltd 貯蔵キャスク
JP2006058010A (ja) 2004-08-17 2006-03-02 Central Res Inst Of Electric Power Ind コンクリート製貯蔵設備の遮蔽蓋
JP4954520B2 (ja) 2005-09-21 2012-06-20 株式会社神戸製鋼所 放射性廃棄物の収納方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854600U (ja) * 1981-10-09 1983-04-13 三井造船株式会社 放射性廃棄物輸送貯蔵コンテナ
JPS6244700A (ja) * 1985-08-23 1987-02-26 株式会社日立製作所 放射性廃棄物容器
US5406600A (en) * 1993-10-08 1995-04-11 Pacific Nuclear Systems, Inc. Transportation and storage cask for spent nuclear fuels
JPH1184082A (ja) * 1997-09-09 1999-03-26 Hitachi Ltd コンクリート・キャスクにおける入気口、排気口の換気構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022881A (ja) 2000-07-13 2002-01-23 Mitsubishi Heavy Ind Ltd コンクリート製貯蔵容器
JP2002328194A (ja) 2001-05-01 2002-11-15 Ishikawajima Harima Heavy Ind Co Ltd 貯蔵キャスク
JP2006058010A (ja) 2004-08-17 2006-03-02 Central Res Inst Of Electric Power Ind コンクリート製貯蔵設備の遮蔽蓋
JP4954520B2 (ja) 2005-09-21 2012-06-20 株式会社神戸製鋼所 放射性廃棄物の収納方法

Also Published As

Publication number Publication date
JP2021001860A (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP7285182B2 (ja) 保管容器及び保管容器の設計方法
JP2007248066A (ja) 高効率性・高信頼性を備えた放射性廃棄物の分別・クリアランス処理システム及びその方法
JP4954520B2 (ja) 放射性廃棄物の収納方法
JP4280921B2 (ja) 原子炉設備の解体工法
Lee et al. Preliminary evaluation of decommissioning wastes for the first commercial nuclear power reactor in South Korea
US9984780B2 (en) Packaging for decommissioned and dismantled nuclear reactors and reactor components
JP7234072B2 (ja) 廃棄体の放射能評価システムおよび廃棄体の放射能評価方法
JP4880271B2 (ja) 放射性廃棄物の処分方法、及び、放射性廃棄物の埋設処分用容器構造
JPS6359480B2 (ja)
Bakshi et al. Attenuation of gamma radiation using clearview radiation ShieldingTM in nuclear power plants, hospitals and radiopharmacies
JPS6191599A (ja) 放射線遮蔽ブロツク
JPH10132989A (ja) 溶解槽
JP7157712B2 (ja) 放射性廃棄物の保管方法
JP2007292682A (ja) 金属キャスクおよびその製造方法
JP2006313134A (ja) ドラム缶収納型イオン交換樹脂塔
JP6473934B2 (ja) 放射線遮蔽構造及びそれを用いた点検方法
JP2019132778A (ja) 事故対策方法、原子力プラント及び放射線遮蔽方法
JP2006010313A (ja) 放射性物質貯蔵建屋
Khan et al. Laser size reduction of radioactively contaminated structures
Ard Specification for the Tank-Side Cesium Removal Demonstration Project (Project TD101)
JP4343852B2 (ja) 燃料集合体からのシンブル管の取去り方法と取去り用機具
CN207883333U (zh) 一种自排水式水下放射性异物屏蔽装置
JP2002328195A (ja) コンクリートキャスク
Matsushita et al. Dose rate evaluation of workers on the operation floor in Fukushima-Daiichi Unit 3
Hedin et al. Decommissioning planning for Swedish operating NPPs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150